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Abstract. We review theoretical and simulational approaches to tiserge
tion of equilibrium bulk crystal and interface propertissaell as to the nonequi-
librium processes of homogeneous and heterogeneouslerystaation for the
simple model systems of hard spheres and Lennard—Joneslgsarfor the
equilibrium properties of bulk and interfaces, densitydiional theories em-
ploying fundamental measure functionals prove to be a geeand versatile
tool, as exemplified with a closer analysis of the hard spberstal-liquid in-
terface. A detailed understanding of the dynamic processication in these
model systems nevertheless still relies on simulationpi@gches. We review
bulk nucleation and nucleation at structured walls and éxanm closer detail
the influence of walls with variable strength on nucleatiothie Lennard—Jones
fluid. We find that a planar crystalline substrate inducesgttosvth of a crys-
talline film for a large range of lattice spacings and intéoacpotentials. Only
a strongly incommensurate substrate and a very weaklyctwasubstrate po-
tential lead to crystal growth with a non—zero contact angle

1 Introduction

It is a core interest of statistical mechanics to understhednodynamic properties of the
solid phase (such as ligygblid coexistence densities, the equation of state, dadigid in-
terfacial tensions...) from a basic, possibly simple Henikn of the system. Furthermore,
homogeneous (in the oversaturated bulk) and heterogerfabuslls, say) nucleation of
the solid phase can be studied by microscopic approacheecMar simulation, density
functional theory (DFT) and phase figlghase field crystal (PFC) models are the main com-
putational approaches to these questions. It is hoped yteathiorough understanding of the
solid phase thermodynamics and its growth dynamics in @mpdel systems such as hard
spheres and the Lennard—Jones fluid one gaindfisat basic knowledge to understand
these issues also for real materials (e.g. metals). Sieom#terials science community often
works with the coarse—grained phase field and PFC modedsdésirable to link the micro-
scopic descriptions of molecular simulation and DFT to theameters employed in phase
field/PFC calculations.

In this paper, we review briefly the density functional dgstwns of the equilibrium
solid phase and the solid—liquid interface in simple mogstems (Section 2). In Section
3 we focus particularly on the hard sphere solid-liquidrifiatee where we have obtained a
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rather complete and consensual picture through simulatenDFT, with diferences to the
PFC description remaining. New DFT results on the metastaitérface of a hard sphere
bcce soligliquid interface are presented. Further, we focus on homegeas and heteroge-
neous nucleation of the solid phase in the hard sphere andat@nrJones fluids. In these
simple model systems, our main source of knowledge are mlalesimulations. In Section
4 we discuss homogeneous nucleation with emphasis on sdsuth the past years. Sec-
tion 5 treats heterogeneous nucleation, in particular thstal growth at planar, crystalline
walls. Through diterent wall potentials and flierent wall crystal structufkattice constant
the possible crystallization pathways are changed botlitatinely and quantitatively. We
present new results on Lennard—Jones system at variableatenlones type walls. Section
6 concludes our work with a short summary.

2 Density functional theory

Within density functional theory, inhomogeneous liquidsl arystals are treated on equal
footing, i.e. the bulk crystal is viewed as a self—sustaimallation of the one—body density.
In equilibrium, the theory rests on a minimization prineigbr the grand canonical free
energy which is a functional of this one-body dengify),

Qo] = 7161 + 7061 - [ &=V, M

whereF @ and#®* denote the ideal and excess free energy functionals of tite fldenotes
the chemical potential and the external potential is resoresl byv®*. The exact form of the
ideal part of the free energy is given by

BFLp] = f drpi(r) = f A p(r)(In[A%(r)] - 1). @)

Here, A is the thermal de-Broglie wavelength agd= 1/(kgT). The equilibrium density
profile peq(r) is determined via minimizing the grand canonical free gpéunctional:

1 ped(r) _ 65 (p(r)]
Po p(r)

For the equilibrium bulk crystal/®*(r) = 0 andpeq(r) is lattice—periodic, angdo, the homo-
geneous density (bulk density), is fixed by the excess cramatential®*.

The central diiculty consists in determining the excess free energy fanatiF ¢*. Only
for hard bodies there exists a geometric approach (Fundameeasure Theory, FMT)
which leads to very precise functionals, for reviews seesH&f2]. For hard spheres, proper-
ties of crystals and crystal-liquid interfaces have beemered in stficient detail such that
one may say that we possess a close—to—exact reference thiethre hard sphere solid. See
App.[Alfor the explicit form ofF* for FMT.

For the one—component, hard sphere (diame}daulk solid, FMT is in very good agree-
ment with simulations regarding coexistence densitiex &nergies of the solid and liquid
phase, and density distributions around fcc lattice sitegpérticular with regard to their
width and anisotropy)[3]. The equilibrium vacancy concation found in FMT is smaller
than in simulations (207° vs. 210°%). However, other DFT models and PFC do not predict
at all such small concentrations. Furthermore, the codestription of vacancies restricts
the choice of possible fundamental FMT functionals to theté/Bear Il (tensor) functional
(see ApplA).

Within FMT, also an accurate description of metastabletatyshases (bcc, hcp) is pos-
sible [4[5]. For densitiepgo® = pg > 1.16, two metastable bcc phases are found. Their

B + ™ = V). ®3)
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relevance remains to be investigated possibly in apptinatio solids with stable bcc phases
(with FMT as a reference theory). The hcp phase is actuallserstable than fcc in FMT
(by a tiny free energy dierence of 0.00ksT per particle). In simulations, the situation is
precisely reverse (also by about the same free enefprelnce), this can be shown to be a
consequence of subtle multi-body correlatifieets which are missed by FMTI[5].

The phase diagram of binary hard spheres has been investigaRef. [6], again finding
good agreement with simulations.

Previous studies of the crystal-liquid interface in FMTdlwed restricted parametriza-
tions of the three—dimensional density profile across ttezfiace [7,8]. This introduces some
uncertainty as to the precision for the value of the intéaidension since the functional min-
imization is constrained. Depending on the particular FMidtional the interfacial tension
is close[[T] or 25% abové& 8] corresponding simulation value Section 3 we discuss the
hard sphere crystal-liquid interface in more detail and@né also results of unconstrained
minimizations.

2.1 Functional Taylor expansions

Many practical applications of DFT have started from an espan of #* around a back-
ground reference density profipg(r) which, in general, can depend on the position

p7o = pFglpal - [ e poap) - 5 [ Ereredn. oo + . ()

Here,F§¥[oo] is the excess free energy pertaining to the background@rdfi(r) = p(r) -
po(r) andc® andc® are the first two members in the hierarchy of direct corretatiinctions
¢, defined by

6(n)7_-ex
6p(ra)...op(rn)

In most practical applicationgy = const. is taken to be a reference bulk density in which
case—cM) = Bu® = Bu — log(peA®) andc@(r — r’; pg) depends only on the coordinate
difference of the two positiorrsandr’. To evaluate the functional in Ed.(4), the correlation
function c® has to be determined as an external input, provided e.g.tbgria equation
theory or by simple approximations of RPA typé [9].

The work of Ramakrishnan and Yussban the Taylor—expanded functional applied to
hard spheres initiated the density functional researcheszing[10]. However, only for soft
systems (Gaussian particles as a model for e.g. polymersradriners) the functional is
reliable [11]. If applied to other soft systems, the Taylgpanded functional works better
for repulsive systems, see e.g. Réf.1[12] for a recent studyhe Yukawa model. In the
studies mentioned, the employed direct correlation famati?)(r — r’; po) has been always
the isotropic one from the bulk fluid. Significant improverhehquantitative accuracy can be
achieved if one allows for a direct correlation function tzaning an anisotropic contribution
with the proper crystal lattice symmetiy [13]14].

If the system under study can be approximated by a refergstens with corresponding
functional7 "', then the expansiofl(4) can be modified to

c(rq,...,rnipo) = -B )

p=po(r)

BF = BF + BAFS po] — f d®rac®(r; po)dp(r) - (6)

% fdsrd3r’Ac(2)(r, r’; po)dp()Ap(r’) + ...

where the expansion cfieients reflect dferences between the actual and reference system:
AFpo] = F§¥po] — ng’ref[po] for the free energy dierence pertaining to the profilg
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and in a similar fashiontc® and Ac® are defined. Since from a practical point of view
only hard spheres qualify for a suitable reference systeimavuficiently precise reference
functional, this approach works for simple fluids with regiwé cores such as Lennard—Jones
or Yukawa fluids, or the primitive model for electrolytés[15

The first quantitative description of the Lennard—Joneselthagram in this spirit was
given in Ref. [16], still with the older weighted—densitympach for the hard sphere refer-
ence functional. Only recently, a study employed FMT as aregfce functional and found
remarkably precise values for the crystal-liquid binodad arystal-liquid interfacial ten-
sions of the Lennard—Jones systém [17].

2.2 Phase field crystal (PFC) model

The Taylor expanded functional in Eg] (4) is nonlocal in teeslties. Through an additional
approximation (gradient expansion) it can be cast into alltmrm. We consider a constant
reference densityp and the following power expansion of the Fourier transfofitine direct
correlation function:

EA(k;p) = —Co+ o kK2 —ca K*. .. 7
Using this, the Taylor—expanded functional becomes

BFE = BFX(po) +,8,uexfd3rzlp(r) + % fd3rAp(r) (co + V2 + V4. .)Ap(r) +...
(8)

We observe that the excess free energy density containstéoozs up to order 2 infp and

up to order 4 inV(4p). The total free energy contains in addition the ideal ga® t&9[p]
from Eq. [2). One may expand also this termjmin order to obtain a power—expanded free
energy density to power 4 in bothp andV(4p). It turns out that the phase diagram of such
a power—expanded model is equivalent to a reduced modebwvdtimensionless free energy
according to[[18]

Fprc= deXfPFC = fdsX% (W(X) [—6 +(1+ VZ)Z] ?(x) + %X)A) , 9)

which we call the phase field crystal (PFC) model. Hare, qor is a dimensionless coordi-
nate withqp = /20—54 being the wavenumber of “favored” density oscillatiols= p/pg — b

is a reduced and shifted density. The paramefptaying the role of a temperature), the shift
b and the free energy scale of the model can be related to therpoyansion parameters of
the Taylor—expanded free energy. However, the phase diegod a simple fluid (like hard
spheres or Lennard—Jones) and PFC cannot be mapped ontatleachy this route. Rather,
the power expansion parameters of the Taylor—expandedefrergy should be treated as
fitting parameters and then linked to the PFC model phaseatiag

The PFC model is a very generic model with possible peridigicedered equilibrium
states such as stripes, rods and bcc, fcc,[hdp [19]. Thigigaeradure dfers many possibilities
to understand structure formation processes qualitgtigate has to be taken when a quanti-
tative understanding is desired. For the case of iron (lbed, properties, interfacial tensions
and anisotropies are obtained in reasonable agreemensiwithations[[20),21]. For the case
of a Yukawa fluid (bcc), interfacial tension are too large bfaetor of 2 and anisotropies
are greatly exaggerateéd[12]. An attempt to relate the PRG:peelations in an amorphous
solid (bcc part of the PFC phase diagram) to a pair potenigddigd a strongly oscillatory
potential with a rather soft core[22]. This potential iswatuch unlike the Yukawa potential
or a possible potential for iron. For the case of hard sphidcey, the fit of bulk properties
resulted in interfacial tensions too low by more than a feofd3 and interface profiles for
¥ (r) which could not be related to the very precise FMT densibfifas [23].
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3 The hard—sphere crystal-fluid interface

The density profile and the interfacial tensiprof the hard—sphere crystal(fcc)—fluid inter-
face have been under intense scrutiny by DFT and simulappnoaches. Within the older
weighted—density approach, Ref. [25] demonstrated thailarfinimization with respect
to the three—dimensional (3d) density profile leads to akignificantly lower gyo? =

v* ~ 0.3) than obtained by restricted minimizations of paramettiprofiles (e.gy* ~ 0.6

in Ref. [26]). This underlines the need to perform also fuithimization in the case of FMT
functionals, besides the restricted minimization of Ri&]. In Ref. [27] such results for the
WBII-T functional (see Apd_R) are reported with the followg results for the orientation—
dependent interfacial tensiop; o, = 0.69,%/&10] = 0.67 andyy;;,; = 0.64. The molecular

dynamics results reported in the same [27] ﬁ{gO]sim = 0.64, 7;11013im = 0.62
andyi‘m]sim = 0.60. Whereas the tension anisotropieé from DFT and from thelation

agree, the overall values from the simulations are somesvhaller, presumably due to cap-
illary wave dfects (see below). We remark that the extraction of crystalid interfacial
tensions from simulations is still a delicate case, for kaptheres reported valuegtdr by
10% [28.29.217].

Useful insights into the structure of the interface may beivied by considering a mode
expansion[[30]. Let the density field béx, y, zZ) which describes the crystal-fluid interface
with interface normal ire—direction. We can parametrize it in terms of a modified Feuri
expansion

p(%y.2) = ) exp(K; 1) pi(d , (10)
i

whereK; denotes the reciprocal lattice vector (RL\)and thez-dependent Fourier am-
plitude p;(2) are modes of the field. One expects that upon crossing thgace from the
crystal side, alpj(2) relax to zero for nonzerk§ ;. Only forK; = 0, the value for the associ-
ated modey, crosses from the average crystal dengigyof the crystal to the average fluid
densityps at coexistence.

Properties of the interface modes as obtained from FMT haee discussed in detail in
Ref. [30]. The most important conclusions are:

1. approaching the interface from the liquid side, crysi#yl sets in earlier as densification:
there is a separation of about one cubic unit cell leragth 1.6 o~ between the interface
location as determined by the average density and theactetbcation as determined by
the leading crystallinity modepg (2) with K1 = (27/a)(1, 1, 1))

2. asmall density depletion zone just in front of the bulkstay (dip in profilepy(2))

3. strongly non-monotonic mode profiles also for next—tadieg modes, especially for
p2(2) with K, = (27/a)(0, 0, 2) (leading crystallinity mode for lateral density average

The leading modes have been also extracted from molecuteamndigs simulations and
found to be in good agreement with FMT [23]. As an example,ign [ we present a com-
parison between FMT and simulation for the average densiigapy and the leading crys-
tallinity mode for lateral density averag®. Simulation results are presented foffeient
averaging timesl,,, given in units of the characteristic selffidision time (time it takes
a particle in the coexisting liquid to fiuse over a distance of). For Ty, ~ 1 we observe
nearly quantitative agreement, whereas longer averagimggtiead to broadeningfects due
to capillary waves (not captured in FMT).

DFT allows to study of metastable crystdl§ [7,5] as well &sabsociated crystal-liquid
interfaces. As a novel result, we present fully minimizedTFkésults for bcc coexistence
properties and bcc—liquid interfacial tensions in Tdb. ltamed with the numerical proce-
dure described in Ref_[23]. First, we observe a rather laligerepancy in the values of
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Fig. 1. Leading modes extracted from MD simulated, laterally agedadensity profiles in comparison
with FMT results. (a) average density mopgz), (b) real part ofp,(2) with K, = (27/a)(0, 0, 2). The
averaging time in the MD simulations was about one seffudion time. For longer times, cleaffects
of capillary wave broadening were seen which are absent if.Bde also Ref[[24]Figure adapted
from Ref. [23].

functional  pj Per Mvac Yiool Yol Yy
bcc RF-T 0.923 0.971 0.012 025 025 0.24

WB-T 0.976 1.012 0.013 0.27 0.26 0.25

WBII-T 1.016 1.045 0.015 0.34 0.33 0.32
fcc  WBII-T 0.945 1.039 20> 0.69 067 0.64

Table 1. Coexistence properties for bcc in comparison with fcc fafedent functionals (given ex-
plicitly in App. [&). Note the rather high equilibrium vacanconcentratiom,,. of bcc as well as the
strongly reduced interfacial tension values when compaiigid fcc. Details of the applied numerics
are described in Ref$. [80,5].

the coexistence densities when comparing tiedint functionals. (The functionals are de-
scribed in App[A.) In case of functional RF-T the lower catance densities result from
the underlying Percus—Yevick equation of state for theitlqphase which overestimates the
pressure near coexistence. For the liquid phase, fundsid®B—T and WBII-T give nearly
identical results, yet noticeableffirences for the crystals exist (notice that WB-T also does
not predict a nonzero vacancy concentratigp for the fcc crystall[3]). In view also of the
higher degree of consistency in constructing the WBII-Tctional, we think that it is the
most suited functional for crystals. The bcc interfacialkien values are smaller by a factor
of 2 and more compared with the fcc values. Although this mehat nucleation of bcc
should be easier than fcc, thefdrence inF/N around fcc—liquid coexistencgy ~ 1.04)

is very high with about 0.8gT [5], therefore bcc nucleation should be inhibited. The bcc
solutions are furthermore a useful reference point forwdismg the crossover from fcc to
bcc as the most stable crystal structure for other potensiath as ofd/r)" type. Also, a
crossover for the bcc interfacial tension from metastabgtable interfaces can be discussed
using the reference functional approach (see[Hq. [(6)) B3188/ going the reverse way (us-
ing simulated bcc interfacial tension values for thgn)"—potential), Ref[[32] estimated the
reduced hard sphere bcc interfacial tension to be aroundrOréasonable agreement with
our WBII-T results.

Are stable and metastable HS crystal-liquid interfacesvesit for the study of metals?
One can define a céicient @ (Turnbull codiicient) through the relatiopps® = o AH;
wheredH; = (He — Hq)/N is the enthalpy of fusion (enthalpyftBrence between coexisting
crystal and liquid per particle). MD simulations for var®metals using embedded atom
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potentials showed that ima,2*~4H; plot fcc metal points are close to a straight line with

a ~ 0.55 and bcc metal points are close to a straight line with0.29 [33]. For hard spheres,
AHt = (Fer — Fr)/N = peoex{1/p1 — 1/p¢r) @and our FMT values for fcc give ~ 0.6, close to

the fcc metal valu€ [34]. Thus just entropy determines theBull codficient, attractions in
the system changep;2> and4H; in the same proportion. For bec, the situation is less clear:
between the three functionals we have usediffers from 0.40 (RF-T), 0.52 (WB-T) t0 0.73
(WBII-T), mainly due to the dierences in the coexistence gap— ps. Thus, our tentative
conclusion would be that attractions in metals (i) stabitize bcc phase and (i) also change
ypo2/® and4H; disproportionately to give a lower Turnbull déieient. Note, however, that
experimental studies on metastable metal droplets seemmeadrgrnbull codficients which

are systematically larger than the simulated valugg & 0.6...0.8, apec ~ 0.6) [35].

4 Simulation of homogeneous crystal nucleation

At a first order phase transition, such as the liquid—to-tafygansition, the phase transfor-
mation process is subject to kinetic barriers. Meta—stpbises can persist over long times
and then suddenly and quickly transform by nucleation and/trinto the stable phase[36].
Nucleation at a first order phase transition is traditiondiscribed by classical nucleation
theory (CNT) or extensions thereof. The nucleation ratesityehis assumed to have the form

| = kexpp4G*) (12)

where4G* is the height of the free energy barrier associated with eh@étion of a critical
nucleus anda is a kinetic prefactor. The basic assumption underlying tyype of description

is a separation in time-scales between slowly varying doatds such as the size or shape
of the nucleus and the remaining coordinates that are cereidhermally equilibrated at
all times, constituting a “free energy landscape” in whibh process evolves. In the most
basic version of CNT, the nucleus is assumed to be spheiiealf¢r crystalline nuclei,
the anisotropy of the interfacial tension is neglectedy] ahe radiusk of the nucleus is
considered to be the only relevant slow coordinate

AG(R) = gﬂ'RapA/J + 4Ry (12)

wherep is the number density of the stable phase at equilibritgms the chemical potential
difference between the meta-stable phase and the stable plasis éime interfacial tension
of the planar interface between the two phases.

Classical nucleation theory can directly be tested by me&nemputer simulation, be-
cause interfacial tensions, supersaturations, nucleedies and cluster morphologies can be
computed independently from one another. There is a lardg bbliterature on simulations
of homogeneous nucleation in specific materials, whichu@veis beyond the scope of this
article. Here we discuss crystal nucleation in two simpleei®ystems, hard spheres and
the Lennard—Jones system:

Homogeneous crystal nucleation in colloidal suspensidémsamodisperse hard spheres
has been studied extensively in experiments and simukatioer the past 20 yeafs|37/38139,40,41,42,43,44,45].
Hard spheres interact only by excluded volume, the liqoig+lystal phase transition in this
system is purely entropic. Thus one could expect the tiansitynamics to be particularly
simple. Despite the simplicity of the model system, howgier nucleation rates obtained by
computer simulation dlier significantly from those observed in experiments. In 280&r
and Frenkel used umbrella sampling to compute the crystdéation rate, i.e. an approach
based on transition state theory[40]. As a reaction coatdito guide the sampling they
chose the size of the largest crystalline cluster in theesysFilion and coworkers tested this
approach by comparison to unbiased molecular dynamicdaiimos as well as forward-flux
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sampling (a steady state rare event sampling techniquet@mcuded that the nucleation
rates coincided within the error bars. Hence the assumpfi@aseparation in time-scales
holds, transition state theory can be applied, and the saifrthe discrepancy between sim-
ulation and experiment must lie elsewhere. We simulated Bpheres with Newtonian as
well as Brownian dynamic$ [43,44] and found for both caseseacpusor mediated process
in which first dense aggregates formed which then crysgalliZA similar process has also
been seen in the Lennard-Jones system [46].) This findinddaioply that an approach
based on biasing with respect to a reaction coordinate thigttakes crystallinity into ac-
count should not produce the same result as a direct sironldfiowever, the dierences due
to this dfect are probably smaller than the accuracy of the rates in[&2jt

A major difference between experiment and simulation on colloidalenspns is the
presence of a solvent in the experiment. We have recentlylated the nucleation process
taking solvent hydrodynamics into account by means of Medtiticle Collision Dynamics
and found that the nucleation rates depend strongly on thersviscosity (beyond the trivial
slowing down of dfusion with increasing viscosity)[47]. Due to hydrodynarmigractions,
spheres are attached cooperatively to the nucleus and tiencecleation rate is enhanced in
viscous solvents. Thigfkect might explain the discrepancies in nucleation ratesmes so
far. Furthermore, it shows that it is in generahdiult to compare phase transition kinetics of
colloids and metals, as colloids arexted by solvent kinetics, even though the equilbrium
phase behaviour of the two classes of systems might be simila

Homogeneous crystal nucleation from the undercooled Lielhdanes melt has also been
addressed in many simulation studies over the past 10 y&&i/s,49,50,51,52.%3,64]55] us-
ing a variety of simulation methods ranging from free endygyged approaches such as um-
brella sampling over non—equilibrium rare event technégelech as transition path sampling
to “brute force” molecular dynamics. In summary, no cleatynie has emerged yet regarding
the range of applicability of CNT. The simulations are sebje various finite-size féects
[53], thus despite the simplicity of the model system, it égtrivial to draw comparisons
between results from fierent studies. Several sources for the deviation of nuoleaates
from the CNT predictions have been identified and correstiogve been in incorporated
into the theory to take into account the fact that the intarfia not sharp and that it fluctuates
[55]. But a general coarse grained description still reméairbe derived.

5 Simulations results on heterogeneous nucleation and grow th on
strained structured surfaces

The CNT approach to homogeneous nucleation can be extemdestiaightforward way to
take into account the presence of impurities, defects odfb@indaries of the crystallizing
system. Substrate surfaces and localized defects oftggetrand accelerate the formation
of a crystalline nucleus, because they lower the free ergagyer for nucleation. Extending
the classical nucleation scenario, tieterogeneous nucleation barrier can be written as [56]

AGhet = YertAct + (Yes — Y1s)Acs — A + 7L (13)

In this expression.s, ycs ¥is are the crystal—fluid, crystal-substrate, fluid—subsirdegfa-
cial tensions respectivelp andAgs are the contact surface areas between crystal and fluid,
and crystal and substratéu is the chemical potential fierence between the metastable fluid
and the crystal and the number of crystallized particlesandL are the line tension of the
contact line between the substrate, the crystal and the funid the length of this line re-
spectively. The free energyfterence depends sensitively on the curvature of the substrat
surface exposed to the growing crystals. Thus impuritiessed substrates, flat unstructured
and structured substrates inducfeatient kinetics for nucleation and growth.

As in the case of homogeneous nucleation, computer siroalatiows to test the as-
sumptions that enter the simplified, coarse-grained dasmni. But even for simple model
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systems, the parameter space is large, as substrate gergatlistructure have to be taken
into account. Hence a variety offtBrent scenarios have been simulated, but as far as we are
aware there has not yet been a systematic study to map ouwdrige of applicability of the

free energy landscape based, coarse-grained approadetodeneous crystal nucleation.

The role of seeds and impurities has been investigated iplsimodel systems under
different conditions, such as microgravity [57], in the presesidarge spherical impurities
in colloidal suspensions [58], and with variable impuriigesthrough Monte-Carlo simula-
tions [59.60]. A recent transition path sampling analy6i§] [has shown that pre-structured
minimal crystalline seeds commensurate with the bulk stabjstal phase enhance the crys-
tallization rate by many orders of magnitude while incomswgate ones have néfect.

Heterogeneous crystallization on planar surfaces hasddensively studied due to its
simplicity for several model systems [61162/63,64]. In tase of colloidal suspensions of
hard spheres, unstructured flat substrates induce thetiomed oriented crystals with close-
packed planes parallel to the substrate [65] and simukatimve demonstrated that hard
spheres next to a flat hard wall have to overcome a small fregygarrier for nucleation
[66], consistently with the pre-wetting transition obseshfor the contact of a stable fluid
phase with a flat wall]67].

Confinement between flat plates can furthermore induce g@heke behavior, with fluid-
solid transitions dominated either by capillary freezimgrelting depending on the spacing
between the plates [68]. Curved surfaces have recentlytheabject of theoretical [69] and
experimental investigation [70], where the additionakfration introduced by the curvature
inhibiting crystal formation can be partly reduced usinfjedent topological patterning and
defects on the substrate surface. Density functional thieas also been used to reproduce
gualitative aspects of heterogeneous crystallizatiorheicinity of a variety of flat and
curved substrates [71].

Structured templates provide a large variety of possibigptate-fluid interactions [67]:
striped chemically activated walls with colloidal suspens [72], charged or hard fixed ions
with ordered or disordered patterfis][73], the latter alsdua order to test glassy dynam-
ics and binary mixtures correlation lengths|[74,75]ff®ient types of patterned substrates
for hard spheres have been considered’in [76], showing hieasubstrate can induce and
eventually stabilize phases that are normally unstabledrbulk system (such as bcc crystal
structures for hard spheres).

On the theory side, the crystallization process has also tested by means of the PFC
model [77] (where, as described in SEC.]2.2, the connectiantactual system remains
unclear). Very recently, an FMT-type density functionas leeen employed to study the
nucleation of hard disks on a patterned substfate [78]. Tickeation on the surface follows
a so—calleccompatibility wave scenario with preferred growth directions that give thestea
mismatch between the 2d substrate and the 2d crystal kttice

5.1 Flat stretched substrates: the role of attractive force S

In order to vary the interfacial tensions in EQ.}(13) we siated crystallization on a planar
crystalline substrate that was stretched resp. compreg#iedespect to the coexistence lat-
tice constant. Deformation of the crystalline substrasel$eto diferent kinetic pathways to-
wards crystal growth. In Ref.[79] we discussed crystafiarain suspensions of hard spheres
and found a crossover between a regime of instantaneousriwtlyat small substrate lat-
tice spacing (high substrate densities) and a nucleatgimeewith long induction times at
large spacings (low substrate density). The transitiooigectured to occur when the sub-
strate packing fraction is close to that of the packing foacof the bulk spinodal instabilify.
Recent experiments appear to confirm such a scenario faidalhard spheres [81].

! Note that spinodals are a somewhat ill-defined mean-fieldegirin the case of short-range forces
[80]. In fact, in Ref. [79] the spinodal density was estintatarough (mean—field) FMT to be the
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Here we present simulations of crystallization in a Lenrdahes system, in which we
systematically vary the interaction between the fluid areldhbstrate, to test whether the
effect observed in hard sphergs][79] is also present in atteagyistems.

To do so, we considered a Lennard—Jones fluid in the isochisdthermal ensemble
confined by some layers of fixed particles forming the pagdrsubstrate (see Appl B for
the details of the simulation). The interaction betweenghlestrate and the fluid is tuned
changing the cutdradius of the Lennard—Jones interaction, reducing it frioetihe standard
2.50 radius to the limiting case of the purely repulsive Weeksai@her—Andersen (WCA)
potential (see Fid.]2(a)). We track the progression of tstatline front using the so called
average local bond order parametgy s (see ApplB), allowing for the distinction between
different crystalline structures such as bcc, hcp and fcc.

In order to distinguish in a quantitative manner betweenitise&antaneous growth and
the long induction—time regime associated with heteroges@ucleation, we monitor the
very first steps of the molecular dynamics leading to the &ifom of a crystalline layer on
top of the fixed particles of the substrate. We isolate therptrticles confined in the region
between the substrate and the first minimum of the densitfjigpand study the fraction of
crystalline particles in the first layer. All particles widlg > 0.36 are regarded as crystalline,
consistently with previous LJ calculations[82].

2 ey 0.16 : —
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Fig. 2. (color online) (a) Plot of the wall-fluid interaction pot&is considered in this work. (b) Width
of the first density peak close to the substrate in the |ldyesmbraged density profilép(2))y,, modeled

by a Gaussian function of width; 4 at the early stages of growth+£ 0.25rp): for less attractive forces
as well as substrate densities outside of the coexisteg@enrthe peaks become broader. (c) Average
fraction of solid particles in the first crystalline layertahe (¢ = 0.25rp, out of 10 independent growth
trajectories. Error bars are within the symbol sizes. Tliedint curves indicate fierent interactions
between the Lennard—Jones metastable fluid at depsity0.95.The transition between low lattice
densities and high lattice densities crosses an optimaevar the solid fraction which is located in
the coexistence region. A smooth transition occurs foicktlensities crossing the coexistence region
(delimited by the dotted and the dashed—dotted verticak)inwhere the spinodal density (continuous
vertical line) is located.

We test a broad range of lattice densities for the substiiate 0.5 to 1203, cross-
ing the coexistence region bounded by the coexistencetiEmsi = 0.87510~2 andp.r =
0.975%2 as given by the Lennard—Jones equation of state discusf&®]ifror the value of
the spinodal transition we refer to a linear interpolatibthe data provided i [84], resulting
iN Pspinodal ~ 0.900—2 atksT = 0.8¢. Note that for a fluid with purely repulsive WCA inter-
actions the liquid—solid coexistence region is shiftedam¥g higher densities, lying between

density at which no local free energy minimum belonging torgstalline density profile could be
found anymore.
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0.92 and ®9%-—3[85], thus simulations at equal densities of the superatdrfluid corre-

spond to slightly dierent chemical potential fierences. Notice moreover that the substrate

structures are all but typical commensurable structurethiobulk fluid at the chosen tem-

perature and therefore they represent a template for gneWith is in general suboptimal.
The fluid is initially equilibrated separately, and we use equilibrium self-difusion

constanD [86] in order to obtain the self-ffusion timerp = ¢?/D used as the unit of time

in the rest of the analysis.

Fig. 3. (color online) Snapshots showing the crystallized patian one of the two lattice substrates
at density G602 (substrate not shown). The color coding is according tajhelue at timet = 7p for
two different wall-fluid potentials: (a) the WCA potential and (b thl potential with cutfi at 150-.

We analyze the laterally averaged (in the substrate plamesity profile(p(2))y,,, Fig.[2(b),
computing the width of the first layer density peak, modelgd Baussiari(2) = Aexp[-(z—
1)?/20?] at the early stages of the growth. We notice that the WCA sates-fluid potential
induces the largest peak widths, and that the tightest pe@kespond to substrate lattices
in the range of the coexistence densities. Consideringlileagpacing between the substrate
crystalline planes iz direction isa/2, we observe that all the early density peaks are narrow
and the particles are essentially confined to a single plEms.implies that the crystalliza-
tion process is in essence a 2d process at strong supeti&atyamd hence it is not subject
to a kinetic barrier. From this observation we conclude tigérogeneous nucleation with a
non-zero contact angle in a Lennard-Jones system on a @ahsirate only occurs for very
specific choices of attraction range and substrate laftiaeisg.

The rapid formation of tight density peaks is accompaniedhayfast growth of crys-
talline structures: the first layer of higfg particles is formed in about} in all cases with
the exception of the lowest lattice density case. Yet, thwteh the range of the attractive
forces, the lower is the growth rate, in agreement with thpécslly longer timescales ob-
served in the case of hard spheres. We also report that thtgrates at the initial stages of
crystallization are non monotonic in the template lattitecure, suggesting that both too
dense and too sparse substrates with respect to the bulityderesent incommensurability
barriers that slow down the layer formation.

In Fig.[2(c) we show the relative fraction of solid particieshe first layer at a very early
time (t = 0.257p after the wall-fluid contact) as a function of the fcc subtsti@density. For
different wall-fluid potentials we see a significant change irctiistallinity of the first layer:
hard potentials have low fractions of solid particles (lnef%) while attractive potentials
induce crystallinity in the entire first layer in a broad rargf substrate lattice spacings. This
is associated with a complete coverage of the substratacgynivhich gradually fades out
outside of the interval of coexistence densities. In thes agfswall-fluid interactions with
ret = 2.50 the solid particles ratio drops rapidly only at very low ieét densitieSdjattice =
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0.50—3) when the lattice spacing is so large that the fluid partipksetrate through the first
layer of fixed particles.

However, even at low fractions of solid particles, we do nioserve the formation of
a cluster — as it would be expected in the case of heterogsnamtleation with a non-
zero contact angle — but rather of a network morphology (sgd3Heft image). The lattice
densities that lie in the coexistence region induce theesastnd most fcient formation
of low defect number crystalline layers. Both, low and hignsities lead to an increase in
the crystal layer imperfections due to the mismatch betwkerbulk equilibrium structure
and the actual structure of fixed particles, as seen for the $Eheres case. Heterogeneous
nucleation does not appear at all for the substrate lattiaeisgs studied here.

WCA WCA LJL.S LJ2.5
0.55 1.0
- 0.50 0.8 07
IS
0.45] 06
') / e hep
0.40 o [y
(a) W () we () S (d) N (e)
0.00 0.05 0.10 0.15 0.20 0.000.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20 0.000.05 0.10 0.15 0.20
Qs s ' " G

Fig. 4. (color online) (a) Probability distribution functions dfe¢ average local bond order parameters
Oe, O Of the solid particles forming the first layer at time2Brp for the WCA potential at dferent
lattice densities (brightness indicates the position efrtiode peak). Notice that the densitg® = is
partly hidden by the overlaid distributions fpr= 1.0, 1.202. (b-e) Probability distributions (drawn
as level curves) for dierent wall-fluid interactions at a twoftirent lattice densities. 2 (dashed
lines) and 1002 (continuous lines) . The positions of the typical valuesad,thcp and fcc stacking in
the bulk LJ systeni[82] are also indicated.

While for long cutdt radii all the systems with lattice densities within the dsence
region show a similar growth behavior, we see that the shizrthe range of the attractive
part of the potential, the more sharp is the peak in the sddicktibn around some density in
the coexistence region. We observe that the peak value imxdprately located around the
spinodal density indicated ih [84] for the LJ fluid.

We then focused our analysis on the typical order that is éorat the template-fluid
interface. We use they, gs probability distribution functions for the solid partislén order
to represent the several possible ordered patterns that toe template at the early stage
of the crystal growth. As shown in Fifl 4(a,b), at low lattidensities (corresponding to a
small number of crystalline particles) logy structures of distorted bcc type are formed;
increasing the lattice density favors a more compact stac&f hcp nature. At later times
the stabilization of the crystalline structure furtherrigases the degree of local order of the
initially formed layers, transforming the hcp order inte frystals.

The change in the range of attractive forces also contritfoteistort the arrangement of
the first layer of particles (Figl4(b-e))). At low latticertties, the potentials that are mainly
repulsive show hcp ordering while the more attractive oresgnt bce ordering; for higher
lattice densities repulsive potentials still favor hdgelstructures while more attractive wall-
fluid interactions make fcc structures more and more likely.

The diferent crystalline arrangements occur iffelient regions of thew newly formed
clusters and crystal layers: as shown in Elg. 3 bcc partaiesnainly localized on the borders
of the clusters and in contact with the substrate, while lacy @t later times, fcc) particles
form the core of the crystalline clusters (Hig. 3(a)) ancelay(Fig[3(b)).
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6 Conclusion

We reviewed several aspects of the thermodynamics of ¢fygted phases and their in-
terfaces in the hard—sphere and Lennard—Jones model sysésmvell as homogeneous
and substrate—driven heterogeneous nucleation in thesensy. Through the application
of modern density functional methods (especially fundaalemeasure functionals) a de-
tailed theoretical understanding of the equilibrium cay8tuid properties in accordance
with simulation results has been achieved. We illustralési for the particular case of the
crystal(fcc,bec)-liquid interface of hard spheres. Ferrtbnequilibrium processes of homo-
geneous and heterogeneous nucleation a physical pictlegétoping mostly on the basis of
simulation results. Simple hard spheres show a precursatiated homogeneous nucleation
scenario. Crystal growth in hard spheres at crystallinetsates proceeds by instantaneous
growth or the classical nucleation scenario, dependingetettice constant of the substrate.
For the case of a Lennard—Jones system, attractive sudftra¢s accelerate the formation of
crystalline layers. The distinction between instantaisegnowth and nucleation—dominated
crystallization, as it has been observed for hard sphesddyired in systems with attractive
interactions; the substrate is wet by a crystalline film ef@rhighly incommensurate lat-
tice spacings, making it almost impossible to study hetenegus crystal nucleation with a
non-zero contact angle in Lennard-Jones systems. (A siofilservation has been made for
Lennard Jones systems in contact with an unstructured kédoaes wall[8[7].)
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Nucleation”) of the German Research Foundation (DFG) fadfog through the contracts
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K. Binder, A. Choudhary, D. Deb, S. Dorosz, H. Emmerich, Artdl, J. Horbach, H. Lowen,
B. Nestler, H.-J. Schope, A. Troster, P. Virnau, and A. kl&n for collaboration throughout
the SPP duration.

A The excess free energy functional of FMT

Fundamental measure theory (FMT) currently is the mostigedanctional for the excess
free energy part for the hard sphere fluid. The corresporalingss free energy is given by

7o [ o) ()
BT(In[p(n]}) = noIn(1 - ng) + ""1(”3)nlnzl_——r:g.nz
3 (_n2 Ny Ny + n2,in}jn2,j + nzn}jntji — nitjnjknlt(i)
167(1 - n3)? -

+@2(N3)

Here, f* is the excess free energy density which is a (local) funabba set of weighted
densities{n(r)} = {ng, N1, N2, N3, N1, N2, Nt} with four scalar, two vector and one tensorial
weighted densities. These are related to the density pgdfi)eby the convolutions,(r) =
fdr’p(r’) w*(r —r’). The weight functions are given bR /2 is the hard sphere radius):

w3(r) = O(R-r),

w’(r) = 6(R-r),

wh(r) = w(r)/(47R),

W) = w?(r)/ (4rFd), (16)
wA(r) = ;6(R— N,
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W2
Wi = R
¢ Tl

By choosing
p1=1 and pr=1 (17)

we obtain Tarazona'’s tensor functioriall[88] based on thgiral Rosenfeld functional (RF—
T) [89]. The choice

p1=1,

—2n3 + 3n2 — 2(1- ng)?In(1 - ny)
p2=1- 2 37 (18)
3

corresponds to the tensor version of the White Bear | funeli¢WWB-T) [90.91]. Finally,
with
2nz — nZ + 2(1-ng) In(1 - ng)
1+ >
3ng
2n3 — 3n3 + 2n3 + 2(1- ng)?In(1 - ng)

=1- 19
$2 3n§ ( )

p1=

b}

the tensor version of the White Bear Il functional is receee(WBII-T) [92]. This func-
tional is most consistent with respect to restrictions isggbby morphological thermody-
namics[[93].

We remind the reader briefly on the construction principfdSMT: The scalar and vec-
tor densities are introduced by requiring the correct loansity limit of the free energy for
a hard sphere mixture [89]. The particular, analytic fornf8{n) arises by imposing con-
sistency with scaled particle arguments|[89,2] or by impgsi known bulk equation of state
[90/92]. Since in this step only bulk properties are usegtgilis still freedom in extending the
functional to arbitrarily inhomogeneous situations. OadHer demands that the functional
reproduces the known free energy of a sharply peaked detfisttybution (0d limit) [94].
This leads to the introduction of the tensor weights as sstggen Ref.[[8B].

B Simulation details for the heterogeneous crystal growth o n
stretched substrates with tunable attractive potentials

We simulatedN = 216 000 Lennard—Jorfefuid particles at temperatuteT = 0.8¢ and
densityp = 0.9502 confined by two fcc walls of fixed particles of surfade= 30 x 30a®
wherea is the fcc lattice spacing = +/4/piatice. The substrates expose the (100) orienta-
tion to the fluid, in contrast with the (111) studied for hamgheres case in_[F9]. The wall
particles form three crystalline layers per surface andradt with the fluid particles with
different possible potentials, all based on the pair Lennartslioteraction, as illustrated in
Fig.[2(a): we consider a case for which the wall-liquid iatgion is the same as the liquid-
liquid interaction (purely cut and shifted Lennard-Jongsriaction with cutff rey = 2.50);
then, we pick the limit case for which no attractive force isgent between the substrate

2 The potential of the Lennard—Jones interaction (¢biitr ) is defined byu(r) = u_3(r) — ULy (reu)
for r < reeand O otherwise, withi_;(r) = 4e[(o/r)*? - (o/r)8].
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and the liquid (cutting and shifting the LJ potentialra, = 2%60) corresponding to the
Weeks-Chandler-Andersen (WCA) potential and finally weas®intermediate truncated
and shifted potentials where we limit the contribution of gttractive part choosing short
cutoff radii royy = 1.3,1.50. We perform isochoric Langevin dynamics simulations with a
time stepdt = 0.014/mo2/e and friction codficienty = 0.014t™* and track the crystalliza-
tion process using the averaged local bond order parangtars proposed in[[82]. Their
definition requires the computation of the complex veci@)

Ni (i)

. 1
anld) = 55 ; Yim(rij) » (20)

whereN(i) corresponds to the number of nearest neighbors of partéeidY;m(r;;) reads as
the spherical harmonics. Averaging over the neighbors digh&i and particld itself

1 Ni(i)
Gim(i) = <— > am(K), (21)
)=

Np(i

and summing over all the harmonics we finally get

|
G0 =\ 5117 2 80P 22
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