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Abstract. We review theoretical and simulational approaches to the descrip-
tion of equilibrium bulk crystal and interface properties as well as to the nonequi-
librium processes of homogeneous and heterogeneous crystal nucleation for the
simple model systems of hard spheres and Lennard–Jones particles. For the
equilibrium properties of bulk and interfaces, density functional theories em-
ploying fundamental measure functionals prove to be a precise and versatile
tool, as exemplified with a closer analysis of the hard spherecrystal–liquid in-
terface. A detailed understanding of the dynamic process ofnucleation in these
model systems nevertheless still relies on simulational approaches. We review
bulk nucleation and nucleation at structured walls and examine in closer detail
the influence of walls with variable strength on nucleation in the Lennard–Jones
fluid. We find that a planar crystalline substrate induces thegrowth of a crys-
talline film for a large range of lattice spacings and interaction potentials. Only
a strongly incommensurate substrate and a very weakly attractive substrate po-
tential lead to crystal growth with a non–zero contact angle.

1 Introduction

It is a core interest of statistical mechanics to understandthermodynamic properties of the
solid phase (such as liquid/solid coexistence densities, the equation of state, solid–liquid in-
terfacial tensions...) from a basic, possibly simple Hamiltonian of the system. Furthermore,
homogeneous (in the oversaturated bulk) and heterogeneous(at walls, say) nucleation of
the solid phase can be studied by microscopic approaches. Molecular simulation, density
functional theory (DFT) and phase field/ phase field crystal (PFC) models are the main com-
putational approaches to these questions. It is hoped that by a thorough understanding of the
solid phase thermodynamics and its growth dynamics in simple model systems such as hard
spheres and the Lennard–Jones fluid one gains a sufficient basic knowledge to understand
these issues also for real materials (e.g. metals). Since the materials science community often
works with the coarse–grained phase field and PFC models, it is desirable to link the micro-
scopic descriptions of molecular simulation and DFT to the parameters employed in phase
field/PFC calculations.

In this paper, we review briefly the density functional descriptions of the equilibrium
solid phase and the solid–liquid interface in simple model systems (Section 2). In Section
3 we focus particularly on the hard sphere solid–liquid interface where we have obtained a
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rather complete and consensual picture through simulationand DFT, with differences to the
PFC description remaining. New DFT results on the metastable interface of a hard sphere
bcc solid/liquid interface are presented. Further, we focus on homogeneous and heteroge-
neous nucleation of the solid phase in the hard sphere and Lennard–Jones fluids. In these
simple model systems, our main source of knowledge are molecular simulations. In Section
4 we discuss homogeneous nucleation with emphasis on results from the past years. Sec-
tion 5 treats heterogeneous nucleation, in particular the crystal growth at planar, crystalline
walls. Through different wall potentials and different wall crystal structure/lattice constant
the possible crystallization pathways are changed both qualitatively and quantitatively. We
present new results on Lennard–Jones system at variable Lennard–Jones type walls. Section
6 concludes our work with a short summary.

2 Density functional theory

Within density functional theory, inhomogeneous liquids and crystals are treated on equal
footing, i.e. the bulk crystal is viewed as a self–sustainedoscillation of the one–body density.
In equilibrium, the theory rests on a minimization principle for the grand canonical free
energy which is a functional of this one-body densityρ(r),

Ω[ρ] = F id[ρ] + F ex[ρ] −
∫

d3r(µ − Vext(r)) , (1)

whereF id andF ex denote the ideal and excess free energy functionals of the fluid. µ denotes
the chemical potential and the external potential is represented byVext. The exact form of the
ideal part of the free energy is given by

βF id[ρ] =
∫

d3rβ f id(r) =
∫

d3rρ(r)(ln[Λ3ρ(r)] − 1) . (2)

Here,Λ is the thermal de-Broglie wavelength andβ = 1/(kBT ). The equilibrium density
profileρeq(r) is determined via minimizing the grand canonical free energy functional:

β−1 ln
ρeq(r)

ρ0
= −
δF ex[ρ(r)]
δρ(r)

+ µex − Vext(r). (3)

For the equilibrium bulk crystal,Vext(r) = 0 andρeq(r) is lattice–periodic, andρ0, the homo-
geneous density (bulk density), is fixed by the excess chemical potentialµex.

The central difficulty consists in determining the excess free energy functionalF ex. Only
for hard bodies there exists a geometric approach (Fundamental Measure Theory, FMT)
which leads to very precise functionals, for reviews see Refs. [1,2]. For hard spheres, proper-
ties of crystals and crystal–liquid interfaces have been examined in sufficient detail such that
one may say that we possess a close–to–exact reference theory for the hard sphere solid. See
App. A for the explicit form ofF ex for FMT.

For the one–component, hard sphere (diameterσ) bulk solid, FMT is in very good agree-
ment with simulations regarding coexistence densities, free energies of the solid and liquid
phase, and density distributions around fcc lattice sites (in particular with regard to their
width and anisotropy) [3]. The equilibrium vacancy concentration found in FMT is smaller
than in simulations (2·10−5 vs. 2·10−4). However, other DFT models and PFC do not predict
at all such small concentrations. Furthermore, the correctdescription of vacancies restricts
the choice of possible fundamental FMT functionals to the White Bear II (tensor) functional
(see App. A).

Within FMT, also an accurate description of metastable crystal phases (bcc, hcp) is pos-
sible [4,5]. For densitiesρ0σ

3 = ρ∗0 > 1.16, two metastable bcc phases are found. Their
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relevance remains to be investigated possibly in applications to solids with stable bcc phases
(with FMT as a reference theory). The hcp phase is actually more stable than fcc in FMT
(by a tiny free energy difference of 0.001kBT per particle). In simulations, the situation is
precisely reverse (also by about the same free energy difference), this can be shown to be a
consequence of subtle multi–body correlation effects which are missed by FMT [5].

The phase diagram of binary hard spheres has been investigated in Ref. [6], again finding
good agreement with simulations.

Previous studies of the crystal–liquid interface in FMT involved restricted parametriza-
tions of the three–dimensional density profile across the interface [7,8]. This introduces some
uncertainty as to the precision for the value of the interfacial tension since the functional min-
imization is constrained. Depending on the particular FMT functional the interfacial tension
is close [7] or 25% above [8] corresponding simulation values. In Section 3 we discuss the
hard sphere crystal–liquid interface in more detail and present also results of unconstrained
minimizations.

2.1 Functional Taylor expansions

Many practical applications of DFT have started from an expansion ofF ex around a back-
ground reference density profileρ0(r) which, in general, can depend on the positionr:

βF ex = βFex
0 [ρ0] −

∫

d3rc(1)(r; ρ0)∆ρ(r) −
1
2

∫

d3rd3r′c(2)(r, r′; ρ0)∆ρ(r)∆ρ(r′) + . . . (4)

Here,Fex
0 [ρ0] is the excess free energy pertaining to the background profile, ∆ρ(r) = ρ(r) −

ρ0(r) andc(1) andc(2) are the first two members in the hierarchy of direct correlation functions
c(n), defined by

c(n)(r1, . . . , rn; ρ0) = −β
δ(n)F ex

δρ(r1) . . . δρ(rn)

∣

∣

∣

∣

∣

∣

ρ=ρ0(r)

. (5)

In most practical applications,ρ0 ≡ const. is taken to be a reference bulk density in which
case−c(1) = βµex = βµ − log(ρ0Λ

3) and c(2)(r − r′; ρ0) depends only on the coordinate
difference of the two positionsr andr′. To evaluate the functional in Eq. (4), the correlation
function c(2) has to be determined as an external input, provided e.g. by integral equation
theory or by simple approximations of RPA type [9].

The work of Ramakrishnan and Yussouff on the Taylor–expanded functional applied to
hard spheres initiated the density functional research on freezing [10]. However, only for soft
systems (Gaussian particles as a model for e.g. polymers or dendrimers) the functional is
reliable [11]. If applied to other soft systems, the Taylor–expanded functional works better
for repulsive systems, see e.g. Ref. [12] for a recent study on the Yukawa model. In the
studies mentioned, the employed direct correlation function c(2)(r − r′; ρ0) has been always
the isotropic one from the bulk fluid. Significant improvement of quantitative accuracy can be
achieved if one allows for a direct correlation function containing an anisotropic contribution
with the proper crystal lattice symmetry [13,14].

If the system under study can be approximated by a reference system with corresponding
functionalF ex,ref, then the expansion (4) can be modified to

βF ex = βF ex,ref + β∆Fex
0 [ρ0] −

∫

d3r∆c(1)(r; ρ0)∆ρ(r) − (6)

1
2

∫

d3rd3r′∆c(2)(r, r′; ρ0)∆ρ(r)∆ρ(r′) + . . .

where the expansion coefficients reflect differences between the actual and reference system:
∆Fex

0 [ρ0] = Fex
0 [ρ0] − Fex,ref

0 [ρ0] for the free energy difference pertaining to the profileρ0
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and in a similar fashion∆c(1) and∆c(2) are defined. Since from a practical point of view
only hard spheres qualify for a suitable reference system with a sufficiently precise reference
functional, this approach works for simple fluids with repulsive cores such as Lennard–Jones
or Yukawa fluids, or the primitive model for electrolytes [15].

The first quantitative description of the Lennard–Jones phase diagram in this spirit was
given in Ref. [16], still with the older weighted–density approach for the hard sphere refer-
ence functional. Only recently, a study employed FMT as a reference functional and found
remarkably precise values for the crystal–liquid binodal and crystal–liquid interfacial ten-
sions of the Lennard–Jones system [17].

2.2 Phase field crystal (PFC) model

The Taylor expanded functional in Eq. (4) is nonlocal in the densities. Through an additional
approximation (gradient expansion) it can be cast into a local form. We consider a constant
reference densityρ0 and the following power expansion of the Fourier transform of the direct
correlation function:

c̃(2)(k; ρ) = −c0 + c2 k2 − c4 k4 . . . (7)

Using this, the Taylor–expanded functional becomes

βF ex
loc = βF

ex
0 (ρ0) + βµex

∫

d3r∆ρ(r) +
1
2

∫

d3r∆ρ(r)
(

c0 + c2∇
2 + c4∇

4 . . .
)

∆ρ(r) + . . .

(8)

We observe that the excess free energy density contains local terms up to order 2 in∆ρ and
up to order 4 in∇(∆ρ). The total free energy contains in addition the ideal gas term,F id[ρ]
from Eq. (2). One may expand also this term in∆ρ in order to obtain a power–expanded free
energy density to power 4 in both∆ρ and∇(∆ρ). It turns out that the phase diagram of such
a power–expanded model is equivalent to a reduced model witha dimensionless free energy
according to [18]

FPFC=

∫

d3x fPFC=

∫

d3x
1
2

(

Ψ (x)
[

−ǫ + (1+ ∇2)2
]

Ψ (x) +
Ψ (x)4

4

)

, (9)

which we call the phase field crystal (PFC) model. Here,x = q0r is a dimensionless coordi-

nate withq0 =

√

c2
2c4

being the wavenumber of “favored” density oscillations.Ψ = ρ/ρ0 − b

is a reduced and shifted density. The parameterǫ (playing the role of a temperature), the shift
b and the free energy scale of the model can be related to the power expansion parameters of
the Taylor–expanded free energy. However, the phase diagrams of a simple fluid (like hard
spheres or Lennard–Jones) and PFC cannot be mapped onto eachother by this route. Rather,
the power expansion parameters of the Taylor–expanded freeenergy should be treated as
fitting parameters and then linked to the PFC model phase diagram.

The PFC model is a very generic model with possible periodically ordered equilibrium
states such as stripes, rods and bcc, fcc, hcp [19]. This generic nature offers many possibilities
to understand structure formation processes qualitatively, care has to be taken when a quanti-
tative understanding is desired. For the case of iron (bcc),bulk properties, interfacial tensions
and anisotropies are obtained in reasonable agreement withsimulations [20,21]. For the case
of a Yukawa fluid (bcc), interfacial tension are too large by afactor of 2 and anisotropies
are greatly exaggerated [12]. An attempt to relate the PFC pair correlations in an amorphous
solid (bcc part of the PFC phase diagram) to a pair potential yielded a strongly oscillatory
potential with a rather soft core [22]. This potential is very much unlike the Yukawa potential
or a possible potential for iron. For the case of hard spheres(fcc), the fit of bulk properties
resulted in interfacial tensions too low by more than a factor of 3 and interface profiles for
Ψ (r) which could not be related to the very precise FMT density profiles [23].
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3 The hard–sphere crystal–fluid interface

The density profile and the interfacial tensionγ of the hard–sphere crystal(fcc)–fluid inter-
face have been under intense scrutiny by DFT and simulation approaches. Within the older
weighted–density approach, Ref. [25] demonstrated that a full minimization with respect
to the three–dimensional (3d) density profile leads to values significantly lower (βγσ2 =

γ∗ ∼ 0.3) than obtained by restricted minimizations of parametrized profiles (e.g.γ∗ ∼ 0.6
in Ref. [26]). This underlines the need to perform also full minimization in the case of FMT
functionals, besides the restricted minimization of Refs.[7,8]. In Ref. [27] such results for the
WBII–T functional (see App. A) are reported with the following results for the orientation–
dependent interfacial tension:γ∗[100] = 0.69,γ∗[110] = 0.67 andγ∗[111] = 0.64. The molecular
dynamics results reported in the same Ref. [27] areγ∗

[100],sim = 0.64, γ∗
[110],sim = 0.62

andγ∗
[111],sim = 0.60. Whereas the tension anisotropies from DFT and from the simulation

agree, the overall values from the simulations are somewhatsmaller, presumably due to cap-
illary wave effects (see below). We remark that the extraction of crystal–liquid interfacial
tensions from simulations is still a delicate case, for hard–spheres reported values differ by
10% [28,29,27].

Useful insights into the structure of the interface may be obtained by considering a mode
expansion [30]. Let the density field beρ(x, y, z) which describes the crystal–fluid interface
with interface normal inz–direction. We can parametrize it in terms of a modified Fourier
expansion

ρ(x, y, z) =
∑

j

exp(iK j · r) p j(z) , (10)

whereK j denotes the reciprocal lattice vector (RLV),j and thez–dependent Fourier am-
plitude p j(z) are modes of the field. One expects that upon crossing the interface from the
crystal side, allp j(z) relax to zero for nonzeroK j. Only for K j ≡ 0, the value for the associ-
ated modep0 crosses from the average crystal densityρcr of the crystal to the average fluid
densityρfl at coexistence.

Properties of the interface modes as obtained from FMT have been discussed in detail in
Ref. [30]. The most important conclusions are:

1. approaching the interface from the liquid side, crystallinity sets in earlier as densification:
there is a separation of about one cubic unit cell lengtha ≈ 1.6 σ between the interface
location as determined by the average density and the interface location as determined by
the leading crystallinity mode (p1(z) with K1 = (2π/a)(1, 1, 1))

2. a small density depletion zone just in front of the bulk crystal (dip in profilep0(z))
3. strongly non-monotonic mode profiles also for next–to–leading modes, especially for

p2(z) with K2 = (2π/a)(0, 0, 2) (leading crystallinity mode for lateral density average)

The leading modes have been also extracted from molecular dynamics simulations and
found to be in good agreement with FMT [23]. As an example, in Fig. 1 we present a com-
parison between FMT and simulation for the average density modep0 and the leading crys-
tallinity mode for lateral density averagep2. Simulation results are presented for different
averaging timesTav, given in units of the characteristic self–diffusion time (time it takes
a particle in the coexisting liquid to diffuse over a distance ofσ). For Tav ∼ 1 we observe
nearly quantitative agreement, whereas longer averaging times lead to broadening effects due
to capillary waves (not captured in FMT).

DFT allows to study of metastable crystals [7,5] as well as the associated crystal–liquid
interfaces. As a novel result, we present fully minimized FMT results for bcc coexistence
properties and bcc–liquid interfacial tensions in Tab. 1, obtained with the numerical proce-
dure described in Ref. [23]. First, we observe a rather largediscrepancy in the values of
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Fig. 1. Leading modes extracted from MD simulated, laterally averaged density profiles in comparison
with FMT results. (a) average density modep0(z), (b) real part ofp2(z) with K2 = (2π/a)(0, 0,2). The
averaging time in the MD simulations was about one self–diffusion time. For longer times, clear effects
of capillary wave broadening were seen which are absent in FMT. See also Ref. [24].Figure adapted
from Ref. [23].

functional ρ∗fl ρ∗cr nvac γ∗[100] γ∗[110] γ∗[111]

bcc RF–T 0.923 0.971 0.012 0.25 0.25 0.24
WB–T 0.976 1.012 0.013 0.27 0.26 0.25
WBII–T 1.016 1.045 0.015 0.34 0.33 0.32

fcc WBII–T 0.945 1.039 2·10−5 0.69 0.67 0.64

Table 1. Coexistence properties for bcc in comparison with fcc for different functionals (given ex-
plicitly in App. A). Note the rather high equilibrium vacancy concentrationnvac of bcc as well as the
strongly reduced interfacial tension values when comparedwith fcc. Details of the applied numerics
are described in Refs. [30,5].

the coexistence densities when comparing the different functionals. (The functionals are de-
scribed in App. A.) In case of functional RF–T the lower coexistence densities result from
the underlying Percus–Yevick equation of state for the liquid phase which overestimates the
pressure near coexistence. For the liquid phase, functionals WB–T and WBII–T give nearly
identical results, yet noticeable differences for the crystals exist (notice that WB–T also does
not predict a nonzero vacancy concentrationnvac for the fcc crystal [3]). In view also of the
higher degree of consistency in constructing the WBII–T functional, we think that it is the
most suited functional for crystals. The bcc interfacial tension values are smaller by a factor
of 2 and more compared with the fcc values. Although this means that nucleation of bcc
should be easier than fcc, the difference inF/N around fcc–liquid coexistence (ρ∗cr ≈ 1.04)
is very high with about 0.3kBT [5], therefore bcc nucleation should be inhibited. The bcc
solutions are furthermore a useful reference point for discussing the crossover from fcc to
bcc as the most stable crystal structure for other potentials such as of (σ/r)n type. Also, a
crossover for the bcc interfacial tension from metastable to stable interfaces can be discussed
using the reference functional approach (see Eq. (6)) [31,32]. By going the reverse way (us-
ing simulated bcc interfacial tension values for the (σ/r)n–potential), Ref. [32] estimated the
reduced hard sphere bcc interfacial tension to be around 0.4, in reasonable agreement with
our WBII–T results.

Are stable and metastable HS crystal–liquid interfaces relevant for the study of metals?
One can define a coefficientα (Turnbull coefficient) through the relationγρ−2/3

cr = α∆H f

where∆H f = (Hcr−Hfl)/N is the enthalpy of fusion (enthalpy difference between coexisting
crystal and liquid per particle). MD simulations for various metals using embedded atom
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potentials showed that in aγρ−2/3
cr –∆H f plot fcc metal points are close to a straight line with

α ≈ 0.55 and bcc metal points are close to a straight line withα ≈ 0.29 [33]. For hard spheres,
∆H f = (Fcr − Ffl)/N = pcoex(1/ρfl − 1/ρcr) and our FMT values for fcc giveα ≈ 0.6, close to
the fcc metal value [34]. Thus just entropy determines the Turnbull coefficient, attractions in
the system changeγρ−2/3

cr and∆H f in the same proportion. For bcc, the situation is less clear:
between the three functionals we have used,α differs from 0.40 (RF–T), 0.52 (WB–T) to 0.73
(WBII-T), mainly due to the differences in the coexistence gapρcr − ρfl . Thus, our tentative
conclusion would be that attractions in metals (i) stabilize the bcc phase and (ii) also change
γρ
−2/3
cr and∆H f disproportionately to give a lower Turnbull coefficient. Note, however, that

experimental studies on metastable metal droplets seem to give Turnbull coefficients which
are systematically larger than the simulated values (αfcc ≈ 0.6...0.8,αbcc ≈ 0.6) [35].

4 Simulation of homogeneous crystal nucleation

At a first order phase transition, such as the liquid–to–crystal transition, the phase transfor-
mation process is subject to kinetic barriers. Meta–stablephases can persist over long times
and then suddenly and quickly transform by nucleation and growth into the stable phase [36].
Nucleation at a first order phase transition is traditionally described by classical nucleation
theory (CNT) or extensions thereof. The nucleation rate density I is assumed to have the form

I = κ exp(−β∆G∗) , (11)

where∆G∗ is the height of the free energy barrier associated with the formation of a critical
nucleus andκ is a kinetic prefactor. The basic assumption underlying this type of description
is a separation in time-scales between slowly varying coordinates such as the size or shape
of the nucleus and the remaining coordinates that are considered thermally equilibrated at
all times, constituting a “free energy landscape” in which the process evolves. In the most
basic version of CNT, the nucleus is assumed to be spherical (i.e. for crystalline nuclei,
the anisotropy of the interfacial tension is neglected), and the radiusR of the nucleus is
considered to be the only relevant slow coordinate

∆G(R) =
4
3
πR3ρ∆µ + 4πR2γ , (12)

whereρ is the number density of the stable phase at equilibrium,∆µ is the chemical potential
difference between the meta-stable phase and the stable phase and γ is the interfacial tension
of the planar interface between the two phases.

Classical nucleation theory can directly be tested by meansof computer simulation, be-
cause interfacial tensions, supersaturations, nucleation rates and cluster morphologies can be
computed independently from one another. There is a large body of literature on simulations
of homogeneous nucleation in specific materials, which to review is beyond the scope of this
article. Here we discuss crystal nucleation in two simple model systems, hard spheres and
the Lennard–Jones system:

Homogeneous crystal nucleation in colloidal suspensions of monodisperse hard spheres
has been studied extensively in experiments and simulations over the past 20 years [37,38,39,40,41,42,43,44,45].
Hard spheres interact only by excluded volume, the liquid-to-crystal phase transition in this
system is purely entropic. Thus one could expect the transition dynamics to be particularly
simple. Despite the simplicity of the model system, however, the nucleation rates obtained by
computer simulation differ significantly from those observed in experiments. In 2001Auer
and Frenkel used umbrella sampling to compute the crystal nucleation rate, i.e. an approach
based on transition state theory [40]. As a reaction coordinate to guide the sampling they
chose the size of the largest crystalline cluster in the system. Filion and coworkers tested this
approach by comparison to unbiased molecular dynamics simulations as well as forward-flux
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sampling (a steady state rare event sampling technique) andconcluded that the nucleation
rates coincided within the error bars. Hence the assumptionof a separation in time-scales
holds, transition state theory can be applied, and the source of the discrepancy between sim-
ulation and experiment must lie elsewhere. We simulated hard spheres with Newtonian as
well as Brownian dynamics [43,44] and found for both cases a pre-crusor mediated process
in which first dense aggregates formed which then crystallized. (A similar process has also
been seen in the Lennard-Jones system [46].) This finding would imply that an approach
based on biasing with respect to a reaction coordinate that only takes crystallinity into ac-
count should not produce the same result as a direct simulation. However, the differences due
to this effect are probably smaller than the accuracy of the rates in Ref. [42].

A major difference between experiment and simulation on colloidal suspensions is the
presence of a solvent in the experiment. We have recently simulated the nucleation process
taking solvent hydrodynamics into account by means of MultiParticle Collision Dynamics
and found that the nucleation rates depend strongly on the solvent viscosity (beyond the trivial
slowing down of diffusion with increasing viscosity)[47]. Due to hydrodynamicinteractions,
spheres are attached cooperatively to the nucleus and hencethe nucleation rate is enhanced in
viscous solvents. This effect might explain the discrepancies in nucleation rates observed so
far. Furthermore, it shows that it is in general difficult to compare phase transition kinetics of
colloids and metals, as colloids are affected by solvent kinetics, even though the equilbrium
phase behaviour of the two classes of systems might be similar.

Homogeneous crystal nucleation from the undercooled Lennard-Jones melt has also been
addressed in many simulation studies over the past 10 years [46,48,49,50,51,52,53,54,55] us-
ing a variety of simulation methods ranging from free energybased approaches such as um-
brella sampling over non–equilibrium rare event techniques such as transition path sampling
to “brute force” molecular dynamics. In summary, no clear picture has emerged yet regarding
the range of applicability of CNT. The simulations are subject to various finite-size effects
[53], thus despite the simplicity of the model system, it is non-trivial to draw comparisons
between results from different studies. Several sources for the deviation of nucleation rates
from the CNT predictions have been identified and corrections have been in incorporated
into the theory to take into account the fact that the interface is not sharp and that it fluctuates
[55]. But a general coarse grained description still remains to be derived.

5 Simulations results on heterogeneous nucleation and grow th on
strained structured surfaces

The CNT approach to homogeneous nucleation can be extended in a straightforward way to
take into account the presence of impurities, defects or fixed boundaries of the crystallizing
system. Substrate surfaces and localized defects often trigger and accelerate the formation
of a crystalline nucleus, because they lower the free energybarrier for nucleation. Extending
the classical nucleation scenario, theheterogeneous nucleation barrier can be written as [56]

∆Ghet = γcfAcf + (γcs− γfs)Acs− n∆µ + τL (13)

In this expressionγcf , γcs, γfs are the crystal–fluid, crystal–substrate, fluid–substrateinterfa-
cial tensions respectively.Acf andAcs are the contact surface areas between crystal and fluid,
and crystal and substrate.∆µ is the chemical potential difference between the metastable fluid
and the crystal andn the number of crystallized particles.τ andL are the line tension of the
contact line between the substrate, the crystal and the fluid, and the length of this line re-
spectively. The free energy difference depends sensitively on the curvature of the substrate
surface exposed to the growing crystals. Thus impurities, curved substrates, flat unstructured
and structured substrates induce different kinetics for nucleation and growth.

As in the case of homogeneous nucleation, computer simulation allows to test the as-
sumptions that enter the simplified, coarse-grained description. But even for simple model
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systems, the parameter space is large, as substrate curvature and structure have to be taken
into account. Hence a variety of different scenarios have been simulated, but as far as we are
aware there has not yet been a systematic study to map out the range of applicability of the
free energy landscape based, coarse-grained approach to heterogeneous crystal nucleation.

The role of seeds and impurities has been investigated in simple model systems under
different conditions, such as microgravity [57], in the presence of large spherical impurities
in colloidal suspensions [58], and with variable impurity size through Monte-Carlo simula-
tions [59,60]. A recent transition path sampling analysis [60] has shown that pre-structured
minimal crystalline seeds commensurate with the bulk stable crystal phase enhance the crys-
tallization rate by many orders of magnitude while incommensurate ones have no effect.

Heterogeneous crystallization on planar surfaces has beenextensively studied due to its
simplicity for several model systems [61,62,63,64]. In thecase of colloidal suspensions of
hard spheres, unstructured flat substrates induce the formation of oriented crystals with close-
packed planes parallel to the substrate [65] and simulations have demonstrated that hard
spheres next to a flat hard wall have to overcome a small free energy barrier for nucleation
[66], consistently with the pre-wetting transition observed for the contact of a stable fluid
phase with a flat wall [67].

Confinement between flat plates can furthermore induce a richphase behavior, with fluid-
solid transitions dominated either by capillary freezing or melting depending on the spacing
between the plates [68]. Curved surfaces have recently beenthe object of theoretical [69] and
experimental investigation [70], where the additional frustration introduced by the curvature
inhibiting crystal formation can be partly reduced using different topological patterning and
defects on the substrate surface. Density functional theory has also been used to reproduce
qualitative aspects of heterogeneous crystallization in the vicinity of a variety of flat and
curved substrates [71].

Structured templates provide a large variety of possible template-fluid interactions [67]:
striped chemically activated walls with colloidal suspensions [72], charged or hard fixed ions
with ordered or disordered patterns [73], the latter also used in order to test glassy dynam-
ics and binary mixtures correlation lengths [74,75]. Different types of patterned substrates
for hard spheres have been considered in [76], showing that the substrate can induce and
eventually stabilize phases that are normally unstable in the bulk system (such as bcc crystal
structures for hard spheres).

On the theory side, the crystallization process has also been tested by means of the PFC
model [77] (where, as described in Sec. 2.2, the connection to an actual system remains
unclear). Very recently, an FMT–type density functional has been employed to study the
nucleation of hard disks on a patterned substrate [78]. The nucleation on the surface follows
a so–calledcompatibility wave scenario with preferred growth directions that give the least
mismatch between the 2d substrate and the 2d crystal lattices.

5.1 Flat stretched substrates: the role of attractive force s

In order to vary the interfacial tensions in Eq. (13) we simulated crystallization on a planar
crystalline substrate that was stretched resp. compressedwith respect to the coexistence lat-
tice constant. Deformation of the crystalline substrate leads to different kinetic pathways to-
wards crystal growth. In Ref. [79] we discussed crystallization in suspensions of hard spheres
and found a crossover between a regime of instantaneous film growth at small substrate lat-
tice spacing (high substrate densities) and a nucleation regime with long induction times at
large spacings (low substrate density). The transition is conjectured to occur when the sub-
strate packing fraction is close to that of the packing fraction of the bulk spinodal instability.1

Recent experiments appear to confirm such a scenario for colloidal hard spheres [81].

1 Note that spinodals are a somewhat ill–defined mean-field concept in the case of short–range forces
[80]. In fact, in Ref. [79] the spinodal density was estimated through (mean–field) FMT to be the
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Here we present simulations of crystallization in a Lennard–Jones system, in which we
systematically vary the interaction between the fluid and the substrate, to test whether the
effect observed in hard spheres [79] is also present in attractive systems.

To do so, we considered a Lennard–Jones fluid in the isochoric, isothermal ensemble
confined by some layers of fixed particles forming the patterned substrate (see App. B for
the details of the simulation). The interaction between thesubstrate and the fluid is tuned
changing the cutoff radius of the Lennard–Jones interaction, reducing it from the the standard
2.5σ radius to the limiting case of the purely repulsive Weeks–Chandler–Andersen (WCA)
potential (see Fig. 2(a)). We track the progression of the crystalline front using the so called
average local bond order parameters ¯q4, q̄6 (see App. B), allowing for the distinction between
different crystalline structures such as bcc, hcp and fcc.

In order to distinguish in a quantitative manner between theinstantaneous growth and
the long induction–time regime associated with heterogeneous nucleation, we monitor the
very first steps of the molecular dynamics leading to the formation of a crystalline layer on
top of the fixed particles of the substrate. We isolate then the particles confined in the region
between the substrate and the first minimum of the density profile and study the fraction of
crystalline particles in the first layer. All particles with̄q6 > 0.36 are regarded as crystalline,
consistently with previous LJ calculations [82].
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Fig. 2. (color online) (a) Plot of the wall–fluid interaction potentials considered in this work. (b) Width
of the first density peak close to the substrate in the laterally averaged density profile,〈ρ(z)〉x,y, modeled
by a Gaussian function of widthσ1st at the early stages of growth (t = 0.25τD): for less attractive forces
as well as substrate densities outside of the coexistence region the peaks become broader. (c) Average
fraction of solid particles in the first crystalline layer attime (t = 0.25τD, out of 10 independent growth
trajectories. Error bars are within the symbol sizes. The different curves indicate different interactions
between the Lennard–Jones metastable fluid at densityρ = 0.95.The transition between low lattice
densities and high lattice densities crosses an optimal value for the solid fraction which is located in
the coexistence region. A smooth transition occurs for lattice densities crossing the coexistence region
(delimited by the dotted and the dashed–dotted vertical lines), where the spinodal density (continuous
vertical line) is located.

We test a broad range of lattice densities for the substrate,from 0.5 to 1.2σ−3, cross-
ing the coexistence region bounded by the coexistence densitiesρfl = 0.8751σ−3 andρcr =

0.9759σ−3 as given by the Lennard–Jones equation of state discussed in[83]. For the value of
the spinodal transition we refer to a linear interpolation of the data provided in [84], resulting
in ρspinodal≈ 0.90σ−3 at kBT = 0.8ǫ. Note that for a fluid with purely repulsive WCA inter-
actions the liquid–solid coexistence region is shifted towards higher densities, lying between

density at which no local free energy minimum belonging to a crystalline density profile could be
found anymore.
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0.92 and 0.99σ−3[85], thus simulations at equal densities of the supersaturated fluid corre-
spond to slightly different chemical potential differences. Notice moreover that the substrate
structures are all but typical commensurable structures for the bulk fluid at the chosen tem-
perature and therefore they represent a template for growthwhich is in general suboptimal.

The fluid is initially equilibrated separately, and we use its equilibrium self-diffusion
constantD [86] in order to obtain the self-diffusion timeτD = σ

2/D used as the unit of time
in the rest of the analysis.
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Fig. 3. (color online) Snapshots showing the crystallized particles on one of the two lattice substrates
at density 0.6σ−3 (substrate not shown). The color coding is according to the ¯q4 value at timet = τD for
two different wall-fluid potentials: (a) the WCA potential and (b) the LJ potential with cutoff at 1.5σ.

We analyze the laterally averaged (in the substrate plane) density profile〈ρ(z)〉x,y, Fig. 2(b),
computing the width of the first layer density peak, modeled by a Gaussianf (z) = A exp[−(z−
µ)2/2σ2] at the early stages of the growth. We notice that the WCA substrate–fluid potential
induces the largest peak widths, and that the tightest peakscorrespond to substrate lattices
in the range of the coexistence densities. Considering thatthe spacing between the substrate
crystalline planes inz direction isa/2, we observe that all the early density peaks are narrow
and the particles are essentially confined to a single plane.This implies that the crystalliza-
tion process is in essence a 2d process at strong supersaturation, and hence it is not subject
to a kinetic barrier. From this observation we conclude thatheterogeneous nucleation with a
non-zero contact angle in a Lennard-Jones system on a planarsubstrate only occurs for very
specific choices of attraction range and substrate lattice spacing.

The rapid formation of tight density peaks is accompanied bythe fast growth of crys-
talline structures: the first layer of high ¯q6 particles is formed in about 1τD in all cases with
the exception of the lowest lattice density case. Yet, the shorter the range of the attractive
forces, the lower is the growth rate, in agreement with the typically longer timescales ob-
served in the case of hard spheres. We also report that the growth rates at the initial stages of
crystallization are non monotonic in the template lattice structure, suggesting that both too
dense and too sparse substrates with respect to the bulk density present incommensurability
barriers that slow down the layer formation.

In Fig. 2(c) we show the relative fraction of solid particlesin the first layer at a very early
time (t = 0.25τD after the wall-fluid contact) as a function of the fcc substrate density. For
different wall-fluid potentials we see a significant change in thecrystallinity of the first layer:
hard potentials have low fractions of solid particles (below 50%) while attractive potentials
induce crystallinity in the entire first layer in a broad range of substrate lattice spacings. This
is associated with a complete coverage of the substrate surface, which gradually fades out
outside of the interval of coexistence densities. In the case of wall-fluid interactions with
rcut = 2.5σ the solid particles ratio drops rapidly only at very low lattice densities (ρlattice =
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0.5σ−3) when the lattice spacing is so large that the fluid particlespenetrate through the first
layer of fixed particles.

However, even at low fractions of solid particles, we do not observe the formation of
a cluster – as it would be expected in the case of heterogeneous nucleation with a non-
zero contact angle – but rather of a network morphology (see Fig. 3 left image). The lattice
densities that lie in the coexistence region induce the fastest and most efficient formation
of low defect number crystalline layers. Both, low and high densities lead to an increase in
the crystal layer imperfections due to the mismatch betweenthe bulk equilibrium structure
and the actual structure of fixed particles, as seen for the hard spheres case. Heterogeneous
nucleation does not appear at all for the substrate lattice spacings studied here.
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Fig. 4. (color online) (a) Probability distribution functions of the average local bond order parameters
q̄6, q̄4 of the solid particles forming the first layer at time 0.25τD for the WCA potential at different
lattice densities (brightness indicates the position of the mode peak). Notice that the density 0.8σ−3 is
partly hidden by the overlaid distributions forρ = 1.0,1.2σ−3. (b-e) Probability distributions (drawn
as level curves) for different wall-fluid interactions at a two different lattice densities 0.7σ−3 (dashed
lines) and 1.0σ−3 (continuous lines) . The positions of the typical values of bcc, hcp and fcc stacking in
the bulk LJ system [82] are also indicated.

While for long cutoff radii all the systems with lattice densities within the coexistence
region show a similar growth behavior, we see that the shorter is the range of the attractive
part of the potential, the more sharp is the peak in the solid fraction around some density in
the coexistence region. We observe that the peak value is approximately located around the
spinodal density indicated in [84] for the LJ fluid.

We then focused our analysis on the typical order that is formed at the template-fluid
interface. We use the ¯q4, q̄6 probability distribution functions for the solid particles in order
to represent the several possible ordered patterns that cover the template at the early stage
of the crystal growth. As shown in Fig. 4(a,b), at low latticedensities (corresponding to a
small number of crystalline particles) low ¯q4 structures of distorted bcc type are formed;
increasing the lattice density favors a more compact stacking of hcp nature. At later times
the stabilization of the crystalline structure further increases the degree of local order of the
initially formed layers, transforming the hcp order into fcc crystals.

The change in the range of attractive forces also contributes to distort the arrangement of
the first layer of particles (Fig.4(b-e))). At low lattice densities, the potentials that are mainly
repulsive show hcp ordering while the more attractive ones present bcc ordering; for higher
lattice densities repulsive potentials still favor hcp-like structures while more attractive wall-
fluid interactions make fcc structures more and more likely.

The different crystalline arrangements occur in different regions of thew newly formed
clusters and crystal layers: as shown in Fig. 3 bcc particlesare mainly localized on the borders
of the clusters and in contact with the substrate, while hcp (and at later times, fcc) particles
form the core of the crystalline clusters (Fig. 3(a)) and layers (Fig. 3(b)).
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6 Conclusion

We reviewed several aspects of the thermodynamics of crystal/liquid phases and their in-
terfaces in the hard–sphere and Lennard–Jones model systems, as well as homogeneous
and substrate–driven heterogeneous nucleation in these systems. Through the application
of modern density functional methods (especially fundamental measure functionals) a de-
tailed theoretical understanding of the equilibrium crystal/liquid properties in accordance
with simulation results has been achieved. We illustrated this for the particular case of the
crystal(fcc,bcc)–liquid interface of hard spheres. For the nonequilibrium processes of homo-
geneous and heterogeneous nucleation a physical picture isdeveloping mostly on the basis of
simulation results. Simple hard spheres show a precursor–mediated homogeneous nucleation
scenario. Crystal growth in hard spheres at crystalline substrates proceeds by instantaneous
growth or the classical nucleation scenario, depending on the lattice constant of the substrate.
For the case of a Lennard–Jones system, attractive substrate forces accelerate the formation of
crystalline layers. The distinction between instantaneous growth and nucleation–dominated
crystallization, as it has been observed for hard spheres, is blurred in systems with attractive
interactions; the substrate is wet by a crystalline film evenfor highly incommensurate lat-
tice spacings, making it almost impossible to study heterogeneous crystal nucleation with a
non-zero contact angle in Lennard-Jones systems. (A similar observation has been made for
Lennard Jones systems in contact with an unstructured Lennard Jones wall [87].)
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A The excess free energy functional of FMT

Fundamental measure theory (FMT) currently is the most precise functional for the excess
free energy part for the hard sphere fluid. The correspondingexcess free energy is given by

F ex =

∫

d3r f ex({n[ρ(r)]})) (14)

β f ex({n[ρ(r)]})) = n0 ln(1− n3) + ϕ1(n3)
n1n2 − n1 · n2

1− n3

+ϕ2(n3)
3 (−n2 n2 · n2 + n2,int

i jn2, j + n2nt
i jn

t
ji − nt

i jn
t
jknt

ki)

16π(1− n3)2
. (15)

Here, f ex is the excess free energy density which is a (local) functionof a set of weighted
densities{n(r)} = {n0, n1, n2, n3, n1, n2, nT } with four scalar, two vector and one tensorial
weighted densities. These are related to the density profileρ(r) by the convolutionsnα(r) =
∫

dr′ ρ(r′)wα(r− r′). The weight functions are given by (R = σ/2 is the hard sphere radius):

w3(r) = Θ(R − r),

w2(r) = δ(R − r),

w1(r) = w2(r)/(4πR),

w0(r) = w2(r)/(4πR2), (16)

w2(r) =
r
r
δ(R − r),
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w1(r) =
w2

4πR
,

wt
i j =

rir j

r2
δ(R − r)

By choosing

ϕ1 = 1 and ϕ2 = 1 (17)

we obtain Tarazona’s tensor functional [88] based on the original Rosenfeld functional (RF–
T) [89]. The choice

ϕ1 = 1 ,

ϕ2 = 1−
−2n3 + 3n2

3 − 2(1− n3)2 ln(1− n3)

3n2
3

(18)

corresponds to the tensor version of the White Bear I functional (WB–T) [90,91]. Finally,
with

ϕ1 = 1+
2n3 − n2

3 + 2(1− n3) ln(1− n3)

3n2
3

,

ϕ2 = 1−
2n3 − 3n2

3 + 2n3
3 + 2(1− n3)2 ln(1− n3)

3n2
3

(19)

the tensor version of the White Bear II functional is recovered (WBII–T) [92]. This func-
tional is most consistent with respect to restrictions imposed by morphological thermody-
namics [93].

We remind the reader briefly on the construction principles of FMT: The scalar and vec-
tor densities are introduced by requiring the correct low–density limit of the free energy for
a hard sphere mixture [89]. The particular, analytic form off ex(n) arises by imposing con-
sistency with scaled particle arguments [89,2] or by imposing a known bulk equation of state
[90,92]. Since in this step only bulk properties are used, there is still freedom in extending the
functional to arbitrarily inhomogeneous situations. One further demands that the functional
reproduces the known free energy of a sharply peaked densitydistribution (0d limit) [94].
This leads to the introduction of the tensor weights as suggested in Ref. [88].

B Simulation details for the heterogeneous crystal growth o n
stretched substrates with tunable attractive potentials

We simulatedN = 216 000 Lennard–Jones2 fluid particles at temperaturekBT = 0.8ǫ and
densityρ = 0.95σ−3 confined by two fcc walls of fixed particles of surfaceA = 30× 30a2

wherea is the fcc lattice spacinga = 3
√

4/ρlattice. The substrates expose the (100) orienta-
tion to the fluid, in contrast with the (111) studied for hard-spheres case in [79]. The wall
particles form three crystalline layers per surface and interact with the fluid particles with
different possible potentials, all based on the pair Lennard–Jones interaction, as illustrated in
Fig. 2(a): we consider a case for which the wall-liquid interaction is the same as the liquid-
liquid interaction (purely cut and shifted Lennard-Jones interaction with cutoff rcut = 2.5σ);
then, we pick the limit case for which no attractive force is present between the substrate

2 The potential of the Lennard–Jones interaction (cut off at rcut) is defined byu(r) = uLJ(r)− uLJ(rcut)
for r < rcut and 0 otherwise, withuLJ(r) = 4ǫ[(σ/r)12 − (σ/r)6].
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and the liquid (cutting and shifting the LJ potential atrmin = 21/6σ) corresponding to the
Weeks-Chandler-Andersen (WCA) potential and finally we choose intermediate truncated
and shifted potentials where we limit the contribution of the attractive part choosing short
cutoff radii rcut = 1.3, 1.5σ. We perform isochoric Langevin dynamics simulations with a
time step∆t = 0.01

√

mσ2/ǫ and friction coefficientγ = 0.01∆t−1 and track the crystalliza-
tion process using the averaged local bond order parametersq̄4, q̄6 proposed in [82]. Their
definition requires the computation of the complex vectorql(i)

qlm(i) =
1

Nb(i)

Nb(i)
∑

j=1

Ylm(ri j) , (20)

whereNb(i) corresponds to the number of nearest neighbors of particlei andYlm(ri j) reads as
the spherical harmonics. Averaging over the neighbors of particle i and particlei itself

q̄lm(i) =
1

Ñb(i)

Ñb(i)
∑

k=0

qlm(k), (21)

and summing over all the harmonics we finally get

q̄l(i) =

√

√

√

4π
2l + 1

l
∑

m=−l

|q̄lm(i)|2 . (22)
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