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a b s t r a c t

It has long been known that a person’s race can affect their decisions about people of
another race; an observation that clearly taps into some deep societal issues. However,
in order to behave differently in response to someone else’s race, you must first categorise
that person as other-race. The current study investigates the process of race-categorisation.
Two groups of participants, Asian and Caucasian, rapidly classified facial images that varied
from strongly Asian, through racially intermediate, to strongly Caucasian. In agreement
with previous findings, there was a difference in category boundary between the two
groups. Asian participants more frequently judged intermediate images as Caucasian and
vice versa. We fitted a decision model, the Ratcliff diffusion model, to our two choice reac-
tion time data. This model provides an account of the processes thought to underlie binary
choice decisions. Within its architecture it has two components that could reasonably lead
to a difference in race category boundary, these being evidence accumulation rate and a pri-
ori bias. The latter is the expectation or prior belief that a participant brings to the task,
whilst the former indexes sensitivity to race-dependent perceptual cues. Whilst we find
no good evidence for a difference in a priori bias between our two groups, we do find evi-
dence for a difference in evidence accumulation rate. Our Asian participants were more
sensitive to Caucasian cues within the images than were our Caucasian participants (and
vice versa). These results support the idea that differences in perceptual sensitivity to
race-defining visual characteristics drive differences in race categorisation. We propose
that our findings fit with a wider view in which perceptual adaptation plays a central role
in the visual processing of own and other race.
� 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The other-race effect has been a topic of scientific
investigation for some 40 years or so; it’s known by a num-
ber of other names, including the cross race effect and the
own race advantage. These terms primarily refer to what is
now a well established finding, namely that we have a ten-
dency to better recognise the faces of members of our own
race than those of another (Malpass & Kravitz, 1969;

Meissner & Brigham, 2001). Clearly, this finding speaks to
some deep societal concerns tied as it is to the issue of race
relations, and with the obvious connections with the crimi-
nal justice system and its use of eyewitness testimony.

It is not therefore surprising that the body of research
dealing with the other-race effect is considerable, and that
it is comprised of contributions from a variety of different
areas. Fortunately, over the past decade or so there have
been a number of excellent reviews of the other race-
effect, both in terms of results and underlying theories
(Hugenberg, Young, Bernstein, & Sacco, 2010; Meissner &
Brigham, 2001; Sporer, 2001; Young, Hugenberg,
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Bernstein, & Sacco, 2012). In regards to the latter, there are
two main strands of reasoning that have been used to
explain the other-race effect, these being perceptual theo-
ries and social-cognitive theories. Social-cognitive theories
are concerned with concepts such as motivation, attention
and stereotyping (Rodin, 1987); whilst perceptual theories
propose that it is differences in perceptual processing that
underlie the other-race effect (Byatt & Rhodes, 2004;
Tanaka & Farah, 1993).

A recent analysis makes the point that there is strong
support for both social-cognitive and perceptual mecha-
nisms underlying the other-race effect, and describes a
general theory that combines elements of the two
(Hugenberg, Wilson, See, & Young, 2013; Hugenberg
et al., 2010; Young & Hugenberg, 2012). In this framework,
an initial categorisation by race, accompanied by a motiva-
tion to treat races differently, allows differential perceptual
processing which can then impact upon whether a group
are well individuated or not. Clearly, one of the crucial
parts of this theory, and the area addressed by the present
study, is the role that the initial race categorisation plays.

In comparison to the primary other-race effect finding
(the same-race recognition advantage), race categorisation
has received substantially less attention. However two
general findings have emerged from the race cate-
gorisation literature. The first is that people show an
other-race categorisation advantage – when categorising
by race, they categorise other-race faces more quickly
and more accurately than own-race faces (Ge et al., 2009;
Levin, 1996, 2000; Valentine & Endo, 1992). The second
finding is that there is a shift in the category boundary
such that a face morphed to be intermediate between
two races is likely to be judged as other-race by both races
(Webster, Kaping, Mizokami, & Dumahel, 2004).

In terms of the classification advantage, there are a cou-
ple of strong current theories. The first is the face-space
approach. This relies on the idea that we represent faces
using a multi-dimensional space (Lee, Byatt, & Rhodes,
2000; Valentine, 1991). The dimensions of this space are
tuned by our visual diet of faces, such that commonly
occurring sets of faces are better differentiated within this
space. Consequently, other-race faces are seen as being
grouped more closely together within face-space, whilst
own-race faces are more widely separated from one
another. Thus, other-race faces lie, on average, closer to
the centre of their grouping than do own-race faces.
From the observer’s perspective, other-race faces are more
prototypically characteristic of their race than are own-
race faces and are therefore more readily categorised by
race (Valentine, 1991; Valentine & Endo, 1992).

The other explanation offered is the idea that race is a
feature (Levin, 1996, 2000). This idea ties back into visual
search and the finding that the presence of a feature is
detected more readily than its absence (Treisman &
Gormican, 1988; Treisman & Souther, 1985). So in this
case, other-race is signified by a feature (or set of features)
whereas own-race is signified by a lack of other-race fea-
tures. This idea can readily be used to explain the second
race-categorisation finding, that shift in category bound-
ary. If we consider a racially indeterminate face that con-
tains both Caucasian and Asian features, Caucasian

participants will be comparatively more sensitive to the
Asian features and will therefore be more likely to classify
the face as Asian (and vice versa for Asian participants).

The shift in category boundary has also been explained
as a consequence of visual adaptation (Webster et al.,
2004). In this view, our perceptual systems adjust them-
selves to their perceptual input. This is thought to occur
primarily for a number of reasons, these being principally
self calibration and efficiency of coding (Andrews, 1964;
Clifford et al., 2007; Rhodes, Watson, Jeffery, & Clifford,
2010; Webster & MacLeod, 2011). The general heuristic
for predicting the effect of adaptation is that the category
boundary always moves towards the frequently viewed
stimulus (the adapter). If we again make that reasonable
assumption that Caucasians see more Caucasian faces than
Asians (and vice versa) then this would account for the dif-
ferent category boundaries across the two populations.

Alternatively, the shift in category boundary might
instead be driven by conservatism in our willingness to
judge faces as own-race; we might simply require more
evidence to reach an own-race conclusion than an other-
race conclusion. Such a pattern is readily predicted by
the in-group over-exclusion effect (Leyens & Yzerbyt,
1992; Rubin & Paolini, 2014) in which precisely this bias
in required information is associated with in-group/out-
group classification. Note that this bias in required infor-
mation can also explain the faster responses for other-race
classification – if less information needs to be accrued for
an other-race decision, then presumably less time will be
needed for that accrual process.

It is the process of race categorisation that forms the
focus of the present study. In particular, we examine the
shift in category boundary and attempt to see what pro-
cesses underlie that shift. The novelty of the current study
is that, from its inception, we set out to use a decision
modelling approach. The modelling approach that we
employ, the Ratcliff diffusion model (Ratcliff, 1978;
Ratcliff & Rouder, 1998), allows us to determine whether
race-categorisation differences are driven by differential
sensitivity to the race-determining perceptual information,
or to differences in the information required to reach a
race-categorisation decision.

2. The diffusion model

Decision models seek to account for our behaviour dur-
ing simple reaction time tasks; a good example of such a
task being the rapid binary classification of faces as either
Asian or Caucasian. Such tasks produce a series of
responses (such as race judgements) along with their asso-
ciated latencies. A traditional approach might take these
responses and compress them down to a single number,
such as the median reaction time for correct responses.
In contrast, decision models are designed to account for
the full latency distributions for both correct and incorrect
responses. Thus, they provide a more comprehensive
account than more traditional approaches. Importantly,
decision models are formulated using plausible underlying
psychological processes; fitting decision models to reac-
tion time data makes a direct connection between the
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pattern of the data and those underlying mechanisms.
Such models have been successfully applied within a wide
variety of experimental paradigms (Van Ravenzwaaij,
Brown, & Wagenmakers, 2011), and are increasingly
understood in terms of underlying neural mechanisms
(Gold & Shadlen, 2007; Mulder, van Maanen, &
Forstmann, 2014; Shadlen & Kiani, 2013).

The decision model employed in the current study, and
the most influential to date, is the Ratcliff diffusion model
(Ratcliff & Rouder, 1998) In general terms, the model
works by proposing that evidence for a decision is accrued
over time. Once the weight of evidence passes a decision
threshold, then the corresponding response is made. The
model has a number of parameters, which are outlined in
Fig. 1 and are as follows. An evidence accumulation rate
(v) is associated with a stimulus. This evidence accumula-
tion rate reflects the average rate of information accrual for
that type of stimulus. In the context of the present study, it
is an amalgam of the amount of information conveyed by
the stimulus and the participant’s sensitivity to that infor-
mation. There is variability in the rate of accumulation
both within a trial (s) and between trials (sv). The variabil-
ity within a trial is the diffusion parameter (s) and it is this
that allows the accumulated evidence to vary within a trial
such that the trajectory of the evidence may cross either of
the response boundaries – the model therefore accounts
for both correct and incorrect responses. The wiggly dotted
lines shown in Fig. 1 show three examples of trajectories
that information accumulation may take within a trial.
When the process reaches a boundary, then the relevant
decision is made and the process terminates.

Evidence accrual starts from a certain level (ba) that lies
between the two response boundaries which are separated
by a distance, a. This latter denotes the amount of evidence
separating the two decisions. As a (generally termed the
boundary separation) increases, more evidence is needed
before a decision may be made – boundary separation
can therefore be thought of as a criterion (Wagenmakers,
2009). As it increases, decision latencies tend to lengthen
and error rates decrease. The parameter b can be thought
of as the a priori bias of the participants decisions (Voss,
Rothermund, & Voss, 2004). For example, if b is close to
zero then many rapid and incorrect Caucasian responses
are made, whilst any Asian responses tend to be slow

and accurate. In a similar manner to the evidence accumu-
lation rate parameter, the starting point (ba) has a certain
trial by trial variability associated with it (sba). Finally,
the model contains a non-decisional component t0 which
incorporates, the time taken to make a physical response.
This latter component has an associated variability, st.
There are therefore a total of 8 parameters, however one
of these, the diffusion parameter (s), is conventionally set
to certain value (typically 0.1) and forms a scaling
parameter.

Typically, such models are fitted to a participant’s data
so as to minimise the difference between the predicted
and actual reaction time distributions for both the correct
and incorrect and responses. Subsequent analysis of fitted
parameters gives us a window onto the underlying psycho-
logical mechanisms. For example, a difference in evidence
accumulation rate indicates either a difference in deci-
sion-diagnostic information in the stimulus, or a difference
in sensitivity to that information.

Given a lack of the former (such as when we compare
responses to the same stimulus), a difference in evidence
accumulation rate in response to a visual stimulus indi-
cates a difference in perceptual processing. Such a finding
would be expected if, for example, other race cate-
gorisation was driven by a difference in visual features
(Levin, 1996, 2000). In contrast, a priori bias controls the
relative amounts of information necessary to reach the
two different decisions. A difference in this parameter
would accord with the theory that race-classification dif-
ferences are driven by the in-group over-exclusion effect
(Leyens & Yzerbyt, 1992; Rubin & Paolini, 2014). Note that
we identify evidence accumulation rate as a perceptual
factor and a priori bias as a cognitive factor; this is in the
narrow sense that these are the obvious labels to attach
to those components of the diffusion model in the context
of the present study.

One reasonable question to ask is whether signal detec-
tion theory might provide a preferable alternative to the
diffusion model. However, in the context of the current
study, diffusion modelling offers important advantages.
Firstly, it directly indexes the underlying psychological
mechanisms because it is a model of those underlying psy-
chological mechanisms (Wagenmakers, 2009); with signal
detection theory, psychological processes need to inferred
(Gold & Shadlen, 2007). Secondly, on a methodological
point, in signal detection theory responses to target-pre-
sent and target-absent stimuli are classified as correct or
incorrect; calculation of criterion and sensitivity being
based upon the proportion of hits and false alarms
(Macmillan & Creelman, 2005). For such an analysis to
occur, the experimenter needs to be able to determine
whether responses are correct or incorrect. However, with
the task used in the current study, the classification of such
responses is far from straightforward. The problem is that
the category boundary that we might wish to use to deter-
mine correctness of response is exactly the thing that our
task seeks to measure. More concisely, signal detection
theory applies to Type 1 ‘‘objective’’ tasks; ours is a Type
2 ‘‘subjective’’ task (Kingdom & Prins, 2009). The diffusion
model is unaffected by this issue. It does not care whetherFig. 1. Diagrammatic outline of the Ratcliff diffusion model (see text for

details).
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a response is correct or incorrect, it cares only which deci-
sion boundary has been crossed.

3. Method

3.1. Participants

There were two groups of participants, Asian and
Caucasian. The majority (18) of the 20 Asian participants
were students at the University of Bristol, the remaining
two were in full-time employment. Age range was 19–
30 years (l = 22, r = 3), and 13 were female. Asian partici-
pants were not permanent residents of the UK and were
volunteers recruited by approaching University of Bristol
cultural societies. Six were Japanese, six were from Hong
Kong, three were Singaporean, three were Malaysian, one
was from Brunei, and one was from Thailand. Their mean
period of stay in United Kingdom was 47 months. The 20
Caucasian participants were University of Bristol students
and were each paid £5 to take part in the study. Their
age range was 20–37 (l = 24, r = 4), and 13 were female.

3.2. Materials

The stimuli for the race perception task comprised nine
images of faces taken from a race morph sequence (Fig. 2).
In order to create the stimuli, 25 neutral Caucasian male
faces and 25 neutral Caucasian female faces were com-
bined to form an average Caucasian face; 25 neutral
Asian male faces and 25 neutral Asian female faces were
combined to form an average Asian face (Stephan et al.,
2005). The facial shape and texture was morphed from
the average Caucasian face to the average Asian face, using
the program PsychoMorph (Tiddeman, Burt, & Perrett,
2001). Extrapolating beyond the ends of the morph
sequence allowed us to create hyper-Caucasian and
hyper-Asian faces. We use 0% morph to indicate the aver-
age Caucasian face and 100% morph to indicate the average
Asian face. Our 9 image sequence ranged between �50%
morph (a hyper-Caucasian) to 150% (a hyper-Asian) in
steps of 25%. All images were converted to greyscale and
the edges of the faces were blurred to display mean
luminance.

Stimuli were presented on an Iiyama MA203DTD 2200

CRT monitor with display resolution 1280 � 1024 pixels
and refresh rate 75 Hz. The average interocular distance
of the pictures used was 144 pixels, screen resolution
was 15.3 pixels per cm. Stimulus display and data collec-
tion was accomplished using DMDX (Forster & Forster,
2003), responses were gathered using a Microsoft serial
mouse (Plant, Hammond, & Whitehouse, 2003).
Participants were seated at a viewing distance of

approximately 1 m from the monitor, which was the only
major light source in an otherwise darkened room.

3.3. Procedure

Participants performed a simple binary choice reaction
time task in response to facial pictures from our morph
sequence which varied from strongly Caucasian through
racially indeterminate to strongly Asian. Participants held
the mouse in both hands and pressed the left mouse but-
ton if they thought that the face appeared to be Asian
and the right mouse button if the face appeared to be
Caucasian. Each image was presented until the participant
responded. There was a 150 ms inter stimulus interval
between the gathering of a response and the presentation
of the next stimulus. participants were instructed to
respond quickly and accurately. Prior to starting the blocks,
participants were given a short practice block (18 trials, 2
of each of the 9 levels in random order) in order to famil-
iarise themselves with the task.

The decision model that we used fits the reaction time
distributions of the correct and incorrect responses
(Vandekerckhove & Tuerlinckx, 2008). In order to apply
reaction time modelling to our data, we needed to gather
a substantial amount of data for each participant. To this
end, participants completed six blocks of 180 trials with
each block containing all 9 stimulus levels presented 20
times each in a completely random order. Each block took
about 5 min to complete, subjects took short self-regulated
breaks between blocks.

4. Results

The manner in which we have carried out the analyses
described below is partly motivated by recent criticisms of
psychological research that have raised the issue of
researcher degrees of freedom (Simmons, Nelson, &
Simonsohn, 2011). This latter refers to the possibility that
researchers can potentially manipulate their choices of
covariates, statistical tests reported, outlier identification
and so on, in order to obtain interesting statistically signifi-
cant results. So as to give a detailed description of our data,
where appropriate, we use standard boxplots (Tukey,
1977) in which each box shows the lower quartile, median
and upper quartile. Individual points plotted in this graphs
show outliers, defined as those points more than 1.5 times
the interquartile range beyond the box limits. The whiskers
extend to the position of the most extreme non-outliers.
Where appropriate, we report results both including and
excluding boxplot outliers. Furthermore, as described
below, for our computational modelling we report tests
for a variety of model architectures. In taking this

Fig. 2. Images used in the study; a morphed sequence running from hyper-Caucasian to hyper-Asian.
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approach, our aim has been to demonstrate the generality
and robustness of our results to the reader. Effect sizes
(Cohen’s d) were calculated by using the standard devia-
tions of the measures within conditions rather than their
paired values (Dunlap, Cortina, Vaslow, & Burke, 1996).
Where differences in simple binary comparisons are
reported in the text below, the numbers in brackets show
the 95% confidence limits of the difference.

4.1. Initial analysis

First we looked at where the category boundary lies for
each participant by fitting, an S-shaped curve (a cumula-
tive normal distribution) to the proportion of Asian
responses as a function of percent morph (Wichmann &
Hill, 2001). Here we are simply treating our task as a psy-
chophysical method of constants task and taking a stan-
dard curve fitting approach to estimate the point of
subjective equality (PSE). In this case the PSE is the point
on the morph sequence at which a participant is equally
like to judge an image as either Asian or Caucasian. These
balance points are plotted, for the two groups of partici-
pants, in Fig. 3. In agreement with Webster et al. (2004),
there is a clear difference in balance points (all data,
t(38) = 2.83, p < .01, d = .92; without boxplot outliers
t(36) = 2.31, p = .027, d = .77) with those for the Caucasian
participants being closer to the Caucasian end of the
morph sequence. The mean Asian balance point was
44.4%, mean Caucasian balance point was 34.7%, giving a
difference of 9.73% (2.78–16.68). With outliers removed
the mean Asian balance point remained at 44.4%,
Caucasian was 37.2%, difference was 7.27% (.88–13.66).

4.2. Computational modelling

Having reproduced Webster et al.’s (2004) category
boundary difference, the next stage is to model the data.
To this end we use the Diffusion Model Analysis Toolbox

(Vandekerckhove & Tuerlinckx, 2008). Before applying
the model to the data, we first look at the distribution of
all reaction times gathered over the entire experiment.
The aim here is to apply conservative criteria to trim
obvious reaction time outliers (Ratcliff, 1993). We first
apply a lower threshold of 200 ms, discarding those 33 fas-
ter responses (out of a total of 43,200 responses). This
threshold marks the lower limit of the obvious reaction
time distribution; the discarded responses range as low
as 15 ms and are likely the result of random rapid button
presses. We next apply an upper threshold of 2000 ms, dis-
carding those 1467 responses (some 3.4% of the total num-
ber of responses) that fall above that threshold. This upper
threshold marks a point on the tail of the distribution
where the distribution’s height has reduced to about 1.5%
of its maximum and where the distribution appears to be
increasingly dominated by late non-characteristic
responses that range up to 10 s. Please note that we report
results for both trimmed and non-trimmed reaction time
distributions.

We fit a separate set of model parameters for each par-
ticipant. Within each participant all levels of the stimulus
have a common starting point (ba) and boundary sep-
aration (a). In fact, the only parameter that we allow to
vary across stimulus levels is the evidence accumulation
rate (v) as it is this that should be associated directly with
changes in stimulus strength. We show the results of two
sets of models, the first where we fit all 9 levels of the
stimulus, the second where we fit only a subset of these.
For the latter we were motivated by the suggestion that
some model parameters (such as boundary separation)
may change as a function of evidence accumulation rate
(Hanks, Mazurek, Kiani, Hopp, & Shadlen, 2011). Any such
effect should be greatly reduced by our choice of subset,
which comprised the middlemost three levels falling
around the category boundary (so 25%, 50% and 75%
morph).

We set the model to fit the reaction time distributions
by binning the reaction times using percentiles (10%,
30%, 50%, 70% and 90%). The DMAT toolbox provides two
methods of model fitting (chi squared and maximum like-
lihood) – we used both of these methods. For the sake of
comprehensibility results from only one model (all stimu-
lus levels with chi-squared fit applied to trimmed RTs) are
plotted and reported in the main text. These options pre-
sent a good choice for the accurate recovery of parameter
estimates (Ratcliff & Tuerlinckx, 2002). However, for perti-
nent findings, we tabulate the results of our statistical tests
on the outputs of all models applied to both trimmed and
untrimmed RTs. Furthermore, we also tabulate statistical
outputs both with and without the inclusion of boxplot
outliers. Note that all graphs show comparisons between
participant groups (Asians and Caucasians) on their x-axes.

4.3. Modelling results

We are interested in attempting to explain the differ-
ence in category boundary between two groups of partici-
pants. In terms of the decision model that we have used,
there are two potential elements of the model that could
readily give rise to that difference. The first is the initial a
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Fig. 3. Boxplot showing balance points for the Asian and Caucasian
participants.
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priori bias of the participants (b); the second is evidence
accumulation rate. Looking at the first of these, we find
no good evidence for a difference in a priori bias (b)
between the two groups; the full set of t tests, differences
and effect sizes is shown in Table 1, data are plotted in
Fig. 4a.

Fig. 4b shows a plot of evidence accumulation rates
across the two groups. To analyse these data we conducted
a mixed ANOVA with one between participant factor (par-
ticipant race) and one within participant factor (stimulus
level, with 9 levels). Mauchly’s test indicated that the
assumption of sphericity had been violated (X2(35) = 484,
p < .001) therefore, where appropriate, degrees of freedom
were corrected using Greenhouse-Geisser estimates of
sphericity (e = .163). Our results show, an entirely pre-
dictable main effect of stimulus level (F(1.30,49.4) = 291,
p < .001), however there is no good evidence for an interac-
tion between stimulus level and participant race
(F(1.30,49.4) = .53, p = .515). Importantly, there is a main
effect of participant race (F(1,38) = 7.93, p < .01) which
we plot if Fig. 4c by averaging over stimulus level. When
expressed in this form the between-participant compar-
ison in our ANOVA can be repeated using a simple t test.
The results of such tests applied to various model architec-
tures and data treatments are shown in Table 2. Our find-
ings show that evidence accumulation rates are reliably
higher for Asian participants than for Caucasian partici-
pants. This indicates that our Asian participants appear
comparatively more sensitive to the Caucasian information
within the images, whilst our Caucasian participants
appear comparatively more sensitive to the Asian informa-
tion in those images.

The clear conclusion to draw is that the difference in
category boundary that we find between our two groups
of participants is caused by the difference in evidence
accumulation rate. To take a concrete example, if we con-
sider our intermediate 50% morph (see Fig. 2), this stimu-
lus provides more information about Asian-ness to our

Caucasian participants than it does to our Asian partici-
pants. Consequently, this intermediate stimulus is more
readily classified as Asian by our Caucasian participants
than our Asian participants. This means that the category
boundary for our Caucasian participants should lie closer
to the Caucasian end of our morph sequence than it does
for our Asian Participants – which it does.

5. Discussion

We looked at the race categorisation of faces. Our par-
ticipants performed a simple binary choice reaction time
task in response to facial pictures from a morph sequence
that varied from strongly Caucasian through racially inde-
terminate to strongly Asian. In agreement with previous
research (Webster et al., 2004), we found a difference in
category boundary between our Caucasian participants
and our Asian participants. In comparison to Caucasians,
the category boundary for Asian participants lay closer to
the Asian end of the morph sequence.

We modelled participant responses using a process
model of binary choice reaction times – the Ratcliff diffu-
sion model (Ratcliff, 1978). Within this model there are
two components that could readily give rise to the differ-
ences in category boundary, these being a priori bias and
evidence accumulation rate. The a priori bias parameter
controls the relative balance of the amount of information
that is needed to make a decision. So for example, if more
information is required to reach a ‘‘this face is Asian’’ deci-
sion than a ‘‘this face is Caucasian’’ decision, then, all things
being equal, a Caucasian decision is more likely.

In contrast, evidence accumulation rate is an amalgam
of the amount of information conveyed by a stimulus and
the participant’s sensitivity to that information. So, with
a racially intermediate face, comprising a mix of
Caucasian and Asian information, if a person is more sensi-
tive to the Caucasian information then a Caucasian deci-
sion becomes more likely. In the context of the present

Table 1
Results of t tests applied to biases generated using various models. First column indicates whether the reaction times were trimmed prior to modelling (1) or
not (0). Second column indicates whether responses to all 9 stimulus levels were modelled (1) or whether only the middle 3 levels were used (0). Third column
indicates whether the model was fitted by minimising Chi squared (1) or maximum likelihood (0). Fourth column indicates whether outliers were stripped out
(1) or not (0) prior to statistical analysis. Outliers were determined using the boxplot technique applied to the mean drift rates. Remaining columns show, from
left to right, Asian mean, Caucasian mean, difference (Caucasian mean minus Asian mean), lower 95% confidence limit of the difference, upper 95% confidence
limit, number of degrees of freedom, t statistic, p value and effect size (Cohen’s d).

Trimmed All Chi Outliers Asian Cauc Diff Lower Upper df t stat p d

1 1 1 0 0.51 0.53 0.021 �0.012 0.054 38 1.29 .205 0.418
1 1 1 1 0.51 0.52 0.014 �0.016 0.045 37 0.93 .357 0.307
1 1 0 0 0.51 0.53 0.022 �0.008 0.052 38 1.47 .150 0.477
1 1 0 1 0.51 0.52 0.016 �0.012 0.044 37 1.13 .267 0.371
1 0 1 0 0.49 0.48 �0.006 �0.047 0.035 38 �0.31 .762 0.099
1 0 1 1 0.49 0.49 0.003 �0.035 0.040 37 0.15 .878 0.051
1 0 0 0 0.50 0.49 �0.011 �0.060 0.038 38 �0.46 .647 0.150
1 0 0 1 0.48 0.49 0.005 �0.030 0.041 35 0.30 .764 0.102
0 1 1 0 0.50 0.53 0.026 �0.003 0.056 38 1.81 .078 0.587
0 1 1 1 0.50 0.52 0.020 �0.007 0.048 37 1.49 .144 0.491
0 1 0 0 0.50 0.53 0.027 �0.002 0.056 38 1.89 .066 0.613
0 1 0 1 0.50 0.52 0.021 �0.006 0.048 37 1.58 .123 0.519
0 0 1 0 0.49 0.49 0.008 �0.027 0.042 38 0.45 .657 0.145
0 0 1 1 0.49 0.49 0.008 �0.027 0.042 38 0.45 .657 0.145
0 0 0 0 0.49 0.50 0.007 �0.029 0.043 38 0.39 .701 0.126
0 0 0 1 0.49 0.49 0.000 �0.034 0.035 37 0.02 .984 0.007
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study, evidence accumulation rate indexes sensitivity to
the perceptual information contained within the stimulus,
whilst a priori bias is about how that information is used.
Bias is present before the stimulus is presented, being part
of the framework for decision making, whilst evidence
accumulation rate is intrinsically related to the perceptual
information conveyed by the stimulus.

We found no strong evidence for a difference in a priori
bias between our two groups of participants. The idea that
race categorisation differences arise as a consequence of
differing evidence requirements for own-race and other-
race, such as predicted by Leyens & Yzerbyt’s (1992) in-
group over-exclusion effect, is therefore not supported by
our evidence. However we did find good evidence for a dif-
ference in evidence accumulation rate. Of course, the most
reasonable conclusion to draw from this finding is that the
shift in category boundary is primarily caused by a differ-
ence in evidence accumulation rate. The participants in
our study were more sensitive to the race-classifying per-
ceptual information in the other race images, than they
were to that of their own race. How does such a finding
accord with those other mechanisms proposed to explain
race categorisation differences?

We turn first to the notion of face space, which has pre-
viously been used to explain the race-categorisation
advantage (Lee et al., 2000; Valentine, 1991). In this model
there is no obvious means of accounting for the category
boundary shift. Furthermore, it is difficult to think how
concepts such as information accrual and decision bound-
aries might work within the face-space framework. Face-
space deals with information already arrived, the informa-
tion being represented by a point within face-space. As it
currently stands, face-space does not therefore provide a
ready framework for our findings; however the idea can
likely be extended to incorporate decision processes. It is
certainly possible that any such extension might incorpo-
rate an explanation for race categorisation differences.

We turn next to Levin’s (1996) feature-selection model.
In this, other-race is defined by a visual feature whilst own
race is not. This idea does fit well with our drift-rate find-
ing. Our stimuli were drawn from a morph sequence that
ran from Caucasian to Asian. This means that you gradually
get a shift in balance from Caucasian to Asian features with
an intermediate stimulus containing elements of both. If
Asians are comparatively more sensitive to Caucasian
race-defining features, and if greater sensitivity means
more rapid evidence accumulation, then this would clearly
result in the shift in evidence accumulation rates curves
that we describe in our results.

The idea, of being more sensitive to the race-defining
features of other-races, sits well with the perceptual adap-
tation account of the race-categorisation boundary shift
(Webster & MacLeod, 2011). This latter can be outlined
as follows. Let us say that you have two pools of neurons,
one better tuned to Asian faces and one better tuned to
Caucasian faces. Let us also say that you have a mixed race
face intermediate between Asian and Caucasian such that
the two pools produce equal amounts of activity – this
image therefore lies on the category boundary.
Adaptation works by reducing the sensitivity of neurons
that are repeatedly stimulated. So if you now view a

Fig. 4. Boxplots showing (a) bias, and (c) mean drift rate for Asian and
Caucasian participants, (b) shows drift rates for Asian (filled triangles)
and Caucasian (unfilled circles) participants with error bars showing 95%
confidence limits; the two data sets are horizontally offset from one
another for clarity.
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particular diet of faces (say Caucasian faces) then the
responsiveness of the ‘‘Caucasian neurons’’ will be reduced
so that that mixed-race face will now be judged as Asian. If
you want to find the new post-adaptation category bound-
ary you will need a facial image that is more Caucasian
than that lying on the pre-adaptation category boundary.
The reasonable assumption, that increased neural sensitiv-
ity means an increased evidence accumulation rate, allows
us to connect our diffusion model finding to an explanation
of race categorisation through perceptual adaptation.

If perceptual adaptation can explain the race-cate-
gorisation boundary shift, can it explain that complemen-
tary effect, the race-categorisation advantage? In our
above description of two populations of neurons, Asian-
tuned and Caucasian-tuned, the sensitivity of neurons
tuned to own-race is reduced. A race-categorisation deci-
sion based upon whichever population of neurons signals
the highest output, or reaches a certain threshold first, will
result in faster other-race categorisation. More generally,
increased sensitivity for the detection of novel or rare stim-
uli has been proposed as a key component of adaptation
(Barlow, 1990; McDermott, Malkoc, Mulligan, & Webster,
2010), clearly we can conceive of other-race as being com-
paratively novel or rare.

If adaptation explains the two race-categorisation
effects can it also, as recently suggested (Rhodes, Jeffery,
Taylor, Hayward, & Ewing, 2014), explain that better-
known other race finding, the same-race recognition
advantage? As well as the standard suppressive effect of
adaptation, which we have used to account for the
race-categorisation effects, there is evidence of another
consequence of adaptation, this being an enhancement of
discrimination or individuation around the adapting
stimulus (Clifford, 2002). This enhanced discrimination
may be analogous to the greater dispersion of own-race
faces in the face-space framework (see below); which does
raise the possibility that we can couch face-space within
the wider framework of perceptual adaptation. In the

face-adaptation domain, a number of studies provide good
evidence for enhancement discrimination around the
adapting stimulus (Keefe, Dzhelyova, Perrett, &
Barraclough, 2013; Oruç & Barton, 2011; Rhodes et al.,
2010; Yang, Shen, Chen, & Fang, 2011), critically, at least
in the context of the other-race effect, Rhodes et al.
(2010) showed that adaptation to a prototypical
Caucasian or Asian face led to increased discriminability
for faces of the adapted race compared to those of the una-
dapted race. Thus, adaptation does appear to induce the
same-race recognition advantage that we find in the
other-race effect.

Perceptual adaptation can therefore provide a unified,
parsimonious account of classification and discriminabil-
ity. Other approaches also span classification and discrim-
inability. For example, in face space theory, the other-race
classification advantage is driven by other-race faces being
more closely grouped together (and therefore more
race-prototypical) than same-race faces. This difference
in dispersion has been used to account for the same-race
recognition advantage, increased dispersion leading to
greater distinguishability (Valentine, 1991). In contrast, a
mechanism such as motivation to individuate is an account
of discriminability; its effects may be made manifest after
an initial categorisation process (Hugenberg et al., 2010).
While such a multi-mechanism framework may seem
unparsimonious, it does readily account for other-race dif-
ferences in the absence of perceptual cues to categorisation
(Hourihan, Fraundorf, & Benjamin, 2013). The occurrence
of the latter succinctly makes the point that per-
ceptually-driven accounts cannot provide a complete
account of the other-race effect.

Above, we have made the points that the general frame-
work of perceptual adaptation can accommodate our evi-
dence accumulation rate finding and can account for the
category boundary shift, the other-race categorisation
advantage and the same-race recognition advantage.
Furthermore, the finding, from perceptual adaptation, that

Table 2
Results of t tests applied to mean evidence accumulation rates generated using various models. First column indicates whether the reaction times were
trimmed prior to modelling (1) or not (0). Second column indicates whether responses to all 9 stimulus levels were modelled (1) or whether only the middle 3
levels were used (0). Third column indicates whether the model was fitted by minimising Chi squared (1) or maximum likelihood (0). Fourth column indicates
whether outliers were stripped out (1) or not (0) prior to statistical analysis. Outliers were determined using the boxplot technique applied to the mean
evidence accumulation rates. Remaining columns show, from left to right, Asian mean, Caucasian mean, difference (Caucasian mean minus Asian mean), lower
95% confidence limit of the difference, upper 95% confidence limit, number of degrees of freedom, t statistic, p value and effect size (Cohen’s d).

Trimmed All Chi Outliers Asian Cauc Diff Lower Upper df t stat p d

1 1 1 0 0.029 0.091 0.062 0.017 0.107 38 2.82 .0077 0.91
1 1 1 1 0.029 0.077 0.049 0.012 0.085 37 2.72 .0098 0.90
1 1 0 0 0.031 0.082 0.051 0.012 0.090 38 2.67 .0110 0.87
1 1 0 1 0.031 0.082 0.051 0.012 0.090 38 2.67 .0110 0.87
1 0 1 0 0.033 0.128 0.095 0.045 0.146 38 3.84 .0004 1.25
1 0 1 1 0.033 0.128 0.095 0.045 0.146 38 3.84 .0004 1.25
1 0 0 0 0.035 0.203 0.167 0.010 0.325 38 2.15 .0378 0.70
1 0 0 1 0.035 0.131 0.095 0.034 0.156 37 3.16 .0031 1.04
0 1 1 0 0.035 0.094 0.059 0.010 0.108 38 2.44 .0193 0.79
0 1 1 1 0.035 0.080 0.046 0.004 0.088 37 2.21 .0336 0.73
0 1 0 0 0.034 0.089 0.055 0.014 0.095 38 2.73 .0095 0.89
0 1 0 1 0.034 0.089 0.055 0.014 0.095 38 2.73 .0095 0.89
0 0 1 0 0.052 0.118 0.066 0.011 0.121 38 2.42 .0205 0.78
0 0 1 1 0.040 0.118 0.079 0.028 0.129 37 3.18 .0030 1.05
0 0 0 0 0.054 0.127 0.073 0.022 0.123 38 2.91 .0060 0.94
0 0 0 1 0.054 0.127 0.073 0.022 0.123 38 2.91 .0060 0.94
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repeated stimulation of neural mechanisms reduces their
response, provides a mechanism by which differences in
sensitivity to features can arise; in other words, perceptual
adaptation can readily incorporate Levin’s (1996) feature-
selection model. Of course, this means moving away from
any idea of a race-feature as something that is all-or-noth-
ing. It requires instead the idea that we can be dif-
ferentially sensitive to different sets of race-features. Put
in this way, the feature and the adaptation accounts
become one and the same, with our description of
adaptation being an account of neural responses, the fea-
tures being the properties to which those neurons are
sensitive.

Theoretical approaches see perceptual adaptation as
functional, its purpose being to optimise the use of our neu-
ral mechanisms to better encode our perceptual input
(Clifford, 2005). In terms of a general model of the other-
race effect perceptual adaptation is therefore an attractive
idea – it is motivated by an idea that makes real intuitive
sense, that being the optimisation of our expensive-to-
build and expensive-to-maintain neural machinery. In turn,
the concepts that link that motive to adaptation’s beha-
vioural effects, are again intuitively attractive. Ideas such
as perceptual recalibration, contrast gain control and
redundancy reduction make real sense from a fundamental
‘‘what’s a good way to engineer this neural system’’ view-
point. Furthermore, adaptation offers a ready mechanism
for experience-dependent plasticity in our perception of
other-race faces (Tanaka, Heptonstall, & Hagen, 2013).
However it is worth noting the following point. One of
the weaknesses of perceptual adaptation is that it has been
hard to connect the readily observable laboratory effects of
adaptation to adaptation in the real world (Ditye, Javadi,
Carbon, & Walsh, 2013). Whilst it makes sense to assume
that effects such as the other-race effect, other-age effect
(Kuefner, Macchi Cassia, Picozzi, & Bricolo, 2008), other-
gender effect (Wright & Sladden, 2003), and the other spe-
cies effect (Pascalis, 2011), are all manifestations of long
term adaptation, that connection still needs to be made.

Our results offer a clear story in which race cate-
gorisation differences are driven by differences in percep-
tual sensitivity to race-defining visual characteristics.
However, we wish to emphasise our earlier point, that per-
ceptually driven accounts cannot provide a complete
account of the other race effect. It is undoubtedly the case
that any such perceptual mechanisms may be paralleled,
influenced or caused by factors from the social-cognitive
domain. For example, in the perceptual adaptation frame-
work, motivation to attend to own-race over other-race
faces could well mediate adaptation, with greater attention
causing greater adaptation and hence greater discrim-
inability (Rhodes et al., 2011). Moreover, the wider other
race-effect, which we take to mean the constellation of
findings describing race-dependent response differences,
is clearly a complex phenomenon in which perceptual,
social and cognitive factors interact (Hugenberg et al.,
2013). Further, the work reported here lies in the psycho-
logical domain. A full understanding of the wider other
race effect must go well beyond such explanations to take
into account the social and historical contexts within
which the other race effect is so clearly embedded.
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