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Modelling the occupational assimilation of immigrants by ancestry, age 

group and generational differences in Australia: a random effects 

approach to a large table of counts 
 

 

Abstract 

A novel exploratory approach is developed to the analysis of a large table of counts. It uses 

random-effects models where the cells of the table (representing types of individuals) form 

the higher level in a multilevel model. The model includes Poisson variation and an offset to 

model the ratio of observed to expected values thereby permitting the analysis of relative 

rates. The model is estimated as a Bayesian model through MCMC procedures and the 

estimates are precision-weighted so that unreliable rates are down-weighted in the analysis. 

Once reliable rates have been obtained graphical and tabular analysis can be deployed. The 

analysis is illustrated through a study of the occupational class distribution for people of 

different age, birth-place origin and generation in Australia. The case is also made that even 

where there is a full census there is a need to move beyond a descriptive analysis to a proper 

inferential and modelling framework. We also discuss the relative merits of Full and 

Empirical Bayes approaches to model estimation.  

 

Keywords: tabular analysis of counts; log-Normal Poisson model; random effects; shrinkage; 

precision-weighted estimation; Bayesian estimation; Australian immigrant occupations  
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1. Introduction 

 

The very large literature on the economic integration of international immigrants has 

identified substantial inter-generational differences in their occupational structures within 

particular countries and or cities, differing both from that of their host population and from 

each other. First-generation immigrants are most likely to be concentrated in relatively low 

status occupations, as suggested for the US in research initiated by Portes and Zhou (1993), 

for example, whereas studies of economic and social mobility show that greater proportions 

of second- than first-generation migrants occupy higher status roles and that the occupational 

structure of immigrant groups moves closer to the national mean, and hence to each other, in 

later generations (e.g. Boyd and Grieco, 1998, on the Canadian experience). Within that 

general pattern, however, there may be differences across immigrant groups reflecting 

variations in human, social and ethnic capital; those from markedly different backgrounds 

from the receiving society’s may take longer to assimilate and achieve the levels of social 

mobility attained by those who differ less (Borjas, 1992). 

 

In this paper we explore, using an innovative modelling procedure, whether such inter-group 

differences are characteristic of the occupational assimilation of first, second and third (or 

third-plus) generations of immigrants to Australia, which has attracted large numbers of 

settlers from a variety of cultural backgrounds since World War II (Jupp, 2001). The 

underpinning null hypothesis of our analyses is that, holding constant both generation and 

age, there should be no difference across a selection of different immigrant groups there in 

their occupational structures. 

 

To evaluate that null hypothesis we model the dependent variable of rates of the number of 

individuals in each ancestry, age and generational group in each occupational category 

relative to the expected value if national rates prevailed (i.e. across all of the immigrant 

groups), using a bespoke table derived from the 2011 Australian census on the occupational 

structures of eight major immigrant groups. The cells in this table vary greatly in their size, so 

to evaluate differences between groups we develop a novel random-effects modelling 

approach, based on Poisson variation estimated as a Bayesian model using MCMC 

procedures. The resultant estimates are automatically precision-weighted so that those which 

are relatively unreliable – i.e. are based on relatively small numbers – are down-weighted in 

the analysis. This analysis then allows us to see the underlying patterns untroubled by 

underlying uncertainty. 

 

2. International migration to Australia 

 

Australia has experienced several, clearly distinguishable waves of immigration. Until the 

Second World War those arriving were dominated – in large part through a combination of 

cultural and political ties – by migrants from the United Kingdom and Ireland. After 1945, to 

meet the labour demands of a booming industrial economy a wider range of migrants was 

encouraged, but the ‘White Australia’ policy constrained this to European origins, of which 

the two main groups were Greeks and Italians. The ‘White Australia’ policy was abandoned 

in the early 1970s (Ho, 2013, 31), and substantial numbers of non-European migrants were 

attracted (Forrest et al., 2006: 443-446), many to the now burgeoning increasingly service-

industry based economy from Northeast and Southern Asia (especially China and India). 

Most were highly skilled and educated (Hawthorne, 2005).  At the same time, Australia 
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welcomed refugees, with substantial numbers from the war-torn areas of Lebanon and the 

Former Yugoslavia, both groups being divided into those from Christian and Muslim 

religious groups; many of these too were both skilled and well educated (Forrest et al., 2013, 

190-194). 

 

The data used here are taken from the 2011 Australian census, using the bespoke 

TableBuilder facility based on 100 per cent of the population.1 For ten of the country’s main 

migrant groups, we created a 5 (occupation) x 3 (generation) x 3 (age group) contingency 

table for all those (males and females aged 20-69) in the labour force. The five occupational 

groups identified were: managerial and professional; routine white collar (personal service, 

clerical and sales); skilled blue collar; semi- and un-skilled blue collar; and unemployed. The 

three generations were: first – born outside Australia; second – born in Australia to first 

generation immigrants; and third – born in Australia to second generation immigrants. The 

three age groups were: 20-29; 30-49; and 50-69. 

 

The ten birthplace/ancestry groups differ substantially in their generational and age structures 

(Table 1); for the remainder of the paper we refer simply to ancestry groups. Generations 

have been variously defined; we deploy definitions suggested by Sweetman and Ours (2014, 

3).  The first generation comprises the respondent and both parents all born overseas, using 

birthplace data; second generation respondents were born in Australia but with both parents 

born overseas; in the third-plus generation the respondent and both parents were born in 

Australia. Information on respondent’s ancestry was used to determine the ethnicity of the 

second (parents born overseas but where not stated) and third generations.  

   

Those with UK and Irish backgrounds are predominantly third generation and less than one-

fifth of them are aged 20-29; they are relatively older and well-established Australians (Table 

1). Those from Greece and Italy, on the other hand, are mainly second generation settlers and 

middle-aged; and those from China and India are predominantly first-generation settlers with 

many more of them than average young adults – as are those from Yugoslavia and Lebanon, 

especially the relatively small numbers of Muslims in each group. 

 

If the different generations and age groups have different occupational distributions – with 

members of the later generations more likely to be in the higher status, white-collar 

occupations, for example – this should be apparent in the occupational structures for the 

separate ancestry groups. But that does not appear to be the case as shown in Tables 2-3.  

 

Fully two-thirds of the 4.5million individuals were in the two white-collar occupations, with 

slightly more in the managerial and professional than the clerical and sales category, and just 

over one-quarter were in the blue collar categories (almost equally divided among them); 4.5 

per cent were unemployed. There were very few variations from this pattern by generation, 

the main one being the larger percentage unemployed in the first relative to the two 

subsequent generations (Table 2). There were slightly more substantial differences by age 

group (Table 3), notably in levels of unemployment (7.3 per cent for those aged 20-29 

compared to 3.4 per cent for those aged 50-69) and presence in the managerial-professional 

group (a 10 percentage points difference between the youngest and oldest groups). The young 

and the recent arrivals were more likely to be unemployed; the old and the longest-

                                                           
1 For details on the TableBuilder facility see http://www.abs.gov.au/websitedbs/ censushome.nsf/ home/ 
tablebuilder – accessed July 29 2014. 

http://www.abs.gov.au/websitedbs/
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established were more likely to be in the higher status occupations, but in general the 

differences were insubstantial. 

 

Table 4 shows the occupational distributions for the ten ancestry groups. Again, there were 

few substantial differences in those percentages. In only three cases – both groups from the 

Former Yugoslavia plus Lebanese Muslims – were less than 60 per cent of individuals in the 

two white-collar occupational groups. Yugoslavs and Lebanese were more likely to be either 

unemployed or in blue-collar occupations than settlers from the four European countries, 

however, and there were also higher unemployment rates among Chinese and Indian settlers. 

 

3. Statistical modelling of a large table of counts 

 

These initial cross-classifications provide substantial support for our null hypothesis that 

despite very considerable differences in their age and generational structures there were few 

substantial differences across the ten ancestry groups in their occupational status. Whatever 

their origin, immigrants were equally likely to obtain a white-collar job. To evaluate that 

tentative conclusion further, we have undertaken statistical modelling of the data – for which, 

given the small numbers in the later generations, the two Former Yugoslav and two Lebanese 

groups have been combined, giving eight ancestry groups in total. The purpose of the 

modelling is to assess whether there are statistically significant differences across the 

ancestry by age by generation groups 

 

The aim of this model-based exploratory approach to the analysis of a large table of counts is 

to discover the underlying patterns without being misled by unreliable rates based on small 

absolute counts. We have borrowed the approach from the field of disease mapping which is 

similarly concerned with finding pattern after first stabilizing incidence rates  (Clayton and 

Kaldor (1987), although we use a full Bayesian (FB) analysis and not empirical Bayes (EB) 

(Owen and Jones, 2014). Our approach also has similarities to the method proposed for 

handling ‘massively categorical data’ (Steenburgh et al 2003). Importantly, we cast the 

method as multilevel or hierarchical random-coefficient models so that it can readily be 

implemented in general purpose software. 

 

We first consider the need for modelling, and the standard approach of the log-linear model 

following Breslow and Day (1975).  This we characterise as a fixed effects approach, and we 

then outline an alternative random-effects alternative and consider its advantages (Bell and 

Jones, 2014). The estimates generated by this approach are precision weighted so that rates 

based on small underlying counts are down-weighted during the modelling. Having secured 

more reliable rates we can then proceed to a graphical and tabular exploration of the 

differences.  

 

3.1 Why model? 

 

The dependent variable is the occupational class achievement ratio for each of the 360 cells 

or combinations based on 8 ancestry groups (the Christian and Muslim groups have been 

combined for Lebanon and the Former Yugoslavia) by 5 occupations by 3 generations by 3 

age groups. The ratio is based on two numbers, the numerator being the observed count in 

each cell, and the denominator the expected number if the all-group rate applies. Thus 24,110 

adults are unemployed, have UK ancestry, are aged 50-69 and belong to the third generation. 

If there are no differential occupational class effects we would expect 35,639 people to be in 

this category; this number equates to the proportion in that age group and generation who are 
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unemployed across all eight ancestry groups. This gives a ratio of 24,110/ 35,639=0.67; as it 

is below 1.0 this group enjoys a low relative risk of being unemployed. In contrast the ratio 

for first generation Indians aged 20-29 is 2.02, so that there is a doubling of the relative risk 

of unemployment in that group compared to the situation across all eight.  

 

An important feature of these data is the considerable range in the observed and expected 

values that form the ratio – from 1 to over 375,000. Rates derived from the smaller numbers 

will be quite unreliable as a small change in absolute value could result in a large change in 

relative risk (Jones and Kirby, 1980). Consequently, it is important that an explicit modelling 

framework is developed in which the underlying stochastic variation due to small absolute 

counts is taken into account.  

 

It is worth stressing that there is a need for modelling and inference even when we have a 

complete census of the Australian working population. This is contrary to the recent 

argument of Gorard (2013, 54), who contends that such an approach is not needed because 

‘there is no sampling variation’. But   the observed count should be considered to be the 

outcome of a stochastic process which could produce different results under the same 

circumstances. It is this underlying process that is of interest and the actual observed values 

give only an imprecise estimate of this. The aim of the analysis therefore is not the 

descriptive statistic – the observed relative rate – but rather the parameter of the underlying 

rate in relation to the underlying uncertainty. That is we are interested in the weight of the 

evidence supporting a certain size of effect. In some cases even with a census there is so 

much natural variation around if we have a fine-grained table that we have to be careful about 

our judgments. The problem will only increase when further dimensions (for example 

Australian states) define the table. Consequently, and contra Gorard, it is important that an 

explicit modelling framework is developed to estimate confidence intervals in which the 

underlying stochastic variation due to small absolute counts is taken into account. 

  

3.2 Specifying the fixed effects Poisson model for relative risk 

 

We now outline a series of steps for how such a model can be specified and estimated. The 

first aspect that has to be dealt with is the chance element. If the process behind the 

distribution of counts in the cells of the table is entirely random, and the number of random 

events per cell has a constant mean rate of occurrence (), and each event is independent, a 

Poisson distribution will result.  A fundamental property of the Poisson distribution is that its 

mean is exactly equal to its variance, which is formulated as a Poisson regression model: 

 

𝑂𝑖 ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜋𝑖) 

𝑂𝑖~ 𝜋𝑖 + 𝑒𝑖 

                                                                              𝜋 =  𝑒𝛽0 

  𝐿𝑜𝑔𝑒(𝜋𝑖) =  𝛽0 

𝑉𝑎𝑟(𝑂𝑖|𝜋𝑖) =  𝜋𝑖 
 

where 𝑂𝑖, the observed number of counts for cells of the table indexed by subscript i, is 

distributed as a Poisson distribution with an underlying mean rate of occurrence of , plus a 

stochastic random term 𝑒𝑖. The mean rate is non-linearly related to any predictors as an 

exponential relationship that is transformed to a linear model by taking the natural logarithm 

(the log link).  The variance of the observed values conditional on the underlying rate is equal 

to the underlying rate. The only parameter that needs to be estimated in this model is 

therefore 𝛽0, the natural log of the rate of occurrence. 
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The second aspect is that we want to model the counts given the different numbers at risk of 

being in each occupational category. In a descriptive analysis, we would calculate the relative 

risk simply as the observed number divided by the expected, or the ratio of two counts:     

𝑅𝑅𝑖  =  𝑂𝑖/ 𝐸𝑖 
 

This can be achieved in the Poisson model by using an offset (McCullagh and Nelder, 1989).  

The relative risk is cast as a non-linear regression model: 

 

E(𝑅𝑅𝑖)  =  E(𝑂𝑖/𝐸𝑖) =  𝑒𝛽0 

 

where the Expectation operator shows that we are averaging across all cells.  Transforming 

this to a linear model, the division becomes a subtraction: 

 

𝐿𝑜𝑔𝑒(𝑂𝑖) – 𝐿𝑜𝑔𝑒(𝐸𝑖) =  𝛽0 
 

We can move 𝐿𝑜𝑔𝑒(𝐸𝑖) to the right-hand side of the model and treat it like a predictor 

variable, but instead of estimating an associated regression-like coefficient, it is constrained 

to be 1:  

𝐿𝑜𝑔𝑒(𝑂𝑖) =  𝐿𝑜𝑔𝑒(𝐸𝑖) +  𝛽0    
 

This use of an offset treats the expected value effectively as a nuisance and allows us to 

model the underlying relative risk with the response simply being the log of the observed 

count. Using the log ensures that we cannot estimate a negative relative risk. 

 

The third step in the modelling involves estimating the relative risk for different groups. We 

could do this by putting fixed-effects terms in to the model which are regression-like 

coefficients that are not constrained to the value 1 but are estimated from the data. Thus, to 

take a simple example, we could estimate the model for different age groups: 

 

𝑂𝑖 ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜋𝑖) 

𝑂𝑖~ 𝜋𝑖 + 𝑒𝑖 

       𝜋𝑖 =  𝑒(𝛽0𝑥0𝑖+ 𝛽1𝑥1𝑖 +  𝛽2𝑥2𝑖) 

𝐿𝑜𝑔𝑒(𝜋𝑖) =  𝐿𝑜𝑔𝑒(𝐸𝑖) + 𝛽0𝑥0𝑖 +  𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 

𝑉𝑎𝑟(𝑂𝑖|𝜋𝑖) =  𝜋𝑖 
 

In this model the three age groups are represented by a constant (𝑥0𝑖) which is just a set of 1s 

to represent the base category which we can arbitrarily select as the 20-29 age group,  and 

two dummies (𝑥1𝑖 and 𝑥1𝑖) where a 1 represents the 30-49 and 50-69 age group respectively. 

The 𝛽0 term, once exponentiated, gives the relative risk for the youngest category while 

exponentiating 𝛽0 +  𝛽1 gives the relative risk for the 30-49 group and 𝛽0 +  𝛽2 gives the 

relative risk for the oldest age group. Importantly the standard errors as well as the 

coefficients can be estimated in this generalized linear model taking account of the Poisson 

nature of the underlying counts (McCullagh and Nelder, 1989). 

 

This specification can be readily extended to include further dummies and their interactions 

so that in the most complex or saturated model there are 360 fixed coefficients. This is 

however, somewhat unwieldy and an innovation of this paper is to use random not fixed 

effects to model the differences (Bell and Jones, 2014). We first examine the specification of 



7 
 

this multilevel model (Goldstein, 2011) and then outline its differences and advantages 

compared to the standard specification. 

 

Specifying the random- effects Poisson model for relative risk 

 

The model to be used is equivalent to a two-level Poisson model in its log-Normal form:  

 

𝑂𝑖𝑗 ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜋𝑖𝑗) 

𝑂𝑖𝑗~ 𝜋𝑖𝑗 + 𝑒𝑖𝑗 

   𝜋𝑖𝑗 =  𝑒(𝛽0+ 𝑢𝑗 ) 

𝐿𝑜𝑔𝑒(𝜋𝑖𝑗) =  𝐿𝑜𝑔𝑒(𝐸𝑖𝑗) + 𝛽0 +  𝑢𝑗  

   𝑢𝑗  ~ 𝑁(0, 𝜎𝑢
2)   

𝑉𝑎𝑟(𝑂𝑖𝑗|𝜋𝑖𝑗) =  𝜋𝑖𝑗 

 

where individuals i are conceived as being in cells j which represent types of people 

(Subramanian et al., 2001). The key changes are in the line of the log link where the 𝐿𝑜𝑔𝑒 of 

the underlying rate (not the observed counts) is related to the offset, an overall intercept term 

𝛽0, and the 𝑢𝑗  are the allowed-to-vary differential for each type of person. If this differential 

is positive, the cell has a higher risk than that expected; if negative, it is below that expected. 

Assuming that these differentials – the random effects - come from a Normal distribution2 

they can be completely summarized by their variance,𝜎𝑢
2, which measures the overall 

differences between cells having taking account of Poisson variation. We anticipate that, 

because the sum of the expected number of individuals in any occupational class is equal to 

the sum of the observed values, the 𝛽0 term will be zero which when exponentiated becomes 

1. The all-group underlying rate has therefore been standardized to 1. The 𝑢𝑗  differentials are 

on the 𝐿𝑜𝑔𝑒 scale; the exponent of these values gives us the relative risk.  

 

Unfortunately, we do not have individual data, due to confidentiality constraints, but only 

aggregate counts for cells. However, we can use the device of a ‘pseudo-level’ where cells 

are both the i’s and j’s in the model. Consequently, there is exactly the same set of units at 

level 1 and level 2, and each level 2 unit has exactly one level 1 unit. This may appear rather 

strange, but simply views the aggregate counts at level 2 as consisting of replicated responses 

for individuals at level 1. Indeed, as we know nothing else about these individuals except the 

values for the four defining variables we could reproduce the underlying individual data. We 

could create the individual data from the aggregate and vice versa and no information 

whatsoever is lost in going from one scale to the other. This device allows for extra Poisson 

variation in the same manner as Browne et al (2005) and Leckie et al (2012) achieved for 

over-dispersed Binomial multilevel models. In essence there are two sources of variation that 

need to be separated – variation due to true between cell variation and that due to natural 

Poisson variability. Equivalently the lower level of the model is used to model the natural 

                                                           
2 The Normality assumption of the cell differentials is obviously a key assumption for the validity of the 
variance in summarising the differences in the relative risk. This can be informally assessed with a Normal 
probability plot. In practice we have found that this assumption is generally met; no doubt due to using the log 
transform. Moreover, McCulloch and Neuhaus (2011) have found model results are generally robust to the 
shape of the random-effects distribution. An exception to this would be marked outliers for particular cells 
which could be accommodated by specifying separate fixed effects for these cells which would make them 
immune to shrinkage.  



8 
 

variation of a Poisson variable while the higher level is used to model the extra Poisson 

variation of the true rate. 

  

3.3 Comparing fixed and random effects 

To appreciate conceptually the properties of the precision-weighted multilevel estimates it is 

useful to compare the fixed- effects model with their random-effects equivalent. The 

estimates from the saturated fixed- effects model are given by   

𝐿𝑜𝑔𝑒(𝜋𝑖) =  𝐿𝑜𝑔𝑒(𝐸𝑖) + 𝛽1
∗𝐷1𝑖 +  𝛽2

∗𝐷2𝑖 + ⋯ 𝛽360
∗ 𝐷360𝑖   

where there are 360 dummy variables, one for each cell. The 𝛽𝐽
∗ is the log relative rate for 

each cell which when exponentiated will be exactly equivalent to the simple ratio ( 
𝑂

𝐸
), the 

observed to expected rate for each and every cell.  The equivalent random effects model is  

𝐿𝑜𝑔𝑒(𝜋𝑖𝑗) =  𝐿𝑜𝑔𝑒(𝐸𝑖𝑗) + 𝛽0𝑗 

𝛽0𝑗 = 𝛽0 + 𝑢𝑗 

𝑢𝑗  ~ 𝑁(0, 𝜎𝑢
2) 

 

so that 𝛽0𝑗 is again the log relative rate but this time it is assumed to come from an overall 

distribution with a mean of 𝛽0 and a variance of 𝜎𝑢0
2 . 

 

The two sets of estimates can be related as follows: 

𝛽0𝑗 = 𝛽0 + 𝑢𝑗= 𝑤𝑗𝛽𝐽
∗ + (1 −  𝑤𝑗)𝛽0 

where the weight 𝑤𝑗is given by the reliability of a particular cell 

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑐𝑒𝑙𝑙 𝑗 = 𝑤𝑗  =  
𝜎𝑢0

2

 𝜎𝑢0
2 +  (𝜎𝑒0𝑗

2 )
 

The 𝜎𝑢0
2  is the between cell variance of the log differentials which gives the true differences 

between cells, while 𝜎𝑒0𝑗
2  gives the natural or stochastic variation of the rate for a particular 

cell based on a Poisson variable. The approximate3 standard error (Breslow and Day, 1987, 

equation 2.9) of the log rate of each cell is given by 

                                                           
3 For ease of exposition (and as per normal practice) the imprecision in the ratio is dependent only on the 
imprecision of the observed count. It is being assumed that the expected count is precise.  A more realistic 
formulation is given in Talbot et al (2011).  The specific nature of the weighting for this log-Normal model is 
considered by Papageorgiou and Ghosh (2012, equations 1 to 3); albeit in an empirical Bayes formulation.  
 



9 
 

𝑆𝐸 (𝐿𝑜𝑔 (
𝑂𝑗

𝐸𝐽
)) =

𝑆𝐸 (
𝑂𝑗

𝐸𝐽
)

( 
𝑂𝑗

𝐸𝐽
)

=  

√𝑂𝑗

𝐸𝑗

( 
𝑂𝑗

𝐸𝐽
)

=  
1

√𝑂𝑖

 

so that the stochastic variance of the log rate is: 

𝑉𝑎𝑟(𝐿𝑜𝑔 (
𝑂𝑗

𝐸𝐽
) ) =  

1

𝑂𝑗
 

Substituting this stochastic variance of the log rate into the formula for the weights gives  

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑐𝑒𝑙𝑙 𝑗 = 𝑤𝑗  =  
𝜎𝑢0

2

 𝜎𝑢0
2 +  (

1
𝑂𝑖

)
 

This equation which formulates a signal-to-noise ratio has strong intuitive appeal.4 The 

reliability is equal to the proportion of the variance in the observed log rates that we could 

explain if we knew the true rates. Weights are a function of the between cell variation across 

all cells (the variance5 is a summary of the differences between types of people) and the 

stochastic uncertainty of a particular cell which is dependent on the absolute size of the 

counts. Reliability will therefore be at a maximum when there are true sizeable differences 

between cells and when the count is large to give a precise estimate of the log rate in any 

particular cell. The reliability becomes higher as the proportion of stochastic variance in the 

observed log rates becomes lower and vice versa. 

We can now see what happens in the equation relating the random to the fixed effects. If 

there large differences between cells (𝜎𝑢0
2 ) and the observed count is large the weight will 

approach 1 and the equation becomes: 

𝛽0𝑗 = 𝑤𝑗𝛽𝐽
∗ + (1 −  𝑤𝑗)𝛽0 =  1 ∗ 𝛽𝐽

∗ + (1 −  1)𝛽0 =  𝛽𝐽
∗  

The random-effects estimate will be exactly the same as the fixed effects estimate and no 

shrinkage will take place. However, if there are small differences between cells and a cell has 

a small absolute count, the weight approaches 0, and equation becomes: 

𝛽0𝑗 = 𝑤𝑗𝛽𝐽
∗ + (1 − 𝑤𝑗)𝛽0 =  0 ∗ 𝛽𝐽

∗ + (1 −  0)𝛽0 =  𝛽0  

                                                           
4 The weight is a form of interclass correlation coefficient for each cell that measures the amount of true 
variability (the level 2 variance) in the underling rates relative to the total observed variability. In the 
measurement literature, the reliability 𝑤𝑗  is often symbolised by 𝜌𝑦𝑦 to convey the internal dependency of a 

measured y variable. 
 
5 The between cell variance at level 2 summarizes the differences between cells, but usefully it is not the 
variance of the shrunken differentials, but the variance of the raw differentials.  Consequently it is not the 
estimated between group variance of the sample, but the estimated between-group variance in the population 
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The specific cell estimate will be shrunk back towards the mean estimate of all cells which 

due to the standardization used here will be the value zero. Consequently, the exponeniated 

random-effects estimate will be shrunk back to the value 1 which represents no difference 

between the observed and expected value, the overall Australian rate. The weight represents 

the proportion of the information that is being obtained locally from each cell as compared to 

information derived nationally from all cells. 

Another way of looking at this is in terms of pooling of information (Jones and Spiegelhalter, 

2011, 155-156). When the between-cell variance is equal to zero, that is identical rates for all 

type of people, the weight is zero so that relative risk is set to the overall mean. This is known 

as complete pooling and every cell gets the same value. As the level 2 variance increases the 

weight approaches 1 and there is no pooling of information between cells and the estimate is 

set to the raw rate. Each cell is maximally different from all others and in effect the between-

cell variance is constrained to infinity in the fixed-effects approach. Between these two 

extremes, there is partial pooling where the degree of pooling is determined by data – it is the 

relative size of the between cell variance to the stochastic or measurement error variance that 

is driving the degree of shrinkage. Thus the random effects approach is a data-driven adaptive 

procedure which handles the uncertainty that is inherent in working with sparse data 

(Gelman, 2014). 

Cells with small counts are likely to appear to be extreme by chance and although the fixed 

effects are unbiased they are troubled due to imprecision.  The precision-weighted estimate is 

biased towards the overall mean but they are ‘optimal’ in having a smaller squared error 

between the estimate (�̂�0𝑗) and the true value (𝛽0𝑗) averaged across many cells; that is the 

mean square error will be smaller. The multilevel estimates will minimize the following 

function (Jones and Bullen, 1994):   

𝑀𝑆𝐸 =  ∑(�̂�0𝑗 − 𝛽0𝑗)2 = 𝑉𝑎𝑟(�̂�0𝑗) + 𝐵𝑖𝑎𝑠(�̂�0𝑗)
2
 

A small amount of bias is being traded for a large reduction in the measurement error 

variance, the shrunken estimates are useful because they are more precise.6 For cells with 

enough data, we are more concerned about bias and want to shrink less, while for cells with 

less data, we are more concerned about variance and want to shrink more. The adaptive 

procedure does it automatically providing we get a good estimate of the between cell 

variance.  

Another important advantage of the shrinkage approach is in relation to multiple 

comparisons. As demonstrated by Gelman et al (2012) it is much more efficient to shift 

estimates towards each other rather than try to inflate the confidence intervals in such 

procedures using a Bonferroni correction to control the overall error rate. Thus shrinkage 

automatically makes for more appropriately conservative comparisons while at the same time 

                                                           
6 For a more general discussion of these advantageous properties see the classic papers of James and Stein 
(1961), and Lindley and Smith, (1972). Their benefits are extolled in Kendal’s (1959) ’song’, and in the 
expository paper of Bradley and Morris, (1977) which studies baseball averages and disease distributions. 
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not reducing the power to detect true differences. The final advantage is dealing with zero 

counts. With raw rates if the numerator of a cell is zero, then the associated rate can only be 

zero. But a zero based on a denominator of 1 and a denominator of a 100 mean quite different 

things  – for the former it is uncertain whether the rate is really zero ; for the latter we can be 

quite confident. The random effects estimate shrink more towards the overall rate for the 

former than for the latter. 

Figure 1 shows the relationship between the raw log rate (or equivalently the estimate derived 

from the saturated fixed effects model including all 360 parameters) and the Bayes-estimated 

log rate. Most of the rates fall on the diagonal, indicating that the multi-level precision-

weighted estimates are the same as the raw rates. There are a number of cells however which 

experience substantial shrinkage to the overall mean of zero. These are characterised by being 

rather extreme in their raw form and having a weight below 0.9 so that more than ten per cent 

of their ‘information’ is borrowed (to use Tukey’s felicitous phrase) from the overall national 

rate. Such cells are characterised by low counts; indeed the median observed count for those 

cells with a weight below 0.9 is only 27. The appropriateness of the Normality assumption 

was evaluated by a Normal probability plot and there was no evidence of marked outliers or 

skewness in the allowed–to-vary log differentials. 

3.4 Model estimation for random effects: Empirical Bayesian (EB) and Full Bayesian 

(FB) procedures 

We have so far discussed the properties of the estimates but not how to estimate the models. 

An important distinction is between EB and FB. Detailed technical comparison of EB and FB 

for the Poisson model is given by Bernardinelli and Montomoli (1992); here we briefly 

convey the underlying concepts and consider the details and choices needed from practical 

application.  

Bayesian modelling is all about three distributions. The prior distribution is about subjective 

belief – what you think is the distribution of support for a parameter; the likelihood is the 

degree of support for different values of a parameter based on the data and assumptions; the 

posterior combines the prior and the likelihood and gives the evidential support for different 

values of a parameter. In the random-effects model, the allowed-to-vary differentials are 

assumed to come from a distribution with a mean and a variance. In the Bayesian formulation 

there is another layer whereby the mean and the variance are additionally assumed to come 

from a hyperprior distribution that in turn have hyperprior parameters. In EB these hyper 

parameters are estimated directly from the data but this is un-Bayesian as it assigns a point 

estimate and does not allow for inherent uncertainty; EB produces not the true posterior but 

its approximation. FB in contrast assigns hyperprior distributions to these hyper parameters 

so that in a full Bayesian model everything is a distribution. EB estimates the hyper 

parameters from the marginal distribution of the observations whereas FB takes account of 

the full multivariate distribution – so called full error propagation. The practical importance is 

that FB modelling allows the calculation of standard errors and confidence intervals without 

having to rely on asymptotic Normality assumptions that are unlikely to hold in applications 

with a relatively small number of cells. 
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Taking the model as specified above we can add in the specification of the hyper priors. 

𝑂𝑖𝑗 ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜋𝑖𝑗); 𝑂𝑖𝑗~ 𝜋𝑖𝑗 + 𝑒𝑖𝑗 

𝜋𝑖𝑗 =  𝑒(𝛽0+ 𝑢𝑗 ) 

𝐿𝑜𝑔𝑒(𝜋𝑖𝑗) =  𝐿𝑜𝑔𝑒(𝐸𝑖𝑗) + 𝛽0 +  𝑢𝑗  

𝑢𝑗  ~ 𝑁(0, 𝜎𝑢
2);   𝑉𝑎𝑟(𝑂𝑖𝑗|𝜋𝑖𝑗) =  𝜋𝑖𝑗 

𝑝(𝛽0) ∝ 1;          𝑝(
1

𝜎𝑢 
2

)~𝐺𝑎𝑚𝑚𝑎(0.001,0.001) 

 

The final line gives the hyperprior assumptions that we have used to derive the results of 

Figure 1 which are chosen so as to impose as little information as possible on the data. The 

probability prior for  𝛽0 (overall all cell mean) is a uniform distribution in which any value is 

equally likely; an alternative would be to put a tight prior around 0 (that is 1 on the raw scale) 

to constrain the overall rate to the standardization we have used (Bell and Jones, 2014). It 

makes little difference in this application as this estimate is based on all the data and is a 

weighted average of the cell estimates, weighted to emphasize the reliable estimates.. The 

prior for the inverse of the between-cell variation (
1

𝜎𝑢 
2 , known as the precision) is assumed to 

be a Gamma distribution in which the shape and scale parameters are small values close to 

zero. The Gamma distribution is a flexible one and can accommodate marked positive 

skewness which is appropriate for a variance parameter that cannot go negative.  It has been 

found that FB estimation for these models is quite robust to the specification of the 

hyperprior for Gamma (Bernardinelli et al 1995) and we found here that the replacement of 

the Gamma distribution by a uniform prior in a sensitivity analysis made very little 

difference. 

While both approaches have no closed form solutions, FB estimation has proved more 

challenging than EB.  There are now various procedures for estimated EB-based parameters 

that are likelihood based and iterative algorithms have been produced which converge to 

point estimates. In recent years complex iterative sampling schemes – so- called Markov 

Chain Monte Carlo procedures – have been developed to generate the full posterior 

distribution required for FB estimates. These MCMC approaches allow a building block 

approach to estimation whereby complex problems are decomposed into lots of small ones. 

MCMC procedures are a way of evaluating the full joint posterior distribution of all 

parameter estimates by simulating a new value for each parameter in turn from its marginal 

distribution assuming that the current values for the other parameters are the true values 

(Jones and Subramanian, 2014).  

 Leyland and Davies (2005) compare a number of these different procedures for estimating 

the basic model. They note that it has been argued that EB in using estimates of the hyper 

parameters does not take into account their uncertainty resulting in potential under-estimation 

of true rates and too much shrinkage towards the mean. Moreover, the Full Bayes also gives 

the distribution of support for each estimate for each cell allowing credible intervals to be 

calculated. However, their review of the comparisons that have been made suggests little real 

difference and we found in the present analysis that there is virtually no difference between 
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EB (enabled through penalized quasi likelihood with the IGLS algorithm) and Full Bayes 

enabled through MCMC (using a combination of Metropolitan Hastings sampling of the fixed 

and random effects and Gibbs sampling of the higher-level variance). Much depends on the 

number of cells and the degree to which the random effects approximates a Normal 

distribution and we recommend using both approaches to appreciate the sensitivity of results 

to assumptions. Modern high-speed computers mean that highly-computational intensive FB 

takes just a few minutes even when 100,000 cycles of simulations are used. From our 

experience of this and other datasets we would not however recommend the used of the EB 

procedure known as marginal quasi-likelihood for Poisson models as this results in (unlike 

the Binomial case, Rodriguez and Goldman 1995) considerable over-estimation of the 

between cell -variance  in comparison to both PQL and Full Bayes estimates. Although the 

MQL procedure is computationally quick and less prone to convergence problems it is too 

biased for routine use. 

The FB procedure has a number of important by products. It is possible to monitor the chain 

of estimates for each of the cell-based random effects so that it possible to calculate 

asymmetrically distributed credible intervals for these estimates – although it made negligible 

difference here. It is also possible to calculate functions of the cell differences to monitor 

differences for particular cells and to produce a rank of the differentials from the Australian 

average and have credible intervals of the ranks.  Another important by-product of the 

MCMC estimation is the Deviance Information Criterion (Spiegelhalter et al 2002)   which 

has become a popular tool for choosing between models in terms of their predictive 

capacity. The DIC is a badness of fit measure penalized for model complexity. It is the sum 

of the posterior mean deviance (minus twice the log likelihood) representing the degree of fit, 

plus the effective degrees of freedom (pD), reflecting model complexity. The latter, which is 

the main interest here, is well defined in classical models as the count of the number of 

parameters in the model. However in the FB model the shrinkage imposed by hyperprior 

distribution effectively restricts this value. Indeed for approximately Normal likelihoods it 

can be shown (Best et al, 2005) that pD is the ratio of the information in the likelihood to the 

total information in the posterior distribution (that is the likelihood plus the prior).7 When pD 

is close to the number of cells there is little shrinkage and the hyperprior does not greatly 

influence the results and there is little borrowing of strength. But large differences between 

estimated and nominal degree of freedom implies that the prior is providing a lot of 

information with considerable smoothing and structuring of the results. In the present 

analysis, the saturated fixed effects model has 360 parameters, one for each cell, while the pD 

is estimated to be 345. Consequently and as shown by Figure 1 there is very modest 

shrinkage with 96 percent (345/360) coming from the data and only 4% from the prior. 

However this small percentage is valuable in smoothing extreme rates of some stringly 

affected cells..     

                                                           
7 The estimate of pD is given by the difference between the average deviance and the deviance at 

the expected value of the unknown parameters. 
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All of the analysis was carried out with the MLwiN software which has a range of EB (quasi- 

likelihood) and FB (MCMC) procedures (Jones and Subramanian; 2014; Rasbash et al, 2009; 

Browne, 2012). We followed the good practice recommendations of Draper (2008) to ensure 

that the MCMC chain has been run sufficiently long to characterise the posterior distribution. 

Specifically we initially used quasi-likelihood PQL estimates to produce reasonable starting 

points for the simulation; discarded a burn-in of 500 simulations to potentially get away from 

the PQL estimates, and then run a further 100,000 monitoring simulations. We found it 

beneficial to use hierarchical centering to obtain less correlated chains (Browne, 2012) and 

the resultant monitoring estimates had the information equivalent of 82k and 64k independent 

draws for the overall mean and level-2 variance respectively; plenty of information to 

evaluate the distribution. The between cell variance on the log scale was 0.107 and the 95% 

credible intervals are 0.092 and 0.125. These values are simply defined as the mean and  

lowest and highest 2.5% of the simulations for the posterior distribution; their symmetry 

around the mean suggests that the Gamma posterior distribution in fact approximates a 

Normal distribution. 

4. The results 

 

The output from the modelling process is a shrunken estimate for each of the 360 cells and its 

associated 95% confidence intervals. They are used here in two ways. First, a tabular analysis 

establishes whether the modelled rates are significantly larger than or less than 1.0: in the 

former case, this requires that the confidence interval around the modelled rate has a lower 

limit greater than 1.0; in the latter case, that the modelled rate has an upper limit less than 1.0. 

The third use establishes whether there were significant differences between ancestry groups 

in their logged observed/expected ratios within each occupational, generational and age 

group.  

 

The approach taken in presenting and interpreting these results is illustrated in Table 5, which 

refers to those who were aged 20-29, in the first generation, and unemployed. For the first set 

of interpretations, seven of the eight modelled rates exceed 1.0 and have confidence intervals 

whose lower limits are also greater than 1.0; the only exception is for Ireland, which has a 

modelled rate of 0.987 but a confidence interval with its upper limit exceeding 1.0. Thus all 

of the ancestry groups except Ireland had a significantly higher proportion of their number of 

first-generation individuals aged 20-29 who were unemployed than was the case across all 

age groups and generations. Unemployment was concentrated among the young, first-

generation settlers. 

 

4.1 Differences by age and generation 

 

For each age group and generation, Table 6 gives the number of modelled rates significantly 

above and below 1.0, across the eight ancestry groups, by occupational group. Some very 

clear patterns emerge. In the professional occupational category, for example, in each 

generation the majority of those aged under 30 have modelled rates significantly below 1.0 

(the maximum possible number of values in each cell is 8): whatever their generation, fewer 

young people than expected are in the highest status occupational class. In the second and 

third generations, on the other hand, those aged over 30 are significantly more likely than 

expected to be in that occupational status group. At the other end of the status scale, those 
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aged 20-29 are significantly more likely than expected to be unemployed – and people in that 

age group are also more likely to be employed in skilled blue-collar or technical occupations. 

 

The rows at the foot of the table summarise the variations between the generations and age 

groups. For the former, in each generation there is a possible maximum of 24 modelled ratios 

that are significantly different from 1.0 and in only one case – for the third generation in 

clerical occupations – is that number smaller than one-half of the maximum; most of the 

modelled rates for each generation for each occupational class are significantly different from 

the expected according to the null model, therefore, indicating substantial generational 

differences in occupational structures. This is the case also for each of the age groups, 

although in two cases the number of significantly-different modelled rates is only just 12; 

occupational structures also differ significantly by age. 

 

Overall, those in the youngest age group are significantly concentrated in the clerical and 

technical/trade occupations and among the unemployed, and are significantly under-

represented in the professional/managerial class and in the semi- and unskilled occupations. 

The middle-aged and older settlers, on the other hand, are significantly under-represented 

among the unemployed and over-represented in the highest status occupations, and the same 

pattern applies across the generations – the first generation are most likely to be unemployed, 

the later two generations to be in the highest status occupations. Across the eight ancestry 

groups, the maximum possible number of modelled ratios significantly different from the 

expected is 45. All had 25 or more, with only two – India and the former Yugoslavia – having 

less than 30; none had more than 38. In general, therefore, in a clear majority of cases the 

occupational structure across all ancestry groups differed significantly by age and generation. 

 

4.2 Differences between ancestry groups 

 

But were there differences between the ancestry groups as well? For the second set of 

interpretations, the eight ancestry groups are arranged in Table 5 according to their modelled 

ratio (observed/expected number of unemployed). If an ancestry group has a significantly 

lower modelled rate than that immediately above it in the table, this is shown in bold: a 

significant difference occurs where the confidence intervals for the two groups do not 

overlap. Thus the Lebanese have a significantly lower, precision-weighted, modelled 

unemployment rate than the Chinese; the range between the confidence intervals for the latter 

– 3.691:4.005 – does not overlap that for the former – 2.718:3.347. Similarly, there is a 

significant difference in the modelled rates (3.010 and 2.066 respectively) for Lebanese and 

Indians, but none between the Italians, Greeks and Yugoslavs. Finally, the modelled rate of 

1.271 for UK immigrants is significantly lower than that for Yugoslavs, and that for 

immigrants of Irish descent significantly lower again than that for those from the UK. 

Overall, therefore, those from English-speaking backgrounds have significantly fewer of their 

first-generation, 20-29-year-olds unemployed than expected, whereas those from Asian 

origins (China, Lebanon and India) have significantly more: those from European 

backgrounds have neither significantly more nor significantly fewer unemployed than 

expected for that generation and age group. 

 

Table 7 illustrates the use of this procedure for the unemployment occupational group. For 

each generation and age group, it lists the eight ancestry groups according to their modelled 

rates, with those that are significantly different from the ancestry immediately above it 

identified in bold. One clear conclusion from this table is that significant differences between 

ancestry groups in their modelled unemployment rates occur in a minority of cases only: of 
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the 63 paired differences (i.e. seven in each of the table’s nine segments) only 18 are 

statistically significant. Nine of these apply to the first generation, seven to the second, and 

only two to the third; seven apply to those aged 20-29, eight to those aged 30-49, and three to 

those aged 50-69. In general, therefore, significant differences in unemployment rates 

between countries are much more likely to be found among the more recent and younger 

arrivals than among their older, longer-established contemporaries. 

 

Looking at the ordering of the ancestry groups in Table 7 indicates also that, in general, the 

significant differences are across the four waves of immigrant groups – UK/Ireland; 

Greece/Italy; China/India; and Lebanon/Yugoslavia. Thus among first- and second-

generation arrivals, in all three age groups, those from Lebanon, China and India have the 

highest modelled rates and those from the UK and Ireland the lowest. This clear sequence is 

absent from the third-generation orderings, however – where in any case there are virtually 

no significant differences. 

 

Similar analyses have been undertaken for each of the other four occupational groups, but the 

detailed tables are not reproduced here; they are summarised in Table 8 which shows the 

number of significant differences between modelled rates for each occupational category, 

generation and age group. A number of conclusions stand out. First, there are more 

significant differences in the lower status occupations and in unemployment levels than in the 

two white-collar categories; secondly, there are many more significant differences in the first 

than the other two generations (45 of the 69, compared to 16 and eight in the other two 

respectively); and thirdly, there are more significant differences in the two younger age 

groups (20 and 31 for 20-29 and 30-49 year-olds respectively) than for the older (18). As 

with the discussion of unemployment rates alone, therefore, this table shows that there are 

many more differences in the occupational composition of the various ancestry groups in 

their earlier generations of settlers, and the younger age groups within each of those, than 

among the older and longer-settled residents. Our null hypothesis of no difference is clearly 

confirmed for the latter, therefore, but not for the former. 

 

5. Conclusions 

 

This paper has introduced a method for analysing large contingency tables in which the cell 

sizes differ substantially. Based on a procedure developed for the analysis of disease patterns 

it derives precision-weighted estimates of the ratio of observed to expected values for each of 

the contingency table’s cells, and Bayesian-derived confidence intervals for each of those 

estimates (derived through the deployment of a random effects multi-level model). Once 

stabilized rates have been achieved graphical and tabular analysis can be deployed to 

examine the patterns.  

 

Use of this novel procedure has been illustrated using a large contingency table showing the 

occupational structure of eight of the largest ancestry groups in contemporary Australia, by 

age and generation. This has very largely sustained the null hypothesis that although there are 

significant differences between age groups, between generations, and between age groups 

within generations, taking those differences into account there are few significant variations 

(within each age, by generation, by occupation segment of the table) between the eight 

ancestry groups – and where there is, it is concentrated among the younger and recent 

settlers. To the extent that immigrants experience disadvantage in the operation of the 

Australian labour market, therefore, such disadvantage is not greater for some immigrant 

groups than others. 
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The modelling framework introduced here has a wide range of potential applications where 

researchers are evaluating differentials within large and complex tables. The modelling 

smooths the estimates towards overall rate when the local cell information is unreliable but 

preserves patterns with high statistical significance. Moreover there is no need to adjust the 

values for multiple comparisons and the procedure is readily implemented using existing 

software.  
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Table 1.  The generational and age structures of the ten ancestry groups in Australia – 

percentages of those in the workforce. 

 

 Generation Age Group 

 1st 2nd 3rd 20-29 30-49 50-69 

UK 16 8 76 19 46 35 

Ireland 8 4 88 20 45 35 

Greece 19 72 9 13 63 24 

Italy 18 57 25 19 52 29 

FYugoslavia Christian 51 47 2 18 56 26 

FYugoslavia Muslim 86 13 1 33 51 16 

China 86 11 3 37 43 20 

India 95 4 1 39 52 9 

Lebanon Christian 48 48 4 22 50 28 

Lebanon Muslim 52 47 1 38 51 11 

TOTAL 24 13 63 21 47 32 
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Table 2. Generational differences in occupational structures: all ancestry groups (percentages 

in brackets) 

 Generation 

Occupation 1st 2nd 3rd TOTAL 

Managerial/Professional 394,969 204,614 1,018,094 1,617,677 

 (37.3) (35.6) (35.6) (36.2) 

Clerical/Sales 303,662 196,421 913,677 1,413,760 

 (28.6) (34.3) (32.2) (31.7) 

Technicians/skilled trades 145,760 80,897 378,995 605,652 

 (13.7) (14.1) (13.4) (13.6) 

Semi- and Unskilled 154,300 67,697 404,777 626,774 

 (14.6) (11.8) (14.3) (14.0) 

Unemployed 61,463 23,852 117,138 202,453 

 (5.8) (4.2) (4.1) (4.5) 

TOTAL 1,060,154 573,481 2,832,681 4,466,316 
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Table 3. Age-group differences in occupational structures: all ancestry groups (percentages in 

brackets) 

 

 Age Group 

Occupation 20-29 30-49 50-69 TOTAL 

Managerial/Professional 252,333 823,687 541,657 1,617,677 

 (27.2) (39.0) (37.9) (36.2) 

Clerical/Sales 330,951 639,833 442,976 1,413,760 

 (35.8) (30.3) (31.0) (31.7) 

Technicians/skilled trades 153,823 285,283 166,546 605,652 

 (16.6) (13.5) (11.7) (13.6) 

Semi- and Unskilled 119,835 279,648 227,921 626,774 

 (13.0) (13.2) (16.0) (14.0) 

Unemployed 68,033 85,199 49,221 202,453 

 (7.3) (4.0) (3.4) (4.5) 

TOTAL 924,975 2,113,650 1,427,691 4,466,316 
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Table 4. Ancestry differences in occupational structures (percentages in brackets) 

 

                                                            Occupation  

Ancestry PM CS T/ST SU Un TOTAL 

UK 1,085,110 970,161 415,078 425,000 123,730 3,019,079 

 (35.9) (32.1) (13.7) (14.1) (4.1) 

Ireland 203,260 157,232 63,997 61,916 20,622 507,027 

 (40.1) (31.0) (12.6) (12.2) (4.1) 

Greece 40,817 36,119 14,472 14,059 4,608 110,075

 (37.1) (32.8) (13.1) (12.8) (4.2) 

Italy 91,571 92,970 43,910 35,697 9,051 272,199 

 (33.50 (34.0) (16.1) (13.1) (3.3) 

FYugoslavia Christian 24,520 27,329 15,226 20,157 3,322 90,554 

 (27.0) (30.2) (16.8) (22.2) (3.7) 

FYugoslavia Muslim 813 1,106 869 1,113 291 4,192 

 (19.4) (26.4) (20.7) (26.6) (6.9) 

China 88,444 64,790 25,745 29,160 21,625 229,764 

 (38.5) (28.7) (11.2) (12.7) (9.4) 

India 66,254 47,516 16,846 31,615 14,814 177,045 

 (37.4) (26.8) (9.5) (17.9) (8.4) 

Lebanon Christian 12,617 11,855 6,003 4,622 2,205 37,302 

 (33.8) (31.8) (16.1) (12.4) (5.9) 

Lebanon Muslim 4,271 4,682 3,506 3,435 2,185 18,079 

 (23.6) (25.6) (19.4) (19.0) (12.1)                  . 

TOTAL 1,617,677 1,413,760 605,662 626,774 202,453 4,466,316 

 (36.2) (31.7) (13.6) (14.0) (4.5)  

 

Key to occupations: PM – Professional and Managerial; CS – Clerical and Sales; T/ST – 

Technical/skilled trades; SU – Semi- and Unskilled; Un – Unemployed. 
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Table 5. The modelling framework – an example: first-generation immigrants, aged 20-29 

who were unemployed, by ancestry (a significant difference in the modelled rate between an 

ancestry group and that above it in the table is shown in bold) 

 

 O E MRate LoCI HiCI 

China 10,656 2,830 3.843 3.691 4.005 

Lebanon 399 132 3.010 2.718 3.347 

India 5,991 2,957 2.066 1.980 2.162 

Italy 142 70 1.981 1.679 2.321 

Greece 49 22 1.962 1.461 2.571 

Yugoslavia 532 307 1.750 1.595 1.925 

UK 2,171 1,741 1.271 1.200 1.353 

 Ireland 506 523 0.987 0.900 1.086 

 

O – Observed Number; E – Expected Number; MRate – Modelled Rate (O/E); LoCI – Lower 

Confidence Interval; HiCI – Higher Confidence Interval. 
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Table 6. The number of modelled rates that were either significantly greater than 1.0 (>1) or 

significantly smaller than 1.0 (<1), by generation (g), age group and occupation 

 

         

        Professional Clerical Technicians S/Unskilled Unemployed 

G Age >1 <1 >1 <1 >1 <1 >1 <1 >1 <1 

1 20-29 0 7 4 2 6 2 3 3 7 0 

 30-49 4 4 0 6 5 2 4 2 5 3 

 50-69 3 5 1 6 5 1 6 1 3 4 

2 20-29 2 6 8 0 6 2 0 8 7 1 

 30-49 5 0 4 2 4 3 0 6 2 5 

 50-69 5 0 5 0 0 7 1 2 0 5 

3 20-29 0 6 7 0 6 2 0 6 5 0 

 30-49 6 1 0 0 1 2 1 4 2 3 

 50-69 5 0 0 0 0 6 3 3 0 3 

Sum - Generations  

1  7 16 5 14 16 5 13 7 15 7 

2  12 6 17 2 10 12 1 16 9 11 

3  11 7 7 0 7 10 4 13 7 6 

Sum – Age Groups  

 20-29 2 19 19 2 18 6 3 17 19 1 

 30-49 15 5 4 8 10 7 5 8 9 11 

 50-69 13 5 6 6 5 14 10 6 3 11 
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Table 7. The ordering and statistically-significant differences between modelled 

unemployment rates by generation and age group (modelled rates significantly different from 

those for the ancestry group in the preceding row are shown in bold) 

 

Age group 20-29 

Generation 1st 2nd 3rd    

 China 3.84 Lebanon 2.24 China 1.68 

 Lebanon 3.01 India 2.15 UK 1.48 

 India 2.07 China 1.66 Ireland 1.43 

 Italy 1.98 UK 1.46 Greece 1.33 

 Greece 1.96 Ireland 1.33 India 1.28 

 Yugoslavia 1.75 Greece 1.31 Lebanon 1.24 

 UK 1.27 Italy 0.98 Italy 1.17 

 Ireland 0.99 Yugoslavia 0.83 Yugoslavia 0.89 

 

Age group 30-49 

Generation 1st 2nd 3rd    

 Lebanon 2.05 India 1.62 India 1.79 

 India 1.76 Lebanon 1.15 China 1.15 

 China 1.46 China 0.94 UK 0.86 

 Greece 1.26 UK 0.92 Greece 0.84 

 Yugoslavia 1.07 Ireland 0.89 Ireland 0.83 

 Italy 0.89 Greece 0.87 Lebanon 0.81 

 UK 0.76 Italy 0.62 Italy 0.77 

 Ireland 0.67 Yugoslavia 0.51 Yugoslavia 0.73 

 

Age group 50-69 

Generation 1st 2nd 3rd    

 India 1.75 India 1.51 India 1.32 

 Lebanon 1.59 Lebanon 0.91 China 0.91 

 China 1.51 China 0.85 Greece 0.85 

 Yugoslavia 0.95 Ireland 0.82 Ireland 0.78 

 Greece 0.88 UK 0.80 Lebanon 0.75 

 UK 0.86 Greece 0.76 Yugoslavia 0.70 

 Ireland 0.81 Italy 0.59 Italy 0.69 

 Italy 0.66 Yugoslavia 0.48 UK 0.69
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Table 8. A summary of the number of significant differences between modelled rates for 

ancestry groups within each generation and age group, by occupational class 

 

Generation 1st 2nd 3rd Σ 

Age group 1 2 3 1 2 3 1 2 3  

Managerial/Professional 0 4 4 1 1 0 0 1 1 12 

Clerical/Sales 2 3 2 0 1 0 0 0 0 8 

Technicians/skilled trades 4 4 3 1 0 0 1 0 0 13 

Semi- and Unskilled 2 4 4 2 4 0 0 1 2 19 

Unemployed 3 4 2 3 3 0 1 1 0 17 

TOTAL 11 19 15 7 9 0 2 3 3 69 

 

Key to age groups: 1 – 20-29; 2 – 30-49; 3 – 50-69. 
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Figure 1. Scatterplot of raw against full Bayesian shrunken log rates 
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