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Damping Reduction Factors for Crustal, Inslab, 
and Interface Earthquakes Characterizing Seismic 
Hazard in South-Western British Columbia, 
Canada 

Poulad Daneshvar,a) M.EERI, Najib Bouaanani,b) M.EERI, Katsuichiro Goda,c) 
M.EERI and Gail M. Atkinson,d) M.EERI 

High-damping displacement spectra and corresponding damping reduction 

factors (η) are important ingredients for seismic design and analysis of structures 

equipped with seismic protection systems, as well as for displacement-based 

design methodologies. In this paper, we investigate η factors for three types of 

earthquakes characterizing seismic hazard in south-western British Columbia, 

Canada: (i) shallow crustal, (ii) deep inslab, and (iii) interface subduction 

earthquakes. We use a large and comprehensive database including records from 

recent relevant earthquakes, such as the 2011 Tohoku event.  Our key 

observations are:  (i) there is negligible dependence of η on soil class; (ii) there is 

significant dependence of η on the frequency content and duration of ground 

motions that characterize the different record types and (iii) η is dependent on 

period, particularly for inslab events. Period-dependent equations are proposed to 

predict η for damping ratios between 5% and 30% corresponding to the three 

event types. 

INTRODUCTION 

Elastic displacement spectra associated with damping levels higher than the conventional 

5% critical damping are important in the seismic design and evaluation of structures 
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equipped with energy dissipating and seismic isolation systems. High-damping displacement 

spectra are also required for displacement-based design and evaluation techniques, such as 

the Direct Displacement-Based Design method (Priestley and Kowalsky 2000; Priestley et al. 

2007). Such displacement spectra can be determined using: (i) ground motion prediction 

equations (GMPEs) developed specifically for damping levels higher than 5%, or (ii) 

damping reduction factors, denoted hereafter by η, which are defined as the ratio between the 

5%-damped displacement spectrum Sd(T,5%) and displacement spectra Sd(T,ξ) for higher 

damping levels ξ at a period T 

     
%)5,(
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d

d
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A number of GMPEs predicting spectral amplitudes at various damping levels have been 

proposed for different regions, e.g. Chen and Yu (2008) for western North America (WNA), 

and Akkar and Bommer (2007) and Cauzzi and Faccioli (2008) for Europe. These are useful 

in conducting probabilistic seismic hazard analysis to assess seismic hazard values for higher 

damping ratios. On the other hand, most guidelines and building codes adopt the approach of 

damping reduction factors (e.g. UBC-97, Eurocode8 2004, CHBDC 2006, ATC 2010, 

AASHTO 2010, and ASCE7-10). An advantage of the latter approach is that these damping 

reduction factors can be applied directly to code-prescribed spectral amplitudes to evaluate 

damping effects.  

The main objectives of this work are: (i) to determine and characterize damping reduction 

factors corresponding to three event types contributing to seismic hazard in south-western 

British Columbia (BC), i.e. crustal, inslab, and interface events, and (ii) to propose model 

equations for the median of these damping reduction factors as a function of damping ratio, 

period, and soil class. The adopted procedure for developing such damping reduction factors 

for Vancouver is based on the evaluation of the damping reduction factors using various sets 

of ground motion records that are selected based on seismic deaggregation (i.e. dominant 

scenarios). The parameterization of the prediction models for η is guided by the current 

seismic provisions in Canada (NBCC 2010). This provides a practical means to extend the 

usability of the current seismic design requirements in place. Vancouver is selected to 

conduct probabilistic seismic hazard analysis (PSHA); site conditions corresponding to soft 

rock and soft soil sites, which characterize the Greater Vancouver region, are considered.  
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Various equations have been proposed in the literature to approximate damping reduction 

factors considering seismic hazard in different regions. Newmark and Hall (1973, 1982) used 

the horizontal and vertical components of 14 pre-1973 California ground motions to propose 

damping reduction factors corresponding to damping levels lower than 20%. Bommer et al. 

(2000) studied the damped displacement spectra of 183 ground motion components from 43 

shallow earthquakes recorded on rock, stiff and soft soil sites in Europe and the Middle East. 

They proposed an equation which was implemented in Eurocode 8 (2004). The Chinese 

guidelines for seismically isolated structures include a period-independent equation for 

damping reduction factors (Zhou et al. 2003). Lin and Chang (2004) studied 1037 

accelerograms recorded in the United States to propose period-dependent damping reduction 

factors for periods between 0.1 s and 6 s and damping ratios between 2% and 50%. Atkinson 

and Pierre (2004) extended the simulations performed to generate a dataset of synthetic 

records which was used in developing the GMPE of Atkinson and Boore (1995) for scenarios 

between M4.0 and M7.25 at hypocentral distances of 10 km to 500 km. The 1%, 2% 3%, 

5%, 7%, 10%, and 15%-damped response spectra were computed and finally a magnitude-

distance independent set of η factors was proposed for periods between 0.05 s and 2 s, 

magnitudes greater than 5, and distances shorter than 150 km. Cameron and Green (2007) 

proposed a set of damping modification factors for damping levels between 1% and 50% for 

magnitude-binned ground motion records from shallow crustal events. Ground motion 

duration was shown to be highly influential on damping reduction factors, whereas source-to-

site distance was found to have negligible effect for damping levels of 2% and above. They 

also showed that site conditions have minor influence on damping modification factors for 

shallow crustal events in active tectonic regions. AASHTO (2010) includes a simplified 

equation to obtain damping reduction factors for damping levels up to 50%, while suggesting 

caution regarding its use for damping ratios greater than 30%. Rezaeian et al. (2014) studied 

a database of 2250 records from shallow crustal ground motions and developed a magnitude- 

and distance-based model to predict damping modification factors for the average horizontal 

component of ground motion and damping levels of between 0.5% and 30%. They observed 

the period dependency of the damping modification factors and also reported a strong 

dependency of these factors on ground motion duration. The abovementioned factors and 

equations are all period-independent, except for those proposed by Atkinson and Pierre 

(2004), Lin and Chang (2004), Cameron and Green (2007) and Rezaeian et al. (2014). A 
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recent investigation of several period-dependent and period-independent damping reduction 

factors by Cardone et al. (2009) showed that period-dependent models provide the most 

accurate predictions of computed displacement spectra. Furthermore, Bradley (2014) 

reiterates the period- and duration-dependency of damping reduction factors while 

questioning the accuracy of a number of proposed equations, namely the one prescribed by 

Eurocode 8 (2004) where response amplification is characterized in terms of source- and site-

specific effects. It should be noted that some older equations are based on studies that may 

lack adequate record processing of the used accelerograms (i.e. such as filtering and zero-

padding) and therefore might not be suitable for long period ranges.  

An important consideration is that the majority of the previous studies have focused upon 

ground motions for shallow crustal earthquakes, whereas ground motions for subduction 

earthquakes (including deep inslab and mega-thrust interface events) have not been much 

investigated. The large magnitudes of mega-thrust subduction earthquakes, and the 

potentially-high stress drops for deep inslab earthquakes, are important factors that control 

the duration and frequency content of ground motions - which are relevant properties for 

damped structural responses. It is therefore expected that the differing characteristics of 

ground motions for different earthquake types that contribute to hazard have major influence 

on the damping reduction factors. This is a research gap in the current literature that warrants 

further investigations, and is the focus of this study. 

Southwestern BC is a seismically-active region with three distinct event types that 

contribute to seismic hazard: (i) shallow crustal, (ii) deep inslab, and (iii) interface Cascadia 

subduction earthquakes. Ground motions recorded in environments similar to these three 

tectonic settings have been shown to have distinctive characteristics in terms of frequency 

content and duration (Pina 2010; Jayaram et al. 2011; Tehrani et al. 2014). It is not known 

whether damping reduction factors corresponding to the three event types would be different, 

as there are no recent studies that address these effects. This is the novelty of this study. 

There are several highly-populated urban centers in BC, such as the Greater Vancouver 

region, where major infrastructure was constructed prior to the adoption of modern seismic 

provisions in the mid-1970s. The rehabilitation of this infrastructure using seismic isolation 

or added damping requires the availability of appropriate damping reduction factors. Such 

damping reduction factors are also required for displacement-based design of new 

infrastructure in the region. To the authors’ knowledge however, there is no published work 
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that investigated and compared damping reduction factors corresponding to crustal, inslab, 

and interface earthquakes characterizing seismic hazard in south-western BC or a similar 

tectonic setting.  

PRELIMINARY SELECTION OF GROUND MOTION RECORDS 

The records used in this study are selected from two sources: (i) the PEER-NGA database 

to represent worldwide shallow crustal events, and (ii) K-NET, KiK-net and SK-net 

databases to represent inslab and interface events. The record characteristics of the PEER-

NGA database can be found at http://peer.berkeley.edu/nga/index.html, while those of K-

NET, KiK-net and SK-net databases are available at www.k-net.bosai.go.jp, 

www.kik.bosai.go.jp and www.sknet.eri.u-tokyo.ac.jp, respectively. Further information 

about the Japanese databases can be found in Goda and Atkinson (2009) and Goda and 

Atkinson (2010).  

The following selection criteria were applied to form a preliminary combined dataset of 

K-NET, KiK-net and SK-net records enriched with earthquakes that occurred up to 2012: (1) 

maximum depth is 500 km; (2) minimum Japan Meteorological Agency (JMA) magnitude is 

3.0; (3) maximum hypocentral distance is 1500 km; (4) minimum horizontal peak ground 

acceleration (PGA, geometric mean) is 1.0 cm/s2; and (5) at least 10 records are available for 

each seismic event satisfying the preceding four conditions. This preliminary selection led to 

a combined set of 555,750 records from 6261 earthquakes. To emphasize important 

characteristics of damaging ground motions in terms of amplitudes, spectral content, and 

duration, we further refined the PEER-NGA and the combined K-NET/KiK-net/SK-net 

dataset by applying additional selection criteria: (i) only horizontal components recorded on 

ground surface are considered; (ii) magnitude-distance cut-off limits considered by Goda and 

Atkinson (2009) are applied with the minimum moment magnitude M equal to 6.0; (iii) 

average shear-wave velocity in the uppermost 30 m Vs30 between 180 m/s and 760 m/s 

representing soil classes C and D; and (iv) geometric means of the PGA and PGV of the two 

horizontal components greater than 100 cm/s2 and 10 cm/s, respectively. These refined 

selection criteria resulted in a total of 2302 earthquake horizontal accelerograms. The number 

of accelerograms for crustal earthquakes is 1098 (716 components are from the NGA 

database while 382 components are from the combined Japanese database); the number of 

accelerograms for inslab earthquakes is 622; and the number of accelerograms for interface 
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earthquakes is 582. The interface records are either from the M8.3 2003 Tokachi-oki or the 

M9.0 2011 Tohoku earthquakes to capture the record properties related to large magnitudes 

of the Cascadia subduction events.   

RECORD SELECTION BASED ON PROBABILISTIC SEISMIC HAZARD 
ANALYSIS 

The seismic hazard model developed by Atkinson and Goda (2011) for western Canada is 

adopted herein to conduct PSHA for Vancouver. This PSHA is based on simulated seismic 

activities spanning 5 million years, and an annual non-exceedance probability of 0.9996, i.e. 

a return period of 2500 years. It is carried out at different periods T* = 0.2 s, 0.5 s, 1.0 s, 2.0 

s, and 3.0 s to investigate the effect on high-damping spectral amplitudes. The deaggregation 

analysis is based on an “approximately equal criterion” as discussed by Hong and Goda 

(2006). Deaggregation results are shown in Table 1 in terms of mean moment magnitude M 

and mean rupture distance Rrup at each period T* for each event type and soil class, in 

accordance with standard deaggregation practice. The identified scenarios are not overly 

sensitive to the choice of mean versus mode. Each of the three sets contains the 

deaggregation results for soil classes C and D. It can be seen that for crustal and inslab event 

types, deaggregation results are affected by the choice of T* while they are almost insensitive 

to the changes in soil class. The deaggregation results for interface events are shown to be 

independent of both soil class and period T* ≤ 3 s. The results in Table 1 suggest that a final 

selection of ground motions taking account of appropriate scenarios for each earthquake type 

should be conducted. 

Table 1. Magnitude-distance criteria for the selected records based on deaggregation results 

  T* = 0.2 s T* = 0.5 s T* = 1.0 s T* = 2.0 s T* = 3.0 s 

Event Type Soil Class M  Rrup M  Rrup M  Rrup M  Rrup M  Rrup 

Crustal 
C 6.5 11 6.7 13 6.8 15 7.0 15 7.1 15 

D 6.5 14 6.7 14 6.8 18 7.0 15 7.1 17 

Inslab 
C 6.8 62 7.0 55 7.0 54 7.1 54 7.2 58 

D 6.9 61 7.0 56 7.0 52 7.1 51 7.2 53 

Interface 
C 8.6 141 8.6 141 8.6 142 8.6 142 8.6 141 

D 8.6 142 8.7 142 8.6 141 8.6 141 8.6 141 
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FINAL SELECTED RECORDS 

The final step in the scenario-based record selection is to identify a set of records 

representing each event type and the corresponding mean M and mean Rrup obtained from 

deaggregation. For this purpose, a M-Rrup trade off of 40 km, 60 km, and 60 km is adopted 

for crustal, inslab, and interface events, respectively. This suggests that, for example, a 

crustal record having a magnitude of one unit lower than the mean M obtained from 

deaggregation, will be selected provided that it has a Rrup of 40 km shorter than the mean Rrup 

obtained from deaggregation (Baker and Cornell 2006). For inslab and interface records, a 

slightly longer trade-off distance of 60 km than crustal records is considered to account for a 

wider distance range of these records. For the inslab and interface datasets considered, the M-

Rrup trade-off distance has a negligible effect on the selected records. 

The final selection consists of 60 horizontal accelerograms for each combination of event 

type and soil class. In other words, 360 horizontal components are used for evaluating the η 

factors for a given deaggregation period T*; the selected records for different T* values are 

not identical as the target magnitude-distance criteria for the record selection depend on T* 

(see Table 1). Figure 1 illustrates the magnitude-distance distribution of the selected records 

for soil classes C and D. Figure 2 shows the 5%-damped displacement spectra and the 

corresponding mean and standard deviation from the selected records based on T* = 0.2 s. 

DAMPING REDUCTION FACTORS 

To investigate the correlation between the η  factors and damping ratios in each bin and in 

the considered period range, we first compute the ratio between the obtained displacement 

amplitudes at damping levels ξ = 10%, 15%, 20%, 25%, and 30%, and those at ξ = 5% for 

each set of the selected records corresponding to each T*. Figures 3 and 4 show the computed 

median η factors for the considered damping levels, event types, and soil classes. The choice 

of median as a representative statistical metric for the central tendency is motivated by the 

fact that the η factors can be approximated by the log-normal distribution. The effect of 

damping ratio on η factors is clearly illustrated in these figures. As expected, smaller 

damping reduction factors are associated with higher damping levels. This is mainly due to 

the influence of damping ratio on the number of loading cycles, in a ground motion wave 
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packet, required to reach a steady state for displacement (Bradley 2014). In comparison to 

low damping levels, the steady state is reached after fewer cycles at higher damping levels, 

resulting in considerably smaller spectral displacements, hence the smaller η factors. Figures 

3 and 4 also show the dependency of computed η factors on the period T at which spectral 

displacements are determined.  

We note that for all the three event types the significant period dependency of η factors at 

very short periods, i.e. shorter than approximately 0.15 s to 0.2 s is attributed to the facts that 

all the spectra at different damping levels approach a displacement amplitude of 0 towards T 

= 0 and gradually diverge as the period lengthens and the difference between the spectral 

displacements at various damping levels increases. In what follows we characterize the 

period dependency of the η factors beyond periods of 0.15 s to 0.2 s. The period dependency 

of the η factors is particularly noticeable for inslab records over the whole studied period 

range 0 ≤ T ≤ 3 s.  

Slight dependency on period is observed for crustal events as η  increases moderately 

towards longer periods. The damping reduction factors of interface records show no 

significant period dependency, although minor influence of period can be observed at very 

short periods, i.e. T ≤ 0.5 s, and long periods, i.e. 2.5 s ≤ T ≤ 3 s. These local decreases in the 

η  factors are attributed to the existence of wave packets, in specific segments of ground 

motion records, having a narrow bandwidth of frequencies. This creates local spectral peaks 

in low damping spectra, i.e. ξ = 5%, resulting in relatively smaller η factors at higher 

damping levels for which the wider bandwidth of frequencies produces smoother spectra 

(Bradley 2014). Damping reduction factors for inslab events are more evidently period 

dependent in comparison to the other two event types.  

To obtain further insights about the event-type dependency of the η factors, the selected 

records are studied based on their frequency content and significant duration of ground 

motions. The significant duration is defined as the time interval of the Arias intensity 

between 5% and 95% (Trifunac and Brady 1975). The portion of each selected accelerogram 

corresponding to this duration measure is extracted. Rathje et al. (1998, 2004) suggested the 

mean period, Tm, as a robust measure of the frequency content of a ground motion, which can 

be computed using the following equation  
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where Ci represents the Fourier amplitude coefficients and fi the discrete fast Fourier 

transform (FFT) frequencies between 0.25 and 20 Hz with ∆f, the frequency intervals used in 

FFT computation, not greater than 0.05 Hz. The Tm values corresponding to each of the 

selected accelerograms are computed using Equation (2) and the results for the three event 

types are compared in Figure 5 for the two soil classes. Figure 5(a) shows that lower Tm 

values are associated with inslab events consistently, i.e. inslab events are of higher 

frequency content (attributed to high stress drop source parameters). This feature of inslab 

events is also mentioned by Chen et al. (2013). Considering a high-frequency record, a 

structure having a lower period of vibration undergoes more cycles in comparison to a 

structure having a longer period and thus the effect of damping is more significant for the 

former (Naeim and Kircher 2001). This explains the smaller damping reduction factors at 

shorter periods for inslab events, which have richer high frequency content.  

Figure 5(b) compares the duration of the selected records based on their event types. As 

expected, records from the selected interface events have considerably longer durations than 

those of the crustal and inslab events, due to the inclusion of very large events, i.e. M9 2011 

Tohoku event. Bommer and Mendis (2005) and Zhou et al. (2014) reported a decrease in 

damping reduction factors with an increase in duration of records. The obtained damping 

reduction factors for interface events are smaller than those from other events and thus are in 

accordance with the observations of Bommer and Mendis (2005) and Zhou et al. (2014). 

Based on a study of harmonic excitation of single-degree-of-freedom systems, Zhou et al. 

(2014) also reported that the maximum displacement reaches a plateau and does not increase 

further when the system is subjected to a higher number of cycles, resulting in almost 

constant damping reduction factors at each damping level. The near-constant damping 

reduction factors for interface events that we obtain are in accord with these previous studies, 

and point to the importance of duration effects on damping when considering the engineering 

implications of great subduction earthquakes.  

Figures 3 and 4 also compare the η factors from sets of records corresponding to each T* 

at which PSHA is conducted. It is seen that the damping reduction factors for inslab and 

interface records are not influenced by the selected T*. This is expected for interface events 
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as the deaggregation results shown in Table 1 suggest that the same set of records is selected 

irrespective of the selected T*. Moderate differences are observed for crustal events as a 

result of changes in T*. Such differences are more noticeable at periods T approximately 

between 1 s and 1.7 s, where η factors from sets of records corresponding to T* ≥ 1 s 

demonstrate a less T*-dependent behavior. Figure 5 also reveals a negligible effect of T* on 

the general trends in frequency content and duration of the selected records. The minor 

changes in the scenarios, i.e. mean M and mean Rrup, for crustal and inslab events (Table 1) 

lead to the majority of the selected records for each T* being similar, which explains the 

minor or even negligible effect of T* on the η factors and the trends in the frequency content 

and duration of the selected records.  

A comparison of the results in terms of soil class (i.e. Figures 3 and 4) reveals that the 

two soil classes, i.e. soil classes C and D, present broadly similar η factors. The negligible 

differences between the deaggregation results for soil classes C and D are the reason for such 

observations. The minor effect of site conditions on η factors from shallow crustal 

earthquakes has previously been reported in the literature (e.g. Lin and Chang 2004; 

Rezaeian et al. 2014).  

As previously mentioned and illustrated in Figures 3 and 4, the trends in the η factors are 

not significantly affected by the T* considered. Therefore, we combined all the already 

selected records for different T*s and computed the corresponding median η factors at each 

period T. The results are shown in Figures 3 and 4 alongside those previously discussed. It 

can be seen that, despite some differences between the η factors computed from the Median 

and those from the sets of records corresponding to individual T* for crustal events, the 

Median η factors can satisfactorily represent the η factors for each event. Figure 6 clearly 

illustrates that the Median η factors follow the previously observed trends in the η factors 

specific to each event. Figure 6 also reiterates the moderate effect of soil class on Median η 

factors for each event type and ξ considered. 

ASSESSMENT OF AVAILABLE FORMULATIONS OF DAMPING REDUCTION 
FACTORS 

Figures 3 and 4 also compare the computed damping reduction factors of the selected 

crustal, inslab, and interface records to predictions of available equations from Newmark and 
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Hall (1973, 1982) [NH1973, NH1982], Bommer et al. (2000) [BEW2000], Zhou et al. (2003) 

[ZWX2003],  Lin and Chang (2004) [LC2004], Atkinson and Pierre (2004) [AP2004], and 

AASHTO (2010). The results clearly show that the majority of the available equations are 

not capable of predicting the computed damping reduction factors satisfactorily. The 

discrepancies are more evident for the η factors from inslab events, for which significant 

period-dependency is observed. The damping reduction factors provided by Atkinson and 

Pierre (2004), although they do not cover the entire period range of study, capture such 

period dependency and thus have acceptable agreement with those computed using crustal 

and inslab records, while disagreement is observed for interface events. The η factors 

predicted by Zhou et al. (2003) agree well with computed damping reduction factors from 

interface records, however, these predictions become less accurate as higher damping levels 

are considered. It is important to note that the available predictions are based on record 

datasets that do not necessarily share the same record characteristics as the ones studied 

herein. Therefore, it is not surprising that these equations do not satisfactorily represent the 

observed trends of η factors for all three event types; indeed, the anticipated discrepancy was 

the motivation for this investigation. Moreover, the comparisons in Figures 3 and 4 highlight 

the need for a model equation that accounts for the distinct features of crustal, inslab, and 

interface earthquakes characterizing seismic hazard in south-western BC.  

PROPOSED DAMPING REDUCTION FACTORS 

In this work, we develop new period-dependent equations to characterize the median 

damping reduction factors for the events studied. One important criterion to be satisfied by 

the developed equation is that its functional form can be adapted to match the computed 

displacements spectra of the three event types, i.e. crustal, inslab, and interface, with the least 

misfits possible. After several trials, the following equation is proposed to approximate the η 

factors: 

 )exp())(]ln[1(1 642
531

aaa TaTaa +−+−= ξη             (3) 

The coefficients in Equation (3) are determined through nonlinear regression analyses 

using the least squares approach. Based on the observed trends for the η factors illustrated in 

Figures 3 and 4, one set of coefficients a1 to a6 for the entire period range of interest was first 

determined for the three event types. The results revealed that at least two sets of regression 
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coefficients corresponding to period intervals 0 s ≤ T < 1 s and 1 s < T ≤ 3 s, respectively, are 

required to obtain sufficiently accurate predictions for all event types. Using more sets of 

coefficients corresponding to intervals below 1 s enhances the predictions at the very short 

period range, but at the same time complicates the use of the equation. Therefore, a 

compromise is made by providing coefficients a1 to a6 for the two period ranges 0 s ≤ T < 1 s 

and 1 s < T ≤ 3 s in Tables 2 and 3 for crustal, inslab, and interface events corresponding to 

soil classes C and D, respectively. To provide a smoother transition between the two 

intervals, the η  factor at 1 s is calculated as the average of the outcomes of predicting 

expressions at periods immediately before and after 1 s. 

Table 2. Coefficients a1 to a6 for soil class C 
Event 
Type T* Period range a1 a2 a3 a4 a5 a6 

Crustal 

0.2 s 
0.05 s ≤ T < 1 s -0.3130 1.0543 1.0 -0.3679 -0.0051 -2.0 

1 s < T ≤ 3 s -0.4274 0.7743 1.0 -0.0282 -0.0112 2.0 

0.5 s 
0.05 s ≤ T < 1 s -0.3005 1.0924 1.0 -0.3843 -0.0051 -2.0 

1 s < T ≤ 3 s -0.3451 0.9703 1.0 -0.1756 -0.1151 -2.0 

1.0 s 
0.05 s ≤ T < 1 s -0.3005 1.0924 1.0 -0.3843 -0.0051 -0.25 

1 s < T ≤ 3 s -0.2860 1.1422 0.0 -0.3001 -0.1555 -0.5 

2.0 s 
0.05 s ≤ T < 1 s -0.2259 1.3561 1.0 -0.0542 -0.2860 0.0 

1 s < T ≤ 3 s -0.2983 1.1034 0.0 -0.2611 -0.1432 -0.5 

3.0 s 
0.05 s ≤ T < 1 s -0.2001 1.4696 1.0 -0.3712 -0.1329 -0.5 

1 s < T ≤ 3 s -0.3173 1.0473 0.0 -0.2530 -0.1338 -0.5 

Median 
0.05 s ≤ T < 1 s -0.2830 1.1469 1.0 -0.4443 -0.0057 -2.0 

1 s < T ≤ 3 s -0.3254 1.0243 0.0 -0.2016 -0.1691 -0.5 

Inslab 

0.2 s 
0.05 s ≤ T < 1 s -0.1668 1.6345 1.0 -0.7997 -0.0334 -1.0 

1 s < T ≤ 3 s -0.4102 0.8122 1.0 -0.0692 -0.0551 2.0 

0.5 s 
0.05 s ≤ T < 1 s -0.1713 1.6101 1.0 -0.8125 -0.0440 -0.75 

1 s < T ≤ 3 s -0.4261 0.7759 0.0 -0.0436 -0.0524 2.0 

1.0 s 
0.05 s ≤ T < 1 s -0.1930 1.4987 1.0 -0.8814 -0.0033 -2.0 

1 s < T ≤ 3 s -0.2965 1.1118 0.0 -0.6207 -0.3099 -2.0 

2.0 s 
0.05 s ≤ T < 1 s -0.1582 1.6838 1.0 -0.8783 -0.0337 -1.0 

1 s < T ≤ 3 s -0.3170 1.0496 0.0 -0.6126 -0.3211 -3.0 

3.0 s 
0.05 s ≤ T < 1 s -0.1582 1.6838 1.0 -0.8783 -0.0337 -1.0 

1 s < T ≤ 3 s -0.3170 1.0496 0.0 -0.6126 -0.3211 -3.0 

Median 
0.05 s ≤ T < 1 s -0.1711 1.6111 1.0 -0.7974 -0.0311 -1.0 

1 s < T ≤ 3 s -0.4119 0.8080 0.0 -0.1661 -0.0404 2.0 
Interface 0.2 s 0.05 s ≤ T < 1 s -0.1740 1.5927 1.0 -0.4994 -0.0558 -1.0 
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1 s < T ≤ 3 s -0.1837 1.5443 0.0 -0.2009 -0.3620 -1.0 

0.5 s 
0.05 s ≤ T < 1 s -0.1740 1.5927 1.0 -0.4994 -0.0558 -1.0 

1 s < T ≤ 3 s -0.1894 1.5162 1.0 -0.2296 -0.2111 -2.0 

1.0 s 
0.05 s ≤ T < 1 s -0.1612 1.6640 1.0 -0.5255 -0.0592 -1.0 

1 s < T ≤ 3 s -0.1880 1.5225 1.0 -0.2340 -0.2015 -2.0 

2.0 s 
0.05 s ≤ T < 1 s -0.1612 1.6640 1.0 -0.5255 -0.0592 -1.0 

1 s < T ≤ 3 s -0.1880 1.5225 1.0 -0.2340 -0.2015 -2.0 

3.0 s 
0.05 s ≤ T < 1 s -0.1740 1.5927 1.0 -0.4994 -0.0558 -1.0 

1 s < T ≤ 3 s -0.1894 1.5162 1.0 -0.2296 -0.2111 -2.0 

Median 
0.05 s ≤ T < 1 s -0.1695 1.6172 1.0 -0.5019 -0.0578 -1.0 

1 s < T ≤ 3 s -0.1882 1.5221 1.0 -0.2347 -0.2033 -2.0 
 

 

Table 3. Coefficients a1 to a6 for soil class D 

Event 
Type T* Period range a1 a2 a3 a4 a5 a6 

Crustal 

0.2 s 
0.05 s ≤ T < 1 s -0.2860 1.1355 1.0 -0.4608 -0.0184 -1.5 

1 s < T ≤ 3 s -0.3978 0.8381 0.5 0.5850 -0.3221 1.0 

0.5 s 
0.05 s ≤ T < 1 s -0.4368 0.7441 0.0 -0.0717 -0.0056 -2.0 

1 s < T ≤ 3 s -0.4324 0.7597 0.0 0.3082 -0.0572 2.0 

1.0 s 
0.05 s ≤ T < 1 s -0.2885 1.1276 0.0 0.1492 -0.3686 3.0 

1 s < T ≤ 3 s -0.2851 1.1477 0.0 0.3055 -0.2697 1.0 

2.0 s 
0.05 s ≤ T < 1 s -0.2305 1.3377 0.0 0.2708 -0.5437 3.0 

1 s < T ≤ 3 s -0.3185 1.0434 3.0 -0.0732 -0.0136 3.0 

3.0 s 
0.05 s ≤ T < 1 s -0.1935 1.4988 0.0 0.2830 -0.4626 2.0 

1 s < T ≤ 3 s -0.3087 1.0715 3.0 -0.0931 -0.0115 3.0 

Median 
0.05 s ≤ T < 1 s -0.3283 1.0076 1.0 -0.3143 -0.0058 -2.0 

1 s < T ≤ 3 s -0.3482 0.9619 3.0 -0.0775 -0.0082 3.0 

Inslab 

0.2 s 
0.05 s ≤ T < 1 s -0.2206 1.3747 0.0 0.1755 -0.3741 2.0 

1 s < T ≤ 3 s -0.3328 1.0053 0.0 -0.5173 -0.1317 -3.0 

0.5 s 
0.05 s ≤ T < 1 s -0.2206 1.3747 0.0 0.1755 -0.3741 2.0 

1 s < T ≤ 3 s -0.3328 1.0053 0.0 -0.5173 -0.1317 -3.0 

1.0 s 
0.05 s ≤ T < 1 s -0.1710 1.6111 1.0 -0.5301 -0.0560 -1.0 

1 s < T ≤ 3 s -0.3325 1.0063 0.0 -0.5041 -0.1159 -2.0 

2.0 s 
0.05 s ≤ T < 1 s -0.1882 1.5223 1.0 -0.5087 -0.0481 -1.0 

1 s < T ≤ 3 s -0.3714 0.9045 0.0 -0.4691 -0.0332 -2.0 

3.0 s 
0.05 s ≤ T < 1 s -0.1882 1.5223 1.0 -0.5087 -0.0481 -1.0 

1 s < T ≤ 3 s -0.3714 0.9045 0.0 -0.4691 -0.0332 -2.0 
Median 0.05 s ≤ T < 1 s -0.2243 1.3594 0.0 0.1680 -0.3747 2.0 
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1 s < T ≤ 3 s -0.3597 0.9339 0.0 -0.4691 -0.0763 -3.0 

Interface 

0.2 s 
0.05 s ≤ T < 1 s -0.2089 1.4240 1.0 -0.4591 -0.0095 -2.0 

1 s < T ≤ 3 s -0.1988 1.4716 1.0 -0.2868 -0.0886 -2.0 

0.5 s 
0.05 s ≤ T < 1 s -0.2089 1.4240 1.0 -0.4591 -0.0095 -2.0 

1 s < T ≤ 3 s -0.1988 1.4716 1.0 -0.2868 -0.0886 -2.0 

1.0 s 
0.05 s ≤ T < 1 s -0.2204 1.3749 1.0 -0.4369 -0.0093 -2.0 

1 s < T ≤ 3 s -0.2014 1.4600 1.0 -0.2950 -0.0893 -2.0 

2.0 s 
0.05 s ≤ T < 1 s -0.2204 1.3749 1.0 -0.4369 -0.0093 -2.0 

1 s < T ≤ 3 s -0.2014 1.4600 1.0 -0.2950 -0.0893 -2.0 

3.0 s 
0.05 s ≤ T < 1 s -0.2204 1.3749 1.0 -0.4369 -0.0093 -2.0 

1 s < T ≤ 3 s -0.2014 1.4600 1.0 -0.2950 -0.0893 -2.0 

Median 
0.05 s ≤ T < 1 s -0.2066 1.4343 1.0 -0.4756 -0.0097 -2.0 

1 s < T ≤ 3 s -0.2048 1.4446 1.0 -0.2906 -0.0824 -2.0 
 

Figures 7 and 8 compare the median η factors for 10%-, 20%-, and 30%-damped 

displacement spectra computed from sets of records corresponding to each T* for the three 

considered event types and the two soil classes with the predicted η factors obtained using 

proposed Equation (3). Figures 7 and 8 show that there is generally a good agreement 

between the model predictions and the computed η factors for all the three event types. The 

percentages of misfit are discussed later. Slight discrepancies are observed for crustal events 

particularly at very short periods as illustrated in Figures 7 and 8. Such misfits are neglected 

to allow better predictions at longer periods. 

The predictions of the proposed Equation (3) are then extended to the Median η factors 

and the results are compared to the computed ones in Figures 7 and 8. To predict the Median 

η factors, the corresponding coefficients a1 to a6 are provided in Tables 2 and 3. Figures 9 

and 10 illustrate the standard deviations in logarithmic scale (St. Dev.) corresponding to the 

median η factors for soil classes C and D, respectively. The dispersion of the η factors 

increases as the damping level increases. However, it does not exceed 0.3 units for both soil 

classes. For crustal records, the observed differences in the dispersion of η factors about the 

mean are due to the larger variations of the selected records at each T*. The selected inslab 

and interface records are quite similar for each T* and thus the corresponding dispersion 

about the mean does not vary significantly with T*.   
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For a more quantitative assessment of the performance of the model, the spectral 

displacements obtained using the proposed equation are compared to those given by the other 

available relationships described previously. The percentage of error corresponding to each 

expression of damping factor η in predicting computed spectral displacements Sd(T,ξ) for 

damping ξ at period T is determined as 

100
),(

),(%)5,((%)Error 
d

dd ×
−

=
ξ

ξη
TS

TSTS                                              (4) 

The comparisons of the errors associated with the models of this study to those from the 

available literature are presented in Figures 11 to 16. These results show that the proposed 

models produce the least errors for the majority of cases over the entire period range 

considered The errors associated with a few combinations of T* and ξ are relatively high 

which is due to the jagged shape of the corresponding median η factors as discussed earlier. 

Overall, it is concluded that the proposed equation can be effectively used to obtain damping 

reduction factors corresponding to crustal, inslab, and interface earthquakes characterizing 

seismic hazard in the city of Vancouver. 

SUMMARY AND CONCLUSIONS 

High-damping displacement spectra and corresponding damping reduction factors are 

important ingredients for the seismic design and analysis of structures equipped with energy 

dissipating and/or seismic isolation systems, as well as for displacement-based design 

methodologies. In this paper, damping reduction factors were evaluated for three main event 

types (i.e. crustal, inslab, and interface) contributing to the overall seismic hazard in south-

western BC. For this purpose, a large dataset of 2302 records from the PEER-NGA, K-NET, 

KiK-net, and SK-net databases was first compiled. For each event type and soil type (i.e. 

NBCC soil classes C and D), 60 horizontal components were selected from the preliminary 

dataset based on seismic deaggregation results for Vancouver, the largest urban center in BC. 

The median damping reduction factors of this final selection of records were then determined 

to investigate their characteristics.  

We found that the damping reduction factors of inslab records depend significantly on 

period, while such dependency was shown to be less pronounced for crustal records and 

negligible for interface records. We also observed that the damping reduction factors are 
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practically insensitive to the period at which PSHA is performed, although a slight influence 

of this parameter could be seen for crustal records. Minor differences were observed in the 

deaggregation results for soil classes C and D, hence approximately identical damping 

reduction factors were obtained for both cases. These observations were further investigated 

by studying the frequency content and significant duration of the selected records. The rich 

high frequency content of inslab records results in significant period dependency of the 

corresponding damping reduction factors due to the more significant influence of damping 

ratio at shorter periods for this event type. Furthermore, the considerably longer duration of 

interface records for very large events (i.e. the interval of Arias intensity between 5% and 

95%) results in nearly-constant damping reduction factors; this is an important consideration 

in seismic design for the great Cascadia subduction event. We also illustrated that the Median 

damping reduction factors computed from all the selected records, regardless of the period at 

which PSHA is conducted, can be an acceptable representative of the median damping 

reduction factors for each event type. A comparison between the computed damping 

reduction factors obtained in this study and those estimated from previous equations 

motivated the need of developing new model equations, capable of more accurately modeling 

damping reduction factors for all three types of events that contribute to the seismic hazard of 

south-western BC. The spectral displacements obtained using the proposed equation were 

validated against computed spectral displacements of the selected records. We showed that 

the proposed predictions provide a satisfactory evaluation of damping reduction factors 

corresponding to crustal, inslab, and interface earthquakes.  
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Figure 1. Magnitude-distance distribution of the selected records for soil classes C and D at 
different periods T*. 

Figure 2. Selected records and corresponding medians of 5%-damped spectral displacements 
and 16th and 84th percentiles at T* = 0.2 s: (a) and (d) Crustal events; (b) and (e) Inslab 
events, and (c) and (f) Interface events; (a) to (c) Soil class C and (d) to (f) Soil class D.  

Figure 3. Damping reduction factors computed from the displacement spectra of the studied 
(a) Crustal, (b) Inslab and (c) Interface records for soil class C and predictions of some 
available equations. 

Figure 4. Damping reduction factors computed from the displacement spectra of the studied 
(a) Crustal, (b) Inslab and (c) Interface records for soil class D and predictions of some 
available equations. 

Figure 5. (a) Mean period and (b) duration for the 5%-95% Arias intensity interval of the 
selected records from the three event types at T* = 0.2 s, 0.5 s, 1.0 s, 2.0 s and 3.0 s for soil 
classes C and D. 

Figure 6. Median damping reduction factors computed by integrating all the sets of records 
corresponding to each T* for soil classes C and D: (a) Crustal, (b) Inslab and (c) Interface 
events. 

Figure 7. Comparison between the computed median damping reduction factors for (a) 
Crustal, (b) Inslab and (c) Interface events and the corresponding predictions at damping 
levels of 10%, 20% and 30% corresponding to soil class C. 

Figure 8. Comparison between the computed median damping reduction factors for (a) 
Crustal, (b) Inslab and (c) Interface events and the corresponding predictions at damping 
levels of 10%, 20% and 30% corresponding to soil class D. 

Figure 9. Standard deviations in logarithmic scale corresponding to median damping 
reduction factors for (a) Crustal, (b) Inslab and (c) Interface events corresponding to soil 
class C. 

Figure 10. Standard deviations in logarithmic scale corresponding to median damping 
reduction factors for (a) Crustal, (b) Inslab and (c) Interface events corresponding to soil 
class D. 

Figure 11. Percentages of error associated with different damping modification factor 
prediction equations available in the literature and the proposed equation at (a) 10%, (b) 20% 
and (c) 30% damping for crustal events corresponding to soil class C.  

Figure 12. Percentages of error associated with different damping modification factor 
prediction equations available in the literature and the proposed equation at (a) 10%, (b) 20% 
and (c) 30% damping for crustal events corresponding to soil class D. 

Figure 13. Percentages of error associated with different damping modification factor 
prediction equations available in the literature and the proposed equation at (a) 10%, (b) 20% 
and (c) 30% damping for inslab events corresponding to soil class C. 
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Figure 14. Percentages of error associated with different damping modification factor 
prediction equations available in the literature and the proposed equation at (a) 10%, (b) 20% 
and (c) 30% damping for inslab events corresponding to soil class D. 

Figure 15. Percentages of error associated with different damping modification factor 
prediction equations available in the literature and the proposed equation at (a) 10%, (b) 20% 
and (c) 30% damping for interface events corresponding to soil class C. 

Figure 16. Percentages of error associated with different damping modification factor 
prediction equations available in the literature and the proposed equation at (a) 10%, (b) 20% 
and (c) 30% damping for interface events corresponding to soil class D. 
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