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Discriminating signal from noise in the
fossil record of early vertebrates reveals
cryptic evolutionary history

Robert S. Sansom1,2, Emma Randle1 and Philip C. J. Donoghue2

1Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
2School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK

The fossil record of early vertebrates has been influential in elucidating the

evolutionary assembly of the gnathostome bodyplan. Understanding of the

timing and tempo of vertebrate innovations remains, however, mired in a literal

reading of the fossil record. Early jawless vertebrates (ostracoderms) exhibit

restriction to shallow-water environments. The distribution of their stratigraphic

occurrences therefore reflects not only flux in diversity, but also secular variation

in facies representation of the rock record. Using stratigraphic, phylogenetic and

palaeoenvironmental data, we assessed the veracity of the fossil records of the

jawless relatives of jawed vertebrates (Osteostraci, Galeaspida, Thelodonti,

Heterostraci). Non-random models of fossil recovery potential using Palaeozoic

sea-level changes were used to calculate confidence intervals of clade origins.

These intervals extend the timescale for possible origins into the Upper

Ordovician; these estimates ameliorate the long ghost lineages inferred for

Osteostraci, Galeaspida and Heterostraci, given their known stratigraphic occur-

rences and stem–gnathostome phylogeny. Diversity changes through the

Silurian and Devonian were found to lie within the expected limits predicted

from estimates of fossil record quality indicating that it is geological, rather

than biological factors, that are responsible for shifts in diversity. Environmental

restriction also appears to belie ostracoderm extinction and demise rather than

competition with jawed vertebrates.

1. Introduction
The diversity and disparity of living vertebrates are dominated by the gnatho-

stomes ( jawed vertebrates), with jawless vertebrates comprising just two

conservative lineages, the hagfishes and lampreys. However, jawed vertebrates

only assumed dominance in the Devonian (419–359 Ma); for the preceding

100 million years (Myr), vertebrate communities were dominated by the ‘ostraco-

derms’, an entirely extinct grade of jawless fishes characterized by an extensive

armour-like dermal skeleton. The ostracoderms are arrayed phylogenetically in

a series of successive sister clades to the jawed vertebrates, evidencing the gradual

assembly of the gnathostome bodyplan [1,2]. Hence, there has been considerable

interest in what the fossil record reveals of this formative episode of vertebrate

evolutionary history.

To date, the evolutionary dynamics of events surrounding the emergence of

jawed vertebrates have been read literally from the stratigraphic record [3,4].

Examples include the hypotheses that the vertebrate skeleton evolved in response

to predation by eurypterids [5], and that ostracoderms were competitively dis-

placed by jawed vertebrates [6,7], both of which are based on coincident

patterns of raw diversity. Similarly, flux in ostracoderm diversity has been ration-

alized as shifts in the rate of diversification associated with changes in ecology and

competition for habitats [6–11]. However, it is now widely acknowledged that the

fossil record is biased by secular variation in the rock record, such that it has

become appropriate to assume a null model that stratigraphic variation in rock
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author and source are credited.

 on October 13, 2015http://rspb.royalsocietypublishing.org/Downloaded from 

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2014.2245&domain=pdf&date_stamp=2014-12-17
mailto:robert.sansom@manchester.ac.uk
mailto:phil.donoghue@bristol.ac.uk
http://dx.doi.org/10.1098/rspb.2014.2245
http://dx.doi.org/10.1098/rspb.2014.2245
http://rspb.royalsocietypublishing.org
http://rspb.royalsocietypublishing.org
http://rspb.royalsocietypublishing.org/


area explains sampled diversity [12,13]. There is already some

evidence to suspect that sampled diversity of ostracoderms is

biased by the nature of the rock record. For instance, plesio-

morphic and derived representatives of the clades have

coincident first stratigraphic records, betraying a cryptic pre-

history [3,4,9,14]. Any such pre-fossil history necessitates a

dramatic revision of contemporary scenarios that seek to

explain the evolutionary origin of gnathostomes, because ostra-

coderms have the most relevance to our understanding of the

gnathostome stem and the long ghost ranges subtended from

it. Furthermore, the component ostracoderm clades exhibit

strong facies associations and, consequently, shifts in diversity

appear to coincide with changes in facies and sea-level

[3,4,14–16]. By framing the analyses of biodiversity in the

light of palaeoenvironment and potential geological biases,

we aim to assess the veracity of the fossil record of this most

formative episode in vertebrate evolutionary history.

2. Material and methods
(a) Biodiversity
To test the hypothesis that ostracoderm diversity is explained by

secular bias in facies representation in the rock record, we deter-

mined the genus-level diversity of representative ostracoderm

clades and the number of fossiliferous formations in which

these ostracoderm groups are encountered. Data were collected

for the four main clades of ostracoderms—osteostracans, galaeas-

pids, thelodonts and heterostracans, each being major plesions

on the gnathostomes‘ stem-lineage [15,17–19]. Palaeobiology

database records are incomplete for these clades [20]. Instead, a

new dataset was compiled based on an exhaustive literature

search for the four clades (principally Sansom [21] and P. Janvier

(2004, unpublished data) for osteostracans, Zhu & Gai [22] for

galeaspids and Märss et al. [23] for thelodonts, and a new data syn-

thesis for heterostracans). As such, the new dataset includes all

published occurrences of ostracoderms from these clades and,

thus, the vast majority of ostracoderms (very few genera of

Anaspida exist, and they are restricted in stratigraphic distribution).

Genus-level phylogenies are available for Osteostraci [21], Galeas-

pida [22] and Thelodonti [24], which enable the inclusion of

ghost ranges. For the Osteostraci, the age and palaeoenvironment

of each osteostracan-bearing locality was reviewed (electronic sup-

plementary material, table S1). Monophyly of each of the four

ostracoderm clades is assumed here [20,25]. However, to control

for the possibility that they are paraphyletic grades, major sub-

clades of thelodonts and osteostracans are subjected to separate

analyses. Genus-level diversity for jawed vertebrates was obtained

from Sepkoski’s compendium [26]; this is limited in some regards

[20] and, as such, the jawed vertebrates’ diversity curve is used

for comparative purposes only.

(b) Geological biases
To determine whether flux in diversity can be accounted for by vari-

ation in the availability of appropriate rock sequences, we used in

proxy the number of fossiliferous horizons or formations from

each interval [27–29]. Horizons from close geographical locations

are not distinguished (electronic supplementary material, table

S1). Plotting the number of osteostracan-, galeaspid-, thelodont-

or heterostracan-bearing rock formations against the number of

genera from each interval reveals the relationship between fossil

availability and diversity per unit time. In some instances, it is

necessary to use first differences in order to eliminate the role of

autocorrelation in time-series data [30–32].

To determine the degree to which palaeontological sampling

reflects the true stratigraphic range of taxa, we calculated

confidence intervals on their first appearance. Assuming that

fossils are randomly distributed and have a constant recovery

potential, 95% and 99% confidence intervals, respectively, for

the timing of origination of a clade were calculated using

Marshall’s formula [33]:

a ¼ (1� C)�1=(H�1) � 1, (2:1)

where a is the fraction of the known stratigraphic range of the

clade, C is the confidence interval and H is the number of

known fossiliferous horizons for the clade.

This model assumes, however, that fossils are randomly dis-

tributed and have a constant recovery potential; this assumption

is not met in the fossil record of ostracoderms [3] nor the fossil

record more generally [34]. To assess the influence of abiotic fac-

tors on fossil recovery potential, sea-level and total rock-outcrop

area were plotted against the number of fossiliferous horizons

from each geological time interval for each clade. An emphasis

is placed on local rather than global patterns as it has already

been observed that biases can be highly regional [14] ([35,36]

for Devonian of Euramerica; [37] for Silurian of China; [38,39]

for Silurian of Euramerica; [40] for Ordovician of Laurentia and

Yangtze platform; [12] for total rock-outcrop area in Western

Europe). In instances where the recovery potential of a clade corre-

lates with an abiotic factor, the relationship between that abiotic

factor and the number of fossiliferous horizons can be used to cal-

culate more realistic confidence intervals using Marshall’s formula

for calculating confidence intervals when fossil recovery potential

is non-random [41]:

ðbþrc

b
f (h)dh ¼ a

ðb

a
f (h)dh, (2:2)

where b is the lowerbound of the stratigraphic range of a clade,

a the upperbound, rc the length of the confidence interval and

f (h)dh, the function of recovery potential with respect to time.

This formula uses the same rationale as that used for uniform

recovery, but uses an abiotic factor as a proxy for recovery poten-

tial. In this case, 95% and 99% confidence intervals of the

origination dates of clades are forecast using a model of recovery

potential based on the quantitative relationship identified between

number of fossil-bearing formations and an abiotic factor.

3. Results
(a) Biodiversity
The reconstructed diversity curves for ostracoderms (figure 1)

follow a similar pattern in each group; there was an early peak

in diversity in the Silurian followed by a drop in the Upper

Silurian and then larger maximum peak in at the Early

Devonian (Lochkovian) followed by gradual decline towards

the end of the Devonian. This matches the periods of ‘orig-

ination, survival, radiation and decline’ described for Chinese

vertebrates [7]. The principal deviations from this pattern are

the earlier initial origin of thelodonts in the Ordovician, the

slightly earlier rise in diversity of galeaspids in the Silurian of

China, a relative paucity of Silurian heterostracans and the

decline in diversity of thelodonts in the Early Devonian.

Another principal source of deviation from the general pattern

is the Middle–Late Devonian record of heterostracans. Unlike

the other ostracoderms clades, the rate of their Devonian

decline is slower. This is attributable, almost entirely, to the

diversification of the Psammosteidae. The Ludlow and Pridoli

record of South China is missing owing to uplift of the Cathay-

sian upland [37,43] and is treated, therefore, as a gap. Despite

the osteostracan and galeaspid clades occurring on two geo-

graphically disparate palaeocontinents, their diversity curves
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(including ghost ranges) follow a near-identical pattern during

the Devonian. Jawed vertebrates [26] show a very different pat-

tern from ostracoderms: low diversity in the Silurian and

gradual increase in the Devonian, achieving a maximum in

the Upper Devonian (Frasnian). More complete records for

jawed vertebrates might diverge from this particular curve

[20], but we anticipate that the general pattern (i.e. initial

Silurian radiation and increasing diversity in Devonian) is

robust to sampling.

(b) Geological biases
Osteostracans, galeaspids and thelodonts show a strong corre-

lation between genus diversity and number of fossil-bearing

horizons (figure 2a; Pearson’s correlation coefficients (r) of

0.86, 0.92 and 0.91, respectively, all p , 0.01). This is not the

case for heterostracans (r ¼ 0.50, p . 0.10); the Middle–Late

Devonian Psammosteidae have a very different relationship

between horizons and genera from the rest of the heterostracans

as well as that of other ostroacoderms. Non-psammosteid

heterostracans do exhibit a significant positive correlation

(r ¼ 0.90, p , 0.01). Using the identified relationships between

the number of fossiliferous horizons and the number of genera

for each group, only Telychian thelodonts have a residual value

greater than two standard deviations in magnitude (see data in

the electronic supplementary material). As such, the vast

majority of diversity changes in these groups are within the

range expected given the number of fossiliferous horizons, a

proxy for the extent of rock available for sampling per unit

time [29,30]. These patterns remained unchanged after detrend-

ing data for autocorrelation using first differences [30,31]. The

smaller sample size and the evident gap in their fossil record

made detrending the galeaspid data impractical.

Occurrence data indicate that the Osteostraci are restricted to

the shallowest near-shore marine/marginal marine and

freshwater environments only (electronic supplementary

material, figure S1 and table S1). Similar interpretations have

been made of Galeaspida [15,44]. Indeed, the initial appearance

of the osteostracan and galeaspid lineages is coincident in all

localities with a drop in sea level from deep marine to shallow

marine/marginal marine facies ([14]; electronic supplementary

material, figure S2). As such, it is anticipated that sea-level-

driven shifts in sedimentary facies dictate the stratigraphic

occurrence of ostracoderms. This relationship is confirmed

by the strong relationship identified between the secular vari-

ation of sea-level and the number of fossil-bearing horizons

(figure 2b) for osteostracans (r ¼ 20.80, p ¼ 0.01), galeaspids

(r ¼ 20.76, p ¼ 0.03), thelodonts (r ¼ 20.74, p ¼ 0.001) and

non-psammosteid heterostracans (r ¼ 20.74, p ¼ 0.02). The

recovery potential of ostracoderm fossils is therefore pro-

portional to the inverse of sea-level. The same significant

relationship is observed in detrended data for osteostracans

(r ¼ 20.76, p ¼ 0.02) and non-psammosteid heterostracans

(r¼ 20.68, p¼ 0.04), but not for thelodonts (r¼ 0.29, p¼ 0.28).

Comparable analyses for dinosaurs find significant relation-

ships between sea-level and diversity, but as a result of

autocorrelation only [31]. A more direct measure of the fossil

record, rock outcrop area, is found to be uncorrelated with

the number of horizons for osteostracans, thelodonts and het-

erostracans (figure 2c, r ¼ 0.47, 0.47, 0.40, respectively, all p .

0.10). Total rock-outcrop of Western Europe is an unsuitable

proxy for the influence of abiotic factors on fossil recovery

potential of galeaspids as this clade is restricted palaeogeogra-

phically to the regions that comprise modern SE Asia.

The strict origination dates using known stratigraphic

ranges are 433 million years ago (Ma) for osteostracans and het-

erostracans, 439 Ma for galeaspids and 458 Ma for thelodonts

(figure 3, Wenlock, Llandovery and Sandbian, respectively).

Using the total number of horizons (H), the known stratigraphic

range, and the formulae above, 95% and 99% confidence inter-

vals for the date of origination were calculated for each

ostracoderm group. Using models of constant recovery poten-

tial, 95% confidence intervals range from 2 to 8 Myr (figure 3

and electronic supplementary material, data). In order to take

into account non-constant models of recovery for ostracoderms,

the significant quantitative relationship between sea-level and

number of horizons for each group was used to reconstruct

fossil recovery potential curves from Middle Ordovician to

the Upper Devonian (figure 2d). These, together with the pro-

portion of the known ranges (a from formula 1), were used to

calculate 95% and 99% confidence intervals for the origination

date of each clade (figure 3; formula 2; electronic supplemen-

tary material, data). For the osteostracans, galeaspids and

non-psammosteid heterostracans, sea-level-based confidence

intervals indicate potential origins much earlier than models

of constant fossil recovery potential (20, 21 and 17 Myr before

first-known occurrence, respectively, at 99%, compared with

9, 12 and 4 Myr). Confidence intervals for the origin of thelo-

donts are the same whether using models of uniform

recovery or non-random eustasy models (both 2 Myr).

Splitting ostracoderm clades (plesions) into subclades (para-

plesions) serves only to increase confidence intervals. The two

major divisions of osteostracans (eucornuates and thyestiids)

[21] have fewer horizons than the total group (20 and 13, respect-

ively, compared with 36 total osteostracan) and, thus, have

higher 95% confidences intervals for origination (8 and 9 Myr

compared with 5 Myr for total group). Using the sea-level

recovery potential relationship for Osteostraci provides longer
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confidence intervals still (28 Myr for Thyestiida, compared with

20 Myr for Osteostraci). A similar pattern is seen for the two

major divisions of thelodonts (Furcacaudiformes and allies

versus Shieliiformes, Phlebolepidiformes and allies [23]),

where each has longer 95% confidence intervals than the com-

bined clade (6.5 and 3.5 Myr, for the respective paraplesions).

4. Discussion
(a) Originations
The first-known occurrences of the Osteostraci, Heterostraci

and Galeaspida (Wenlock, Wenlock and upper Llandovery,

respectively) are appreciably younger than those of closely

related clades (thelodonts, jawed vertebrates and arandaspids)

which all originate in the Ordovician [10,11,16,44]. Because

sister lineages are by definition, of equal age, the stratigraphic

ranges of these clades appear inconsistent with current under-

standing of their phylogenetic relationships (figure 3). The

occurrence of jawed vertebrates in the Ordovician necessitates

long ghost ranges for the Osteostraci and Galeaspida. This is

true whether they are interpreted as crown-gnathostomes

(e.g. acanthodian/chondrichthyan), or as stem–gnathostomes

[11,16,20]. In any case, confidence intervals on the age of origin

of these lineages indicate that the fossil records of ostracoderms

are a poor approximation of their antiquity. Using models of

constant recovery potential at 95% and 99% confidence, the

envelope of possible origination dates extends deep into

the earliest Silurian for Osteostraci and Heterostraci, and to

the Upper Ordovician for Galeaspida (figure 3 and electronic

supplementary material, data); the confidence interval on the

first occurrence of Thelodonti is much shorter and extends

their potential range only marginally (figure 3). Investigations

of the geological biases indicate that the fossil record of ostra-

coderms is tied strongly to sea-level change. Models of

recovery potential that reflect more realistic geological biases

(i.e. sea-level changes), extend the potential origins of Osteos-

traci and Galeaspida deeper into the Upper Ordovician

‘Talimaa’s gap’ [11,15], a facies-shift associated with the end-

Ordovician glaciation events. Non-preservation of these

clades during the Early Silurian likely reflects a global high-

stand at sea-level. Heterostraci (excluding Psammosteidae)

show the same pattern (see below). Conversely, the fossil

record of thelodonts is interpreted as less ecologically restricted

[15,22,45,46] and it is evidently less impacted by sea-level-

driven facies change (figure 2b). Confidence estimates on orig-

ination dates for Thelodonti, using either constant recovery

potential or models taking sea-level changes into account, are

(a) (b) (c) (d )
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only marginally older than known first occurrences (figure 3).

In all instances, the compiled nature of the sea-level curve is an

imprecise estimate, but the eustatic pattern of Llandovery high

stands and Late Silurian/Early Devonian low stands yield

similar confidence intervals. Similar facies biases might also

account for the relatively late stratigraphic appearance of placo-

derms (figure 3). Interpreting the record of ‘Placodermi’ is,

however, complicated by their likely paraphyly and more

varied ecology [34,47–49]; component placoderm plesions

will need to be evaluated individually in future studies. If

ostracoderm clades are treated as paraphyletic plesions, their

confidence intervals on origination dates are even longer;

analysis of osteostracan and thelodont subclades (above)

reduces the number of horizons, exacerbating perceptions of

fossil record incompleteness.

Our confidence intervals on the originations of Osteostraci

and Galeaspida are far more consistent with stem–gnathostome

phylogeny and, as such, stratigraphic ranges do not give

us reason to doubt reconstructions of stem–gnathostome

relationships. However, there is no known record of the early

stages in the evolutionary history of these groups, raising

serious concerns over received knowledge of the sequence of

character evolution in the gnathostome stem. While

palaeoenvironments appropriate for the fossilization of

Osteostraci and Galeaspida are not known and possibly not pre-

served for the periods that are critical to our understanding of

their early evolution (Upper Ordovician and lower Llandovery),

a micropalaeontological approach, combined with more dispa-

rate palaeobiogeographic sampling, might provide insights into

this otherwise cryptic interval of vertebrate evolutionary history

[10,15,50,51]. However, few reliable anatomical characters are

available to evidence the phylogenetic affinity of the Ordovician

microremains [24].

(b) Diversifications
The Early Devonian peaks in diversity appear to be coincident

with periods of maximum morphological disparity, faunal

turnover and environmental innovation, potentially betraying

a real biological signal of diversification. Different clades of

osteostracan, galeapid and heterostracan ‘radiate’ simul-

taneously into similar and disparate morphospaces (e.g.

extended cornual and rostral processes), perhaps indicating

similar ecological pressures upon the clades and diversification

into comparable niches. There also appears to be turnover

within ostracoderm clades between the Silurian and the Devo-

nian, with few genera common to both periods (i.e. non-

corunates and thyestiid osteostracans are replaced by Benne-

viaspida and Zenaspida, whereas early diverging galeaspids

and Eugaleaspidiformes are replaced by Polybranchiaspidida).

Furthermore, the Early Devonian peak in osteostracan biodi-

versity is correlated with an important palaeoenvironmental

change—the transition from marine to fresh water. At least

two marine-to-freshwater transitions occur within Osteostraci

in the early Devonian: one in eucornuates, another in

Kiaeraspidoidae and potentially Ilemoraspis (electronic sup-

plementary material, figure S1; [52]). However, it would be

unwise to consider the Early Devonian radiation as an episode

of rapid diversification in response to a key innovation (euryha-

linity, i.e. tolerance of a wide range of salinities) and increase of

available ecospace, because the same Early Devonian peak in

diversity occurs in the entirely marine Galeaspida. Without a

phylogenetic framework for Heterostraci, it is not appropriate

to evaluate turnover in the same way.

The Early Devonian ‘radiations’ are also matched with a

marked increase in the deposition of shallow-water sediments

across both Euramerica (Caledonian orogeny) and South

China (increasing shallow–continental shelf area). Furthermore,

there is an absence of ecologically appropriate strata preceding

the Upper Silurian in South China and Spitsbergen, which

may account for the Silurian ghost ranges of clades from

these particular regions. The apparently sudden ‘burst’ in

ostracoderm diversity at the beginning of the Devonian as well

as the subtle differences in origination dates of the Osteostraci

and Galeaspida may therefore be an artefact of local facies

changes rather than biological response ([8,9,34]; electronic sup-

plementary material, figure S2). The fauna of the Upper Silurian

is either depauperate or absent, but it clearly survived this inter-

val given its occurrence in the preceding Lower Silurian

and subsequent Early Devonian strata. Furthermore, models

of recovery potential estimate appreciably earlier originations

than current records suggest. As such, our analyses of strati-

graphic biases highlight missing records of ostracoderms and

undermine the interpretation of raw diversity shifts as biological

responses because suitable ostracoderm environments must

have existed, but they were not preserved. Whether biological

response to changing availability of ecospace [7] or geological
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Figure 3. Stratigraphic ranges of stem- and crown-gnathostome clades in the
Middle Palaeozoic. Thin black lines represent the phylogenetic branching, with
ghost ranges highlighted in orange. Confidence intervals (95% bars in lighter
shades, 99% bars in lightest shades) were calculated on the basis of random
distribution of fossil horizons (uniform recovery, left bar) or using the relation-
ship between sea-level curves (graph, right) and number of horizons to forecast
recovery potential ( figure 2d; right bar). Confidence intervals relating to sea
level account for long ghost ranges of Osteostraci and Galeaspida, and the
gap between Heterostraci and non-heterostracan pteraspidimorphs.
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bias caused by variable preservation [3,8,14,34], it is clear that the

Siluro-Devonian fossil record of ostracoderms is strongly tied to

facies changes.

(c) Extinctions
New data from the ostracoderms can be used to shed light on the

traditional hypothesis that jawless vertebrates were replaced by

jawed vertebrates in an episode of competitive replacement

towards the end of the Devonian. Ostracoderms and jawed

vertebrates fit many of the criteria necessary for competitive

replacement: the ostracoderm decline in diversity during

the Middle Devonian and eventual extinction in the Late Devo-

nian are contemporaneous with the taxonomic ascendency of

jawed vertebrates, thus matching the ‘double-wedge’ pattern

that would indicate competitive replacement (figure 1

[26,53,54]). Ostracoderms and jawed vertebrates have over-

lapping stratigraphic, geographic and body size ranges, but it

is less clear whether they occupy similar ecological ranges.

Where data are available, ostracoderms are interpreted

as deposit feeders or microphagous suspension feeders

[25,55–57], which differs clearly from the far more diverse and

predatory diets of placoderms and crown-gnathostomes

[15,22,58–61]. Furthermore, osteostracans, galeaspids and to a

lesser extent thelodonts and heterostracans are restricted to shal-

low water or continental palaeoenvironments (figure 2 and

electornic supplementary material, table S1), whereas jawed ver-

tebrates are less restricted, being found in deeper and more

varied habitats. Furthermore, the benthic mode of life of osteos-

tracans and galeaspids implied by trace fossils [62] and body

shape differs from early-jawed vertebrates that (with notable

exceptions) are interpreted as active swimmers invading the

pelagic realm [49]. One clade of ostracoderms that bucks these

trends is the psammosteid heterostracans; unlike all others,

they radiate in the Middle/Late Devonian and do not show an

inverse correlation with Laurentia sea-level changes. This

could reflect regional differences in facies change or ecological

differences (psammosteids possess dorsal mouths and ventral

keels, unlike other heterostraci or ostracoderms).

In sum, historic patterns of taxonomic diversity and over-

lapping geographic and stratigraphic ranges are consistent

with competitive replacement of jawless vertebrates by jawed

vertebrates. Substantial differences in the habitat and diet of

these two grades, however, overturn hypotheses of competitive

replacement and invite us to explore abiotic factors underlying

the demise of ostracoderms [53]. Principal among these is sea-

level change. The beginning of the decline of all major clades

of ostracoderms is coincident with rising sea-level; this pattern

continues for the rest of the Devonian and is within the limits

predicted from models based upon sea-level changes.

Thus, the emerging picture is of a loss of diversity of jawless

vertebrates, not in response to competition, but in response to a

reduction of suitable palaeoenvironments in the Middle and

Late Devonian. The limited palaeoenvironments and restricted

geodispersal capability [63] of the ostracoderms left them exposed

to the drastic geological changes during the Devonian and are

likely to have been the key factors in their demise and extinction.

Increased dispersal capacity [4,63] and broader ecologies of jawed

vertebrates meant that they were better placed to survive and

respond to these changing conditions. In order to test such

hypotheses, more detailed data are needed on the palaeobiogeo-

graphy, palaeoecology and phylogeny of individual clades of

jawed vertebrates, comparable to that of jawless vertebrates.

5. Conclusion
As the closest relatives of jawed vertebrates, the Osteostraci,

Galeaspida, Thelodonti and Heterostraci serve as the most suit-

able groups with which to investigate hypotheses regarding the

origins and demise of jawless vertebrates. Data presented here

enable elucidation of the patterns and processes regarding the

origin, diversification and extinction of the stem–gnathostomes.

The restrictive palaeoecology of the ostracoderms resulted in a

strong role of facies bias, which pervades our understanding

of all of these episodes. On the basis of sea-level changes,

phylogenetic inferences and confidence intervals adjusted for

non-random sea-level changes, the origins of the Osteostraci,

Galeaspida and, potentially Heterostraci, could have occurred

appreciably earlier than currently recorded in the fossil record,

in the Upper Ordovician. This makes the stratigraphic ranges of

these clades more comparable to those of related clades with

less restrictive palaeoecologies, which have been less affected by

facies bias (i.e. thelodonts and jawed vertebrates) as well as

being more consistent with current hypotheses of stem–gnathos-

tome phylogeny. It also highlights important gaps in our

knowledge of stem–gnathostomes at an important stage in the

evolution of vertebrates and the acquisition of gnathostome char-

acters. Apparent bursts in stem–gnathostome biodiversity at the

beginning of the Devonian also occur in response to increased

deposition of palaeoenvironments.

Regarding their demise, patterns of diversity of jawless

and jawed vertebrates through time may well be consistent

with the models of competitive replacement, but differences

in diet and habitat make such a process of clade replacement

untenable. Instead, data presented here support the idea that

the restrictive ecology and limited geodispersal ability of the

ostracoderms resulted in them being more adversely affected

by changing geological conditions in the Middle and Late

Devonian than their jawed relatives.
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