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Water molecules play a number of critical roles in enzyme catalysis, including mass 
transfer of substrates and products, nucleophilicity and proton transfer at the active site, 
and solvent shell-mediated dynamics for accessing catalytically competent 
conformations. The pervasiveness of water in enzymolysis therefore raises the question 
concerning whether biocatalysis can be undertaken in the absence of a protein hydration 
shell. Lipase-mediated catalysis has been undertaken with reagent-based solvents and 
lyophilized powders, but there are no examples of molecularly dispersed enzymes that 
catalyse reactions at sub-solvation levels, within solvent-free melts. Here we describe 
the synthesis, properties and enzyme activity of self-contained reactive biofluids based 
on solvent-free melts of lipase-polymer surfactant nano-conjugates. Desiccated 
substrates in liquid (p-nitrophenyl butyrate) or solid (p-nitrophenyl palmitate) form can 
be mixed or solubilized, respectively, into the enzyme biofluids, and hydrolysed in the 
solvent-free state. Significantly, the efficiency of product formation increases as the 
temperature is raised to 150 °C. 
 

In aqueous environments, lipases catalyse the hydrolysis of fatty acid esters by a two-step 

mechanism that involves nucleophilic attack by a serine residue located within the active site to 

produce an acylated enzyme and alcohol product, followed by nucleophilic addition of a water 

molecule to liberate the fatty acid1. Conversely, in non-aqueous media, lipases can utilise other 

nucleophiles, such as methanol, to catalyse esterification and transesterification reactions2-13, 

although the explicit removal of water is not often a priority. Typically, enzyme reactions 

performed in organic solvents still contain a hydration layer at the surface of the protein, and the 

pervasiveness of the solvent in these examples highlights the requirement for a substrate 

delivery medium14-25. There have also been reports of lipase catalysis where the reaction 

proceeds with solvent quantities of one of the reagents3,12,13, where the lipases are typically 

present as either a lyophilized powder12,13,26, or immobilized on a substrate2,3,8,10,27,28, but there 

are no examples of molecularly dispersed enzymes catalysing reactions in the complete 

absence of a solvent.  

 Previously, we reported on a novel method for the formation of solvent-free liquid proteins29, 

where the surfaces of the protein molecules were reengineered to display multiple copies of 
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polymer surfactant molecules, which increased the range of the attractive intermolecular 

interactions to a distance that was commensurate with melting. Significantly, the room 

temperature myoglobin biofluids contained significant levels of dynamic secondary and tertiary 

structure30, and remarkably, bound gaseous ligands such as carbon monoxide, sulphur dioxide, 

and oxygen reversibly in the complete absence of a solvent31. Although the persistent structure, 

function and dynamics exhibited by the solvent-free liquid myoglobin were remarkable, 

reversible gaseous oxygen binding could be considered a relatively primitive and robust 

biological process, which would occur provided that the heme prosthetic group was still present 

in the protein. Conversely, enzyme catalysis by a solvent-free liquid protein represents a 

considerable challenge, as the prerequisites for such a process include the correct conformation 

of the active site, and the presence of a medium for substrate and product mass transfer.  

Here we show for the first time that biologically active solvent-free liquid proteins can be 

prepared using lipases from the mesophile Rhizomucor miehei (RML) and thermophile 

Thermomyces lanuginosus (TLL). The lipases comprise an active site based around a serine-

histidine-aspartate triad (Ser144-His257-Asp203 for RML, Ser146-His258-Asp201 for TLL) with 

substrate access regulated by conformational changes involving a helical “lid” motif (Fig. 1a), 

and which together facilitate nucleophilic attack on the fatty acid ester substrate to produce the 

acylated enzyme and alcohol product (Fig. 1b). As a consequence, reaction in the solvent-free 

state requires substrate solubilisation in the liquid enzyme, diffusion through the viscous melt, 

molecular access to the active site, and conformational flexibility in the enzyme-polymer 

surfactant nano-conjugate. Moreover, turnover of the lipases requires nucleophilic addition of a 

water molecule to liberate the carboxylic acid (Fig. 1b), which should be effectively curtailed in 

the solvent-free phase. In light of these considerations, we demonstrate that the new lipase 

biofluids directly solubilise and hydrolyse short or long chain fatty acid esters from both the solid 

(p-nitrophenyl palmitate; pNPPal) and liquid (p-nitrophenyl butyrate; pNPB) phase with limited 

substrate turnover. Significantly, the solvent-free liquid enzymes are extremely thermally stable, 

undergo re-folding from a half denaturation temperature of around 170 °C, and remarkably, 

exhibit increasing catalytic efficiency as the temperature is increased up to 150 °C. 

 Viscous solvent-free liquid lipases were prepared using a three-step approach involving (i) 

preparation of cationized enzymes (C-RML and C-TLL), (ii) electrostatic coupling of the anionic 

polymer surfactants poly(ethylene glycol) 4-nonylphenyl 3-sulfopropyl ether (S1,) or carboxylated 

Brij-L23 (S7) (Supplementary Fig. 1) to C-RML and C-TLL to produce aqueous protein-polymer 

surfactant constructs ([C-RML][S1], [C-RML][S7], [C-TLL][S1], and [C-TLL][S7]) that were ca. 2-3 

nm larger in hydrodynamic diameter than the respective native proteins (Supplementary Fig. 2), 

and (iii) extensive lyophilisation of the aqueous constructs followed by thermal annealing at 

65 °C (Supplementary Information, Materials and Methods). Differential scanning calorimetry 
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(DSC) traces from the solvent-free liquid lipases showed reversible endothermic melting 

transitions at 25 and 44 °C, or 26 and 46 °C for [C-RML][S1] and [C-RML][S7], or [C-TLL][S1], 

and [C-TLL][S7], respectively (Supplementary Fig. 3), which were higher than values determined 

for the neat polymer surfactants (S1 = 31 °C; and S7 = 36 °C). Thermogravimetric analysis of the 

solvent-free protein liquids gave water contents ranging from 0.3- 0.6 wt% (Supplementary 

Fig. 4), which was equivalent to 20-30 water molecules per construct. This was more than an 

order of magnitude lower than the number of water molecules required to cover the solvent-

accessible surface area of the enzymes (1,300 and 1,250 for RML and TLL respectively), and 

significantly lower than the accepted water content required for enzymatic activity (20-

40 wt%)32.   

 A series of assays were developed to test for esterase activity in the solvent-free liquid 

lipases. We introduced small quantities of anhydrous liquid pNPB or desiccated solid pNPPal 

substrates directly into the solvent-free liquid lipases prepared at just above the melting 

temperatures (Supplementary Information, Materials and Methods). Significantly, addition of the 

liquid or the pNPPal waxy solid to each of the four solvent-free liquid lipases resulted in the 

development of an intense yellow colour that was distributed throughout the enzyme-polymer 

surfactant melt, signifying the formation of the p-nitrophenol (pNP) product (Fig. 1c-f).  

 These observations were intriguing for several reasons. Firstly, they showed that desiccated 

substrates in either liquid or solid form could be effectively introduced into the solvent-free liquid 

lipases, indicating that the biofluid phase boundary was accessible to auxiliary agents either by 

liquid-liquid miscibility or solubilisation at the liquid-solid interface. We attribute this behaviour to 

the amphiphilic nature of the polymer surfactant corona, which presents a dielectric medium that 

is compatible with the relatively hydrophobic substrate molecules. Significantly, control 

experiments performed using neat desiccated surfactant showed slow dissolution of pNPPal 

over time (Supplementary Fig. 5). Secondly, mass transfer of the substrates was possible in the 

viscous enzyme melt, and although diffusion was slow at temperatures just above the melting 

temperatures, this was sufficient to distribute the molecules throughout the solvent-free liquid 

phase. Thirdly, the lipases remained accessible to substrate recognition even though the 

enzyme molecules were incarcerated in a corona of polymer surfactant chains, suggesting that 

the helical lid motif could still sample catalytically competent conformations or was permanently 

open, and that the polymer surfactant shell was permeable to small molecules. In this regard, 

synchrotron radiation small angle X-ray scattering (SR-SAXS) profiles from the solvent-free [C-

RML][S1] and [C-TLL][S1] liquids at 30 °C showed protein-protein correlation peaks at 0.104 Å-1 

and 0.106 Å-1 (Supplementary Fig. 6). These values corresponded to respective centre-to-

centre separation distances of 60 and 59 Å, and in both cases were consistent with a structural 

model based on a globular protein core (RML and TLL have molecular dimensions of 



 4 

approximately 45 x 45 x 40 Å32,33), surrounded by a condensed polymer surfactant corona with 

a shell thickness of approximately 10 Å. 

 Significantly, the yellow colouration observed in the optical microscopy images confirmed that 

binding of the substrates to the lipases was associated with bond cleavage, indicating that the 

enzymes remained functional in the solvent-free melt, and suggesting that the protein 

secondary structure and local configuration of the Ser-His-Asp triad at the active site were not 

significantly perturbed in the solvent-free biofluids. We tested the latter assumption by recording 

synchrotron radiation circular dichroism (SRCD) spectra on solvent-free samples of liquid [C-

RML][S7] and [C-TLL][S7] (Supplementary Fig. 7). In both cases, deconvolution of the SRCD 

spectra showed high levels of secondary structure (Table 1), in agreement with Fourier 

transform infrared (ATR-FTIR) spectroscopy data (Supplementary Fig. 8). The secondary 

structure distribution of the solvent-free liquid [C-RML][S7] was almost identical to that of the 

aqueous RML precursor, although a reduction in the α-helical content was observed for solvent-

free liquid [C-TLL][S7] compared with native TLL. 

 UV-Vis spectroscopy in transmission mode was used to assay the lipase activity of the 

solvent-free [C-RML][S1] and [C-TLL][S1] liquids by monitoring the rate of formation of pNP (ε410 

= 18.3 mM-1.cm-1) from pNPB at 30 °C (Fig. 1g). The initial rates of pNP formation by the [C-

RML][S1] and [C-TLL][S1] biofluids were estimated at 0.04 ± 0.01 and 0.02 ± 0.007 

µmol.min-1.mg-1 (Table 2), respectively, which suggested that the mesophile-derived [C-

RML][S1] biofluid was more effective at physiological temperatures. Control inhibition 

experiments using the serine protease inhibitor phenylmethanesulfonyl fluoride (PMSF) gave a 

significant reduction in the lipase activity (≈ 6 fold) of the [C-RML][S1] biofluid with pNPB (SI Fig. 

9), which signified that the activity was associated with the Ser-His-Asp triad at the active site. It 

is possible that that partitioning of PMSF into the hydrophobic domains of the polymer 

surfactant corona reduced the efficacy of the inhibitor, although limited hydrolysis of 

the pNPB from an increase in the nucleophilicity of surface residues in the solvent-free 

state could not be ruled out. The initial rates of the uninhibited lipase biofluids were significantly 

lower than those determined for the respective aqueous native, cationized or conjugated 

proteins at 37 °C (Table 2 and Supplementary Figs 10 and 11). This reduction in rate was 

attributed to the large resistance to substrate and product mass transfer arising from the high 

viscosity of the biofluids.  

 Given the very low water content of the solvent-free liquid lipases, it seems plausible that the 

low threshold absorbance values observed in the UV-vis spectroscopy profiles were associated 

with limited turnover of the two-step cycle such that a large population of acylated enzymes 

were present in the solvent-free medium (Fig. 1g). Significantly, analysis of the spectroscopic 

assay for the [C-RML][S1]/pNPB biofluid gave a turnover number of 6 ± 2, indicating that in the 
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solvent-free liquid state RML was able to utilize some of the limited number of local water 

molecules (20-30 per construct) present in the mixture. To test this hypothesis, solvent-free 

liquid [C-RML][S1] was incubated at 110 °C for 1 hour to further reduce the sub-solvation water 

content, and the assay repeated (Fig. 1g). This resulted in a reduction of the turnover number to 

1.4 ± 0.4, which in the absence of thermal deactivation (see below), indicated that the [C-

RML][S1] conjugate could utilise the limited number of water molecules to complete the reaction 

cycle via nucleophilic addition to the acylated enzyme intermediate. In contrast, there was no 

evidence of turnover from the [C-TLL][S1]/pNPB assay, which signified that the reaction stopped 

after enzyme acylation.  The active site of the thermophile-derived TLL is highly constrained35 

when compared to other lipases such as RML, which has a shallow-bowl conformation with a 

large open cavity36. Accordingly, the difference in the active site geometries could be 

responsible for the inability of the TLL biofluid to utilise the limited water molecules available in 

the solvent-free liquid. 

 Given the hyperthermophilic behaviour previously observed for solvent-free liquid proteins 

prepared from cationized myoglobin37 or lysozyme38 we established a series of experiments to 

ascertain the thermal stability and refolding properties of the lipase melts in order to determine 

whether enzyme activity in the solvent-free liquid state could be maintained over an extended 

temperature range. We first used temperature-dependent SRCD spectroscopy to probe the 

equilibrium thermal denaturation pathways of solvent-free liquid [C-RML][S7] and [C-TLL][S7] 

over a temperature range of 0 to 250°C (Fig. 2a,b). Significantly, both biofluids exhibited 

extreme hyperthermophilic behaviour with half denaturation temperatures (Tm) of 168 °C and 

180 °C respectively (Table 3; Fig. 2c), which were approximately 100 °C higher than their 

aqueous [C-RML][S7] and [C-TLL][S7] precursors (Table 2, Supplementary Figs 12 and 13), and 

reflected their respective meso- and thermophilic origins.  Moreover, highly efficient refolding 

(≥95%) was evident when cooling from temperature as high as 150 °C (Fig. 2d,e). Thermal 

denaturation thermodynamics (see Supplementary Materials and Methods, Equilibrium 

Thermodynamics) were used to evaluate the free energy of denaturation (ΔGD, Supplementary 

Fig. 14), and the change in entropy (ΔSm) and enthalpy (ΔHm) at the half denaturation 

temperature (Tm) (Table 3). The data indicated that thermal stabilization predominately 

associated with a reduction in ΔSm and not via a significant increase in ΔHm., which was 

consistent with either a relatively less disordered compact denatured state, or a more 

disordered native state37. The former seems more likely given the high levels of secondary 

structure, and the highly crowded environment of the solvent-free liquid phase across a 

temperature range of 30 to 150 °C. 

 In light of these results, we used diffuse reflectance UV-Vis spectroscopy (DR-UV-Vis) to 

monitor the temperature dependence of the rate of pNP formation in pNPB-containing solvent-



 6 

free liquid lipases (Fig. 3a; Supplementary Fig. 15). Significantly, an increase in the temperature 

resulted in a rate enhancement for all of the solvent-free liquid lipases. For example, increasing 

the temperature from 30 to 110°C gave a 4-fold and 12-fold rate increase in the [C-RML][S1] 

and [C-TLL][S1] solvent-free reaction fluids, respectively (Fig. 3b), which was consistent with the 

thermophilic origin of the TLL-base enzyme-polymer surfactant construct. Moreover, incubation 

of the [C-RML][S1] melt for 1 h at 150 °C followed by cooling to 30 °C showed almost complete 

retention of the enzymatic activity when pNPB was added (Supplementary Fig. 16), consistent 

with the almost complete refolding of the lipase under these conditions. In contrast, control 

experiments undertaken in pNPB-containing aqueous solutions at 85 °C showed negligible 

enzyme activity in the lipase-polymer surfactant constructs (Supplementary Fig. 17). 

 To test the efficacy of the lipase biofluids at higher temperatures, pNPB (boiling point, ca. 

125 °C) was replaced with the less volatile pNPPal, and the range of temperature-dependent 

assays extended to 150 °C (Fig. 3c, Supplementary Fig. 18). Control DR-UV-vis experiments 

performed on pNPPal from 30 to 150 °C showed negligible decomposition (Supplementary 

Fig. 19), and DSC gave a melting temperature of 66 °C (Supplementary Fig. 20). Remarkably, 

increasing the temperature up to a maximum of 150 °C resulted in a constant increase in the 

rate of pNPPal hydrolysis for all four lipase biofluids. Specifically, increasing the temperature 

from 30 to 150 °C resulted in a 88-fold and 45-fold increase in initial rate for [C-RML][S1] and [C-

TLL][S1], respectively (Fig. 3d). Interestingly, there was no sudden increase in the initial rates 

when the temperature was increased beyond the melting temperature of pNPPal, which 

confirmed that the solvent-free liquids solubilized the solid substrate effectively. 

 The persistent activity of the solvent-free lipases at extreme temperatures was remarkable, 

and correlated well with the hyperthermal stability of the biofluid structures. The temperature-

dependent increase in the rate of hydrolysis of pNPB and pNPPal is likely to be extremely 

complex, involving contributions from the increase in kT (Arrhenius behaviour), as well as from 

temperature-induced reduction in viscosity leading to increased substrate and product diffusion 

rates. Plots of ln k (where k is the experimentally determined initial rate) vs. 1/T were calculated 

from the solvent-free liquid [C-RML][S1]/pNPPal assay rate data, and showed a linear response 

(Fig. 3e), highly consistent with Arrhenius behaviour. Temperature-dependent rheometry 

experiments performed on the [C-RML][S1] biofluid indicated that the estimated Stokes-Einstein 

diffusion coefficient (D) for pNPPal increased by ca. 1800-fold from 1.9 × 10-21 cm2.s-1 to 3.4 × 

10-18 cm2.s-1 as the temperature was increased from at 30 to 150 °C (Supplementary Fig. 21, 

see SI Methods), which would also favour an increase in initial reaction rate. Plots of 

temperature-dependent reaction rate against the temperature-dependent diffusion coefficient of 

pNPPal yielded a non-linear relationship over the entire temperature range (Fig. 3f), indicating 

that although the decrease in viscosity could not be completely ruled out, increases in kBT 
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rather than a predominantly diffusion-only mechanism (rate proportional to the D with respect to 

temperature) was the predominant cause of the increased enzyme activity in the heat-treated 

solvent-free biofluids.  

 In conclusion, we have shown the unprecedented formation and characterisation of solvent-

free liquid lipases from Rhizomucor miehei and Thermomyces lanuginosus, which are functional 

self-contained biofluids that can directly solubilise substrates and catalyse reactions. We have 

demonstrated that the hyperthermophilic behaviour of the protein structures directly translates 

to the ability to not only perform reactions at temperatures as high as 150 °C, but with 

increasing efficiency.  The results demonstrate that even in the absence of a solvent, the 

polymer surfactant corona surrounding the enzymes stabilises the enzyme structure, and acts 

as a continuum for the delivery of substrate molecules to the active site. The ability to produce 

reactive enzymatic biofluids that can function at extreme temperatures and directly solvate and 

convert substrates should provide new directions in industrial catalysis and bionanotechnology. 

 

Methods 
Enzyme activity assays were performed on the solvent-free liquid lipases by monitoring the rate 

of formation of p-nitrophenol (pNP) at 410 nm (ε410 = 18.3 mM-1 cm-1) from p-nitrophenylbutyrate 

(pNPB, Sigma, UK) or p-nitrophenylpalmitate (pNPPal) using UV-vis spectroscopy. In order to 

promote the formation of the p-nitrophenolate chromophore, the aqueous lipase-polymer 

surfactant conjugates were adjusted to pH 8 using small quantities of TRIS buffer prior to 

lyophilization and melting.  Solvent-free liquid assays performed just above the melting 

temperatures of the enzyme-polymer surfactant solids (30 and 45 °C for the S1 for the S7 

formulations, respectively) were undertaken by spreading 3.4 ± 0.2 mg of liquid [C-RML][S1], [C-

TLL][S1], [C-RML][S7], or [C-TLL][S7] over a 2 cm2 area on one face of a two-part quartz cell 

(0.01 mm path length), followed by addition of 2 µL of desiccated pNPB. The quartz cell was 

immediately sealed with polytetrafluoroethylene (PTFE) tape and the increase in absorbance at 

410 nm measured at 5 s intervals for 15 minutes using a Perkin Elmer Lambda 25 UV/Vis 

spectrometer fitted with a PTP-6 peltier control unit. For high temperature assays (≤150 °C), 

samples were prepared as above and then raised to increasing temperatures, typically at 10 °C 

intervals at a rate of 10 °C.min-1, with 30 s equilibration prior to measurements. The absorbance 

at 410 nm was monitored at the given temperatures at 5 s intervals for 15 minutes using a 

Perkin Elmer Lambda 35 UV/Vis spectrometer equipped with a Labsphere diffuse reflectance 

(DR) accessory fitted with a custom made reflective thermal stage. For enzyme activity assays 

involving solid pNPPal, 3 mg aliquots of desiccated pNPPal powder were introduced directly to 

the solvent-free lipase liquids and sealed within the synthetic quartz cell with PTFE tape as 
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described above. Diffuse reflectance spectroscopy was used as reliable transmission 

measurement could not be made due to scattering from the solid substrate.  

 Enzyme activities of the solvent-free lipase liquids against pNPB at 30 °C were evaluated 

from averaged (n = >5) initial reaction rates using linear regression analysis of the UV/Vis 

spectroscopy data (transmission, 0.01 mm pathlength). Turnover values were estimated based 

on the absorbance values at 410 nm obtained for the completed reaction (averages of n = >5). 

This was achieved by dividing the pNP concentration (ε410 = 18.3 mM-1.cm-1) by the active site 

concentration (i.e., concentration of lipase in the solvent-free liquid). Concentrations of the 

enzyme and substrate within the mixtures were calculated from constituent mass fractions, 

using densities of 1.35 g.cm-3 and 1.2 g.cm-3 for lipase and pNPB respectively. Temperature-

dependent enzyme activities were evaluated from the initial rates obtained by plotting A410 

against time at various temperatures, and the data were normalized after fitting using an 

exponential function to mitigate variations in absolute absorbances arising from variable path 

lengths in the diffuse reflectance measurements. The resultant plots of rate against temperature 

were expressed as the natural log of the initial rate (ln k) against reciprocal temperature (1/T), 

where linear plots indicate Arrhenius behaviour. Thermal cycle assays were performed on 

solvent-free liquid [C-RML][S1] to study the effect of water removal, and involved incubating the 

sample at 110 °C for 1 hour. This equilibration period was established via analogous 

thermogravametric analysis experiments (Supplementary Information, SI Figure 4b), which 

showed no further mass loss at 110 °C after 1 hour.  

 Lipase inhibition control experiments were performed on the solvent-free [C-RML][S1] liquid 

at 30°C via the addition of the serine protease inhibitor phenylmethanesulfonyl fluoride (PMSF) 

to the aqueous [C-RML][S1] precursor, followed by lyophilisation and melting to give a final 

mass fraction of 10 wt%. Control activity assays were preformed on aqueous RML, C-RML, [C-

RML][S1], TLL, C-TLL, and [C-TLL][S1] at nmol concentrations with 0.36 mM pNPB in 50 mM 

TRIS buffer (pH 8) at 37 °C. Absorbance at 410 nm was monitored at 5 s intervals for 3 minutes 

using a Perkin Elmer Lambda 25 UV/Vis spectrometer fitted with a PTP-6 peltier control unit. In 

all cases, enzyme activity was normalized to the rate of pNPB degradation observed in the 

absence of the enzymes, and presented as the average of >5 repeats.     

 

General details on the synthesis procedures and characterisation techniques have been 

deposited as Supplementary Information. 
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Tables 
 

Table 1. Estimated secondary structure contents of the solvent free liquid lipases and the 

aqueous precursors at 30 °C evaluated by deconvolution of synchrotron radiation circular 

dichroism spectra. 
 α-helix / % β-sheet / % Turns / % Unordered / % NRMSD 

Solvent-free liquid  

[C-RML][S7] 
17 33 12 38 0.024 

Aqueous [C-RML][S7]  17 43 11 31 0.030 

Aqueous C-RML 20 36 10 34 0.035 

Aqueous RML 17 33 11 38 0.044 

Solvent-free liquid  

[C-TLL][S7]  
18 32 13 37 0.034 

Aqueous [C-TLL][S7]  20 32 11 36 0.021 

Aqueous C-TLL 22 31 12 36 0.028 

Aqueous TLL 34 23 11 31 0.025 

 
 
Table 2. Enzyme activities of the solvent free liquid lipases at 37 °C and the aqueous 

precursors at 30 °C. 

 
Enzyme activity / 

µmol.min-1.mg-1 
 

Enzyme activity / 

µmol.min-1.mg-1 

Solvent-free liquid  

[C-RML][S1] 
0.04 ± 0.01 

Solvent-free liquid  

[C-TLL][S1]* 
0.02 ± 0.007 

Aqueous [C-RML][S7]†  0.05 ± 0.01 Aqueous [C-TLL][S7] 12 ± 3.9 

Aqueous C-RML 0.11 ± 0.04 Aqueous C-TLL 20 ± 4.5 

Aqueous RML 5.2 ± 2 Aqueous TLL 130 ± 30 
†Due to high UV absorbance by the nonylphenyl moiety in S1, enzyme activities from the 

aqueous S7 nanoconjugates are presented  

 
 
Table 3. Thermodynamic parameters for solvent-free liquid [C-RML][S7] and [C-TLL][S7] and 

their respective aqueous precursors.  
 Tm / °C  ΔHm / kJ.mol-1 ΔSm / J.K-1.mol-1 

Solvent-free liquid [C-RML][S7] 168 100.5 ± 4.3 228.7 ± 5.6 

Aqueous [C-RML][S7]  64.5 98.3 ± 9.7 292.4 ± 16.6 

Solvent-free liquid [C-TLL][S7]  180 118.5 ± 12.3 261.7 ± 15.6 

Aqueous [C-TLL][S7]  82 144.9 ± 8.8 407.6 ± 14.3 
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Figures captions 
 
Figure 1. Self-contained enzymatic biofluids. (a) Three-dimensional model showing the Ser144-

His257-Asp203 catalytic triad of RML (PDB: 3TGL33) and helical “lid” motif (purple loop). (b) Two-step 

mechanism for lipase-catalysed hydrolysis of pNPB (R = C3H7) or pNPPal (R = C15H31). (c-f) Optical 

microscopy images showing a mixture of the solvent-free liquid [C-RML][S1] and desiccated liquid pNPB 

substrate immediately after contact (c), and after incubation for 30 min at 80 °C (d); and a mixture of 

solvent-free liquid [C-RML][S1] and desiccated solid pNPPal immediately after contact (e) and after 

incubation for 24 h at 50 °C (f); scale bars = 800 µm. In both cases, development of the yellow 

colouration indicates lipase-catalysed formation of p-nitrophenol (pNP) in the solvent-free liquid 

enzymes. (g) Plot of time-dependent absorbance at 410 nm showing increase in pNP concentration with 

time demonstrating esterase activity in pNPB-containing solvent-free liquid [C-RML][S1] (black 

triangles), or [C-TLL][S1] (red squares) at 30 °C; and after incubating solvent-free liquid [C-RML][S1] at 

110 °C for 1 hour (blue circles). 
 

Figure 2. Secondary structure stabilisation and refolding in solvent-free liquid lipases. Far-UV 

SRCD spectra from solvent-free liquids of [C-RML][S7] (a) and [C-TLL][S7] (b) over a temperature range 

of 0-250 °C (blue to red profiles) at 10 °C intervals. Insets show fraction of denatured secondary 

structure as a function of temperature and resulting sigmoidal fits (solid lines). The CD intensity at 

222 nm was used as an order parameter. Far-UV SRCD spectra showing highly efficient unfolding and 

refolding (≥ 95%) after heating samples of solvent-free liquid [C-RML][S7] (c) or [C-TLL][S7] (d) from 

50 °C (black curve) to 150 °C (red curve), followed by cooling to 50 °C at a rate of 100 °C/min (blue 

curve). 

 
Figure 3. Temperature-dependent esterase activity in solvent-free liquid lipases.  

(a) Plots of absorbance (diffuse reflectance) at 410 nm against time showing increase in the initial rate of 

formation of pNP from pNPB by solvent-free liquid [C-TLL][S1] over a temperature range of 30 °C (blue) 

to 110 °C (red) at 10°C intervals. (b) Plot of initial rate of reaction of pNPB with solvent-free liquid [C-

RML][S1] (black triangles) and  [C-TLL][S1] (red squares) as a function of temperature. (c) Plots of DR-

UV/Vis absorbance at 410 nm against time showing an increase in initial rate with temperature for the 

reaction between pNPPal and solvent-free liquid [C-RML][S1] over a temperature range of 50 °C (blue) to 

150 °C (red) at 10 °C intervals. (d) Plot showing an increase in the initial rate with temperature for the 

reaction between pNPPal and solvent-free liquid [C-RML][S1] (black triangles) or solvent-free liquid [C-

TLL][S1] (red squares). (e) Arrhenius plots of ln k (where k is the temperature-dependent initial rate) 

against 1/T for the reaction between pNPPal and solvent-free liquid [C-RML][S1] (black triangles) or [C-

TLL][S1] (red squares).  (f) Plot of temperature-dependent initial rate of reaction [k(T)] between pNPPal 

and solvent-free liquid [C-RML][S1 as a function of the temperature-dependent Stokes-Einstein diffusion 

coefficient [D(T)] (See equation 6, Supporting Methods). 
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