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a b s t r a c t

We consider testing for weak instruments in a model with multiple endogenous variables. Unlike Stock
and Yogo (2005), who considered a weak instruments problem where the rank of the matrix of reduced
form parameters is near zero, here we consider a weak instruments problem of a near rank reduction of
one in the matrix of reduced form parameters. For example, in a two-variable model, we consider weak
instrument asymptotics of the form π1 = δπ2 + c/

√
n where π1 and π2 are the parameters in the two

reduced-form equations, c is a vector of constants and n is the sample size. We investigate the use of a
conditional first-stage F-statistic along the lines of the proposal by Angrist and Pischke (2009) and show
that, unless δ = 0, the variance in the denominator of their F-statistic needs to be adjusted in order to get
a correct asymptotic distribution when testing the hypothesis H0 : π1 = δπ2. We show that a corrected
conditional F-statistic is equivalent to the Cragg and Donald (1993) minimum eigenvalue rank test statis-
tic, and is informative about the maximum total relative bias of the 2SLS estimator and the Wald tests
size distortions. When δ = 0 in the two-variable model, or when there are more than two endogenous
variables, further information over and above the Cragg–Donald statistic can be obtained about the nature
of the weak instrument problem by computing the conditional first-stage F-statistics.

© 2016 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Following the work of Staiger and Stock (1997) and Stock and
Yogo (2005), testing for weak instruments is now commonplace.
For a single endogenous variablemodel, the standard first-stage F-
statistic can be used to test for weakness of instruments, where
weakness is expressed in terms of the size of the bias of the IV
estimator relative to that of the OLS estimator, or in terms of the
magnitude of the size distortion of theWald test for parameter hy-
potheses. Stock and Yogo (2005) tabulated critical values for the
standard F-statistic that have been incorporated in software pack-
ages.

✩ This research was funded by the Economic and Social Research Council (RES-
343-28-0001), the European Research Council (DEVHEALTH-269874) and the
Medical Research Council (MC_UU_12013/9). Helpful comments were provided by
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and two anonymous referees.
∗ Corresponding author at: Department of Economics, University of Bristol, UK.

E-mail address: F.Windmeijer@bristol.ac.uk (F. Windmeijer).

For multiple endogenous variables, inspection of the individual
first-stage F-statistics is no longer sufficient. The Cragg and Donald
(1993) statistic can be used to evaluate the overall strength of the
instruments in this case, and Stock and Yogo (2005) have tabulated
critical values of the minimum eigenvalue of the Cragg–Donald
statistic for testing weakness of instruments. They derive the lim-
iting distributions under weak instrument asymptotics where the
reduced form parameters are local to zero in each reduced form
equation, and obtain critical values that are conservative in the
sense that they are rejecting the null of weak instruments too in-
frequently when the null is true.

In this paper, we are interested in analysing tests for weak in-
struments in a model with multiple endogenous variables in a set-
ting where the reduced form parameters are not local to zero, but
where the reduced form parameter matrix is local to a rank reduc-
tion of one. In this case, the values of the F-statistics in each of the
first-stage equations can be high, but the identification of (some of)
the model parameters is weak. We will focus initially on a model
with two endogenous variables. The weak instrument asymptotics
we consider are local to a rank reduction of one, of the form

π1 = δπ2 + c/
√
n,
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whereπ1 andπ2 are the parameters in the two reduced-formequa-
tions, c is a vector of constants and n is the sample size. We call
these asymptotics LRR1 weak instrument asymptotics.

Wewill focus solely on the properties of the 2SLS estimator.We
investigate the use of a conditional first-stage F-statistic along the
lines of the proposal by Angrist and Pischke (2009) and show that
the variance formula in the denominator of their F-statistic needs
to be adjusted in order to get a correct asymptotic distribution
when testing the null hypothesis, in the two-variable model, H0 :

π1 = δπ2. We further show that the resulting new conditional F-
statistic is equivalent to the Cragg–Donald minimum eigenvalue
statistic. Using our weak instrument asymptotics we show that
this conditional F-statistic cannot be used in the same way as the
Stock and Yogo (2005) procedure for a single endogenous variable
to assess the magnitude of the relative bias of the 2SLS estimator
of an individual structural parameter. This is because the OLS bias
expression contains additional terms such that the expression for
the bias of the 2SLS estimator relative to that of the OLS estimator
does not have the simple expression as in the one-variable case.
However, the total relative bias can be bounded as can the size
distortions of Wald tests on the structural parameters.

In a two-endogenous-variablemodel the conditional F-statistics
for each reduced form are equivalent to each other and to the
Cragg–Donald minimum eigenvalue statistic under our LRR1 weak
instrument asymptotics. This holds unless δ = 0, in which case the
local rank reduction is due to the fact that π1 is local to zero and
the first-stage F-statistic for x1 will be small and that for x2 will be
large. In this case, both the Angrist–Pischke F-statistic and our con-
ditional F-statistic for x1 can be assessed against the Stock–Yogo
critical value, and the 2SLS estimator for the structural parame-
ter on x2 is consistent. Additional information can also be obtained
fromour conditional F-statisticswhen there aremore than two en-
dogenous variables, as they will identify which variables cause the
near rank reduction. For example, if in a three variable model the
near rank reduction is due to the reduced form parameters on two
variables only, the conditional F-statistic for the third variable will
remain large giving the researcher valuable information about the
nature of the problem and directions for solving it. We also show
that the 2SLS estimator for the structural parameter of the third
variable is consistent in that case.

The paper is organised as follows. In Section 2 we introduce
the linear model with one endogenous variable and summarise
the Staiger and Stock (1997) and Stock and Yogo (2005) results for
testing forweak instruments. Section 3 considersweak instrument
test statistics for the linear model with two endogenous explana-
tory variables and introduces the newconditional F-tests. Section 4
considers the relative bias and Wald test size distortions for the
2SLS estimator under the LRR1 weak instrument asymptotics as
outlined above and presents someMonte Carlo results for the two-
variable model. Section 4 also shows the usefulness of the condi-
tional F-test statistics in a model with more than two endogenous
variables. Finally, Section 5 concludes.

2. Weak instrument asymptotics in one-variable model

In this section we follow the basic Staiger and Stock (1997)
and Stock and Yogo (2005) setup. The developments of the weak
instrument setup and concepts for the one-variable model play an
important rolewhenwe expand themodel tomultiple endogenous
variables in the next section. The simple model is

y = xβ + u, (1)

where y, x, and u are n × 1 vectors, with n the number of
observations. There is endogeneity, such that E (u|x) ≠ 0. The
reduced form for x is

x = Zπ + v, (2)

where Z is a n × kz matrix of instruments and v is n × 1. For
individual ui and vi we assume,
ui
vi


∼ (0,Σ) ; Σ =


σ 2
u σuv
σuv σ 2

v


.

The 2SLS estimator is given by

β2SLS =
x′PZy
x′PZx

= β0 +
x′PZu
x′PZx

,

where PZ = Z

Z ′Z
−1 Z ′.

The concentration parameter is given by

CP =
π ′Z ′Zπ
σ 2
v

and is ameasure of the strength of the instruments, see Rothenberg
(1984). A small concentration parameter is associated with a bias
of the 2SLS estimator and deviations from its asymptotic normal
distribution.

A simple test whether the instruments are related to x is of
course a Wald or F-test for the hypothesis H0 : π = 0. The Wald
test is given by

Wπ =
π ′Z ′Zπσ 2

v

=
x′Z

Z ′Z
−1 Z ′xσ 2
v

,

whereπ =

Z ′Z
−1 Z ′x is the first-stage OLS estimator, andσ 2

v =

x′MZx/n, where MZ = I − PZ . Under the null, Wπ
d

−→χ2
kz . The F-

test is given by F = Wπ/kz . Note that we refrain from a degrees
of freedom correction in the variance estimate. Also, note that the
analyses here and further below extend to amodel with additional
exogenous regressors, as we can replace y, x and Z everywhere by
their residuals from regressions on those exogenous regressors.

Staiger and Stock (1997) introduce weak instrument asymp-
totics as a local to zero alternative, π = c/

√
n, which ensures

that the concentration parameter does not increase with the sam-
ple size

CP =
π ′Z ′Zπ
σ 2
v

p
−→

c ′QZZc
σ 2
v

,

where QZZ = plim

n−1Z ′Z


.

Assuming that conditions are fulfilled, such that
1

√
n
Z ′u

1
√
n
Z ′v

 d
−→


ψZu
ψZv


∼ N (0,Σ ⊗ QZZ ) ,

and kz ≥ 3 when assessing relative bias. Then under weak
instrument asymptotics,

β2SLS − β =
x′Z

Z ′Z
−1 Z ′u

x′Z (Z ′Z)−1 Z ′x
d

−→
σu

σv

(λ+ zv)′ zu
(λ+ zv)′ (λ+ zv)

where

λ = σ−1
v Q 1/2

ZZ c; zv = σ−1
v Q−1/2

ZZ ψZv; zu = σ−1
u Q−1/2

ZZ ψZu.

The bias of the OLS estimator is given by

βOLS − β =
x′u
x′x

=
(Zπ + v)′ u

(Zπ + v)′ (Zπ + v)

=
n−1


n−1/2c ′Z ′u + v′u


n−1


n−1c ′Z ′Zc + 2n−1/2c ′Z ′v + v′v


p

−→
plim n−1v′u
plim n−1v′v

=
σuv

σ 2
v

=
σu

σv
ρ,

where ρ =
σuv
σuσv

.
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As a measure of relative bias, Stock and Yogo (2005) propose

B2
n =


E
β2SLS


− β

E
βOLS


− β

2

.

From the derivations above, and as E [zu|zv] = ρzv , it follows that

B2
n =


E


(λ+ zv)′ zv
(λ+ zv)′ (λ+ zv)

2

,

or

Bn =

E  (λ+ zv)′ zv
(λ+ zv)′ (λ+ zv)

 .
Using weak instrument asymptotics, Stock and Yogo (2005) are

therefore able to assess the size of the relative bias in relation to
the first-stage F-statistic. As zv ∼ N


0, Ikz


, Bn is determined by

the values of λ and kz . Let

l = λ′λ/kz =
1
kz

c ′QZZc
σ 2
v

,

then using Monte Carlo simulation, i.e. draws of zv ∼ N

0, Ikz


,

Stock and Yogo (2005) find the values of l such that Bn is a certain
value, say 0.1, for different values of kz . For example, when kz = 4
and using 100,000 Monte Carlo draws, we obtain a relative ex-
pected bias E


(λ+zv)′zv

(λ+zv)′(λ+zv)


= 0.1 for l = 4.98. When kz = 8,

we find l = 7, again for Bn = 0.1.
Using weak instrument asymptotics, Staiger and Stock (1997)

derive the asymptotic distribution for the first-stage F-statistic,
which is given by

F
d

−→χ2
kz (kz l) /kz,

whereχ2
kz (a) is the non-central chi-squared distributionwith non-

centrality parameter a. The F-test statistic can therefore be used to
test the hypothesis

H0 : CP/kz ≤ lb vs H1 : CP/kz > lb,

where lb is the value for l determined above such that the Bn = b.
For b = 0.1, we find from the scaled non-central chi-squared
distribution a critical values of 10.20 when kz = 4 and 11.38 when
kz = 8. In comparison, Stock and Yogo (2005), henceforth SY, find
very similar critical values of 10.27 and 11.39 for these two cases
respectively.

As an illustration, we performed a small simulation. The model
is as in (1) and (2), with β = 1;
ui
vi


∼ N


0
0


,


1 0.5
0.5 1


;

the instruments in Z are four independent standard normally
distributed random variables and π =


c c c c

′
/
√
n, with

c chosen such that the relative bias Bn for n → ∞ is equal to
0.1, or 10%. We set the sample size n = 10,000 and show the
results in Table 1 for 10,000 Monte Carlo replications. The results
are clearly in line with the theory. The observed relative bias is
just over 10% and the rejection frequency of the F-test using the
SY weak instrument critical value is 5% at the 5% nominal level.

TheWald test for testing the restriction H0 : β = β0 is given by

W =

β2SLS − β0
2 

x′PZx


σ 2
u

,

whereσ 2
u =


y − xβ2SLS

′ 
y − xβ2SLS


/n. Staiger and Stock (1997)

show that, under weak instrument asymptotics,

W
d

−→
ν22/ν1

1 − 2ρν2/ν1 + (ν2/ν1)
2 ,

Table 1
Estimation and relative bias results for one-variable model.

Mean St dev Rel bias SY rej freqβOLS 1.4989 0.0086β2SLS 1.0529 0.2173 0.1060
F 5.97 2.36 0.0502

Notes: Sample size 10,000; 10,000 MC replications; β = 1; F is the first-stage F-
statistic for x; rel bias is the relative bias of the 2SLS estimator, relative to that of the
OLS estimator; SY rej freq uses the 5% Stock–Yogo critical value for the F-test for a
10% relative bias.

Table 2
Estimation and Wald test results for one-variable model.

Mean St dev Rej freq SY rej freqβOLS 1.9935 0.0008β2SLS 1.0318 0.1184
W 1.42 2.52 0.0994
F 17.45 4.11 0.0501

Notes: Sample size 10,000; 10,000 MC replications; β = 1, ρ = 1; W is the Wald
test for testing H0 : β = 1; rej freq uses 5% critical value of χ2

1 ; SY rej freq uses the
5% Stock–Yogo critical value for the F-test, for a maximal 10% size ofW .

where

ν1 = (λ+ zv)′ (λ+ zv) ; ν2 = (λ+ zv)′ zu.

The Wald size distortion is maximised for ρ = 1, and SY find the
critical values for the F-test such that themaximal size of theWald
test is a certain value, say 10%, at a nominal 5% level. For theMonte
Carlo example above, we set ρ = 1 and choose c such that the
maximal size distortion of the Wald test is 10%, in which case the
value of l is given by 16.415. The SY critical value in this case is
given by 24.58. The results are given in Table 2, and confirm that
the size of the Wald test is 10% and the rejection frequency of the
F-test using the SY critical values is indeed 5%.

3. Two variable model

Following the exposition in Angrist and Pischke (2009), we first
consider the following two-variable model

y = x1β1 + x2β2 + u (3)
x1 = Zπ1 + v1

x2 = Zπ2 + v2

where y, x1, x2, u, v1 and v2 are n × 1 vectors, with n the number
of observations. Z is an n × kz matrix of instruments, with kz ≥ 2
(kz ≥ 4 when assessing relative bias), and π1 and π2 are kz × 1
vectors. For an individual observation i,

 ui
v1i
v2i


∼


0,

σ 2
u σ ′

Vu
σVu ΣV


; ΣV =


σ 2
1 σ12
σ12 σ 2

2


.

Equivalently, we can write

y = Xβ + u
X = ZΠ + V

where β = (β1, β2)
′; X =


x1 x2


; Π =


π1 π2


and V =

v1 v2

. Further, let x = vec(X), π = vec (Π) and v = vec (V ).

The OLS estimates forπj are denotedπj =

Z ′Z
−1 Z ′xj, j = 1, 2,

and the estimated variances are given by

ΣV =

σ 2
1 σ12σ12 σ 2

2


=

1
n
V ′V =

1
n

v′

1v1 v′

1v2v′

1v2 v′

2v2

,

whereV = X − ZΠ .
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The first-stage F-statistics are given by

Fj =
π ′

j Z
′Zπj

kzσ 2
j

=
x′

jZ

Z ′Z
−1 Z ′xj

kzσ 2
j

; j = 1, 2,

and kzFj converges in distribution to a χ2
kz distribution under the

null H0 : πj = 0. Significant first-stage F-statistics are clearly
necessary, but not sufficient, for identification of β . For example,
if π1 = δπ2 ≠ 0, both first-stage F-statistics will reject their null
in large samples, but the model is clearly underidentified.

Staiger and Stock (1997) and Stock and Yogo (2005) consider
weak instrument asymptotics where all reduced form parameters
are local to zero, i.e. Π = C/

√
n. The Wald test for H0 : π = 0 is

given by
Wπ = π ′

Σ−1
V ⊗ Z ′Z

π,
which is identical to the trace of the Cragg and Donald (1993)
statistic
CD = Σ−1/2

V
Π ′Z ′ZΠΣ−1/2

V .

However, this Wald test statistic on the reduced form cannot be
used in an equivalent way to assess relative bias and 2SLS Wald
test size distortions as in the one-variable model above, because
these are determined largely by the minimum eigenvalue of CD,
τmin. In other words, relative bias and Wald size distortions can be
large if tr (CD) is large but τmin is small. In a general setting with
g endogenous explanatory variables, Wπ = tr (CD) is a test for
H0 : rank (Π) = 0,whereas τmin is a test forH0 : rank (Π) = g−1.
SY derive critical values for τmin/kz under the local to zero weak
instrument asymptotics for maximal total relative bias and Wald
test distortions, where the total relative bias is given by

B2
=


E
β2SLS


− β

′
ΣX


E
β2SLS


− β


E
βOLS


− β

′
ΣX


E
βOLS


− β

 , (4)

with ΣX = plim

n−1X ′X


. In this case, as τmin is not the test

statistic for H0 : π = 0, unlike in the case of one endogenous
variable, the correspondence is not exact and use of the SY critical
values results in a conservative test in the sense that the null of
weak instruments is rejected too infrequently when the null is
true. This is not altogether an undesirable feature of the test, as
a researcher can be quite confident that instruments are not weak
when τmin/kz is larger than the SY critical value.

The Staiger and Stock (1997) and Stock and Yogo (2005) re-
sults for the F-test and Cragg–Donald statistic in the one-variable
and multiple-variable model respectively in relation to the rela-
tive bias and Wald test size distortions hold under the stated as-
sumptions of the model and the reduced form equations for the
endogenous variables. When the variances in the reduced forms
are conditionally heteroskedastic, then one can compute robust F-
statistics and the Kleibergen and Paap (2006) robust version of the
Cragg–Donald statistic. These test statistics are then valid tests for
underidentification as they have correct size under the null that the
instruments are not informative, i.e. for testing that rank (Π) = 0.
But the documented relationship of the weak-instrument critical
values and the sizes of the relative bias and Wald-test size distor-
tion no longer holds, see for example Bun and de Haan (2010). This
limits the exact use of the weak-instrument tests, as for example
binary endogenous explanatory variables automatically produce a
conditionally heteroskedastic reduced form. Also, this relationship
brakes down in simple panel data models, when there is serial cor-
relation in the reduced form errors, or indeed in simple time-series
models with serial correlation. In our development of the condi-
tional F-statistics for models with multiple endogenous variables,
wemaintain the sameassumptions as Staiger and Stock (1997) and
Stock and Yogo (2005), and hence the same limitations. Olea and
Pflueger (2013) have recently proposed an alternative robust F-test
type procedure for weak instruments, but thus far it can only be
applied to the one-endogenous variable model.

3.1. Conditional F-test

Angrist and Pischke (2009) propose an alternative conditional
first-stage F-statistic for the case of multiple endogenous variables
by reformulating the estimation problem to a one-variable model
after replacing the other endogenous variables with their reduced
formpredictions. For instance, for the two-variablemodel, the 2SLS
estimator for β1 is obtained by 2SLS in the model

y = x1β1 +x2β2 + u∗, (5)

wherex2 = Zπ2 = PZx2, using Z as the instruments, and henceβ1 =

x′

1Mx2PZMx2x1−1 x′

1Mx2PZy.
Therefore,β1 can be seen as the 2SLS estimator in the one-variable
model

y = Mx2x1β1 + ξ, (6)

where the residual Mx2x1 = x1 −x2δ, withδ =
x′

2x2−1x′

2x1, is
instrumented by Z . The reduced form is then

Mx2x1 = Zκ + ε (7)

and the Angrist–Pischke F-statistic is testing the hypothesis H0 :

κ = 0, given by

FAP =
κ ′Z ′Zκ

(kz − 1)σ 2
ε

=
x′

1Mx2PZMx2x1
(kz − 1)σ 2

ε

, (8)

whereκ is the OLS estimator of κ,

κ =

Z ′Z
−1 Z ′Mx2x1 =


Z ′Z
−1 Z ′


x1 −x2δ = π1 −π2δ;

and σ 2
ε = ε′ε/n, withε = Mx2x1 − Zκ . The degrees of freedom

correction follows becausex2 has been predicted using the same
instruments Z . If we partition Z =


z1 Z2


with Z2 a (kz − 1) ×

n matrix, then the instrument set for (5) could equivalently be
written as

x2 Z2

.

As the problem seems to have been reduced to a one-
endogenous variable model, FAP has been proposed to determine
instrument strength for identification of individual structural pa-
rameters, like β1 in the above derivation, and Stock and Yogo
(2005) weak instrument critical values used to determine max-
imum relative bias of the IV estimator, relative to the OLS esti-
mator for the single parameter. There are some issues with this,
however, that seem to invalidate such an approach. Under the null
that κ = 0, (kz − 1) FAP does not follow an asymptotic χ2

kz−1 dis-
tribution, unless π1 = 0. An alternative F-statistic is easily derived
that corrects for this, but the relative bias results as described in
the previous section for the one-variable model do not carry over
to the individual parameters in this multiple endogenous variables
model.

To consider the asymptotic distribution, for any given value of
δ we have that

x1 −x2δ = x1 − x2δ + (x2 −x2) δ = Z (π1 − δπ2)

+ v1 − δv2 + δMZv2

= Z (π1 − δπ2)+ v1 − δPZv2.

Clearly, the OLS estimator for κδ in the model

x1 −x2δ = Zκδ + ε∗ (9)

is given by

κδ =

Z ′Z
−1 Z ′ (x1 −x2δ) =


Z ′Z
−1 Z ′ (x1 − x2δ)

= π1 − δπ2 = π1 − δπ2 +

Z ′Z
−1 Z ′ (v1 − δv2)
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and hence the variance of the OLS estimator is given by

Var (κδ) =

σ 2
1 − 2δσ12 + δ2σ 2

2

 
Z ′Z
−1

. (10)
The F-statistic for testing H0 : κδ = 0 in (9) is

Fδ =
κ ′Z ′Zκ

kz
σ 2

1 − 2δσ12 + δ2σ 2
2

 ,
and kzFδ converges in distribution to a χ2

kz distribution under the
null that κδ = 0, or π1 = δπ2. However, computing the standard
F-test statistic in (9) as

Fs =
κ ′Z ′Zκ
kzσ 2

ε∗

does not result in Fδ asε∗′ε∗
= (x1 −x2δ)′ MZ (x1 −x2δ) = x′

1MZx1 =v′

1v1
and hence

Fs =
κ ′Z ′Zκ
kzσ 2

1
.

Therefore the denominator of Fs does not estimate the variance as
in (10) correctly and kzFs does not converge to a χ2

kz distribution
under the null, unless δ = 0. The correct F-statistic would be
obtained by the standard F-test if the dependent variable in (9)was
x1 − δx2 instead of x1 − δx2.

The Angrist–Pischke approach does replace δ by an estimateδ.
By developing a formal testing framework we show that the same
issues arise and that (kz − 1) FAP does not have an asymptoticχ2

kz−1
distribution under the null that π1 = δπ2, unless δ = 0.

Partition Z =

z1 Z2


. We can write the reduced from for x1

as
x1 = Zπ1 + v1 = Zπ2 + Z (π1 − π2)+ v1

= Zπ2δ + Z2 (π12 − π22δ)+ v1 = x2δ + Z2 (π12 − π22δ)

+ v1 − δv2 (11)

where π1 and π2 are partitioned as

π11 π ′

12

′and π21 π ′

22

′
respectively; δ = π11/π21, implicitly assuming that π21 ≠ 0.
Hence a test for underidentification is a test for H0 : γ = 0, in
the model
x1 = x2δ + Z2γ + v∗, (12)
where v∗

= v1 − δv2. Clearly, x2 is an endogenous variable in
(12), but we can estimate the parameters δ and γ by IV, using Z
as instruments. The 2SLS estimators for δ and γ are given byδ =

x′

2MZ2x2−1x′

2MZ2x1; γ =

Z ′

2Mx2Z2−1 Z ′

2Mx2x1
and
Var (γ ) = σ 2

v∗


Z ′

2Mx2Z2−1
,

with σ 2
v∗ = σ 2

1 − 2δσ12 + δ2σ 2
2 . The F-test statistic for testing

H0 : γ = 0 is therefore given by

Fγ =
x′

1Mx2Z2 Z ′

2Mx2Z2−1 Z ′

2Mx2x1
(kz − 1) (v∗′v∗/n)

withv∗
= x1 − x2δ − Z2γ = Zπ1 +v1 − Zπ2δ −δv2 − Z2γ
= v1 −δv2,

as the IV estimates are given byδ =
π11π21

; γ = π12 −π22δ.
Hence,

σ 2
v∗ =

1
n
v∗′v∗

= σ 2
1 − 2δσ12 +δ2σ 2

2

is a consistent estimator of σ 2
v∗ .

The Angrist and Pischke (2009) F-statistic as described above is
related to Fγ , as

FAP =
x′

1Mx2Z Z ′Z
−1 Z ′Mx2x1

(kz − 1) (ε′ε/n) =
x′

1Mx2Z2 Z ′

2Mx2Z2−1 Z ′

2Mx2x1
(kz − 1)σ 2

1
,

because

x′

1Mx2PZMx2x1 = x′

1PZMx2PZx1 =x′

1Mx2x1
= γ Z ′

2Mx2Z2γ = x′

1Mx2Z2 Z ′

2Mx2Z2−1 Z ′

2Mx2x1,
and the sum of squared residuals is given byε′ε = x′

1Mx2MZMx2x1 = x′

1MZx1 =v′

1v1
and henceε′ε/n = σ 2

1 . Therefore, whilst the numerators are the
same in FAP and Fγ , the denominators are different. (kz − 1) FAP
is therefore not asymptotically χ2

kz−1 distributed under the null,
H0 : π1 = δπ2, unless δ = 0 and hence π1 = 0.

Clearly,δ =
x′

2x2−1x′

2x1 is an estimate of δ under the null that
π1 = δπ2 and hence γ = 0. Letv∗

= x1−x2δ be the residual under
the null, then the LM test for the null H0 : γ = 0 is given by

LM =
v∗′Z


Z ′Z
−1 Z ′v∗v∗′v∗/n

which converges to a χ2
kz−1 distribution under the null. LM is equal

to nR2 in the model

x1 − x2δ = Zκ + ξ . (13)

The F-test in (13), with appropriate degrees of freedom correction,
is given by

F1|2 =
κ ′Z ′Zκ

(kz − 1)
ξ ′ξ/n =

π1 −δπ2
′
Z ′Z

π1 −δπ2


(kz − 1)
σ 2

1 +δ2σ 2
2 − 2δσ12

=
x′

1Mx2Z2 Z ′

2Mx2Z2−1 Z ′

2Mx2x1
(kz − 1)

σ 2
1 +δ2σ 2

2 − 2δσ12 , (14)

which is only different from Fγ through the estimate of δ in the
denominator. In F1|2 this is invariant to which instrument has been
excluded from Z in forming Z2, making it therefore preferable to
Fγ . Clearly, F1|2 differs from FAP by using the IV residual x1 − x2δ in
(13) instead of the second stage residual x1 −x2δ for FAP in (7).

Analogous to (11), we can write for x2

x2 = x1δ∗
+ Z2


π22 − π21δ

∗

+ v2 − δ∗v1 = x1δ∗

+ Z2γ ∗
+ v∗∗

where δ∗
= π12/π22 = δ−1, γ ∗

= −γ /δ and v∗∗
= v∗/δ. Clearly

F2|1 =

π2 −δ∗π1
′
Z ′Z

π2 −δ∗π1


(kz − 1)
σ 2

2 +δ∗2σ 2
1 − 2δ∗σ12 ,

whereδ∗
=
x′

1x1−1x′

1x2, has the same asymptotic properties as
F1|2 under H0 : π1 = δπ2, but it is not identical to F1|2 asδ∗

≠δ−1.

3.2. Relationship with Cragg–Donald statistic

With g endogenous variables, the minimum eigenvalue of the
Cragg–Donald statistic, τmin, is a test for H0 : rank (Π) = g − 1
against the alternative H1 : rank (Π) = g . For the two-variable
model, this null is of course equivalent to H0 : π1 = δπ2.
The Cragg–Donald test is based on the restricted estimates under
the null, using the minimum-distance criterion,
δ, π2


= argmin

δ,π2

H (δ, π2) ,
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with

H (δ, π2) =

π1π2


−


δπ2
π2

′ Σ−1
⊗ Z ′Z


×

π1π2


−


δπ2
π2


.

The Cragg–Donald test statistic is then

τmin = H

δ, π2

 d
−→χ2

kz−1

under the null. We show in the Appendix that

H

δ, π2


=

π1 − δπ2
′
Z ′Z

π1 − δπ2


σ 2
1 + δ

2σ 2
2 − 2δσ12

and hence the only difference between F1|2, F2|1 and τmin/ (kz − 1)
is the estimate for δ. Clearly, unlike the F-statistics, τmin is invariant
to normalisation, as H


δ

∗
, π1


= H


δ, π2


. Because of this,

computation of both F1|2 and F2|1 can provide further information
about thenature of theweakness of the instruments, as their values
can indicate whether the rank reduction is due to e.g. π1 = 0
(δ = 0), which τmin cannot distinguish, as we will show below.
We will also present a three-endogenous variables example in
Section 4.3 which further highlights the additional information
about instrument strength revealed by the three conditional F-
statistics relative to that of the Cragg–Donald statistic.

4. Local to rank one weak instrument asymptotics in the two-
variable model

In the previous section, we have shown that (kz − 1) Fγ has
a limiting χ2

kz−1
distribution under the null that γ = 0 in (12).

We next investigate whether Fγ can be used to assess whether
instruments are weak for individual parameters as described in
Section 2. We focus in the derivation below on Fγ as the setup for
this test is easier to use with our weak instruments asymptotics,
but results of course carry over directly to F1|2, F2|1 and τmin.

We are interested in the case that the instruments are not weak
for each equation, but where the rank of Π approaches a rank
reduction of one. We specify LRR1 weak instrument asymptotics
as γ = c/

√
n, or

π12 = δπ22 + c/
√
n.

We can then write the reduced form of x1 as

x1 = Zπ2δ + Z2 (π12 − δπ22)+ v1

=x2δ + Z2c/
√
n + (v1 − δPZv2) .

The IV estimator for β1 is given by

β1,2SLS =
x′

1Mx2Z2 Z ′

2Mx2Z2−1 Z ′

2Mx2y
x′

1Mx2Z2 Z ′

2Mx2Z2−1 Z ′

2Mx2x1
and it follows that

β1,2SLS − β1 =
x′

1Mx2Z2 Z ′

2Mx2Z2−1 Z ′

2Mx2u
x′

1Mx2Z2 Z ′

2Mx2Z2−1 Z ′

2Mx2x1
as Mx2x2 = 0, Mx2MZ =


I − PZx2


x′

2PZx2
−1 x′

2PZ

MZ = MZ , and

hence Z ′

2Mx2MZv2 = Z ′

2MZv2 = 0.
We assume that

1
√
n
Z ′

2Mx2u
1

√
n
Z ′

2Mx2 (v1 − δv2)

 d
−→


ψZ∗

2 u
ψZ∗

2 (v1−δv2)


= N (0,Ω ⊗ Q ) ,

where

Ω =


σ 2
u σu1 − δσu2

σu1 − δσu2 σ 2
1 + δ2σ 2

2 − 2δσ12


; Z∗

2 = Mx2Z2;
Q = plim


n−1Z∗′

2 Z∗

2


.

It is then easily shown that

x′

1Mx2Z2 Z ′

2Mx2Z2−1 Z ′

2Mx2x1 d
−→ σ 2

v1−δv2

λ+zv′ λ+zv
and

x′

1Mx2Z2 Z ′

2Mx2Z2−1 Z ′

2Mx2u d
−→ σuσv1−δv2

λ+zv′zu
where

σv1−δv2 =


σ 2
1 + δ2σ 2

2 − 2δσ12;λ = σ−1
v1−δv2

Q 1/2c; zv = σ−1
v1−δv2

Q−1/2ψZ∗
2 (v1−δv2)

;zu = σ−1
u Q−1/2ψZ∗

2 u
.

We are therefore in the same setup as Staiger and Stock (1997)
and Stock andYogo (2005), and the distribution of the bias ofβ1,2SLS
is given by

β1,2SLS − β1 =
x′

1Mx2Z2 Z ′

2Mx2Z2−1 Z ′

2Mx2u
x′

1Mx2Z2 Z ′

2Mx2Z2−1 Z ′

2Mx2x1
d

−→
σu

σv1−δv2

×

λ+zv′zuλ+zv′ λ+zv ,
and

E
β1,2SLS


− β1 −→

σu1 − δσu2

σ 2
1 + δ2σ 2

2 − 2δσ12
E

 λ+zv′zvλ+zv′ λ+zv

.

One would therefore think that one could proceed as in the one-
variable model as specified above, with

l =λ′λ/ (kz − 1) =
1

kz − 1
c ′Qc

σ 2
1 + δ2σ 2

2 − 2δσ12
and the critical values from the non-central chi-squared distribu-
tion applied to

Fγ =
x′

1Mx2Z2 Z ′

2Mx2Z2−1 Z ′

2Mx2x1
(kz − 1)

σ 2
1 +δ2σ 2

2 − 2δσ12 .
However, in this case the bias of the OLS estimator of β1 in the

model

y = x1β1 + x2β2 + u

is given by

β1,OLS − β1 =
x′

1Mx2u
x′

1Mx2x1
.

As

x1 = x2δ + Z2c/
√
n + (v1 − δv2) ,

we get that

plim

n−1 x′

1Mx2u


= plim

n−1


c

√
n
Z ′

2Mx2u + (v1 − δv2)
′Mx2u


.

Further,

plim

n−1 x′

1Mx2x1


= plim

n−1


c

√
n
Z ′

2Mx2Z2
c

√
n

+ 2
c ′

√
n
Z ′

2Mx2(v1 − δv2)+ (v1 − δv2)
′Mx2(v1 − δv2)


.
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From these results we find that the bias of the OLS estimator
converges to

plim
β1,OLS − β1


=

plim

n−1(v1 − δv2)

′Mx2u


plim

n−1(v1 − δv2)′Mx2(v1 − δv2)


=

σu1 − δσu2 −
(σ12−δσ

2
2 )σu2

π ′
2QZZπ2+σ

2
2

σ 2
1 + δ2σ 2

2 − 2δσ12 −
(σ12−δσ

2
2 )

2

π ′
2QZZπ2+σ

2
2

and therefore, we now have that

Bn,1 =

E β1,2SLS

− β1

E β1,OLS

− β1

 ≠

E
 λ+zv′zvλ+zv′ λ+zv


and so the direct relationship between the relative bias of the
individual parameter and the value of the concentration parameter
does not hold in this setting.1

However, we can get a result for the total relative bias. First of
all, we show in the Appendix that for the 2SLS estimator for β2 the
following holds,

β2,2SLS − β2
d

−→ −δ
σu

σv1−δv2

λ+zv′zuλ+zv′ λ+zv ,
and hence, asymptotically,
E
β2,2SLS


− β2 = −δ


E
β1,2SLS


− β1


.

From this it follows thatβ2,2SLS is consistent when δ = 0, that is in
the situation where the instruments are strong for x2, but weak for
x1 in the sense that π1 is local to zero.

We then show in the Appendix that

B2
=


E
β2SLS


− β

′
ΣX


E
β2SLS


− β


E
βOLS


− β

′
ΣX


E
βOLS


− β

 ≤ b2,

where

b = E

 λ+zv′zvλ+zv′ λ+zv

.

From this it follows that we can use the SY critical values for
τmin/ (kz − 1), F1|2 and F2|1 to assess LRR1 weak instrument max-
imal total relative bias. These are the critical values tabulated for
the one-endogenous variable case with kz − 1 instruments.

We can also use the equivalent SY critical values for assessing
the maximal size of the individual 2SLS Wald tests. We get for the
Wald test for the simple null H0 : β1 = β0

1

W1 =

β1,2SLS − β0
1

2 
x′

1Mx2Z2 Z ′

2Mx2Z2−1 Z ′

2Mx2x1


σ 2
u

=
σ 2
uσ 2
u

λ+zv′zu2λ+zv′ λ+zv
1 The one-variable model as described above was y = Mx2 x1β1 + ξ . and so one

could ask the question whether the weak instrument relative bias could apply to
the OLS estimator in this model instead. The OLS estimator is given by

β1,OLS =
x′

1Mx2y
x′

1Mx2 x1 = β1 +
β2x′

1Mx2 x2 + x′

1Mx2u
x′

1Mx2 x1
and therefore

plimβ1,OLS − β1 =
β2σ12 + σu1

σ 2
1

and hence, again

Bn,1 =

E β1,2SLS

− β1

E β1,OLS

− β1

 ≠

E
 λ+zv′zvλ+zv′ λ+zv

 .

whereσ 2
u =


y − x1β1,2SLS − x2β2,2SLS

′ 
y − x1β1,2SLS − x2β2,2SLS


/n.

We find that

σ 2
u

d
−→ σ 2

u


1 − 2

σu1 − δσu2

σuσv1−δv2

ν2ν1 +

ν2v1
2

,

whereν1 =
λ+zv′ λ+zv ; ν2 =

λ+zv′zu.
TheWald test is then, as in Staiger and Stock (1997) and Stock and
Yogo (2005), equal to

W1 =
v22/v1

1 − 2ρν2/ν1 + (ν2/ν1)2
whereρ =

σu1−δσu2
σuσv1−δv2

, and so we can again use the SY critical values
for the F-statistic formaximal size of theWald-test, achievedwhenρ = 1. Clearly, we get the same results for W2, the Wald test for
H0 : β2 = β0

2 .

4.1. Monte Carlo illustration

To illustrate, we generate data from the model as specified
above, with ui
v1i
v2i


∼ N

00
0


,

σ 2
u σu1 σu2
σu1 σ 2

1 σ12
σu2 σ12 σ 2

2

 .
The instruments are drawn independently from the standard
normal distribution, with kz = 4, and hence QZZ = I4. We set
π2 = (−0.5, 0.5,−0.5, 0.5)′ and π1 = δπ2 + (0, c, c, c)′ /

√
n.

We have

Q = plim
1
n
Z ′

2Mx2Z2 = Ikz−1 −
π22π

′

22

π ′

2π2
,

where π2 =

π21 π22

′ is partitioned commensurate with Z =
z1 Z2


.

The limit of the concentration parameter for this specific
configuration is given by

CPl =
c ′Qc

σ 2
1 + δ2σ 2

2 − 2δσ12
=

3c2 −
c2
4

σ 2
1 + δ2σ 2

2 − 2δσ12
.

We choose c such that the concentration parameter has the value
for which the IV estimator for β has a maximal total relative bias
of 10%. We have further set the parameters as follows: β1 =

0.5; β2 = −0.3; σ 2
u = σ 2

1 = σ 2
2 = 1; σu1 = 0.1; σu2 =

−0.7; σ12 = −0.7 and δ = 0.7. This design is such that the
additional terms in the OLS bias are important, with

σu1 − δσu2

σ 2
1 + δ2σ 2

2 − 2δσ12

σ 2
1 + δ2σ 2

2 − 2δσ12 −
(σ12−δσ

2
2 )

2

π ′
2QZZπ2+σ

2
2

σu1 − δσu2 −
(σ12−δσ

2
2 )σu2

π ′
2QZZπ2+σ

2
2

= 3.5591

i.e. the OLS bias for β1 is much smaller than σu1−δσu2
σ 2
1 +δ2σ 2

2 −2δσ12
. The

results are given in Table 3 for a sample size of 10,000 observations.
The individual standard F-statistics are very large. As expected, the
IV estimator ofβ1 has a large relative bias of 0.3441, approximately
equal to 3.56 ∗ 0.1, but the relative bias of β2 is much smaller at
0.0498. The distributions of F1|2, F2|1 and τmin/ (kz − 1) are virtually
identical, each with a mean of 4.7 and rejection frequency of 4.6%
at the 5% nominal level using the weak instrument critical value.
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Table 3
Estimation results and relative bias for two-variable model.

Mean St dev Rel bias SY rej freqβ1,OLS 0.5695 0.0070β2,OLS −0.6506 0.0062β1,2SLS 0.5239 0.1979 0.3441β2,2SLS −0.3174 0.1419 0.0498
F1 1290 44
F2 2503 71
FAP,1 11.82 5.91 0.6256
FAP,2 22.93 11.46 0.9082
F1|2 4.70 2.35 0.0460
F2|1 4.71 2.36 0.0464
τmin/ (kz − 1) 4.70 2.35 0.0457
τmin/kz 3.52 1.76 0.0267

Notes: Sample size 10,000; 10,000 MC replications; β1 = 0.5; β2 = −0.3; Fj is
the first-stage F-statistic for xj, j = 1, 2; FAP,j is the Angrist–Pischke F-statistic and
F1|2 and F2|1 are the conditional F-statistics as in (14); τmin is the Cragg–Donald
minimum eigenvalue statistic; rel bias is the relative bias of the 2SLS estimator,
relative to that of the OLS estimator; SY rej freq uses the 5% Stock–Yogo critical
values for a maximum 10% total relative bias.

Table 4
Estimation and Wald tests results for two-variable model.

Mean St dev Rej freq SY rej freqβ1,OLS 1.4990 0.0007β2,OLS 0.3899 0.0006β1,2SLS 0.5257 0.1565β2,2SLS −0.2827 0.1071
W1 1.47 2.86 0.1016
W2 1.46 2.87 0.1017
W12 2.61 3.58 0.1080
F1|2 14.85 4.40 0.0548
F2|1 14.93 4.45 0.0585
τmin/ (kz − 1) 14.84 4.40 0.0517
τmin/kz 11.13 3.30 0.0545

Notes: Sample size 10,000; 10,000 MC replications; β1 = 0.5; β2 = −0.3Wj is the
Wald test for H0 : β j = β0j; W12 is joint Wald test; F1|2 and F2|1 are the conditional
F-statistics as in (14); τmin is the Cragg–Donald minimum eigenvalue statistic; rej
freq for Wald tests uses 5% critical value of χ2 distribution; SY rej freq uses the 5%
Stock–Yogo critical values for a maximal 10% size of Wald tests.

In comparison, the AP F-statistics are much larger in this case with
the mean of FAP,1 equal to 11.82, and that of FAP,2 equal to 22.93.

The total relative bias in this design is found to be equal to
7.6%, which is less than 10%, as predicted by the theory above. The
SY test for weak instruments for Π local to 0 is conservative and
has a rejection frequency of 2.6%. This test is given by τmin/kz and
the weak instrument critical value is derived for two endogenous
variables with kz instruments. In contrast, the weak instrument
critical values for F1|2, F2|1 and τmin/ (kz − 1) are those for one
endogenous variable with kz −1 instruments. From Table 1 in SY, it
is easily established that when τmin/kz is larger than its associated
tabulated critical value, then τmin/ (kz − 1) is also larger than its
weak instrument critical value, so we would always reject LRR1
weak instrument problems whenever we reject rank zero weak
instrument problems.

In Table 4 we present results for the Wald test statistics in a
design withρ = 1, by changing the variance parameters to σu1 =

0.755, σu2 = 0.35 and σ12 = −0.35, again choosing c such that the
size of theWald tests is 10% at the 5% level. The simulations confirm
the analytical results. The rejection frequencies of the Wald tests
are just over 10% and the rejection frequencies of F1|2, F2|1 and
τmin/ (kz − 1) just over 5%. In this case, the SY weak instrument
test τmin/kz using the tabulated critical value for two endogenous
variables and four instruments is also just over 5%.

4.2. The case δ = 0

When δ = 0 , we have in the process above that π1 is local to
zero, and hence the instruments for x1 are weak, but not for x2. As

Table 5
Estimation results and relative bias for two-variable model, δ = 0.

Mean St dev Rel bias SY rej freqβ1,OLS 1.2317 0.0067β2,OLS −0.3976 0.0047β1,2SLS 0.5776 0.3001 0.0776β2,2SLS −0.3010 0.0103 −0.0010
F1 4.08 1.88 0.0044
F2 2503 70 1.0000
FAP,1 4.79 2.39 0.0515
FAP,2 2922 502 1.0000
F1|2 4.72 2.36 0.0474
F2|1 462 1184 0.8811
τmin/ (kz − 1) 4.72 2.36 0.0470
τmin/kz 3.54 1.77 0.0259

Notes: Sample size 10,000; 10,000 MC replications; β1 = 0.5; β2 = −0.3 Fj is
the first-stage reduced form F-statistic for xj, j = 1, 2; FAP,j is the Angrist–Pischke
F-statistic and F1|2 and F2|1 are the conditional F-statistics as in (14); τmin is the
Cragg–Donald minimum eigenvalue statistic; rel bias is the relative bias of the 2SLS
estimator, relative to that of the OLS estimator; SY rej freq uses the 5% Stock–Yogo
critical values for a maximum 10% total relative bias.

shown above,β2,2SLS is in this case consistent for β2, butβ1,2SLS will
suffer from a weak instrument bias. This situation may actually be
of interest if the main research focus is on the effect of x2 on y.
If the instruments used are then strong for x2 but weakly or not
informative for x1, the IV estimator for β2 will be well behaved. In
Table 5, we show the results for the bias of the 2SLS estimates, for
when δ = 0 and where we have further set σu1 = 0.8. All other
parameters remain the same as for the results presented in Table 3,
and we have set the value of c again such that the maximum total
relative bias is 10%. As can be seen from the table, the results are
as expected. The value of the first-stage F-statistic for x1, F1 is now
small, whilst that of F2 is large. The behaviour of FAP,1 is now the
same as that of F1|2, both rejecting the null of weak instruments
5% of the time using the SY critical values for kz − 1 instruments.β2,2SLS is consistent, but the total relative bias is at 9.7% only just
below 10%.

4.3. More than two endogenous variables

As is clear from the analyses above for the two-variable model,
the use of F1|2 and F2|1 under our LRR1 weak instrument asymp-
totics do not reveal more information than the Cragg–Donald
statistic τmin/ (kz − 1), unless δ = 0 and hence π1 is local to zero.
The derivations for the two-variable model easily extend to the
general case of several endogenous variables. The computation of
the individual conditional F-statistics could then reveal further in-
teresting patterns that the Cragg–Donald statistic will not be able
to. For example, consider a three-variable model, which has a local
rank reduction of one, of the form
π1 = δ2π2 + δ3π3 + c/

√
n

but with δ3 = 0. The conditional F-statistics are in this case
computed from
xj − X−jδ = Zκ + ξ,

where X−j is the matrix of endogenous variables with xj excluded
andδ =

X ′

−j
X−j
−1X ′

−jxj. The conditional F-statistics are then

Fxj|X−j =
κ ′Z ′Zκ

(kz − 2)
ξ ′ξ/n , (15)

see the Appendix for simple Stata code to calculate Fxj|X−j .
Table 6 presents some simulation results for this particular case

for the following design ui
v1i
v2i
v3i

 ∼ N


0
0
0
0

 ,
 1 0.8 0.3 0.6
0.8 1 0.3 0.5
0.3 0.3 1 0.4
0.6 0.5 0.4 1


 ,
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Table 6
Estimation results and relative bias for three-variable model.

Mean St dev Rel bias SY rej freqβ1,OLS 1.1337 0.0068β2,OLS −0.4581 0.0050β3,OLS 0.9526 0.0055β1,2SLS 0.5709 0.3086 0.1120β2,2SLS −0.3361 0.1575 0.2285β3,2SLS 0.6990 0.0161 −0.0040
F1 650 26
F2 2504 67
F3 902 32
F1|2,3 4.82 2.38 0.0514
F2|1,3 4.84 2.41 0.0531
F3|1,2 198.21 329.06 0.8779
τmin/ (kz − 2) 4.82 2.38 0.0513
τmin/kz 2.89 1.43 0.0156

Notes: Sample size 10,000; 10,000 MC replications; β1 = 0.5; β2 = −0.3; β3 =

0.7 Fj is the first-stage reduced form F-statistic for xj, j = 1, 2, 3; F1|2,3 , F2|1,3 and
F3|1,2 are the conditional F-statistics as in (15); τmin is the Cragg–Donald minimum
eigenvalue statistic; rel bias is the relative bias of the 2SLS estimator, relative to
that of the OLS estimator; SY rej freq uses the 5% Stock–Yogo critical values for a
maximum 10% total relative bias.

δ2 = 0.5; δ3 = 0; β1 = 0.5; β2 = −0.3; β3 = 0.7. The
instruments are again drawn independently form the standard
normal distribution, with kz = 5, and c is again chosen such that
the total relative bias is less than 10%.

It is clear from the conditional F-statistics that the near rank
reduction is due to parameters in the reduced form equations
for x1 and x2. From a straightforward extension of the analytical
results for the two-variable case in the Appendixwe get thatβ3,2SLS
is consistent as δ3 = 0. This is confirmed by the simulation
results. The total relative bias in this case is equal to 8.8%, which
is less than 10%. It is clear that the conditional F-statistics now
provide important additional information to that provided by the
Cragg–Donald statistic.

5. Conclusions

We have shown that a conditional first-stage F-test statistic
can be informative about the information that instruments provide
for models withmultiple endogenous variables. The conditional F-
test is similar to the one proposed by Angrist and Pischke (2009),
but takes the variance of the multiple equations into account
for testing a rank reduction of one of the matrix of reduced
from parameters. Our weak instrument asymptotics is defined
as local to a rank reduction of one of this matrix. We find that
the conditional F-statistics in a two-endogenous variables model
provide the same information as the Cragg–Donald test statistic for
testing a rank reduction of one, unless the rank reduction is due
to the fact that the instruments are uninformative for one of the
endogenous variables. The conditional F-statistics are informative
for total relative bias and Wald test size distortions for individual
structural parameters. With more than two endogenous variables,
the conditional F-statistics can provide additional information
regarding the strength of the instruments for the different reduced
forms. We therefore recommend in applied work that researchers
report standard first-stage F-statistics, the Cragg–Donald statistic
and the conditional F-statistics in order to gauge the nature
of the weak instrument problem, if any. The Stock and Yogo
(2005) weak instrument critical values can be used for the
Cragg–Donald and conditional F-statistics. When reduced form
errors are conditionally heteroskedastic and/or serially correlated,
robust conditional F-statistics can be computed and used as tests
for underidentification. However, the exact link of the Stock and
Yogo (2005) critical values with the magnitude of the relative
bias and Wald-test size distortions no longer holds for the robust
statistics and is therefore an important avenue for future research.

Appendix

A.1. Cragg–Donald statistic

The Cragg–Donald statistic in the two-variable model is ob-
tained as

τmin = minH (δ, π2) =

π1π2


−


δπ2
π2

′ Σ−1
⊗ Z ′Z


×

π1π2


−


δπ2
π2


.

The first-order condition is given by, writing Σ−1
=

σ 11 σ 12σ 12 σ 22


,

−
1
2
∂H (δ, π2)

∂π2
=

δσ 11

+σ 12 δσ 12
+σ 22

⊗ Z ′Z


×

π1π2


−


δπ2
π2


= 0,

resulting in
δσ 11

+σ 12 Z ′Zπ1 +

δσ 12

+σ 22 Z ′Zπ2

= δ

δσ 11

+σ 12 Z ′Zπ2 +

δσ 12

+σ 22 Z ′Zπ2.

Hence,

π2 =


δσ 11

+σ 12
π1 +


δσ 12

+σ 22
π2

δ

δσ 11 +σ 12


+

δσ 12 +σ 22


=


δσ 2

2 −σ12π1 +
σ 2

1 − δσ12π2σ 2
1 + δ

2σ 2
2 − 2δσ12 ,

and

π2 − π2 = −


δσ 2

2 −σ12σ 2
1 + δ

2σ 2
2 − 2δσ12

π1 − δπ2

;

π1 − δπ2 =

σ 2
1 − δσ12σ 2

1 + δ
2σ 2

2 − 2δσ12
π1 − δπ2


.

As σ 2
1 − δσ12

−

δσ 2

2 −σ12
′ Σ−1

 σ 2
1 − δσ12

−

δσ 2

2 −σ12


=

1 −δ

 Σ  1
−δ


= σ 2

1 + δ
2σ 2

2 − 2δσ12.
it follows that

H

δ, π2


=

π1 − δπ2
′
Z ′Z

π1 − δπ2


σ 2
1 + δ

2σ 2
2 − 2δσ12 .

A.2. Total relative bias

Equivalently to (11) we can write

x2 = x1δ∗
+ Z2


π22 − π12δ

∗

+ v2 − δ∗v1

where δ∗
= π21/π11 = δ−1. Hence, under LRR1 weak instrument

asymptotics, we have

x2 = x1δ∗
− Z2cδ∗/

√
n + v2 − δ∗v1.
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As
1

√
n
Z ′

2Mx1u
1

√
n
Z ′

2Mx1 v2 − δ∗v1

 d

−→


ψZ∗∗

2 u
ψZ∗∗

2 (v2−δ∗v1)


= N


0,Ω∗

⊗ Q ∗

,

Ω∗
=


σ 2
u σu2 − δ∗σu1

σu2 − δ∗σu1 σ 2
2 + δ∗2σ 2

1 − 2δ∗σ12


; Z∗∗

2 = Mx1Z2;
Q ∗

= plim

n−1Z∗∗′

2 Z∗∗

2


Q ∗

= plim
1
n
Z ′

2Mx1Z2
= plim


1
n


Z ′

2Z2 − Z ′

2δx2

δx′

2Z

Z ′Z

Z ′δx2


δx′

2Z2


= Q .

It follows that ψZ∗∗
2 u = ψZ∗

2 u
and ψZ∗∗

2 (v2−δ∗v1) = ψZ∗
2 (v2−δ

∗v1) =

−
1
δ
ψZ∗

2 (v1−δv2)
, as e.g.

Z ′

2Mx1u = Z ′

2u − Z ′

2x1

x′

1PZx1
−1 x′

1PZu

= Z ′

2u − Z ′

2x1

x′

1Z

Z ′Z
−1 Z ′x1


x′

1Z

Z ′Z
−1 Z ′u.

Further,

plim

n−1Z ′x1


= δplim


Z ′x2


,λ∗

= σ−1
v2−δ∗v1

Qcδ∗
=

δ∗σv1−δv2

−1 Qcδ∗
=λ,

so we get that

β2,SLS − β2
d

−→ −δ
σu

σv1−δv2

λ+zv′zuλ+zv′ λ+zv
and hence, asymptotically,

E
β2,SLS


− β2 = −δE

β1,2SLS

− β1.

Using this, we can express the total relative bias (4) as

B2
= b2

Σ ′

XuΣ
−1/2
X Σ

1/2
X DΣXDΣ

1/2
X Σ

−1/2
X ΣXu

Σ ′

XuΣ
−1
X ΣXu

where

b = E

 λ+zv′zvλ+zv′ λ+zv


; ΣXu =


σu1
σu2


;

D =
1

σ 2
1 + δ2σ 2

2 − 2δσ12


1 −δ

−δ δ2


.

Hence

B2
≤ b2 max eval


Σ

1/2
X DΣXDΣ

1/2
X


.

AsΣ1/2
X DΣXDΣ

1/2
X is a symmetric idempotent matrix, we get that

B2
≤ b2. To show this, note that

ΣX = plim
1
n


x′

1x1 x′

1x2
x′

1x2 x′

2x2


= π ′

2QZZπ2


δ2 δ
δ 1


+ΣV

and henceΣXD = ΣVD. Let

d =
1

σ 2
1 + δ2σ 2

2 − 2δσ12


1

−δ


so that D = dd′, then d′ΣVd = 1 and hence

ΣXDΣXD = ΣVDΣVD = ΣVdd′ΣVdd′
= ΣVdd′

= ΣVD = ΣXD

and therefore

Σ
1/2
X DΣXDΣ

1/2
X Σ

1/2
X DΣXDΣ

1/2
X = Σ

1/2
X DΣXDΣXDΣXDΣ

1/2
X

= Σ
1/2
X DΣXDΣ

1/2
X .

A.3. Stata code

Simple Stata code to calculate the conditional F-statistic F1|2,3
for the case of 3 endogenous variables, x1, x2 and x3, with 5
instruments z1, . . . ,z5 and 2 other exogenous variablesw1 andw2
is as follows:

ivregress 2sls x1 (x2 x3 = z1 z2 z3 z4 z5) w1 w2
predict res123, r
reg res123 z1 z2 z3 z4 z5 w1 w2
test z1 z2 z3 z4 z5
scalar Fsw = r(F)*r(df)/(r(df)-2)
di Fsw
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