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Abstract 

The ability to induce morphological transitions in water-in-oil (w/o) and water-in-CO2 (w/c) 

microemulsions stabilized by a tri-chain anionic surfactant 1,4-bis(neopentyloxy)-3-(neo-

pentyloxycarbonyl)-1,4-dioxobutane-2-sulfonate (TC14) with simple hydrotrope additives has 

been investigated. High pressure small-angle neutron scattering (SANS) has revealed the 

addition of a small mole fraction of hydrotrope can yield a significant elongation in the 

microemulsion water droplets. For w/o systems, the degree of droplet growth was shown to be 

dependent on the water content, the hydrotrope mole fraction and chemical structure; whereas for 

w/c microemulsions a similar, but less significant effect was seen. The expected CO2 viscosity 

increase from such systems has been calculated and compared to related literature using 

fluorocarbon chain surfactants. This represents the first report of hydrotrope induced morphology 

mailto:Julian.Eastoe@bristol.ac.uk
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changes in w/c microemulsions, and is a significant step forward towards the formation of 

hydrocarbon worm-like micellar assemblies in this industrially relevant solvent. 
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Introduction 

Over the last 30 years there has been a drive to design additives able to modify the properties 

of supercritical carbon dioxide (scCO2) to render it more suitable for industrial applications1-3. 

Whether trying to improve surface tension, wettability or viscosity, the ability to optimize the 

physico-chemical properties of scCO2 is of great interest. 

 

One particular application that would benefit from further development is the use of scCO2 for 

enhanced oil recovery (CO2-EOR) from porous rocks4, 5. The main disadvantage of using CO2 in 

EOR is the very low viscosity, which does not readily facilitate transport over oil bearing 

reservoirs, but rather through porous media (fingering) which occurs to make a pathway of least 

resistance6. There is therefore a need to develop systems that can enhance CO2 viscosity7-11. 

 

Numerous surfactants and co-solutes are known to generate viscous phases in both aqueous 

and organic media12-14 but due to limited solvency of CO2, they are unsuitable for use in that 

solvent. Fluorinated surfactants, many based on the classic anionic surfactant Aerosol-OT 

(AOT), have been designed for CO2 and are able to form water-in-CO2 (w/c) microemulsions15-21 

as has been highlighted in numerous reviews6. It has been shown that by counterion modification 

of these surfactants, the formation of rod-like micelles22 can be induced leading to viscosity 

increases of up to 90 %6, 23: the importance of counterion choice in the design of CO2-philic 

surfactants has been the focus of a recent review24. Unfortunately, these surfactants are highly 

fluorinated and therefore expensive and environmentally unfriendly25, 26. To overcome this 

problem, low fluorine/hydrocarbon replacements have recently been developed27-29.  
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One of the first hydrocarbon surfactants compatible enough with CO2 to form microemulsions 

is the tri-chain hydrocarbon TC14 (Figure 1)30. As for the fluorinated surfactants, TC14 has also 

been studied with a series of different counterions, but whereas similar rod-like micelles were 

formed in hydrocarbon solvents, the same effects were not observed in CO2 showing that 

counterion exchange cannot be used as a strategy to enhance viscosity for this surfactant class31. 

 

Another approach to form rod-like micelles in alkane solvents is using surfactant/hydrotrope 

mixtures32-35. Hydrotropes are small amphiphilic molecules which have hydrophilic character, 

and the ability to increase solubility of organic compounds in water36-38. They have been shown 

to induce both aqueous micellar and w/o microemulsion growth 32, 34. Recently, Hatzopoulos et 

al. found that when AOT was mixed with a series of simple carboxylic acid salt hydrotropes 

(Table 1b-e), depending on the structure of the additive and the amount of water present, either 

spherical or rod-like nanodroplet microemulsions could be formed 33. In this new paper the same 

series of hydrotropes has been studied but using the promising CO2-philic surfactant TC14 in 

both w/o and w/c microemulsions. 

 

Here it has been demonstrated that similar spherical to rod-like transitions can be obtained 

using TC14 in both w/o and w/c microemulsions.  For w/o alkane systems, significant 

elongations could be obtained, with rod-shaped nanodroplets having aspect ratios over 100. In 

CO2, the effects were less pronounced, but still significant with microemulsion aspect ratios over 

2 for the prolate ellipsoids formed. The scCO2 viscosity increases which would be expected from 

the presence of these ellipsoidal micelles has been estimated and results comparable to 

enhancements seen in similar w-value microemulsions of counterion modified, fluorinated 
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surfactants [NEEDS A REF].  This represents a significant step in the ability to form rod-like 

micelles in scCO2. So far the only viable method of obtaining this has been through modification 

of the counterion of fluorocarbon surfactants, which requires lengthy and expensive, synthesis. 

Here, similar results have been obtained by taking a hydrocarbon surfactant with a single 

counterion and cheap, readily available additives.  

 

 

 

 

 

Figure 1. The surfactant, TC14, and hydrotropes studied here where: (A) is C2Benz where R1 = 

CH3CH2, (B) is C4Benz where R1 = CH3(CH2)3, (C) is C8Benz where R1 = CH3(CH2)7 (D) is 

PhenC3 where R2 = CH2CH2 and (E) is PhenC5 where R2=(CH2)4. 
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Experimental 

Materials 

Details describing the synthesis and purifications of TC14 and the hydrotropes have been 

published previously37, 39. Microemulsions were prepared at a fixed surfactant concentration of 

0.05 mol dm-3 and hydrotrope mole fraction, X, of 0.10 and 0.20 (where X = [moles of 

hydrotrope]/ [moles of hydrotrope]+[moles of surfactant]). Water was added until the desired 

water to surfactant ratio (the w value = [water]/[surfactant]40) was reached. 

 

Small-Angle Neutron Scattering (SANS)  

 

SANS measurements were performed using the time-of-flight instruments LOQ41 and 

SANS2D42 at the ISIS spallation source, Rutherford Appleton Laboratory, Oxfordshire, UK. 

LOQ spans a scattering vector, Q, range of 0.008 < Q <0.25 Å-1 by using neutron wavelengths of 

2.2 – 10 Å and SANS2D spans 0.002 <Q < 1 Å-1 using neutron wavelengths of 2 – 14 Å-1. Q is 

defined as: 

 

   𝑄 =
4𝜋

𝜆
sin

𝜃

2
          (1) 

 

Where θ is the scattering angle and λ the incident neutron wavelength. Samples in alkane 

solvents were run in quartz cells (Hellma) with a pathlength of 1 mm at 25 °C. High-pressure 

SANS was performed using a Thar pressure cell as described previously23 with a 10 mm 

pathlength at 45 °C and 400 bar. All scattering data were normalised for the sample transmission, 



 7 

empty cell, and solvent background and put on an absolute intensity scale using standard 

procedures for each instrument given errors in scattering intensity of within 5 %43. 

 

The neutron scattering intensity as a function of scattering vector, I(Q), is dependent on the 

number of scattering bodies, Np; the particle volume, Vp; the difference in scattering length 

density between the scattering body and the solvent (Δρ); the form factor, P(Q); which describes 

particle size and shape; the structure factor, S(Q), which describes interactions between different 

scattering bodies; and the background incoherent scattering as defined by44: 

  

𝐼(𝑄) =  𝑁𝑝𝑉𝑝
2(∆𝜌)2𝑃(𝑄)𝑆(𝑄) +  𝐵𝑖𝑛𝑐       (2) 

 

The neutron scattering contrast in this study arises primarily between the deuterated 

microemulsion water core and the carbon dioxide. Numerous models have been developed to 

describe both P(Q) and S(Q) and can be combined manually or in fitting programs with 

parameters in those models adjusted until a fit is obtained. Here the fitting program SANSview 

has been used to analyse the data29. The equations describing the three scattering laws used, 

Schultz polydisperse spheres45, 46, ellipsoidal47 and rod45 form factor and more detail on 

scattering contrast, can be found in the supporting information.  As noted in other CO2 high 

pressure SANS studies, due to the low surfactant concentration and low-dielectric constant of 

supercritical CO2, no structure factor has been needed in the data fitting 
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Results and Discussion 

water-in-oil microemulsions 

 

Scattering data for TC14 stabilised water-in-heptane microemulsions of varying w value are 

shown in Figure 2. As with data previously seen for water-in-cyclohexane microemulsions31, the 

nanodroplets formed are best described by a polydisperse sphere form factor and solid lines in 

Figure 2 show the fits obtained with the radii values presented in Table 1. 
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Figure 2. Scattering data for microemulsions of TC14/water/heptane at w5, 10 and 20. Solid 

lines show fits to a polydisperse sphere form factor. 
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Table 1.  Fit parameters obtained for water-in-oil microemulsions of heptane and TC14. 

w 

 

Polydisperse spheres fit parameters 

R / + 1Å σa + 0.1 

5 15.0 0.20 

10 16.5 0.20 

20 25.0 0.20 

aWhere σ is the Schultz distribution of radius as described in the model (Supporting 

information). 

 

When hydrotropes were added to these triple-chain TC14 water-in-oil microemulsions, trends 

comparable with those seen previously for double-chain AOT microemulsions33 were observed; 

that is, an elongation of the microemulsion droplets where the extent of distortion was dependent 

upon the w value, structure (such has hydrocarbon chain length), and in this case, mole fraction 

of the added hydrotrope.  

 

Effect of w value 

 

Data and fits for w10 and w20 microemulsions of TC14 in the presence of C4Benz are 

presented in Figure 3 and are typical of the scattering data for all the systems (w5 

microemulsions in the presence of hydrotrope were not stable and phase separated). All data and 

fits can be found in the supporting information. The addition of 0.10 mole fraction of hydrotrope 

to a w10 TC14 microemulsion induced a shape transition from a sphere to ellipsoidal droplets. 

The addition of more water to form a w20 system was shown to cause further elongation, so 

much so that in the case of C4Benz (Figure 3) and C8Benz the scattering data are better described 

by a rod form factor. As the length obtained from the C8Benz rod fit is larger than the resolution 
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of the SANS instrument, the absolute length is uncertain although it is clear the microemulsion 

rod lengths are at least 1000 Å.  Fit parameters are presented in Table 2 and further model limit 

explanations in the supporting information. In the previous work by Hatzopoulos et al.33, in the 

presence of hydrotropes, microemulsions with AOT were shown to have maximum elongation at 

the lowest w values studied (w10). On increasing the water content the droplets became more 

spherical until at high water content spheres were formed. This was explained by the fact that as 

the water content increases the aqueous concentration of the hydrotrope decreases towards the 

critical aggregation concentration, cac. At this effectively lower hydrotrope concentration, less 

adsorption into the microemulsion interface occurs and therefore less elongation. When the 

concentration falls below that of the cac spherical droplets were once again seen to form. Here 

the opposite effect is observed and the elongation of the microemulsion increases as the w value 

increases. As TC14 is unable to stabilise w values as high as those obtainable in microemulsions 

of AOT [CRAIG GIVE A REF HERE PERHAPS TO ONE OF SANDRINES PAPERS – THEN 

UPDATE THE REF LIST], the aqueous concentration of the hydrotrope never goes below the 

critical aggregation concentration, and the spherical form factor was never recovered. For TC14, 

w20 is near the water solubility limit which may explain the different effect of water addition. 

 

  

 

 

 

 

 



 12 

 

 

 

CRAIG NEED TO SORT OUT THE OVERLAP OF FIGURE AND TABLE AND THE 

PAGINATION  

Figure 3. Scattering data for microemulsions of TC14/water/heptane with 0.10 mole fraction 

of C4Benz at w10 (open Circles) and w20 (open triangles). Fits are to an ellipsoidal form factor 

(solid lines) and rod form factor (dashed line). 

 

Table 2.  Fit parameters obtained from fitting SANS data of water-in-oil microemulsions of 

TC14 in the presence of 0.10 and 0.20 mole fraction of hydrotrope. 

 

 

Hydrotrope 

Fit parameters using ellipsoidal form factor 

w10  w20 

0.10 mole fraction 

of hydrotrope 

0.20 mole fraction 

of hydrotrope 

0.10 mole fraction of 

hydrotrope 

0.20 mole fraction of 

hydrotrope 
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aWhere Ra/Rb is the ellipticity and when equal to 1, the form factor is for that of a sphere, if 

greater than one, a prolate ellipsoid and if less than one, an oblate ellipsoid (see supporting 

information for model details). bWhen the ellipticity is greater than 5 the form factor can be well 

approximated by a rod model. Systems where this occurs have been marked with an asterisk. See 

supporting information further explanation. c Although this was the fit value obtained, due to the 

resolution of the instrument used, the value is clearly greater than 1000 Å. See text for more 

information. Errors in Ra are + 2Å and Rb +1 Å. 

 

  

Ra/Å
a Rb/Å Ra/Rb Ra/Å Rb/Å Ra/Rb Ra/Å Rb/Å Ra/Rb Ra/Å Rb/Å Ra/Rb 

C2Benz 70.0 17.0 4.1 85.5 14.5 5.9 80.0 22.5 3.5 115.5 22.0 5.3 

C4Benz 38.5 15.0 2.5 75.0 15.5 4.8 147.0* 28.5 5.2 - - - 

C8Benz 57.0 16.5 3.5 124.0 16.5 7.5 4000.0* 29.0 138 - - - 

PhenC3 53.5 17.0 3.2 62.0 18.0 3.4 53.0 18.0 3.0 69.0 20.0 3.5 

PhenC5 45.0 16.0 2.8 73.0 15.5 4.7 111.0 27.0 4.1 - - - 
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Effect of hydrotrope mole fraction 

 

Increasing the mole fraction of hydrotrope from 0.10 to 0.20 caused further growth in the 

microemulsions at both w values studied, although, for the longer chain C4Benz and C8Benz 

hydrotropes, the systems were no longer stable at X = 0.20 and w20. The fact increasing 

hydrotrope concentration leads to more elongation supports the previously found trends33 that 

higher concentration causes greater adsorption of the hydrotrope into the microemulsion 

interface. However, the further elongation with increasing w value suggests that this cannot be 

the whole story, and the nature of the surfactant must have some effect. 

 

Effect of hydrotrope structure 

 

As well as hydrotrope mole fraction and microemulsion w value, the length of the hydrotrope 

chain and structure of the “head” group was also shown to have a notable effect on the 

transitions. Figure 4 shows scattering data for the three different CnBenz hydrotropes at 0.10 

mole fraction for w10 [CRAIG CHECK w IS ITALICIZED THROUGHOUT] and 20 

microemulsions with fit parameters presented in Table 2. Given the  1 Å error in the radii, the 

spherical radius (Rb) of the microemulsion is not affected by the hydrotrope when compared to 

the pure TC14 microemulsions. This is in agreement with results seen with AOT33, however, as 

also noted with AOT systems, there is no obvious trend visible regarding the magnitude of 

elongation and the structure of hydrotrope used. It is clear though that hydrotropes can be used to 

generate elongation in w/o microemulsions of TC14, which suggests the approach could be 

applied to water-in-CO2 microemulsions.  
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Figure 4. Scattering data for w10 (top) and w20 (bottom) microemulsions of 

TC14/water/heptane with either no hydrotrope (open circles) or 0.10 mole fraction of C2Benz 

(open squares), C4Benz (open triangles) or C8Benz (open triangles). Fits are to polydisperse 

spheres (solid lines), ellipsoids (long dashed lines) and rods (short dashed lines). 

Water-in-CO2 microemulsions 

TC14 is known to form spherical water-in-CO2 (w/c) microemulsion droplets with radii  

of 10 Å30 (Table 3, Figure 5). After the addition of hydrotropes, as with w/o systems, the w/c 

droplet aspect ratios were seen to increase (from Ra:Rb 1 to ~2.5) showing a substantial 

elongation. Unfortunately, the maximum aspect ratios are lower than those for w/o systems, most 

likely due to the fact that suitably high w values are not stable in CO2, and this is where the 

greatest growth was observed in the w/o systems. Unlike in w/o systems, the structure of the 

hydrotrope was shown to have very little effect on the microemulsion morphology. All CnBenz 

and PhenCn hydrotropes where shown to form comparable microemulsion domains with a 

slightly larger polar radius than the hydrotrope free systems and with an elongation of ~2.5. The 

effect of hydrotrope concentration was also studied for the CnBenz hydrotropes with 0.20 mole 

fraction also investigated. As with the w/o analogues, larger elongation was observed at higher 

 

 

Hydrotrope 

Ellipsoid/ Sphere parameters 

0.10 mole fraction of hydrotrope 0.20 mole fraction of hydrotrope 

Ra /+2Å Rb /+1Å Ra/Rb Ra /+2Å Rb /+1Å Ra/Rb 

None 
10.0 10.0 1.00 - - - 

C2Benz 
29.0 12.5 2.30 25.0 11.5 2.20 

C4Benz 
31.0 13.0 2.40 33.0 12.0 2.75 

C8Benz 
30.0 12.0 2.50 34.0 12.0 2.80 

PhenC3 
30.0 13.0 2.30 - - - 

PhenC5 
30.0 12.0 2.50 - - - 
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hydrotrope concentration, however the effect was much less significant in w/c systems.  

[CRAIG CORRECT THE PAGINATION – USE ALT – I – BREAK TO FORCE PAGE 

BREAKS]  

Table 3.  Fit parameters obtained from fitting SANS data for water-in-CO2 microemulsions of 

TC14 in the presence of 0.10 and 0.20 mole fraction of hydrotrope. 
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Figure 5. Scattering data and fits for w5 water-in-supercritical CO2 microemulsions of TC14 

with either no hydrotrope (open circles) or 0.10 mole fraction of C8Benz (open diamonds), 

C4Benz (open triangles) and C2Benz (open squares). Fits are to spheres (solid line) and ellipsoids 

(dashed lines). Data were collected at 400 bar and 45 °C. 

 

Supercritical CO2 viscosity enhancement calculations 

 

In a previous study, Cummings et al.48 synthesised a series of fluorinated surfactants with 

different counterions which micellized to generate elongated rod-like w/c microemulsions. Using 

results from SANS and high pressure viscosity measurements, a relationship was found between 

microemulsion aspect ratio and viscosity enhancement of the CO2 continuous microemulsions. 

 

Using equations 349 and 448, 50 below, the viscosity enhancement expected from the 

TC14/hydrotrope systems has been estimated49. 

 

[𝜂] ≅ 2.5 + 0.4075(𝑋𝑚𝑖𝑐 − 1)1.508        (3) 

 

𝜂𝑚𝑖𝑐

𝜂𝐶𝑂2

≅ 𝜂𝑟𝑒𝑙 ≅ 1 + [𝜂]𝜑𝑝 + 𝐾𝐻[𝜂]2𝜑𝑝
2        (4) 

 

Where: [𝜂] is the intrinsic viscosity; Xmic the microemulsion aspect ratio [CRAIG 

ELLIPTICITY MAY GET CONFUSED WITH THE PARAMETER DETERMINED USING 

ELLIPSOMETRY] (Ra/Rb); 𝜂𝑟𝑒𝑙the relative viscosity which is the ratio of the micellar solution 

viscosity, 𝜂𝑚𝑖𝑐 and the viscosity of neat scCO2, 𝜂𝐶𝑂2
; 𝜑, the volume fraction of the 
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microemulsion droplets and 𝐾𝐻 , the Huggins coefficient for rods (in this case 0.40 [NEEDS A 

REF]). More information can be found in supporting information. 

 

Using equations 3 and 4 and the SANS determined aspect ratios from Table 3, the relative 

viscosity enhancements predicted for w5, w/c microemulsions containing TC14 and CnBenz 

hydrotropes at 0.20 mole fraction have been calculated and the results presented in Table 4.  

 

Table 4. Relative viscosity, 𝜂𝑟𝑒𝑙, values calculated using equations 3 and 4. 

Hydrotrope Ra /Å Rb /Å Ra/Rb [𝜼] 
𝜼𝒓𝒆𝒍  

(ɸ = 0.018) 

𝜼𝒓𝒆𝒍  

(ɸ = 0.044) 

 

C2Benz 25.0 11.5 2.20 3.03 1.056 1.14  

C4Benz 33.0 12.0 2.75 3.45 1.063 1.16  

C8Benz 34.0 12.0 2.80 3.49 1.064 1.16  

It can be seen that even at the low volume fraction used in this study (0.018) the increase in 

scCO2 viscosity expected would be 6 %. Expected viscosity increases have also been calculated 

for systems at the same volume fraction used by Cummings et al. 48 so comparisons can be made. 

It is worth nothing that this higher volume fraction is readily accessible using TC14. At this 

higher volume fraction, a 16 % increase in viscosity could be expected; Cummings et al. 

observed increases between 18 – 100 %. 
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Conclusions 

The formation of rod-like, water-in-oil and water-in-CO2 microemulsions stabilized by TC14 

by the addition of small mole fractions of hydrotrope has been investigated. This has built on 

previous work showing that hydrotropes can cause micellar growth in both aqueous systems32, 34 

and in w/o microemulsions with AOT33. For water-in-oil microemulsions, w value and 

hydrotrope mole fraction were shown to affect the degree of elongation and enhanced anisotropy 

of the microemulsion nano-domains. The nature of the hydrotrope structure (“head group” and 

chain length) were also shown to affect the morphology of the microemulsion droplets formed 

but the trends are still unclear. 

 

For water-in-CO2 systems, higher mole fractions of hydrotrope gave rise to more elongated 

microemulsion assemblies, however, the effects were much less pronounced than those seen in 

heptane. The hydrotrope chemical structure seems to have little effect on the microemulsion 

shape and, due to the relatively poor stabilising power of TC14, higher w values > 20 could not 

be studied. Using methodology developed by Cummings et al.48, the relative viscosity increase 

expected for these elongated micromulsions in CO2 has been calculated: the surfactant- 

hydrotrope mixtures used in this new work are chemically simpler than the fluorinated 

surfactants used by Cummings et al48 . 

 

This ability to form, all-hydrocarbon, elongated microemulsions in CO2 easily and cheaply is so 

far unheard of. Promoting microemulsion growth without the use of fluorinated surfactants or 

counterion ion exchange6, 23, which requires additional synthetic steps, is a significant advance in 

the formation of self-assembling viscosity modifiers for applications in CO2. 
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