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Abstract 

This work describes the manufacture and characterisation of a PEEK-based zero Poisson’s 

ratio honeycomb (SILICOMB) produced using Kirigami-inspired cutting and folding 

techniques. The flatwise compression and transverse shear properties of the structure are 

determined through ASTM mechanical testing, and the results compared against 

commercially available honeycombs, including several other zero Poisson’s ratio cellular 

structures. An analytical model to predict the shear strength is compared to the results. 

SILICOMB specimens are found to have lower stiffness compared to other honeycomb 

configurations, but comparable strength. Factors influencing the results and variations to the 

manufacturing process are discussed.  

Keywords: Polymers; Honeycomb; Buckling; Analytical modelling; Mechanical testing; Forming. 
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1 Introduction 

The mechanical properties of cellular materials are largely dependent on the configuration of their cell walls 

and the core material itself [1]. The Poisson’s ratio of honeycomb configurations can vary from 1 (regular 

hexagonal honeycomb), to large positive and negative values in centresymmetric configurations [2]–[5]. 

Non-centresymmetric topologies (hexachiral and tetrachiral) exhibit Poisson’s ratios around -1 [6]–[8]. 

Structures exhibiting negative Poisson’s ratio (NPR) are also known as auxetic [9]. An interesting case is 

represented by structures with zero Poisson’s ratio (ZPR), which have no coupling between orthogonal in-

plane deformations. The ZPR behaviour implies therefore that a uniaxial tensile loading does not result in 

any lateral mechanical response. Similarly, when the structure is subjected to bending no synclastic or 

anticlastic curvature is observed; the structure assumes a cylindrical shape [10]. Evans [11] reports how 

auxetic honeycombs facilitate the manufacturing of doubly-curved sandwich structures compared to 

honeycombs with positive Poisson’s ratio, because they do not generate anticlastic curvature which must be 

suppressed. For the same reasons, zero-ν honeycombs are more suitable for cylindrical sandwich structures 

than either auxetic or conventional honeycombs [10]. Honeycombs with near-zero Poisson’s ratio (FlexCore) 

are also available commercially, and are specifically designed for improved formability [12]. Existing work 

has also focused on using zero-ν honeycombs for 1D spanwise morphing of wings [13] and biomedical 

scaffolds [14]. Zero Poisson’s ratio configurations have been created in different ways. Hexagonal cores can 

be elongated until the cells are rectangular; this so-called ―ox-core‖ has a Poisson’s ratio of approximately 

zero [15]. HexCel FlexCore achieves near-zero ν through corrugated cell walls [12]. Grima and co-workers 

proposed a honeycomb comprised of semi-re-entrant ―chevron‖-shaped cells [10], [16]. Olympio and Gandhi 

proposed a honeycomb with a mixture of re-entrant and non-re-entrant cells (accordion honeycomb) [13], 

[17]. The ―chevron‖ and ―accordion‖ honeycombs both achieve zero  through a balance of re-entrant 

(auxetic) and non-re-entrant features. The SILICOMB geometry achieves ZPR through a geometry which is 

inspired by the tessellation of -cristobalite lattice [18], [19]. In previous works some of the authors 

investigated the Poisson’s ratio and transverse shear modulus of SILICOMB through finite element analysis 

and mechanical testing of 3D printed samples [20]. SILICOMB configurations have been also used to 

produce curved cellular structures exhibiting shape morphing [21] and large energy absorption when passing 

through a negative stiffness regime [22]. In this paper the SILICOMB geometry was produced from PEEK 

film using a Kirigami cutting and folding technique. The Kirigami process essentially involves cutting and 

folding flat sheets of material to form 3D cellular structures [23]. A feature of the process is the considerable 
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control over the geometry of the structure; by changing the pattern of cuts and folds on the 2D material, the 

cell shape and gauge thickness of the resulting 3D cellular structure can be controlled locally and globally. 

This allows the user to build complex honeycomb geometries with built-in features to suit a specific purpose; 

from one-step integral honeycomb panels and wingbox configurations [23]–[26], to complex graded 

honeycomb topologies with mixed conventional-auxetic behaviour [27]. 

The paper describes the manufacturing, testing and modelling of the transverse compressive and shear 

stiffness and strength of Kirigami-based SILICOMB honeycombs made with poly(ether-ether-ketone) 

Victrex Aptiv PEEK film. PEEK is a linear, aromatic and semi-crystalline thermoplastics, with very high 

melting temperature, and good combination of mechanical strength, dielectric and thermal capacity, and 

complex shape forming. It is currently evaluated and used in high-end aerospace structural applications, from 

the A400 M cargo floor [28] to spacecraft constructions [29]. Ventilation holes were included in the 

honeycomb design to let escape trapped air in the cells at high temperatures for possible spacecraft 

applications. Current manufacturing processes used in sandwich constructions for spacecraft applications 

involve the drilling of venting holes as a post-processing of the production of the whole sandwich panel, with 

significant labour costs involved [15]. The Kirigami process allows cutting of the holes on the flat sheet of 

PEEK before folding, making the whole process interesting from an industrial perspective. ASTM-type 

flatwise compression and single-lap transverse shear tests have been carried out on the PEEK Kirigami 

SILICOMB specimens, and the results are compared to commercially available honeycombs. Moreover, 

analytical and Finite Element models describing the compressive and shear strength of the honeycombs have 

been developed to understand the dependence of these quantities on the geometry parameters of the unit 

cells. To the best of the Authors’ knowledge, this is the first time that a Kirigami-based PEEK honeycomb 

has been designed and characterised from a mechanical point of view. Moreover, no other ZPR PEEK-based 

honeycomb in flat panel configuration has been investigated before. 

2 Manufacturing and testing 

2.1 Kirigami process 

The SILICOMB geometry (see Figure 1) can be composed by interlocking two sets of slotted zigzagging 

strips (see Figure 2). Using this geometry breakdown allows the use of one set of modular moulds throughout 

the manufacturing process used. Slotted strips have been cut from PEEK Aptiv film using a Blackman & 

White Genesis cutter (see Figure 3a). The aforementioned ventilation holes are 0.25mm in diameter. A 

purpose-built tool (see Figure 3b) was used to form the slotted strips into the desired 'zigzag' geometry using 
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a Formech FM1 vacuum forming table. Prior to forming, tape was used to fix the strips to the tool as closely 

as possible to minimise the mobility of the strips during the forming process (see Figure 3c). Vacuum and 

heat were applied. The temperature was monitored using a thermocouple attached directly to the tool face. 

Upon reaching 150°C the heaters were turned off and the strips were allowed to cool gradually while still 

under vacuum. The 150°C temperature was selected as a cut-off point because it is sufficiently above 

PEEK’s glass transition temperature of 143°C [30] to allow for any thermocouple error. Due to the residual 

heat in the heaters and tooling, the film has been put to rest at around 150°C for several minutes after 

switching off the heaters. This processing window is very short, however the film needs less than a minute 

above its Tg to achieve permanent shape change [30]. Figure 3d shows the strips after forming. The strips 

were then slotted together to produce the SILICOMB geometry (see Figure 2, Figure 3e). Once the samples 

were assembled and had been cleaned using acetone, 3M Scotch-Weld Epoxy adhesive was mixed and 

applied to the joints using the provided spatula (see Figure 3f). The specimens were cured for 1 hour at 70°C 

in an oven. Weights were placed on the samples to keep them flat during cure (see Figure 3g). 

2.2 Testing 

Samples were created for compression and shear tests according to relevant ASTM standards [31], [32]. 

Table 1 shows details of all specimen types. Specimen geometry was defined in terms of rows and columns. 

Rows and columns are repetitions of the unit cell (see Figure 1) along the 1 and 2-directions, respectively. 

For all the tests self-aligning plates were used (Figure 4). During the flatwise compression tests a Roell-

Amsler machine with 25kN load cell was used. The shear tests were performed using an Instron tensile 

machine with 100kN load cell. Tests were displacement controlled, with the displacement rate set to 

0.5mm/minute to produce failure in 3-6 minutes, as specified in the standards [31], [32]. 

3 Analytical modelling 

An analytical model was created to predict the buckling strengths of the SILICOMB geometry following a 

procedure similar to the analysis applied to hexagonal honeycombs by Gibson and Ashby [1] and Zhang and 

Ashby [33]. The model assumes that the buckling load of a unit cell is the sum of the buckling loads of 

critical cell walls, with the choice of which walls to consider critical depending upon the type of loading. 

Figure 5 shows how the SILICOMB unit cell can be considered as a group of 8 walls with width l and 8 

walls with width h/2. The buckling coefficients for both types of wall under different loadings and boundary 

conditions (BCs) are shown in Table 2. Using this information we construct a unit cell model for each 

loading condition. 
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3.1 Compression 

Considering the cell walls as plates in compression one can use the critical buckling load formula [34]: 

    
    

       
 ( 1 ) 

Substituting in the relevant values from Table 2 the critical buckling load for each type of wall becomes: 

      
    

 

       
 ( 2 ) 

      
     

 

       
 ( 3 ) 

Zhang and Ashby assume in their compression analysis of double-walled honeycombs [33] that all the walls 

buckle simultaneously because they are forced to undergo the same deflection, despite the fact that the 

double wall has a significantly higher buckling load. This approach gives good results when compared 

against experimental data, and it is reasonable to assume the same behaviour for SILICOMB despite the 

difference between       and      . For equilibrium along the 3-direction one can equate the cell wall 

buckling loads to the external compressive stress computed as the ratio between the sum of the cell wall 

buckling loads and the unit cell area: 

     
             
           

 ( 4 ) 

Substituting in ( 2 ) and ( 3 ) gives: 

     
        

  
  

               
 ( 5 ) 

Where       and      . Substituting in values from Table 1 and Table 2 one can find      for all sides 

simply supported (SS), and for ends simply supported, edges clamped (SS/C):  
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            ( 6 ) 

    
              ( 7 ) 

 

3.2 Shear 

Considering the cell walls as plates undergoing shear loading, it is possible to use the following formula for 

the critical load [34]: 

 

    
    

       
 

( 8 ) 

Substituting in the relevant values from Table 2, the critical buckling load for each type of wall is: 

      
    

 

       
 ( 9 ) 

      
     

 

       
 ( 10 ) 

In the case of shear loading the selection of the critical walls becomes less evident. It is no longer appropriate 

to consider the walls to be contributing equally to the resistance to the external load, because the way in 

which the cell walls react to the external loading depends on their orientation relative to the load. As in [1], it 

is possible assume that the most highly loaded (critical) wall will buckle first, with the rest of the structure 

following suit due to the change in boundary conditions caused by the buckled wall. A finite element model 

of the SILICOMB unit cell was therefore used to determine which walls are critical. MSC PATRAN and 

NASTRAN finite element software was used to create the models. CQUAD4 2D shell elements were used 

throughout the model with an element size of 2.5mm; this mesh density sufficiently captures the stress 

gradients in the walls. The degrees of freedom of each free edge of the unit cell were coupled to those of its 
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counterpart on the opposite side of the unit cell using multi-point constraints (MPCs); thus mimicking a 

continuous honeycomb. The bottom face was fully clamped. On the top face all rotations and 3-direction 

translation were restrained. An MPC was used to preserve the shape of the top face while allowing motion in 

the 1 and 2 directions. This analysis was repeated for a range of values of α, to ascertain how sensitive the 

shear stress distribution is to variations in the geometry. Plots of Von Mises stress are shown in Figure 6. It 

can be seen that there is no change in critical walls across quite large perturbations in α. 

13-direction 

Figure 6 shows that for 13-direction shear the l-walls are critical. Considering equilibrium along the 1-

direction the critical shear stress can be determined by averaging the buckling loads of the l-walls over the 

unit cell area: 

      
          

           
 

     

      
 ( 11 ) 

Substituting in ( 9 ) gives: 

      
    

 

           
 ( 12 ) 

As previously shown, the equation can be evaluated for different boundary conditions; all walls simply 

supported (SS) and all walls clamped (C): 

     
            ( 13 ) 

     
           ( 14 ) 

23-direction 

Figure 6 shows that for 23-direction shear the inner h-walls are critical. Considering the equilibrium along 

the 2-direction and the contribution to the shear resistance given only by those particular walls one obtains: 
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 ( 15 ) 

Substituting in ( 10 ) gives:   

      
    

 

            
 ( 16 ) 

When all the walls are considered simply supported (SS) or clamped (C), the critical shear stresses for the 

SILICOMB cellular structures manufactured assume the following values: 

     
            ( 17 ) 

     
           ( 18 ) 

4 Results and discussions 

Figure 7, Figure 8 and Figure 9 show the comparison between the experimental stress-strain curves and the 

analytical strength predictions. In the case of flatwise compression, the stiffnesses are all very similar, and 

the specimens fail at a similar load and strain by global buckling, resulting in a smooth peak. From Figure 7 

it can be seen that the experimental results for the compression fall between the analytical SS and C 

predictions, suggesting that the real boundary conditions are somewhere between clamped and simply 

supported, as already indicated in [33]. Figure 8 and Figure 9 show the shear stress-strain curves for the 

sample categories A and B respectively. In this case some perturbations to the stiffness curves in the linear 

region can be observed, suggesting that some small failures occurred prior to global collapse, possibly the 

onset of local buckling. The specimens failed also in this case by global buckling, and for the 13-direction 

shear case this was followed by the formation of cracks at the ventilation holes, as shown in Figure 10 

To make an effective comparison between honeycombs made from different materials and relative densities, 

it is necessary to normalise the properties of the cellular solids in such a way as to take these differences into 

account. In this work, the following identities have been used to normalise honeycomb properties for flatwise 

compression:  
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 ( 19 ) 

And in the case of shear: 

           

     
 ( 20 ) 

Terms with a superscript * are related to the honeycomb, and terms with a subscript 0 are related to the 

constituent material. Material property values used in the normalisation, and the sources thereof, are shown 

in  

Table 3. There is some disagreement in open literature about the mechanical properties of Nomex paper. The 

DuPont datasheet [35] focuses on other physical properties, and does not provide stiffness values. Zhang and 

Ashby [33] report a relatively low elastic modulus of 0.9 GPa, and assume isotropy with ν = 0.4 to calculate 

the shear modulus using the relation           . However, Foo et al [36] state the existence of a 

significant anisotropy, with moduli E1 = 3.40 GPa and E2 = 2.46 GPa, with a difference between moduli of 

38%. It should be noted that the testing performed by Foo et al appears to have been executed on 

unimpregnated Nomex paper. Most Nomex honeycombs are impregnated at least once with phenolic resin, 

and Hähnel et al [37] show that resin content qualitatively affects the behaviour of Nomex paper; dry paper 

behaves in a ductile manner, and each subsequent resin impregnation increases its stiffness and makes it 

behave in a more brittle manner. Hähnel et al [38] provide also comprehensive mechanical properties for 

resin-impregnated Nomex paper, and the values from the latter paper have been used in this work’s 

normalisation.  

Figure 11 to Figure 16 show the flatwise compression and shear properties of SILICOMB obtained in this 

work, compared to commercially available cores. All external honeycomb data was obtained from open 

literature datasheets [12], [39]–[41]. Figure 11 shows a comparison of the relative compressive modulus 

between the SILICOMB topology and several families of commercially available honeycombs. There is a 

strong sensitivity between density and modulus, despite the inclusion of the relative density as a factor in the 

normalisation, suggesting that the normalisation does not completely capture the effect of the parameters it is 

supposed to factor out. It can be observed that the flatwise compressive modulus of the SILICOMB is 

significantly lower than other honeycombs. However, it is important to note that the flatwise modulus of the 

SILICOMB topology was determined through unsupported (bare) compression tests (i.e. without face 

sheets), whereas the moduli of other honeycombs were determined through supported compression. This 
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inconsistency in the support conditions between tests results in qualitatively different behaviour of the 

honeycombs [42]–[45]. As a result, the observed stiffness is significantly reduced compared to supported 

honeycombs, and the magnitude of this effect dwarfs any effect of differences in cell geometry.  Figure 12 

and Figure 13 show the normalised results related to the 13 and 23 shear moduli respectively. Contrary to 

what one may expect, there appears to exist a nonlinear inverse relationship between density and the relative 

shear modulus. This is probably due to the normalisation process; the relative density is included in the same 

way as for the compressive results, but the way in which it affects shear and compressive modulus is 

different. For a given density the non-metallic honeycombs generally outperform the metallic ones, which 

suggests that the core material choice has a qualitative effect on honeycomb shear stiffness, as well as a 

quantitative effect (the latter should be taken into account by the use of the normalisation). The SILICOMB 

topology features a lower stiffness compared to the one belonging to commercial honeycombs. However – 

and differently from the flatwise compressive tests – all specimens are necessarily supported by plates acting 

as face skins to allow the shear testing to be performed. Non-metallic flex-core configurations seem to 

perform well at constant density. Figure 14 shows a comparison of relative compressive strength between the 

SILICOMB and the commercial honeycombs. There is significant separation between the different types of 

cellular solids, particularly between metallic and non-metallic cores. The Kirigami SILICOMB is placed 

between the two aforementioned groups. The separation between metallic and non-metallic cores could be 

due to the qualitative difference in failure mechanisms between metallic/non-metallic honeycombs [45]. 

However, in this case the normalisation is largely responsible; looking at the raw data, the results of the 

different honeycomb groups are very close together in terms of strength for a given density. When dividing 

by the elastic modulus to normalise, the aluminium honeycombs are divided by 70GPa, whereas the Nomex 

honeycombs are averaged by ~3GPa modulus.  

Figure 15 and Figure 16 show the data related to the 13 and 23 shear strength respectively. It is again 

possible to identify a clear separation between the metallic and non-metallic honeycombs. The SILICOMB 

topology performs between the two groups; in the 23-direction its shear strength is very close to that of non-

metallic cores with similar density. 

4.1 Discussion 

Figure 7, Figure 8, and Figure 9 show the analytical predictions compared to the mechanical test results. The 

analytical strength predictions show in general good agreement with the experimental results in the case of 

the flatwise compression. The position of the experimental results relative to the analytical predictions 

suggests that the actual boundary conditions are somewhere between those used in the analytical model. In 
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the case of the transverse shear the analytical model underestimates the strength for both shear directions. 

This could be due to the fact that the shear specimens are significantly more restrained than the compression 

ones because they are bonded to the loading platens. The stiffness of the Kirigami SILICOMB PEEK 

honeycombs is low compared to that of commercial counterparts (even in the case of supported testing), but 

its strength is comparable. This difference is probably largely due to the epoxy adhesive used in the joints 

during the manufacturing. As can be seen in Figure 3f, the epoxy forms fillets between neighbouring walls. 

These fillets have a number of effects, increasing first the relative density of the honeycomb, which is 

directly linked to the flatwise modulus [1]. Secondly, they restrain rotations within the joints, thus confining 

the in-plane deformation mechanisms. In terms of strength, the epoxy has two effects. Firstly, it changes the 

boundary conditions of the wall edges where they meet at the joints, and secondly it contributes to modify the 

effective aspect ratio of each cell wall. Both of these effects will change the buckling behaviour compared to 

SILICOMB without epoxy inserts. Simone and Gibson [46] show that fillets at the joints can increase both 

the modulus and strength of cellular structures, even if the material for the fillet is taken from the mid-span of 

the cell walls, at the expense of cell wall thickness. In the case of SILICOMB, the wall thickness is 

unaffected and material is simply added to the joints, so the effect is likely to be even more pronounced. 

Finally, it is likely that the Poisson’s ratio of SILICOMB will also be affected. SILICOMB achieves its zero-

ν behaviour through the rotation and bending of joints as an in-plane deformation mechanism [47]. Because 

the epoxy restrains the joints, it is likely that some coupling occurs locally, resulting in a non-zero Poisson’s 

ratio global effect. When no further material phase is present in the joints, the global Poisson’s ratio is zero 

[22]. An indirect effect of the ventilation holes is to create a stress concentration, where failure could 

potentially initiate. In compression, SILICOMB cell walls were observed to buckle, after which material 

failure occurred during the crushing phase. Because of the small size of the ventilation holes relative to the 

cell wall width, their effect on the buckling load will have been very small [48]. It is possible that the 

ventilation holes affected the crushing mechanism. In shear, the ventilation holes will again have little effect 

on the buckling load due to their small size [49], [50]. However, in this case they significantly affect post-

buckling failure; a plate undergoing shear buckling carries most of the load along the tension diagonal [51], 

and because the presence of the holes increases the local tensile stress [49] they provide a crack initiation 

point. It can be seen from Figure 10 that diagonal cracks have formed at the holes, lowering the shear 

strength of the SILICOMB topology. It is also interesting to note the shape of the buckles; the two adjacent l- 

walls in each cell have buckled as one, with the diagonal buckles going from the top left corner of the left 

cell wall to the bottom right corner of the right cell wall. This suggests that the stiffening effect of the fold 

between cell walls is less than the stiffening effect of the joints where cell walls intersect.  
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The relative cell size to other dimensions of the honeycomb is an important parameter of the honeycomb 

configuration, along with relative density and sheet material properties [36], [52], [53]. Considering the cell 

size relative to the specimen size, Foo et al [36] show that the out-of-plane modulus depends strongly on the 

number of cells present in the sample, and Onck et al [52] analyse the effect of the specimen size relative to 

cell size on a variety of  honeycomb characteristics. They show that when the specimen size is comparable to 

the cell size, the specimen properties are significantly different from the bulk properties predicted for an 

infinite honeycomb. However, as the specimen size is increased to many times the cell size, the specimen 

properties approach the bulk properties. Onck and co-workers conclude that this effect is largely due to the 

proportion of the specimen material present in the open cell walls around the edge of the specimen, which 

contribute little to the modulus or strength of the honeycomb. The border of open cells around a specimen is 

made up of truncated closed cells, and as such it must be less than one cell size in width, regardless of 

specimen size. However the inner portion of the specimen which is made up of closed cells is proportional to 

the square of specimen size, so as the specimen size becomes bigger the closed cell properties dominate and 

the effect of the open cells becomes less significant. Onck et al [52] applied this principle to analyse in-plane 

compression and shear of honeycombs, but the same principle also applies in the cases of out-of-plane 

compression and shear; In flatwise compression the cell walls can be considered as plates in buckling with 

clamped edges and free ends [33]. In this case an open cell wall has one free edge, which significantly lowers 

its buckling load compared to a closed cell with edges clamped. In shear the honeycomb carries the load 

through shear flow in the cell walls [33]. An open cell wall has again different boundary conditions for 

buckling, and it also does not form a closed circuit through which to transmit shear flow. One can therefore 

argue that the open cell walls contribute very little to the out-of-plane stiffness and strength, and their 

presence should affect the specimen performance in a way similar to that predicted by Onck et al [52]. The 

minimum specimen size required to render size effects insignificant depends on the type of loading and fixity 

conditions, amongst other things. Onck [53] reports also that size effects vanish for specimens larger than 2 

and 7 cell sizes for in-plane shear and compression, respectively. He attributes the difference to the fact that 

shear specimens have strong edge boundary conditions (BC) (open cell wall edges fixed to loading platens) 

and compression specimens have instead weak edge BCs (open cell walls free). The sizes of the SILICOMB 

specimens in terms of cell size are given in Table 1. The minimum specimen dimension in multiples of cell 

size is 3, for the type B shear specimens. It is also important to consider cell size relative to honeycomb 

thickness; this affects cell wall buckling, which is the dominant failure mode of SILICOMB. If we consider 

the cell walls as plates undergoing Eulerian buckling, as in Gibson and Ashby [1], then the buckling strength 

of the cell walls is determined in part by their aspect ratio. The aspect ratio is dependent on the cell size and 

the honeycomb thickness. Neither of these parameters is taken into account by the normalisation. Lira et al 
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[20] analysed the SILICOMB geometry in transverse shear, and their results indicate that increasing ―gauge 

thickness ratio‖ (honeycomb thickness/cell wall length) – hence increasing the cell aspect ratio – results in a 

decrease in shear moduli. Paik et al [43] observe from experiments that increasing the thickness of the 

honeycomb core relative to the cell size can delay the onset of plastic deformation and hence affect the 

compressive strength of a sandwich panel. Figure 17 shows that the SILICOMB specimens have a 

significantly higher cell size than any of the commercial honeycombs to which they are compared (more than 

double, in most cases). However, the thickness of the SILICOMB specimens is only slightly larger than that 

of the commercial cores (15mm vs 12.5mm; a factor of 1.2). It is possible that this affected the comparison of 

honeycomb strengths.  

5 Conclusions 

The work has shown the feasibility of manufacturing the ZPR SILICOMB geometry with PEEK core 

material using current thermoforming technology. The advantages of the thermoforming technique coupled 

to the Kirigami process are the reduced processing cost compared to an autoclave, and faster processing 

times than thermoset composites due to lack of a cure cycle. Disadvantages of the current manufacturing 

layout are the high amount of manual labour involved, and the difficulty of producing uniform joints and 

using large amounts of adhesives. The drawbacks of the current production process can be overcome by 

moving towards press-forming techniques, which allow faster processing and the use of male/female moulds 

to achieve better forming accuracy than the male mould/vacuum bag used in thermoforming. It is possible to 

laser weld PEEK film [54], providing therefore another solution to replace the current adhesive joints. The 

transverse properties of SILICOMB have been investigated experimentally, and compared to the properties 

of commercially available honeycombs. Several factors have been identified which have affected the 

SILICOMB testing, the most important of which is the effect of the epoxy inserts. 
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8 Figures 

 

Figure 1: The SILICOMB unit cell (redrawn from [20]) 

 

Figure 2: Interlocking strips form SILICOMB geometry. 
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Figure 3: SILICOMB manufacturing process 
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Figure 4: Self-aligning test fixtures for a) flatwise compression and b) single-lap shear 

 

Figure 5: SILICOMB unit cell broken down into l-walls and h-walls. 
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Figure 6: Von Mises stress distribution for a range of α values as predicted by finite element 

analysis. α was varied by holding l constant and varying h. 
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Figure 7: Compression test stress-strain curves with analytical predictions. 

 

 

Figure 8: Shear stress-strain curves for category A (13-shear) with analytical predictions. 
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Figure 9: Shear stress-strain curves for category B sample (23-shear) with analytical 

predictions. 

 

Figure 10: Tearing of the ventilation holes in A-type shear samples 
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Figure 11: Flatwise compressive modulus of SILICOMB compared to commercially 

available honeycombs. Note that in this case the SILICOMB was tested in unsupported 

compression, whereas the commercially available cores were tested under supported 

boundary conditions. 

 

Figure 12: 13-direction shear moduli of SILICOMB compared to commercially available 

honeycombs. 
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Figure 13: 23-direction shear moduli of SILICOMB compared to commercially available 

honeycombs. 

 

Figure 14: Flatwise ultimate compressive strength of SILICOMB compared to commercially 

available honeycombs. 
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Figure 15: 13-direction ultimate shear strengths of SILICOMB compared to commercially 

available honeycombs. 

 

Figure 16: 23-direction ultimate shear strengths of SILICOMB compared to commercially 

available honeycombs. 
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Figure 17: Cell size (measured in W-direction). The error bars represent the spread of cell 

size over each ―family‖ of honeycombs.  

9 Tables 

Table 1: SILICOMB specimen properties 

  Comp 
Shear A 

(13 shear) 

Shear B 

(23 shear) 
 

Number of cells (1-dir'n)  nc1 5 9 3 - 

Number of cells (2-dir'n) nc2 11 5 19 - 

Length (1-dir'n) L 112.8 187.9 56.4 mm 

Width (2-dir'n) W 112.8 56.4 187.9 mm 

Specimen thickness tcore 15 15 15 mm 

Material thickness t 0.25 0.25 0.25 mm 

Horizontal rib length h 10 10 10 mm 

Vertical rib length l 10 10 10 mm 

Aspect ratio (h/l) α 1 1 1 - 

Thickness ratio (t/l) β 0.025 0.025 0.025 - 

Theta θ 20 20 20 degrees 

Phi φ -20 -20 -20 degrees 
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Relative density ρ*/ ρ0 0.055 0.055 0.055 - 

 

Table 2: Cell wall buckling coefficients. Coefficients from Roark’s formulas for Stress and 

Strain [34]. Letter denotes loading type (K = compression; C = shear). Subscript denotes cell 

wall type (l or h). Superscript denotes BCs (SS = simply supported; C = clamped). 

Coeff. 
Coeff. 

Value 
a (mm) b (mm) a/b Edge BCs End BCs 

  
   3.57 15 10 1.5 SS SS 

  
     

 7.20 15 10 1.5 C SS 

  
   3.29 15 5 3 SS SS 

  
    

 6.40 15 5 3 C SS 

  
   5.84 15 10 1.5 SS SS 

  
  11.10 15 10 1.5 C C 

  
   5.02 15 5 3 SS SS 

  
  8.44 15 5 3 C C 

 

Table 3: Mechanical properties of honeycomb constituent materials. 

Honeycomb Constituent material 
E0 

(GPa) 
ν G (GPa) 

ρ 

(kg/m
3
) 

Source 

SILICOMB 
Victrex Aptiv 2000-

250 PEEK film 
2.3 0.4 0.82 1260 

Mechanical 

testing at Bristol 

HexWeb Metallic Flex-

Core Al 5052/5056 alloy 

foil 
70 0.33 27 2670 Ref. [55] 

HexWeb Metallic Double 

Flex-Core 

HexWeb Non-metallic 

Flex-Core 
Aramid fibre/paper 

sheets + phenolic 

resin 

3.4 0.4 1.21 1100 Ref. [38] HexWeb HRH-10 

HexWeb HRH-78 

 


