Platt, D. J., \& Trudgian, T. (2015). On the first sign change of $(x)-x$. Mathematics of Computation, 85, 1539-1547. https://doi.org/10.1090/mcom/3021

Peer reviewed version

Link to published version (if available):
10.1090/mcom/3021

Link to publication record in Explore Bristol Research
PDF-document

First published in Mathematics of Computation in 85 (2016), published by the American Mathematical Society.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

On the first sign change of $\theta(x)-x$

D.J. Platt
Heilbronn Institute for Mathematical Research
University of Bristol, Bristol, UK
dave.platt@bris.ac.uk
and
T.S. Trudgian*
Mathematical Sciences Institute
The Australian National University, ACT 0200, Australia timothy.trudgian@anu.edu.au

June 2, 2014

Abstract

Let $\theta(x)=\sum_{p \leq x} \log p$. We show that $\theta(x)<x$ for $2<x<1.39 \cdot 10^{17}$. We also show that there is an $x<\exp (727.951332668)$ for which $\theta(x)>x$.

1 Introduction

Let $\pi(x)$ denote the number of primes not exceeding x. The prime number theorem is the statement that

$$
\begin{equation*}
\pi(x) \sim \operatorname{li}(x)=\int_{2}^{x} \frac{d t}{\log t} \tag{1}
\end{equation*}
$$

One often deals not with $\pi(x)$ but with the less obstinate Chebyshev functions $\theta(x)=\sum_{p \leq x} \log p$ and $\psi(x)=\sum_{p^{m} \leq x} \log p$. The relation (1) is equivalent to

$$
\psi(x) \sim x, \quad \text { and } \quad \theta(x) \sim x .
$$

Littlewood [10], showed that $\pi(x)-\operatorname{li}(x)$ and $\psi(x)-x$ change sign infinitely often. Indeed, (see, e.g., [7, Thms $34 \& 35]$) he showed more than this, namely

[^0]that
\[

$$
\begin{align*}
\pi(x)-\operatorname{li}(x) & =\Omega_{ \pm}\left(\frac{x^{\frac{1}{2}}}{\log x} \log \log \log x\right) \tag{2}\\
\psi(x)-x & =\Omega_{ \pm}\left(x^{\frac{1}{2}} \log \log \log x\right)
\end{align*}
$$
\]

By $[16,(3.36)]$ we have

$$
\begin{equation*}
\psi(x)-\theta(x) \leq 1.427 \sqrt{x} \quad(x>1) \tag{3}
\end{equation*}
$$

which, together with the second relation in (2), shows that $\theta(x)-x$ changes sign infinitely often.

Littlewood's proof that $\pi(x)-\mathrm{li}(x)$ changes sign infinitely often was ineffective: the proof did not furnish a number x_{0} such that one could guarantee that $\pi(x)-\operatorname{li}(x)$ changes sign for some $x \leq x_{0}$. Skewes [19] made Littlewood's theorem effective; the best known result is that there must be a sign change less that $1.3971 \cdot 10^{316}[17]$. On the other hand Kotnik [8] showed that $\pi(x)<\operatorname{li}(x)$ for all $2<x \leq 10^{14}$.

We turn now to the question of sign changes in $\psi(x)-x$ and $\theta(x)-x$. There is nothing of much interest to be said about the first sign changes of $\psi(x)$: for $x \in[0,100]$ there are 24 sign changes. The problem of determining an interval in which $\psi(x)-x$ changes sign is much more interesting (as examined in [11]) but it is not something we consider here. As for sign changes in $\theta(x)$: Schoenfeld, [18, p. 360] showed that $\theta(x)<x$ for all $0<x \leq 10^{11}$. This range appears to have been improved by Dusart, [5, p. 4] to $0<x \leq 8 \cdot 10^{11}$. We increase this in

Theorem 1. For $0<x \leq 1.39 \cdot 10^{17}, \theta(x)<x$.
A result of Rosser [15, Lemma 4] is
Lemma 1 (Rosser). If $\theta(x)<x$ for $e^{2.4} \leq x \leq K$ for some K, then $\pi(x)<l i(x)$ for $e^{2.4} \leq x \leq K$.

This enables us to extend Kotnik's result by proving
Corollary 1. $\pi(x)<l i(x)$ for all $2<x \leq 1.39 \cdot 10^{17}$.
Rosser and Schoenfeld [16, (3.38)], proved

$$
\begin{equation*}
\psi(x)-\theta(x)-\theta\left(x^{\frac{1}{2}}\right)<3 x^{\frac{1}{3}}, \quad(x>0) \tag{4}
\end{equation*}
$$

Table 3 in [6] gives us the bound $|\psi(x)-x| \leq 7.5 \cdot 10^{-7} x$, which is valid for all $x \geq e^{35}>1.5 \cdot 10^{15}$. This, together with (4) and Theorem 1, enables us to make the following improvement to two results of Schoenfeld $\left[18,\left(5.1^{*}\right)\right.$ and $\left.\left(5.3^{*}\right)\right]$.

Corollary 2. For $x>0$

$$
\theta(x)<\left(1+7.5 \cdot 10^{-7}\right) x, \quad \psi(x)-\theta(x)<\left(1+7.5 \cdot 10^{-7}\right) \sqrt{x}+3 x^{\frac{1}{3}}
$$

We now turn to the question of sign changes in $\theta(x)-x$. In $\S 3.1$ we prove
Theorem 2. There is some $x \in[\exp (727.951332642), \exp (727.951332668)]$ for which $\theta(x)>x$.

Throughout this article we make use of the following notation. For functions $f(x)$ and $g(x)$ we say that $f(x)=\mathcal{O}^{*}(g(x))$ if $|f(x)| \leq g(x)$ for the range of x under consideration.

2 Outline of argument

The explicit formula for $\psi(x)$ is [7, p. 101]

$$
\begin{equation*}
\psi_{0}(x)=\frac{\psi(x+0)+\psi(x-0)}{2}=x-\sum_{\rho} \frac{x^{\rho}}{\rho}-\frac{\zeta^{\prime}}{\zeta}(0)-\frac{1}{2} \log \left(1-\frac{1}{x^{2}}\right) \tag{5}
\end{equation*}
$$

Since

$$
\psi(x)=\theta(x)+\theta\left(x^{\frac{1}{2}}\right)+\theta\left(x^{\frac{1}{3}}\right)+\ldots
$$

we can manufacture an explicit formula for $\theta(x)$. Using (4) and (5) we find that

$$
\begin{equation*}
\theta(x)-x>-\theta\left(x^{\frac{1}{2}}\right)-\sum_{\rho} \frac{x^{\rho}}{\rho}-\frac{\zeta^{\prime}}{\zeta}(0)-3 x^{\frac{1}{3}} \tag{6}
\end{equation*}
$$

One can see why $\theta(x)<x$ 'should' happen often. On the Riemann hypothesis $\rho=\frac{1}{2}+i \gamma$; since $\gamma \geq 14$ one expects the dominant term on the right-side of (6) to be $-\theta\left(x^{\frac{1}{2}}\right)$.

We proceed in a manner similar to that in Lehman [9]. Let α be a positive number. We shall make frequent use of the Gaussian kernel $K(y)=$ $\sqrt{\frac{\alpha}{2 \pi}} \exp \left(-\frac{1}{2} \alpha y^{2}\right)$, which has the property that $\int_{-\infty}^{\infty} K(y) d y=1$.

Divide both sides of (6) by $x^{\frac{1}{2}}$, make the substitution $x \mapsto e^{u}$ and integrate against $K(u-\omega)$. This gives

$$
\begin{align*}
\int_{\omega-\eta}^{\omega+\eta} & K(u-\omega) e^{\frac{u}{2}}\left\{\theta\left(e^{u}\right)-e^{u}\right\} d u>-\int_{\omega-\eta}^{\omega+\eta} K(u-\omega) \theta\left(e^{\frac{u}{2}}\right) e^{-\frac{u}{2}} d u \\
& -\sum_{\rho} \frac{1}{\rho} \int_{\omega-\eta}^{\omega+\eta} K(u-\omega) e^{u\left(\rho-\frac{1}{2}\right)} d u-\frac{\zeta^{\prime}(0)}{\zeta(0)} \int_{\omega-\eta}^{\omega+\eta} K(u-\omega) e^{-\frac{u}{2}} d u \tag{7}\\
& -3 \int_{\omega-\eta}^{\omega+\eta} K(u-\omega) e^{-\frac{u}{6}} d u=-I_{1}-I_{2}-I_{3}-I_{4}
\end{align*}
$$

say. The interchange of summation and integration may be justified by noting that the sum over the zeroes of $\zeta(s)$ in (6) converges boundedly in $u \in[\omega-$ $\eta, \omega+\eta]$. Noting that $\zeta^{\prime}(0) / \zeta(0)=\log 2 \pi$, we proceed to estimate I_{3} and I_{4} trivially to show that

$$
0<I_{3}<e^{-\frac{\omega-\eta}{2}} \log 2 \pi, \quad 0<I_{4}<3 e^{-\frac{\omega-\eta}{6}} .
$$

It will be shown in $\S 3$ that the contributions of I_{3} and I_{4} to (7) are negligible - this justifies our cavalier approach to their approximation.

We now turn to I_{2}. Let A be the height to which the Riemann hypothesis has been verified, and let $T \leq A$ be the height to which we can reasonably compute zeroes to a high degree of accuracy - we make this notion precise in §3. Write $I_{2}=S_{1}+S_{2}$, where

$$
S_{1}=\sum_{|\gamma| \leq A} \frac{1}{\rho} \int_{\omega-\eta}^{\omega+\eta} K(u-\omega) e^{i \gamma u} d u, \quad S_{2}=\sum_{|\gamma|>A} \frac{1}{\rho} \int_{\omega-\eta}^{\omega+\eta} K(u-\omega) e^{\left(\rho-\frac{1}{2}\right) u} d u .
$$

Our S_{1} is the same as that used by Lehman in [9, pp. 402-403]. Using (4.8) and (4.9) of [9] shows that

$$
S_{1}=\sum_{|\gamma| \leq T} \frac{e^{i \gamma \omega}}{\rho} e^{-\gamma^{2} / 2 \alpha}+E_{1}
$$

where

$$
\left|E_{1}\right|<0.08 \sqrt{\alpha} e^{-\alpha \eta^{2} / 2}+e^{-T^{2} / 2 \alpha}\left\{\frac{\alpha}{\pi T^{2}} \log \frac{T}{2 \pi}+8 \frac{\log T}{T}+\frac{4 \alpha}{T^{3}}\right\}
$$

Lehman considers

$$
f_{\rho}(s)=\rho s e^{-\rho s} \operatorname{li}\left(e^{\rho s}\right) e^{-\alpha(s-w)^{2} / 2}
$$

whence we writes his analogous version of S_{2} as a function of $f_{\rho}(s)$ and then estimates this using integration by parts, Cauchy's theorem, and the bound

$$
\begin{equation*}
\left|f_{\rho}(s)\right| \leq 2 \exp \left(-\frac{1}{2} \alpha(s-w)^{2}\right) \tag{8}
\end{equation*}
$$

We consider the simpler function $f_{\rho}(s)=\exp \left(-\frac{1}{2} \alpha(s-w)^{2}\right)$, which clearly satisfies (8). We may proceed as in $\S 5$ of [9] to deduce that

$$
\left|S_{2}\right| \leq A \log A e^{-A^{2} /(2 a)+(w+\eta) / 2}\left\{4 \alpha^{-\frac{1}{2}}+15 \eta\right\}
$$

provided that

$$
4 A / w \leq \alpha \leq A^{2}, \quad 2 A / \alpha \leq \eta<w / 2
$$

All that remains is for us to estimate

$$
I_{1}=\int_{\omega-\eta}^{\omega+\eta} \theta\left(e^{\frac{u}{2}}\right) e^{-\frac{u}{2}} K(u-\omega) d u
$$

Table 3 in [6] and (3) give us

$$
\begin{equation*}
|\theta(x)-x| \leq 1.5423 \cdot 10^{-9} x, \quad x \geq e^{200} \tag{9}
\end{equation*}
$$

which gives

$$
I_{1}<1+1.5423 \cdot 10^{-9}, \quad(\omega-\eta) \geq 400
$$

Thus, we have

Theorem 3. Let A be the height to which the Riemann hypothesis has been verified, and let T satisfy $0<T \leq A$. Let α, η and ω be positive numbers for which $\omega-\eta \geq 400$ and for which

$$
4 A / \omega \leq \alpha \leq A^{2}, \quad 2 A / \alpha \leq \eta \leq \omega / 2
$$

Define $K(y)=\sqrt{\alpha /(2 \pi)} \exp \left(-\frac{1}{2} \alpha y^{2}\right)$ and

$$
\begin{equation*}
I(\omega, \eta)=\int_{\omega-\eta}^{\omega+\eta} K(u-\omega) e^{-u / 2}\left\{\theta\left(e^{u}\right)-e^{u}\right\} d u \tag{10}
\end{equation*}
$$

Then

$$
\begin{equation*}
I(\omega, \eta) \geq-1-\sum_{|\gamma| \leq T} \frac{e^{i \gamma \omega}}{\rho} e^{-\gamma^{2} /(2 \alpha)}-R_{1}-R_{2}-R_{3}-R_{4} \tag{11}
\end{equation*}
$$

where

$$
\begin{aligned}
& R_{1}=1.5423 \cdot 10^{-9} \\
& R_{2}=0.08 \sqrt{\alpha} e^{-\alpha \eta^{2} / 2}+e^{-T^{2} / 2 \alpha}\left\{\frac{\alpha}{\pi T^{2}} \log \frac{T}{2 \pi}+8 \frac{\log T}{T}+\frac{4 \alpha}{T^{3}}\right\} \\
& R_{3}=e^{-(\omega-\eta) / 2} \log 2 \pi+3 e^{-(\omega-\eta) / 6} \\
& R_{4}=A(\log A) e^{-A^{2} /(2 a)+(w+\eta) / 2}\left\{4 \alpha^{-\frac{1}{2}}+15 \eta\right\}
\end{aligned}
$$

We note that if one were to assume the Riemann Hypothesis for ζ, then the R_{4} term could be reduced. This would give us greater freedom in our choice of α-see §3.1.3.

Approximations different from (9) are available. For example, one could use Lemma 1 in $[20]$ to obtain $|\theta(x)-x| \leq 0.0045 x /(\log x)^{2}$. One could also restrict the conditions in Theorem 3 to $\omega-\eta \geq 600$ using the slightly improved results from [6] that are applicable thereto. Neither of these improves significantly the bounds in Theorem 2.

We now need to search for values of ω, η, A, T and α for which the right-side of (11) is positive.

3 Computations

3.1 Locating a crossover

Consider the sum $\Sigma_{1}=\sum_{|\gamma| \leq T} \frac{e^{i \gamma \omega}}{\rho}$. We wish to find values of T and ω for which this sum is small, that is, close to -1 ; for such values the sum that appears in (11) should also small. Bays and Hudson [2], when considering the problem of the first sign change of $\pi(x)-\operatorname{li}(x)$, identified some values of ω for which Σ_{1} is small. We investigated their values: $\omega=405,412,437,599,686$ and 728.

For ω in this range, we have $R_{1}=1.5423 \cdot 10^{-9}$ so we endeavour to choose the parameters A, T, α and η to make the other error terms comparable.

3.1.1 Choosing A

We chose to rely on the rigorous verification of RH for $A=3.0610046 \cdot 10^{10}$ by the second author [13]. This computation also produced a database of the zeros below this height computed to an absolute accuracy of $\pm 2^{-102}[3]$.

3.1.2 Choosing T

As already observed, we have sufficient zeros to set $T=A \approx 3 \cdot 10^{10}$ but, since summing over the roughly 10^{11} zeros below this height is too computationally expensive, we settled for $T=6,970,346,000$ (about $2 \cdot 10^{10}$ zeros). Even then, computing the sum using multiple precision interval arithmetic (see §3.1.4) takes about 40 hours on an 8 core platform.

3.1.3 Choosing the other parameters

To get the finest granularity on our search (i.e. to be able to detect narrow regions where $\theta(x)>x$) we aim at setting η as small as possible. This in turn means setting α (which controls the width of the Gaussian) as large as possible. However, to ensure that R_{4} is manageable, we need $A^{2} /(2 \alpha)>\omega / 2$ or $\alpha<A^{2} / \omega$. A little experimentation led us to

$$
\alpha=1,153,308,722,614,227,968, \quad \eta=\frac{933831}{2^{44}}
$$

both of which are exactly representable in IEEE double precision.

3.1.4 Summing over the zeros

Since

$$
\frac{\exp (i \gamma \omega)}{\frac{1}{2}+i \gamma}+\frac{\exp (-i \gamma \omega)}{\frac{1}{2}-i \gamma}=\frac{\cos (\gamma \omega)+2 \gamma \sin (\gamma \omega)}{\frac{1}{4}+\gamma^{2}}
$$

the dominant term in Σ_{1} is roughly $2 \sin (\gamma \omega) / \gamma$. Though one might expect a relative accuracy of 2^{-53} when computing this in double precision, the effect of reducing $\gamma \omega \bmod 2 \pi$ degrades this to something like 2^{-17} when $\gamma=10^{9}$ and $\omega=400$. We are therefore forced into using multiple precision, even though that entails a performance penalty perhaps as high as a factor of 100 . To avoid the need to consider rounding and truncation errors at all, we use the MPFI [14] multiple precision interval arithmetic package for all floating point computations. Making the change from scalar to interval arithmetic probably costs us another factor of 4 in terms of performance.

3.1.5 Results

We initially searched the regions around $\omega=405,412,437,599,686$ and 728 using only those zeros $\frac{1}{2}+i \gamma$ with $0<\gamma<T=5,000$. Although these results were not rigorous, it was hoped that a sum approaching -1 would indicate a potential crossover worth investigating with full rigour. As an example, Figure

Figure 1: Plot of $\sum_{|\gamma| \leq 5000} \frac{e^{i \omega \gamma}}{\rho}$ for $\omega \in[437.78,437.785]$.

1 shows the results for a region near $\omega=437.7825$. This is some way from dipping below the -1 level and indeed a rigorous computation using the full set of zeros and with $\omega=437.78249$ fails to get over the line. The same pattern repeats for ω near $405,412,599$ and 686 .

In contrast, we expected the region near 728 to yield a point where $\theta(x)>$ x. The lowest published interval containing an x such that $\pi(x)>\operatorname{li}(x)$ is $x \in[\exp (727.951335231), \exp (727.951335621)]$ in [17]. Since the error terms for $\theta(x)-x$ are tighter than those for $\pi(x)-\operatorname{li}(x)$ this necessarily means that the same x will satisfy $\theta(x)>x$. In fact, we can do better. Using $\omega=727.951332655$ we get

$$
\sum_{|\gamma| \leq T} \frac{\exp (i \gamma \omega)}{\rho} \exp \left(-\frac{\gamma^{2}}{2 \alpha}\right) \in[-1.0013360278,-1.0013360277]
$$

We also have $R_{1}+R_{2}+R_{3}+R_{4}<1.7 \cdot 10^{-9}$, so that

$$
\begin{equation*}
\int_{\omega-\eta}^{\omega+\eta} K(u-\omega) e^{-u / 2}\left\{\theta\left(e^{u}\right)-e^{u}\right\} d u>0.0013360261 . \tag{12}
\end{equation*}
$$

3.1.6 Sharpening the Region

Using the same argument as $[17, \S 9]$, we can analyse the tails of the integral (10) and sharpen the region considerably. Consider, for $\eta_{0} \in(0, \eta]$,

$$
T_{1}=\int_{\omega+\eta_{0}}^{\omega+\eta} K(u-\omega) e^{-\frac{u}{2}}\left\{\theta\left(e^{u}\right)-e^{u}\right\} d u
$$

and

$$
T_{2}=\int_{\omega-\eta}^{\omega-\eta_{0}} K(u-\omega) e^{-\frac{u}{2}}\left\{\theta\left(e^{u}\right)-e^{u}\right\} d u
$$

Another appeal to Table 3 in [6], and (3), gives us

$$
|\theta(x)-x| \leq 1.3082 \cdot 10^{-9} x, \quad x \geq e^{700}
$$

Thus for $\omega-\eta>700$ we have

$$
\begin{equation*}
\left|T_{1}\right|+\left|T_{2}\right| \leq 1.3082 \cdot 10^{-9}\left(\eta-\eta_{0}\right) K\left(\eta_{0}\right)\left[e^{\frac{\omega+\eta}{2}}+e^{\frac{\omega-\eta_{0}}{2}}\right] . \tag{13}
\end{equation*}
$$

Applying (13) to (12), we find we can take $\eta_{0}=\eta / 4.2867$ so that

$$
\int_{\omega-\eta_{0}}^{\omega+\eta_{0}} K(u-\omega) e^{-u / 2}\left\{\theta\left(e^{u}\right)-e^{u}\right\} d u>2.75 \cdot 10^{-6}
$$

which proves Theorem 2. Therefore, there is at least one $u \in\left(\omega-\eta_{0}, \omega+\eta_{0}\right)$ with $\theta\left(e^{u}\right)-e^{u}>0$. Owing to the positivity of the kernel $K(u-\omega)$ we deduce that there is at least one such u with

$$
\theta\left(e^{u}\right)-e^{u}>2.75 \cdot 10^{-6} e^{u / 2}>10^{152}
$$

Since $\theta(x)$ is non-decreasing this proves
Corollary 3. There are more than 10^{152} successive integers x satisfying $x \in$ $[\exp (727.951332642), \exp (727.951332668)]$ for which $\theta(x)>x$.

3.2 A lower bound

Having established an upper bound for the first time that $\theta(x)$ exceeds x, we now turn to a lower bound. A simple method would be to sieve all the primes p less than some bound B, sum $\log p$ starting at $p=2$, and compare the running total each time to p. We set $B=1.39 \cdot 10^{17}$ since this was required by the second author for another result in [4]. By the prime number theorem we would expect to find about $3.5 \cdot 10^{15}$ primes below this bound. Since this is far too many for a single thread computation we must look for some way of computing in parallel.

3.2.1 A parallel algorithm

We divide the range $[0, B]$ into contiguous segments. For each segment $S_{j}=$ $\left[x_{j}, y_{j}\right]$ we set $T=\Delta=\Delta_{\text {min }}=0$. We look at the each prime p_{i} in this segment, compute $l_{i}=\log p_{i}$, and add it to T. We set $\Delta=\Delta+l_{i}-p_{i}+p_{i-1}$ and $\Delta_{\min }=\min \left(\Delta_{\min }, \Delta\right)$. Thus at any $p, \Delta_{\min }$ is the maximum amount by which $\theta(p)$ has caught up with or gone further ahead of p within this segment. After processing all the primes within a segment, we output T and $\Delta_{\min }$.

Now, for each segment $S_{j}=[x, y]$ the value of $\theta(x)$ is simply the sum of T_{k} with $k<j$ and $\theta(y)=\theta(x)+T_{j}$. Furthermore, if $\theta(x)<x$ and $\theta(x)+\Delta_{\min }>0$ then $\theta(w)<w$ for all $w \in[x, y]$.

3.2.2 Results

We implemented this algorithm in C++ using Kim Walisch's "primesieve" [21] to enumerate the primes efficiently, and the second author's double precision interval arithmetic package to manage rounding errors.

We split B into 10,000 segments of width 10^{13} followed by 390 segments of width 10^{14}. This pattern was chosen so that we could use Oliviera e Silva's tables of $\pi(x)$ [12] as an independent check of the sieving process.

We used the 16 core nodes of the University of Bristol Bluecrystal Phase III cluster [1] and we were able to utilise each core fully. In total we used about 78,000 node hours. This established Theorem 1.

We plot $(x-\theta(x)) / \sqrt{x}$ measured at the end of each segment in Figure 2. As one would expect, this appears to be a random walk around the line 1.

References

[1] ACRC. Bluecrystal phase 3 user guide, 2014.
[2] C. Bays and R. H. Hudson. A new bound for the smallest x with $\pi(x)>$ li(x). Math. Comp., 69:1285-1296, 2000.
[3] J. Bober. Database of zeros of the zeta function, 2012. http://sage.math. washington.edu/home/bober/www/data/platt_zeros/zeros.
[4] A. W. Dudek and D. J. Platt. Solving a curious inequality of Ramanujan. To appear.
[5] P. Dusart. Estimates of some functions over primes without R.H. arXiv:1002.0442v1, 2010.
[6] L. Faber and H. Kadiri. New bounds for $\psi(x)$. To appear in Math. Comp., October 2013. Preprint available at arXiv: 1310.6374v1.
[7] A. E. Ingham. The distribution of prime numbers. Cambridge University Press, Cambridge, 2nd edition, 1932.

Figure 2: Plot of $\frac{x-\theta(x)}{\sqrt{x}}$.
[8] T. Kotnik. The prime-counting function and its analytic approximations. Adv. Comput. Math., 29(1):55-70, 2008.
[9] R. S. Lehman. On the difference $\pi(x)-\operatorname{li}(x)$. Acta. Arith., 11:397-410, 1966.
[10] J. E. Littlewood. Sur la distribution des nombres premiers. Comptes Rendus, 158:1869-1872, 1914.
[11] H. L. Montgomery and U. M. A. Vorhauer. Changes of sign of the error term in the prime number theorem. Funct. Approx. Comment. Math., 35:235-247, 2006.
[12] T. Oliveira e Silva. Tables of values of $\mathrm{pi}(\mathrm{x})$ and $\mathrm{pi} 2(\mathrm{x})$, 2012. http: //www.ieeta.pt/~tos/primes.html.
[13] D. J. Platt. On Prime Counting Functions. PhD thesis, Bristol University, 2011.
[14] N. Revol and F. Rouillier. Motivations for an arbitrary precision interval arithmetic and the MPFI library. Reliab. Comput., 11(4):275-290, 2005.
[15] J. B. Rosser. Explicit bounds for some functions of prime numbers. Amer. J. Math., 63:211-232, 1941.
[16] J. B. Rosser and L. Schoenfeld. Approximate formulas for some functions of prime numbers. Illinois J. Math., 6:64-94, 1962.
[17] Y. Saouter, T. S. Trudgian, and P. Demichel. A still sharper region where $\pi(x)-\operatorname{li}(x)$ is positive. To appear in Math. Comp., 2014.
[18] L. Schoenfeld. Sharper bounds for the Chebyshev functions $\theta(x)$ and $\psi(x)$, II. Math. Comp., 30(134):337-360, 1976.
[19] S. Skewes. On the difference $\pi(x)-\operatorname{li}(x)$ II. Proc. London Math. Soc., 5:48-70, 1955.
[20] T. S. Trudgian. Updating the error term in the prime number theorem. arXiv:1401.2689v1, January 2014.
[21] K. Walisch. Primesieve, 2012. http://code.google.com/p/primesieve/.

[^0]: *Supported by Australian Research Council DECRA Grant DE120100173.

