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Adaptive Smoothing of Seismicity in Time, Space, and Magnitude

for Time-Dependent Earthquake Forecasts for California

by Agnès Helmstetter and Maximilian J. Werner

Abstract We present new methods for short-term earthquake forecasting that
employ space, time, and magnitude kernels to smooth seismicity. These methods are
purely statistical and rely on very few assumptions about seismicity. In particular,
we do not use Omori–Utsu law, and only one of our two new models assumes a
Gutenberg–Richter law to model the magnitude distribution; the second model esti-
mates the magnitude distribution nonparametrically with kernels. We employ adaptive
kernels of variable bandwidths to estimate seismicity in space, time, and magnitude
bins. To project rates over short time scales into the future, we simply assume per-
sistence, that is, a constant rate over short time windows. The resulting forecasts from
the two new kernel models are compared with those of the epidemic-type aftershock
sequence (ETAS) model generated byWerner et al. (2011). Although our new methods
are simpler and require fewer parameters than ETAS, the obtained probability gains are
surprisingly close. Nonetheless, ETAS performs significantly better in most compar-
isons, and the kernel model with a Gutenberg–Richter law attains larger gains than the
kernel model that nonparametrically estimates the magnitude distribution. Finally, we
show that combining ETAS and kernel model forecasts, by simply averaging the ex-
pected rate in each bin, can provide greater predictive skill than ETAS or the kernel
models can achieve individually.

Introduction

Most short-term earthquake forecasts are based on
empirical laws describing the statistical distribution of earth-
quakes in space, time, and magnitude. These empirical laws,
such as the Omori–Utsu law for the temporal decay of after-
shocks, are derived from statistical analyses of earthquake
catalogs. These models usually assume that the seismicity
rate is the sum of a background rate (usually heterogeneous
in space and stationary in time) and of triggered earthquakes.
This class of models includes, among others, the point-process
model of Kagan and Knopoff (1987), the epidemic-type after-
shock sequence (ETAS) model (Ogata, 1988; Helmstetter et al.
2006), the STEP model (Gerstenberger et al., 2005), and the
model of Marsan and Lengliné (2008).

Although the empirical laws appear to capture the first-
order or average characteristics of earthquake clustering
well, much evidence has been claimed to show that seismic-
ity frequently deviates from this gross description (e.g.,
Vidale et al., 2006; Ben-Zion, 2008; Enescu et al., 2009;
Shearer, 2012; Hainzl, 2013). To capture potential devia-
tions, we wish to develop more flexible, purely data-driven
models. For example, the Omori–Utsu law is widely ob-
served to hold during aftershock sequences (e.g., Utsu et al.,
1995), but variations in the parameters (e.g., Kisslinger and
Jones, 1991) and non-Omori-like behavior (e.g., Vidale et al.,

2006) have been noted. Similarly, whereas the Gutenberg–
Richter law with exponent b ≈ 1 approximates the magni-
tude distribution in sufficiently large space–time volumes
well (e.g., Kagan, 1997), b-values have been claimed to vary
at smaller scales (e.g., Wiemer et al., 1998; Wiemer and
Wyss, 2002). One approach to account for these seismicity
fluctuations in models is to continuously recalibrate Omori’s
p-value and/or Gutenberg–Richter’s b-value to the data to
improve forecast performance (e.g., Gerstenberger et al.,
2005; Wiemer and Schorlemmer 2007). For instance, in the
STEP model (Gerstenberger et al., 2005), the parameters p
and b are inverted for during aftershock sequences.

In this study, we use a different approach. Instead of
building a complex model that accounts for variable model
parameters, we develop simple, nonparametric models that
are mostly based on kernel smoothing. We use the methods
of Helmstetter and Werner (2012) to smooth seismicity in
space and time using adaptive kernels. We test different ver-
sions of our models and compare their probability gains to
those of the ETAS model of Werner et al. (2011). Our first
model (K2) uses adaptive smoothing in time and space to
estimate the seismicity rate in each cell and a Gutenberg–
Richter law with fixed b-value to model the magnitude
distribution. In addition, we assume a stationary background
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rate to better model earthquake density in zones of very
sparse seismicity and to account for surprise earthquakes.
This background rate was estimated by Helmstetter and
Werner (2012) based on adaptive smoothing of instrumental
seismicity. The second model (K3), in addition to adaptively
smoothing seismicity in time and space like model K2, re-
laxes the assumption of a Gutenberg–Richter magnitude dis-
tribution and instead uses kernels to estimate the magnitude
distribution by smoothing the magnitudes of nearby earth-
quakes. As for model K2, the background rate is stationary,
and its magnitude density obeys the Gutenberg–Richter law.

In this article, we first describe the different models used
to estimate the seismicity rate in space, time, and magnitude,
and their use for earthquake forecasting. We then calibrate all
models to California seismicity, compare their predictive
skills, and evaluate the influence of minimum magnitude
thresholds and forecast horizons, that is, the time interval
for which forecasts are prepared.

Earthquake Forecasts Based on Adaptive Kernels

Spatiotemporal Estimation of Seismicity Rate Using
Adaptive Kernels (Model K2)

Using adaptive kernels in time and space, the seismicity
rate at time t and location r for events of magnitudes M ≥ Mt
can be written as a function of the times and locations of past
earthquakes (Choi and Hall, 1999; Helmstetter and Werner,
2012):

R!r; t" # μ!r" $ f
X

ti<t

2wi

hid2i
Kt

!
t − ti
hi

"
Kr

!
jr − rij
di

"
; !1"

in which hi and di are the bandwidths associated with event i
in the temporal and spatial domain, respectively, jr − rij is
the distance to the epicenter of event i, Kt is the temporal
kernel and Kr is the spatial kernel. We use a univariate Gaus-
sian kernel for Kt but modified it so that Kt!t" # 0 for t < 0,
because R!r; t" cannot depend on future events for purposes
of forecasting. In the spatial domain, we tested both a 2D
Gaussian kernel and a power-law kernel. The factor 2 in
equation (1) accounts for the fact that future events (with
ti > t) are missing in the sum. The stationary rate μ!r" as-
sures that R!r; t" is always positive and also accounts for sur-
prises, that is, earthquakes that occur in areas in which there
were no events in the catalog. This rate μ!r" is chosen to be
proportional to the long-term forecast estimated by Helmstet-
ter and Werner (2012). Specifically, we define the stationary
rate μ0 by μ!r" # μ0μr!r", in which μr!r" is the long-term
rate normalized so that its integral over the testing area equals
one. The weights wi in equation (1), defined below, account
for fluctuations of the completeness magnitude in time and
space and for the fact that the minimum magnitude Mt of
target events may be different from that of the learning cata-
logMD. A corrective factor f in equation (1) is introduced to
match the observed number of target events.

Following Helmstetter and Werner (2012), we use the
coupled near-neighbor method proposed by Choi and Hall
(1999) to estimate the kernel bandwidths in time hi and space
di. This method has two parameters, an integer k describing
the overall level of smoothing and another parameter a con-
trolling the relative importance of smoothing in space and
time. For each earthquake i, the bandwidths di and hi are
estimated so as to minimize hi $ adi under the constraint
that there are k events at a distance smaller than di and at a
time between ti − hi and ti. This method is illustrated in
figure 1 of Helmstetter and Werner (2012). Coupling the
temporal and spatial domains provides better results than es-
timating hi and di independently from the distance and time
between earthquake i and its closest neighbors in time and
space. A larger value of a provides a forecast with higher
resolution in space that is smoother in the time domain.
Because of the limited accuracy of earthquake location, we
impose that the bandwidth di cannot be smaller than 0.5 km.
A different method can be used to estimate the bandwidths,
namely from a pilot estimate of the density (Abramson,
1982; Helmstetter and Werner, 2012). For long-term fore-
casts, Helmstetter and Werner (2012) found that both meth-
ods yield similar results. However, for time-dependent
forecasts we found that the near-neighbor method provides
significantly better results, and we therefore do not describe
the pilot-density method in this article.

In this first model K2, we consider that the magnitude
distribution obeys a tapered Gutenberg–Richter distribution.
Following Helmstetter et al. (2007), we assume that the
cumulative magnitude distribution has the form

P!M" # 10−b!M−Mt" exp%101:5!Mt−Mc" − 101:5!M−Mc"&; !2"

with a corner magnitude Mc # 8 and an exponent b # 1, as
suggested by Bird and Kagan (2004) for continental trans-
form fault boundaries. The exponential factor in equation (2)
describes a fall-off of the distribution of seismic moments for
M > Mc. In addition, following Helmstetter et al. (2007),
Werner et al. (2011), and Helmstetter and Werner (2012), we
introduce a correction for the region of the Geysers, a hydro-
geothermal area in northern California. In this region, we as-
sume a piecewise Gutenberg–Richter law with an exponent
b # 1 for M < 3:4 and b # 2 for M ≥ 3:4. This Gutenberg–
Richter magnitude distribution is used to extrapolate the rate
of M ≥ Mt earthquakes from the rate of M ≥ MD earth-
quakes in the learning catalog and to correct for variations
of the completeness magnitude M0!t; r".

The weights wi are estimated by

wi # 10b%M0!ti;ri"−Mt &; !3"

in which M0!ti; ri" is the completeness magnitude estimated
at the time and location of earthquake i. We use the spatial
completeness magnitude map estimated by Werner et al.
(2011) from the local magnitude distribution using adaptive
kernels. In addition, M0 increases following large M ≥ 5
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earthquakes, and we follow the method proposed by Helm-
stetter et al. (2006) to model changes in the detection thresh-
old after mainshocks with M ≥ 5 such that

M0!t" # M − 0:76 log10!t" − 4:5; !4"

in which t is the time (in days) since an earthquake of mag-
nitude M.

Estimation of Seismicity Rate in Time, Space, and
Magnitude Using Adaptive Kernels (Model K3)

In contrast to model K2, we do not impose a magnitude
distribution in model K3. Instead, we use a magnitude kernel
KM to nonparametrically estimate the magnitude distribu-
tion, as in the time and space domains. We chose a Gaussian
function for KM for simplicity, as in the time domain. The
expected rate of earthquakes at time t, location r, and with
magnitude M is thus modeled by

R!r; t;M" # μ!r;M" $ f
X

ti<t

2

hid2i σi
Kt

!
t − ti
hi

"

× Kr

!
jr − rij
di

"
KM

!
M −Mi

σi

"
: !5"

The stationary rate μ!r;M" is again assumed to be pro-
portional to the long-term model of Helmstetter and Werner
(2012), as for our first model. Additionally, we assume for
simplicity, and also to avoid empty magnitude bins, that
μ!r;M" decreases with M following a tapered Gutenberg–
Richter law (equation 2). We tested two methods to estimate
the bandwidth σi of the magnitude kernel. We used either a
fixed bandwidth σi # σ0 or a bandwidth that increases with
magnitude according to

σi # σ010!Mi−Mt"=2: !6"

This relation (6) is based on a result by Abramson
(1982) that the kernel bandwidth should scale as the inverse
of the square root of density. However, we found that a con-
stant bandwidth provides better results (larger forecast like-
lihood) than using relation (6). In the following, we only
present results obtained with a fixed magnitude bandwidth.

One general problem when using kernels to estimate
probability density functions is the presence of boundary ef-
fects. In this study, we have no problems in the time or space
domains because we can use available earthquakes outside of
the forecast testing interval or region. However, in the mag-
nitude dimension, side effects can produce an artificial roll-
off for magnitudes close to the minimum magnitude MD.
This is problematic when the minimum target magnitude
Mt is close to the minimum learning magnitudeMD. Several
methods have been proposed to deal with this problem
(Müller, 1991). In this work, we use the reflection technique
introduced by Schuster (1985) to correct for missing earth-
quakes with M ≤ MD: for each earthquake of magnitude
M ≥ MD we add a mirror earthquake with magnitude equal

to MD − !M −MD" # 2MD −M. This method underesti-
mates the rate of events close to MD, because there are more
events with M < MD than with M > MD. Another way to
deal with side effects for M ≈MD is to use a kernel band-
width σ!M" depending on magnitude, which decreases to-
ward 0 for M # MD (Müller, 1991). This method works
correctly even if the density function is not uniform close to
the boundary. We tested both approaches and found that the
reflection technique works best, although the differences in
probability gain are very small. However, the main interest of
earthquake forecasting is to use small earthquakes to predict
larger ones (Mt > MD). IfMt −MD ≫ σ0, the estimated rate
of M > Mt earthquakes is weakly influenced by missing
earthquakes with M < MD and the results do not depend
on the method used to correct for side effects.

The choice of kernels to estimate the magnitude distri-
bution is motivated by several arguments. First, nonparamet-
ric estimation can map spatial variations of the magnitude
distribution, for example, without ad hoc corrections for the
Geysers area. Second, the method adapts to spatial and tem-
poral variations of the completeness magnitude. As a result,
we do not calculate weights wi to model spatiotemporal
incompleteness. Finally, it can also account for potential cor-
relations between earthquake magnitudes. For example, Lip-
piello et al. (2012) reported significant correlations between
magnitudes for earthquakes close in time and space.

Short-Term Earthquake Forecasts Based on Adaptive
Smoothing

To estimate the expected seismicity rate over a short
forecast horizon, we simply assume that the future seismicity
rate equals the current rate estimated by equation (1) or (5).
That is, the kernel models provide simple persistence fore-
casts. Model K2 has only four adjustable parameters: k, a, f,
and μ0. For K3, we also invert for σ0. For both models, the
corrective factor f is estimated independently of the other
parameters by constraining the total number of predicted
events to match the number of target events.

Forecasts are issued at regular time intervals T. The pre-
dicted rates are integrated in time, space, and magnitude to
compute the predicted number of events in each space, time,
and magnitude bin.

Short-Term Earthquake Forecasts Based on the
ETAS Model

We compare our new models with the ETAS model of
Werner et al. (2011). In this model, the expected rate of earth-
quakes at time t, location r, and with magnitude equal to or
greater than M can be written as a function of past earth-
quakes i as

R!r; t;M" # P!M"%μ!r"

$
X

ti<t

K10α!Mi−Mt"ϕ!t − ti"ψ!r − ri;Mi"&; !7"
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in which the temporal kernel ϕ!t" is the normalized
Omori–Utsu law:

ϕ!t" #
!p − 1"cp−1

!t$ c"p
: !8"

For small triggering earthquakes M < 5:5, we model the
spatial distribution of aftershocks by a power-law kernel

ψ!jrj;M" #
C

!jrj$ d010M=2"1:5
; !9"

in which C is a normalizing constant so that the integral over
space of the spatial kernel equals one. The characteristic trig-
gering distance d010M=2 in equation (9) is proportional to the
rupture length.

For larger earthquakes, we smooth the locations of early
aftershocks (within three days) to map the spatial distribution
of aftershocks and to estimate the function ψ!r;M" for each
earthquake with M ≥ 5:5, following the method by Helmstet-
ter et al. (2006).

Wemademinor changes to the ETASmodel implemented
byWerneret al. (2011). First, we no longer correct for changes
in the completeness magnitude with time and space. This cor-
rection did not improve the performance of the forecasts but
did increase computational time considerably. Second, we
now invert for all parameters α, K, p, c, μ0, and d0, while
Helmstetter et al. (2006) and Werner et al. (2011) fixed the
cutoff time c of the Omori–Utsu law to 5 min.

We use the same magnitude distribution P!M" (equa-
tion 2) as for model K2, including the corrections in the
Geysers area. The background rate μ!r;M" is also propor-
tional to the long-term model of Helmstetter and Werner
(2012), as for the other models.

The definition (7) of the ETAS model is similar to equa-
tion (1) that defines kernel model K2. A first difference is the
shape of the temporal kernel: the ETAS model uses a power-
law kernel whereas the kernel models use a Gaussian kernel.
Another difference is that the ETAS model gives more impor-
tance to larger earthquakes, due to the term 10αM in defini-
tion (7) that models the increase of aftershock productivity as
a function of the mainshock magnitude. In contrast, the ker-
nel models give the same weight to all earthquakes, irrespec-
tive of their magnitude. The weights wi correct for catalog
incompleteness and differences in target and learning mag-
nitude thresholds only.

But the main difference between ETAS and kernel mod-
els is that ETAS is, in a sense, a physical model, whereas
kernel models are purely statistical. That is, the kernels ϕ!t"
and ψ!r;M" of the ETAS model are a statistical expression of
presumed, underlying physical mechanisms of earthquake
triggering. In contrast, the kernel models make no (or fewer)
assumptions about the macroscopic expression of physical
mechanisms responsible for the observed clustering between
earthquakes; nonparametric estimation can be applied to any
stochastic spatiotemporal point process.

Likelihood and Probability Gains

For all models, the parameters are optimized via maxi-
mum likelihood and assuming a time-dependent Poisson
process. This implies that future events are assumed to be
independent from each other. This assumption is clearly
invalid if a large aftershock sequence happens within the
time interval of the forecast. An alternative to the Poisson
assumption for ETAS forecasts was proposed by Marzocchi
and Lombardi (2009): the distribution of the number of
events in each space–time bin is estimated from simulated
earthquake catalogs. In the case of the kernel models, we do
not have a method for simulating catalogs, and we therefore
assume a Poisson process. The log likelihood of a Poisson
process can be estimated by (e.g., Schorlemmer et al., 2007)

L #
XnT

it#1

#
−Np!it" $

X

ix

X

iy

X

iM

%N!it; ix; iy; iM"

× log%Np!it; ix; iy; iM"& − log!N!it; ix; iy; iM"!"&
$
; !10"

in which Np!it; ix; iy; iM" is the number of predicted events
in the cell (ix, iy, iM) and time interval it (between t!it" and
t!it" $ T); N!it; ix; iy; iM" is the observed number of earth-
quakes in this bin; Np!it" is the total number predicted for
this time interval; and nT is the number of time intervals.
Note that the second term in the sum is zero for empty cells
(N!it; ix; iy; iM" # 0). We thus only need to compute this
term for nonempty cells and can accelerate the computation.

We maximize the likelihood using a simplex algorithm
and compare it with the likelihood of a reference model. Our
reference model assumes a uniform Poisson process (in
space and time) and a tapered Gutenberg–Richter law
(equation 2) with the same corner magnitude and b-value
as K2 and ETAS, but without the special correction in the
Geysers area. The reference model assumes a constant rate
per cell, therefore the density (predicted number of events in
each cell divided by the cell area) is not exactly uniform.

The probability gain G is used to compare our models
with the reference model

G # exp
!
L − Lr

N

"
; !11"

in which Lr is the log likelihood of the reference model and
N is the total number of target events.

When comparing two models that expect the same total
number of events, the prediction gain represents the geomet-
ric average of the ratio of the predicted rate for each model
(Helmstetter and Werner, 2012, their equation 12)

G#exp
% X

j#1;N

1

N
log

!
Np;1%it!j";ix!j";iy!j";iM!j"&
Np;2%it!j";ix!j";iy!j";iM!j"&

"&
; !12"

in which Np;1 denotes the rate predicted by the first model in
the space–time–magnitude bin %it!j"; ix!j"; iy!j"; iM!j"& in
which event j occurred.
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In addition, we introduce the prediction gains Gt and
GM to evaluate the performance of models in time and mag-
nitude. The gain Gt compares predicted rates in the time do-
main only, by integrating over magnitude and space. It is
obtained by integrating the predicted rates Np%it!j"; ix!j";
iy!j"; iM!j"& in all grid cells and magnitude bins

Gt # exp
% X

j#1;N

1

N
log

!
Np;1%it!j"&
Np;2%it!j"&

"&
: !13"

Similarly, the probability gain GM considers only the
magnitude domain. It compares the magnitude distribution
pM for each target earthquake jwith the reference magnitude
distribution pM;r

GM # exp
% X

j#1;N

1

N
log

!
pM %iM!j"; it!j"; ix!j"; iy!j"&

pM;r%iM!j"&

"&
;

!14"
in which

pM!iM; ix; iy; it" #
Np!iM; ix; iy; it"P

i#1;NM

Np!i; ix; iy; it"
!15"

is the conditional magnitude distribution.

Application to California

We calibrated all models to Californian seismicity inside
the region used by the Collaboratory for the Study of Earth-
quake Predictability (CSEP) (Schorlemmer and Gersten-
berger, 2007) for California with a grid spacing of 0.1°. We
tested different values of the minimum magnitude of earth-
quakes in the learning and target catalogs, as well as different
forecast horizons T. We used the earthquake catalog compiled
by the Advanced National Seismic System (ANSS) in
the period from 1 January 1981 until 1 March 2012 with mag-

nitude M ≥ 2 and depth smaller than 30 km (in accordance
with CSEP’s data collection). This is a composite catalog that
gathers data from different seismic networks in the United
States. We removed underground nuclear explosions at the
Nevada Test Site following Werner et al. (2011). There are
also problematic events which appear twice (or more often)
in the catalog; these are mostly small events. We did not at-
tempt to remove all the duplicate events; we only removed 71
events that had exactly the same time and almost identical lo-
cation and magnitude as the preceding event. This leaves
190,058 events with latitudes ranging between 30.5° N and
44° N and longitudes between 112.1° W and 126.4° W.
The catalog is reasonably complete above M 2 in the central
part of California, but the completeness magnitude increases
close to the boundaries. In addition, there are also transient
increases of the completeness magnitude following large
earthquakes. Following Werner et al. (2011), all earthquakes
between 1 January 1986 and 1 March 2012 above the mag-
nitude thresholdMt in the CSEP testing area are used as target
earthquakes, and all events with M ≥ MD since 1 January
1981 are used to compute the predicted number of events.
Forecasts are issued at regular time intervals T, with T ranging
between one hour and three months. All models estimate the
rate of M ≥ Mt target events in each time, magnitude, and
space intervals, following the rules defined by CSEP.

Results

We compared earthquake forecasts obtained with ETAS
model and with kernel models K2 (which assumes adaptive
kernels in time and space and a Gutenberg–Richter law for
magnitudes) and K3 (kernels in time, space, and magnitude).
The model parameters are given in Table 1 and the results are
summarized in Table 2.

Table 1
Parameters of ETAS and Kernel Models

ETAS* K2† K3‡

MD Mt T α p K μ0 d0 c k a f μ0 k a σ0 f μ0

2 2 1 0.44 1.17 1.02 4.11 0.073 0.006 2 328 0.99 1.80 2 308 0.29 0.87 2.52
2 3 1 0.73 1.30 0.39 0.55 0.101 0.040 2 184 0.61 0.59 2 174 0.57 0.34 1.05
2 4 1 0.78 1.28 0.40 0.06 0.290 0.015 1 78 0.49 0.13 2 7 0.86 0.11 0.51
2 5 1 0.80 1.29 0.18 0.01 0.313 0.127 1 1174 0.42 0.02 1 334 1.27 0.02 0.41
3 3 1 0.62 1.20 0.47 0.67 0.147 0.024 2 83 0.69 0.85 2 85 0.37 0.67 0.87
3 4 1 0.70 1.23 0.40 0.07 0.263 0.019 2 83 0.63 0.10 2 33 0.71 0.24 0.27
3 5 1 0.76 1.20 0.20 0.01 0.006 0.059 1 1993 0.50 0.02 1 291 0.93 0.08 0.10
4 4 1 0.71 1.21 0.27 0.09 0.309 0.045 2 145 0.64 0.11 2 39 0.69 0.49 0.18
2 4 0.04 0.79 1.32 0.20 0.04 0.381 0.056 1 75 0.46 0.15 2 3.4 0.35 0.15 0.42
3 4 0.04 0.77 1.15 0.25 0.05 0.112 0.004 1 443 0.76 0.05 1 15 0.47 0.36 0.17
2 4 10 0.70 1.38 1.06 0.08 0.485 0.028 2 2147 0.52 0.13 6 70 0.82 0.11 0.77
3 4 10 0.56 1.35 1.41 0.09 0.428 0.017 2 12387 0.40 0.23 2 245 0.75 0.13 0.74
2 4 91 0.44 1.23 0.75 0.13 0.793 0.121 1 112379 0.31 0.39 8 159 0.78 0.08 1.43
3 4 91 0.55 1.41 0.49 0.13 0.603 1.954 2 21703 0.40 0.31 2 228 0.64 0.15 0.86

*ETAS parameters α, p, K, μ0, and d0 are defined in equations (7)–(9).
†Parameters k, a, f, and μ0 are defined in the Spatiotemporal Estimation of Seismicity Rate Using Adaptive Kernels (Model K2) section.
‡σ0 is the bandwidth of the magnitude kernel.
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Time Domain

Figure 1 compares the observed and predicted number
of earthquakes per day following the two largest earthquakes
in the catalog, the Landers M 7.3 28 June 1992 mainshock

and the El Mayor–Cucapah M 7.2 10 April 2010 mainshock.
All three models (ETAS, K2, and K3) shown in this figure
were optimized to forecast M ≥ 3 targets using M ≥ 2 earth-
quakes. All models explain the decrease of aftershocks with

Table 2
Probability Gains for ETAS and Kernel Models

ETAS K2 K3

MD Mt T (days) G GM Gt G GM Gt G GM Gt

2 2 1 47.40 1.000 1.44 46.74 1.000 1.45 46.79 0.981 1.47
2 3 1 52.12 1.001 1.65 47.57 1.001 1.62 47.35 0.965 1.63
2 4 1 47.37 1.002 1.67 41.93 1.002 1.65 41.32 0.981 1.64
2 5 1 23.37 0.999 1.34 22.14 1.000 1.36 22.08 0.984 1.35
3 3 1 45.18 1.001 1.62 40.57 1.001 1.60 38.32 0.948 1.64
3 4 1 42.76 1.002 1.66 34.61 1.002 1.62 34.64 0.977 1.63
3 5 1 22.37 0.999 1.33 18.72 1.000 1.23 20.68 0.988 1.26
4 4 1 33.55 1.002 1.65 22.82 1.002 1.57 20.83 0.929 1.54
2 4 0.04 213.0 1.002 2.56 133.1 1.002 2.31 94.04 0.798 2.23
3 4 0.04 198.5 1.002 3.23 119.1 1.002 2.69 98.22 0.851 2.67
2 4 10 16.69 1.002 1.20 13.87 1.002 1.16 14.64 0.988 1.20
3 4 10 15.97 1.002 1.19 12.84 1.002 1.11 13.67 0.987 1.12
2 4 91 6.483 1.002 1.01 6.521 1.002 0.99 6.581 0.999 1.01
3 4 91 6.823 1.002 1.02 6.301 1.002 0.99 6.387 0.996 1.00

Probability gains G, GM , and Gt (see definition in Likelihood and Probability Gains section) for earthquake
forecasts with different values of the minimum magnitude of target events Mt, of the minimum magnitude MD

of the learning catalog, and of the time interval T, computed for ETAS model and for kernel models K2 and K3.
Bold values indicate the model with the largest gain G for each set of parameters.
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Figure 1. Observed (triangles) and predicted number of M ≥ 3 earthquakes per day following (a) the Landers M 7.3 28 June 1992
mainshock and (b) the El Mayor–Cucapah M 7.2 10 April 2010 mainshock. The predicted number of earthquakes per day is shown
for ETAS (crosses), K2 (diamonds), and K3 (circles) models. The time axis begins on the day before each mainshock. The color version
of this figure is available only in the electronic edition.

814 A. Helmstetter and M. J. Werner



time reasonably well, but they all slightly underestimate the
rate of aftershocks during the first five days after the main-
shocks. In the case of Landers, this is especially true for K3

and ETAS. The observed underprediction in these two se-
quences is not, however, emblematic of all sequences: there
are mainshocks for which the predicted aftershock rate is
larger than the observed rate. The predicted rate for the days
of the Landers and El Mayor–Cucapah mainshocks is low for
all models. The foreshock activity reported by Dodge et al.
(1996) and Hauksson et al. (2010) did not increase the rate
significantly by midnight of the day preceding these main-
shocks (i.e., by the time forecasts are issued). This illustrates
that larger probability gains can be achieved by reducing the
forecast horizon to periods smaller than one day.

In Figure 1, there is a large peak of the predicted rate for
all models observed on 8 July 2010, 94 days after the El
Mayor–Cucapah mainshock. This peak of the predicted rate
is not associated with a peak of the observed number of
M ≥ 3 earthquakes. The peak is due to the occurrence of an
M 5.4 earthquake on 7 July 2010 at 23:53 UTC. This earth-
quake was followed by 9 m ≥ 2 mainshocks on 7 July 2010
within 7 min, yielding an average rate of 2236 events per day
between the mainshock at 23:53 and midnight. This large
rate of early aftershocks yields a large number of predicted
m ≥ 3 events using the kernel models, because these models

assume that the rate for the day 8 July 2010 is equal to the
rate measured at 00:00 on this day. Updating the models
more often would remove much of this bias. For the ETAS
model, the predicted rate for this day is much smaller than for
the kernel models, because the ETAS model gives less weight
to small earthquakes than kernel models.

Although the kernel models use a Gaussian temporal
kernel, the predicted rates can well approximate a power-
law decay of aftershocks with time. This is illustrated in
Figure 2, which compares the temporal kernels of ETAS and
K2 models. In the first hours following the mainshock, model
K2 seriously underestimates the rate of aftershocks, because
the weight associated with each earthquake does not depend
on its magnitude and because the bandwidths of the temporal
kernels are rather large. Figure 2 also shows the predicted rate
of an unweighted version of modelK2, obtained by setting all
weights wi # 1 for all earthquakes in model K2. At times
shorter than 1 day, the predicted rate is further decreased
by a factor of about 10 compared to the weighted K2 model,
demonstrating that the unweighted model does not account
for the triggering due to missing early aftershocks. After sev-
eral days, when the completeness magnitude decreases back
to M0 # 2, the unweighted rate gradually recovers the rate
predicted by the weighted K2 model. This highlights the im-
portance of correcting for short-term fluctuations of the com-
pleteness magnitude using equation (3). Indeed, using
weights to correct for catalog incompleteness can consider-
ably increase the prediction gain, in particular when the mag-
nitude of targetsMt is much larger thanMD.At later times, the
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Figure 2. The predicted rate of M ≥ 3 earthquakes per day fol-
lowing the Landers M 7.3 28 June 1992 mainshock, for the ETAS
and K2 models using M ≥ 2 earthquakes. In addition, we also plot-
ted the rate predicted by K2 model by setting the same weight wi #
1 for all events. This highlights the importance of correcting for
missing early aftershocks using equation (3). The dashed lines re-
present the contribution of the mainshock, whereas the solid lines
show the predicted rate estimated using all earthquakes that oc-
curred after the mainshock. The color version of this figure is avail-
able only in the electronic edition.
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Figure 3. Temporal evolution of (a) temporal bandwidths,
(b) spatial bandwidths, and (c) number of M ≥ 2 earthquakes per
day for a period of four months in 1992, using the kernel model
K2 optimized for T # 1 day and Mt # 3. Circles in (a,b) indicate
the occurrence of M ≥ 6 earthquakes. Continuous lines in (a,b)
show the median value of kernel bandwidth in time and space com-
puted in a sliding window of 100 events. The color version of this
figure is available only in the electronic edition.
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temporal bandwidths have decreased a lot (from several days
to less than 1 hour) and the high rate of activity allows for an
accurate estimation of the seismicity rate. Figure 3 illustrates
how the kernel bandwidths in space and time evolvewith time
and adapt to the seismicity rate. Just after a large earthquake,
hi can decrease to a fewminutes and di to 0.5 km (the imposed
lower boundary). In areas of low seismicity rate, in contrast, hi
can reach several years and di 100 km.

Kernel models provide a direct measure of the seismicity
rate in space and time. Because the number of aftershocks
per day decreases slowly with time (except on the first
day), kernel models explain rather well the temporal evolu-
tion of aftershocks with time. This works because the learn-
ing catalog is updated every day, even if the Gaussian
temporal kernel is very different from a power-law decay.
In contrast, the ETAS model uses the Omori–Utsu law to
model triggered earthquakes. It can thus predict the shape

of the temporal decay of aftershocks correctly, even without
updating the learning catalog.

Spatial Domain

For all models, we compared the Gaussian spatial kernel
with a power-law kernel, and found that the power-law ker-
nel gives generally better results. The difference in probabil-
ity gain is small, however, generally of the order of 1%. The
maps of predicted rate for the day 30 June 1992 (two days
after the Landers mainshock) are shown in Figure 4. All
models use the same background model but with different
weights. For instance, for MD # 2 and Mt # 3, the station-
ary rate is 0.55 earthquakes per day for ETAS model and for
the whole testing area. For kernels models, the stationary rate
is slightly smaller, with respectively 0.35 and 0.39 events per
day for models K2 and K3. The maps for all three models are
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Figure 4. Locations of the predicted rate of M ≥ 3 earthquakes for 30 June 1992, two days after the Landers M 7.3 mainshock, for (a)K2,
(b) K3, and (c) ETAS models, in logarithmic scale. Black dots represent M ≥ 3 target earthquakes that occurred on 30 June 1992. The
background rate used by the ETAS model is shown in (d). Kernel models use the same background rate as ETAS but with a slightly different
amplitude (μ0 # 0:55 background events per day for ETAS, 0.35 for K2, and 0.39 for K3). The color version of this figure is available only in
the electronic edition.
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rather similar. All models predict a large increase in seismic-
ity rate in the aftershock zone. The main difference is that
kernel models are a little smoother: the kernel bandwidths
in space and time are larger than the interevent times and
distances. In contrast, ETAS model can predict more abrupt
changes of seismicity rate.

Magnitude Distribution

Models ETAS and K2 assume that the magnitude distri-
bution obeys a tapered Gutenberg–Richter distribution, with
a uniform exponent b # 1 (except in the Geysers area) and a
corner magnitudeMc # 8. In contrast, model K3 uses kernel
smoothing of past earthquakes to estimate the magnitude dis-
tribution in each cell and at each time step. Only a small frac-
tion of the seismicity is modeled by a stationary rate with a
tapered Gutenberg–Richter distribution, especially during
periods of active triggering. The magnitude distributions ob-
tained by K3 on day 30 June 1992 (two days after Landers
mainshock) are shown in Figure 5. When averaging over all
cells, the magnitude distribution is close to a Gutenberg–
Richter law with b ≈ 1 for small magnitudes but with a faster
decay for M ≥ 6. However, the magnitude distribution varies
considerably between individual spatial cells. For example

due to the occurrence of the M 7.3 Landers mainshock
two days earlier, many cells show a relative increase near
M ≈ 7 over a Gutenberg–Richter distribution. Figure 5 also
displays the magnitude distribution in the hydrothermal Gey-
sers area. As expected, the magnitude distribution in this re-
gion (dashed-dotted black line) is steeper than the reference
curve (dashed line), at least for magnitudes M < 6.

Comparison of the Predicted Number of Events per
Day

Figure 6 compares the daily rates predicted by the ETAS
and K2 models on days when at least one target earthquake
occurs. There is a good correlation between the two rates, but
also significant differences. For example, on 8 July 2010, K2

predicts a much larger rate than ETAS. This event was dis-
cussed previously in the Time Domain subsection. It is high-
lighted by a cross in Figure 6a and corresponds to day 94 in
Figure 1b. The opposite behavior (ETAS predicting a much
higher rate than K2) is more frequent. An extreme example is
shown by a triangle in Figure 6a. It corresponds to 17 March
2002, one day after an M 4.6 earthquake, in a cell located at
33.67° N and 119.33° W in which the seismicity rate is mod-
erate. The M 4.6 earthquake occurred at 21:33, and only one
M ≥ 2 aftershock occurred on the same day. The rate pre-
dicted by K2 for the following day was relatively small
(7 × 10−5). The bandwidths in space and time associated
with these two earthquakes of 16 March 2002 are relatively
large, thus not producing a significant increase of the pre-
dicted rate. In contrast, ETAS predicted a strong increase
in seismicity due to the occurrence of the M 4.6 earthquake,
because the rate depends exponentially on the magnitude.
Most days on which K2 underpredicts the seismicity rate
can be explained similarly. Model K2 needs at least k events
in a small time and space interval to produce a strong in-
crease in seismicity rate.

In these examples, ETAS performs better because the pre-
dicted rate strongly depends on the earthquakemagnitude, un-
like in the kernel models. However, on most days with at least
one earthquake, kernel models are better than ETAS. Indeed,
forMD # 2,Mt # 3, and T # 1 day, the rateNp;K2 predicted
by the K2 model in cells where targets occurred is larger than
the rate predicted by the ETAS model for 56% of target earth-
quakes. The distribution of the ratio x # Np;K2=Np;ETAS is
shown in Figure 6b (for all nonempty bins). The arithmetic
average and the median values of x are both slightly larger
than 1, suggesting that model K2 outperforms ETAS. How-
ever, the geometric average of x (equal to the probability gain
defined in equation 11) is less than 1, indicating that, in terms
of likelihood, the ETAS model is better.

To estimate the significance of the differences in prob-
ability gains, we could use the T-test or the W-test (Rhoades
et al., 2011). However, the empirical distribution of x points
to issues in the interpretation of the results. For example, we
found that the probability gain of the ETAS model is signifi-
cantly larger than that of K2 according to the T-test, whereas,
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Figure 5. Observed and predicted number of earthquakes per
magnitude bin, per day, and per cell, for model K3 with T # 1
day, MD # 2, and Mt # 3. The dashed line represents the contri-
bution of the stationary rate, modeled by a tapered Gutenberg–
Richter law with b # 1 and a corner magnitude Mc # 8. The pre-
dicted rate (averaged over all cells) for 30 June 1992 (two days after
Landers mainshock) is shown by a solid line. The thin gray lines
show the predicted rate for this day for a random selection of cells.
The dashed-dotted line corresponds to the Geysers area. The circles
represent the average rate of events per cell for the whole catalog,
and the triangles show the average rate for the 96 earthquakes of 30
June 1992 (see text). The color version of this figure is available
only in the electronic edition.
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simultaneously, the W-test suggests that the median of the
distribution significantly favors K2. These two test results
can both be true because the tests measure a particular
property of a skewed and asymmetric empirical distribution.
Deciding which model is better is thus a difficult task and
depends on which quantity is considered: the median rate
in the case of the W-test or the geometric average of the pre-
dicted rates (the probability gain) in the case of the T-test
(see also the discussion by Eberhard et al., 2012, in their sec-
tion 7.1, and by Werner, Ide, and Sornette, 2011, in their sec-
tion 4.2.2 and their fig. 6, in particular).

Kernel models generally perform better than ETAS when
the seismicity rate varies smoothly, that is, at time and spatial
scales larger than the interevent times and distances. In such
cases, kernel models allow a direct and accurate measure of
the seismicity rate in space and time. These models are not
sensitive to the magnitudes of earthquakes, which are not
always very accurate. In addition, there may be variations
of the aftershock productivity or the Omori–Utsu law decay
between sequences. When using the ETAS model, these var-
iations can induce deviations between the observed and pre-
dicted seismicity rates. In contrast, kernel models are not
sensitive to these fluctuations and can adapt to each situation,
as long as there is no abrupt change of the seismicity rate in
time or space.

Probability Gains as a Function of Minimum
Magnitude and Forecast Horizon

We tested different values of the minimum magnitude
MD (for the learning catalog) and Mt (for targets), as well

as different forecast horizons T. The results are summarized
in Figure 7 and Table 2. In most cases, the ETAS model ob-
tains larger probability gains G than kernel models. We find
that the gain decreases with the minimum magnitude MD,
suggesting that including smaller events improves the fore-
casts. There is no clear trend of G as a function of the mini-
mum magnitude of targets. The gain is roughly constant for
2 ≤ Mt ≤ 4 but decreases for Mt 5, possibly due to the lim-
ited number of Mt ≥ 5 targets. Updating the forecast less
often (increasing T) strongly impacts the predictability.
The gain decreases very fast with increasing T. For a time
interval of 3 months, G is almost the same as the value
GLT # 4:6 obtained for the long-term (five-year) forecast
by Helmstetter and Werner (2012).

The fact that ETAS model performs better than kernel
models could be due partly to the larger number of inverted
parameters for ETAS model. Indeed, the number of inverted
parameters is six for ETAS model, five forK3 model, and four
for K2 model. One way to account for such variations is the
Akaike information criterion (AIC; Akaike, 1974), defined as
AIC # 2!n − L" # 2!n − N log!G"" $ constant, in which L
is the log likelihood, n is the number of inverted parameters, N
the number of targets, andG the probability gain. The preferred
model is the one with the minimum AIC value. We found that
comparing AIC values rather than gains do not change the re-
sults; ETAS is still the preferred model with the lowest AIC
value for all forecast parameters tested in Table 2, except
for the test with MD # 2, Mt # 3, and T # 91 days.

The probability gain in the time domainGt is small com-
pared to both G and the values of GLT of long-term spatial
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Figure 6. (a) Comparison of predicted rate per bin for models ETAS and K2, using parameters T # 1 day, MD # 2, and Mt # 3. Only
bins with at least one target event are plotted. (b) Probability density function of the ratio of the predicted rate for ETAS and K2 models (thin
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2002. The color version of this figure is available only in the electronic edition.
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models. Indeed, for T ≥ 1 day, Gt < 1:7 (Table 2), demon-
strating that the predictive skills of the models arise mostly
from spatial information. Interestingly, modeling the spatial
distribution of clustering in the ETAS model is difficult due to
the strong anisotropy of aftershock distribution.

The probability gain GM in the magnitude dimension is
almost equal to one for models ETAS and K2 for all cases
shown in Table 2. The small deviation from one is due to the
correction introduced in the Geysers area. For model K3, the
gain is always a little smaller than 1, suggesting that the mag-
nitude distribution is better explained by a simple tapered
Gutenberg–Richter law. The gain GM increases with T be-
cause the optimized value of k (number of nearest neighbors)
increases with T (Table 1). ForMD # 2 andMt # 4, the best
values are k # 2 for T # 1 hr or 1 day, k # 6 for T # 10
days, and k # 8 for T # 3 months. As a consequence, the
kernel bandwidths (hi and di) also increase with T, so that
there are more earthquakes with a significant contribution
in equation (5). The gain GM is also larger when Mt > MD,
because boundary effects near MD are less problematic.

Simple Ensemble Models

We constructed simple ensemble models of the different
models by simply estimating a weighted average of the fore-
casted rate in each bin provided by two models. The pre-
dicted rate for an ensemble model is defined by

Np;h1;2i # ωNp;1 $ !1 − ω"Np;2; !16"

in which 0 ≤ ω ≤ 1 is the mixing weight and Np;1 and Np;2
are the rates in each space–time–magnitude bin predicted by
the two individual models. These average models generally
perform better than each individual model, as shown in
Table 3 and in Figure 7. The individual model with the larg-
est gain has generally the largest weight in the ensemble

model (ω > 0:5), although there is an exception for the first
line in Table 3, for MD # 2, Mt # 2, and T # 1 day.

In order to test whether ensemble forecasts are better
despite having a larger number of parameters, we used the
AIC test (Akaike, 1974). We consider that the number of free
parameters of ensemble models are given by the sum of
parameters of each individual model plus one for the optimal
mixing weight ω. For each ensemble model, we compute the
difference of AIC values δAIC between the ensemble model
and the individual model with the smallest AIC value. These
values are reported in Table 3. We found that in most cases
the ensemble model is significantly better than each individ-
ual model (δAIC < 0). We did not try to optimize all model
parameters simultaneously but instead used the separately
optimized models described above. Note that more sophis-
ticated methods exist for combining models using a Bayesian
approach (Marzocchi et al., 2012).

Averaging ETAS and kernel models allows us to com-
bine the strengths of each model. In many cases the individ-
ual models provide very different results, with predicted rates
varying by a factor of 100 (Fig. 6). The kernel and ETAS
models are based on very different assumptions and thus
have different weaknesses. Kernel models often perform bet-
ter when seismicity rate is very active but varies smoothly, at
scales much larger than typical interevent times and distan-
ces. This is generally the case during the first days following
large mainshocks or during very active swarms. During these
periods, ETAS model may be biased if the mainshock produc-
tivity or the aftershock decay with time are different from the
prediction of the ETAS model with fixed parameters. On the
other hand, kernel models may produce poor forecasts when
the seismicity rate varies rapidly, at times smaller than the
time window T, because it simply assumes that the rate dur-
ing the next time window of duration T will be constant and
equal to the present rate. Besides, model K3 can account for
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Figure 7. Probability gain as a function of (a) minimum magnitude MD of the learning catalog, (b) minimum magnitude Mt of targets,
and (c) time interval T for ETAS (crosses), K2 (diamonds), and K3 (circles) models. The best ensemble model (bold in Table 3) is shown by a
plus. The color version of this figure is available only in the electronic edition.
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deviations from the Gutenberg–Richter magnitude distribu-
tion or for temporal and spatial changes of b-value.

Discussion and Conclusion

We developed new methods for estimating the seismic-
ity rate in space, time, and magnitude using adaptive kernels.
Based on these estimates, we generated short-term, time-
dependent earthquake forecasts that simply assume the seis-
micity rate over the forecast horizon equals the present rate,
that is, these are persistence forecasts. Although this
assumption seems simplistic, the models perform relatively
well (albeit not generally better) in terms of likelihood com-
pared with the ETAS model, even for forecast horizons of
three months.

The kernel and ETAS models are based on very different
assumptions. The ETAS model estimates the rate of back-
ground and triggered earthquakes, based on empirical laws
describing the distribution of triggered earthquakes in time,
space, and magnitude. In contrast, the kernel models are
based on purely statistical methods and could be used to pre-
dict any (marked) space–time point process. Despite these
fundamental differences between kernel models and ETAS
model, the results (distribution in time, space, and magni-
tude, and probability gains) are rather similar. In terms of
the likelihood score or the probability gain, ETAS model gen-
erally performs better than kernel models (see Table 2). How-
ever, using a different criterion, such as the mean predicted
rate in nonempty bins, the kernel models perform better than
ETAS in a majority of cases. Because of their simplicity and
their lack of assumptions about seismicity, the kernel models
can be used as a good null hypothesis against which to test
other time-dependent models.

We optimized the ETAS parameters by maximizing the
forecasts’ likelihood under the assumption of a Poisson proc-
ess in each bin, rather than by maximizing the likelihood
function of the pointwise ETAS process. The parameters
are thus effective. The ETAS model in definition (7) calcu-
lates the seismicity rate continuously as a function of all
past events. The rate should thus be updated after each
new earthquake to include all available information opti-
mally; however, in our procedure, the learning catalog is only
updated every T days. The effective ETAS parameters parti-
ally account for the contribution from earthquakes that occur
during the forecast horizon. Also, our estimates of the pro-
ductivity exponent α varies between 0.4 and 0.8, depending
on learning and target catalog choices (MD, Mt, T). These
values are significantly smaller than the value α ≈ 1 obtained
when directly estimating aftershock productivity using de-
clustering methods (Helmstetter et al., 2005; Hainzl and
Marsan, 2008). Our implementation of the ETAS model
can thus be considered as an intermediate model between
a physical model (i.e., one that describes the rate of triggered
earthquakes as a function of time and distance from the trig-
gering earthquake) and a fully statistical model such as the
kernel models (using kernels to measure the seismicity rate,
without distinction between triggered earthquakes and other
events).

Whereas the K3 model does not assume a Gutenberg–
Richter law (except for the small stationary background rate),
it often approximates the magnitude distribution reasonably
well. The probability gainGM in magnitude (14) is, however,
smaller than one for most cases shown in Table 2. This means
that either the magnitude distribution obeys Gutenberg–
Richter law at all time and space scales or that kernel smooth-
ing is not a good approach for modeling the magnitude

Table 3
Probability Gains G, Mixing Weight ω, and δAIC Values for Ensemble Models

G G ω δAIC G ω δAIC G ω δAIC

MD Mt T (days) ETAS K2 K3 hETAS; K2i hETAS; K3i hK2; K3i

2 2 1 47.40 46.74 46.79 50.71 0.41 −21039 51.89 0.42 −28174 48.25 0.48 −32171
2 3 1 52.12 47.57 47.35 54.41 0.54 −1369 54.49 0.56 −1413 48.62 0.52 −4339
2 4 1 47.37 41.93 41.32 48.59 0.66 −73.2 48.24 0.72 −47.7 43.89 0.53 −443
2 5 1 23.36 22.14 22.08 24.06 0.60 0.8 23.95 0.66 4.3 22.50 0.55 −8.5
3 3 1 45.18 40.57 38.32 47.35 0.55 −1495 47.29 0.61 −1456 41.39 0.63 −4907
3 4 1 42.76 34.61 34.64 43.55 0.71 −50.1 43.47 0.74 −41.9 35.32 0.53 −729
3 5 1 22.38 18.72 20.68 22.60 0.79 6.9 23.05 0.63 2.8 20.70 0.10 −19.9
4 4 1 33.55 22.82 20.83 34.14 0.75 −47.1 33.91 0.84 −22.9 22.86 0.92 −1280
2 4 0.04 213.0 133.1 94.04 216.2 0.81 −38.4 214.26 0.93 −7.6 136.47 0.81 −1541
3 4 0.04 198.5 119.1 98.22 205.5 0.71 −103. 199.8 0.91 −9.3 125.2 0.82 −1678
2 4 10 16.69 13.87 14.64 16.73 0.86 0.9 16.77 0.81 −5.3 14.91 0.34 −431
3 4 10 15.97 12.84 13.67 16.06 0.87 −9.7 16.16 0.80 −27.8 13.73 0.24 −533
2 4 91 6.483 6.521 6.581 6.749 0.46 −98.3 6.745 0.43 −66.6 6.662 0.37 −66.6
3 4 91 6.823 6.301 6.387 6.823 1.00 10.0 6.824 0.96 11.5 6.404 0.29 −202

Probability gainG for different values of the minimummagnitude of target eventsMt, of the minimummagnitudeMD of the learning catalog, and of the time
interval T, computed for individual and ensemble models. Ensemble models (noted h; i) are obtained by a weighted average of the rate of each individual model,
with a weight ω for the first model and 1 − ω for the second one. Bold values indicate the model with the largest gain for each set of parameters. A negative
value of δAIC indicates that the ensemble model is better than each individual model.
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distribution and its variation in time and space. Another ap-
proach would be to impose a Gutenberg–Richter law and
to compute its b-value in each cell at each time step from
the magnitudes of past nearby earthquakes.

Finally, we showed that constructing simple ensemble
models from the kernel models and the ETAS model by sim-
ply averaging the predicted rate per bin often yields a higher
predictive skill than each individual model can attain.

We submitted the ETAS and K3 models to the CSEP test-
ing center at the Southern California Earthquake Center
(SCEC) in September 2012 for independent and prospective
evaluation in the California testing area. There, our models
compete with the models submitted by other researchers in
the forecast group of daily forecasts of earthquakes with mag-
nitudesMt ≥ 3:95.We submitted two versions of eachmodel,
one uses all prior earthquakes M ≥ 2 as the learning catalog,
whereas the other uses M ≥ 3. For each learning catalog
threshold, we also submitted a simple ensemble model that
averages the forecasts of the ETAS and K3 models.

Between the date of installation at CSEP and the date of
the latest available test results (1 August 2013 at this time, 6
September 2013), 31 earthquakes M ≥ 3:95 occurred within
the testing region. Thus far, our models appear to perform
well and as intended. Although it is too early to judge the
practical significance of these results, all three models thus
far perform better than any other installed one-day model.
Within both the M ≥ 2 and the M ≥ 3 forecast group, K3

achieved the highest gain, followed by the ensemble model
and ETAS. According to the T- and W-tests, all three models
currently achieve significantly larger gains than any other
model, including the STEP model by Gerstenberger et al.
(2005) and the critical-branching model by Kagan and Jack-
son (2010). Accumulating target earthquakes will enable
more meaningful distinctions between the information con-
tent of the forecasts.

Data and Resources

We used the Advanced National Seismic System earth-
quake catalog made publicly available by the Northern Cal-
ifornia Earthquake Data Center at www.ncedc.org (last
accessedMarch 2012) in the period from 1 January 1981 until
1March 2012 with magnitudeM ≥ 2 and in the spatial region
defined by the Regional Earthquake Likelihood Models
collection region, defined in Table 2 by Schorlemmer and
Gerstenberger (2007).
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