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Adaptive Spatiotemporal Smoothing of Seismicity for Long-Term

Earthquake Forecasts in California

by Agnès Helmstetter and Maximilian J. Werner

Abstract We present new methods for time-independent earthquake forecasting
that employ space–time kernels to smooth seismicity. The major advantage of the
methods is that they do not require prior declustering of the catalog, circumventing
the relatively subjective choice of a declustering algorithm. Past earthquakes are
smoothed in space and time using adaptive Gaussian kernels. The bandwidths in space
and time associated with each event are a decreasing function of the seismicity rate at
the time and location of each earthquake. This yields a better resolution in space–time
volumes of intense seismicity and a smoother density in volumes of sparse seismicity.
The long-term rate in each spatial cell is then defined as the median value of the tem-
poral history of the smoothed seismicity rate in this cell. To calibrate the model, the
earthquake catalog is divided into two parts: the early part (the learning catalog) is
used to estimate the model, and the latter one (the target catalog) is used to compute
the likelihood of the model’s forecast. We optimize the model’s parameters by max-
imizing the likelihood of the target catalog. To estimate the kernel bandwidths in space
and time, we compared two approaches: a coupled near-neighbor method and an itera-
tive method based on a pilot density. We applied these methods to Californian seis-
micity and compared the resulting forecasts with our previous method based on
spatially smoothing a declustered catalog (Werner et al., 2011). All models use small
M ≥2 earthquakes to forecast the rate of larger earthquakes and use the same learning
catalog. Our new preferred model slightly outperforms our previous forecast, provid-
ing a probability gain per earthquake of about 5 relative to a spatially uniform forecast.

Introduction

Many long-term earthquake forecasts are based on
smoothed seismicity (e.g., Kagan and Jackson, 1994;
Frankel et al., 1997; Rong and Jackson, 2002; Stock and
Smith, 2002a,b; Helmstetter et al., 2006, 2007; Werner,
Helmstetter, et al., 2010; Zechar and Jordan, 2010; Werner
et al., 2011). These studies suggest that smoothing the loca-
tions of past earthquakes provides a skillful estimate of the
spatial distribution of future seismicity. However, a recurring
problem with this approach is the strong clustering of seis-
micity in time. Seismicity rates can increase by several orders
of magnitude after large earthquakes, which would lead to
strong peaks in a spatial forecast if the temporal clustering
were not removed.

For instance, Werner et al. (2011, their fig. 3) found that
declustering a Californian catalog prior to smoothing epicen-
ters resulted in larger probability gains than smoothing all
quake locations. It seems reasonable to expect that their find-
ings extend to many other regions and catalogs, especially
for small to moderate magnitude thresholds. This provides
quantitative support for the decision by almost all authors
to decluster prior to smoothing to obtain better long-term

forecasts. There are, however, some exceptions. For instance,
Zechar and Jordan (2010) smoothed an entire Italian catalog
to forecast seismicity, and their forecasts often performed
well in retrospective tests (Werner, Zechar, et al., 2010).
But Zechar and Jordan (2010) did not test whether smooth-
ing a declustered catalog would have produced better fore-
casts using their method.

Despite the advantage declustering seems to offer for
forecasts, however, declustering an earthquake catalog is, to
some extent, subjective and, moreover, a retrospective enter-
prise of some controversy (e.g., Van Stiphout et al., 2011).
Several algorithms have been proposed; the more frequently
used are the methods by Gardner and Knopoff (1974) and by
Reasenberg (1985). Each method has several adjustable
parameters, which may significantly affect the results (Van
Stiphout et al., 2011), but are generally chosen in a some-
what arbitrary manner. Another class of methods does not
classify earthquakes as either belonging to the background
or to the triggered events, but assigns a probability of inde-
pendence to each earthquake (Kagan, 1991; Zhuang et al.,
2002, 2004; Marsan and Lengliné, 2008). These probabilistic
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methods have the advantage that parameters are optimally
chosen (e.g., using a maximum likelihood approach) rather
than arbitrarily fixed. Nonetheless, both deterministic and
stochastic declustering methods make several strong as-
sumptions about seismicity.

Declustering methods generally assume that the seismi-
city rate is the sum of a constant loading rate and triggered
earthquakes. Therefore, these methods cannot account for
quiescence, that is, a decrease of seismicity below the back-
ground rate often claimed to occur in Coulomb stress sha-
dows following large mainshocks (e.g., Toda et al., 2012)
or variable loading rates (e.g., due to fluid flow or aseismic
slip). Moreover, the choice of declustering method might in-
fluence the performances of the long-term forecast.

Few alternatives to declustering algorithms have been
proposed. Hainzl et al. (2006) suggested to estimate the frac-
tion of background events from the interevent time distribu-
tion. This method can be used to map the background rate,
however, with a limited resolution in space. Stock and Smith
(2002a,b) used spatial kernels to smooth seismicity in sepa-
rate time intervals of one year. They then estimated the rate of
independent events from the statistics of the density of seis-
micity in each time interval. Specifically, they computed the
time series Rt;i of the rate in each cell i and for each year t, as
well as the rate Ri using the full time window. To correct for
temporal clustering, the rate Ri is divided by �1� Vi�2,
where Vi is the index of dispersion (variance-to-mean ratio)
of the time series Rt;i. This lowers the predicted rate in cells
where many aftershocks have occurred and Vi ≫ 1. Our
method is similar to that of Stock and Smith (2002a,b)
in that we estimate the density of seismicity using adaptive
kernels and then estimate the stationary rate from the tempo-
ral variability of the density. The main differences are (1) we
use adaptive kernels in space and time, while Stock and
Smith (2002a,b) used adaptive kernels in space only in
distinct time intervals, and (2) we estimate the long-term rate
from the median value of the seismicity rate in each spatial
cell rather than from the index of dispersion of the number of
events.

In this study, we are only interested in time-independent
earthquake forecasts, although the methods presented here
can also be used for time-dependent, short-term forecasts,
which we will present in a separate article. Below, we first
present the adaptive kernels used to estimate the density of
earthquakes in space and time and describe two methods for
estimating the spatial and temporal bandwidths: the coupled
near-neighbor method and an iterative method based on a
pilot estimate. We then discuss how these methods can be
used to provide earthquake forecasts. Finally, we compare
the forecasts with the long-term forecast by Werner et al.
(2011), which is based on adaptive smoothing of declustered
seismicity. We have submitted this forecast to the Collabora-
tory for the Study of Earthquake Predictability (CSEP),
whose mission is to provide the infrastructure for regionally
and globally testing prospective earthquake forecasts (e.g.,
Jordan, 2006; Zechar et al., 2010).

Spatiotemporal Estimation of the Seismicity
Rate using Adaptive Kernels

Nonparametric kernel estimation is often used in seis-
mology to map the spatial distribution of seismicity and
provide long-term forecasts. Most studies use kernels in the
spatial domain only, using either fixed kernels with a con-
stant bandwidth (e.g., Kagan and Jackson, 1994; Frankel
et al. 1997; Zechar and Jordan, 2010) or with adaptive band-
widths (e.g., Stock and Smith, 2002a,b; Helmstetter et al.,
2006, 2007; Werner et al., 2011). Adaptive kernels allow
for a higher resolution in areas of dense seismicity, while
avoiding isolated spikes in zones of sparse seismicity.
Few studies have used kernels in both the spatial and tem-
poral domain (Choi and Hall, 1999; Adelfio and Chiodi,
2010). The intensity at location r and time t can be expressed
as a function of the times and locations of earthquakes in a
catalog by

R�r; t� �
XN
i�1

1

hid2i
K1

�
t − ti
hi

�
K2

�jr − rij
di

�
; (1)

where hi and di are the bandwidths associated with event i in
the temporal and spatial domain, respectively, and jr − rij is
the distance to the epicenter of event i. Different functions
(e.g., power laws) could be used for the temporal kernel
K1 and the spatial kernel K2. Here, we choose Gaussian
kernels for both K1 and K2 for simplicity. Adaptive kernels
assume that hi and di vary as a function of the density at the
location and time of each earthquake. Because of the limited
accuracy of earthquake locations, we impose that the spatial
bandwidth di cannot be smaller than 0.5 km. Because we are
interested in earthquake forecasting (rather than a retrospec-
tive density estimation), we use a modified expression of
equation (1), so that the seismicity rate at time t only depends
on past earthquakes with ti < t

R�r; t� � Rmin �
X
ti<t

2

hid2i
K1

�
t − ti
hi

�
K2

�jr − rij
di

�
: (2)

The factor two in equation (2) accounts for the weight of
future events in the sum of equation (1). The constant para-
meter Rmin assures that R is always positive, thereby account-
ing for surprises, that is, earthquakes that occur in areas
without prior seismic activity. Two methods are available to
estimate the bandwidths di and hi associated with each earth-
quake, the coupled near-neighbor method and the iterative
method based on a pilot estimate.

Coupled Near-Neighbor Method

In seismology, the kernel bandwidths in space and/or
in time are usually estimated from the distance between
each earthquake and its nearby neighbors (e.g., Choi and
Hall, 1999; Zhuang et al., 2002; Helmstetter et al., 2006,
2007; Adelfio and Chiodi, 2010; Werner et al., 2011). For
each earthquake, the spatial bandwidth di is estimated as
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the distance between earthquake i and its kth nearest neigh-
bor, where k is a fixed integer (to be optimized). In order to
measure both the spatial and temporal bandwidths di and hi,
the simplest method is to estimate di and hi independently
(Adelfio and Chiodi, 2010), by defining hi as the minimum
of (ti�k − ti) and (ti − ti−k). When applied to earthquake
forecasting, di and hi should only depend on past events
j < i, so that hi � ti − ti−k. Estimating hi and di indepen-
dently, as done by Adelfio and Chiodi (2010), suffers from
a major drawback: events that occurred at the same location
as a major aftershock sequence, but long before or after the
mainshock, will have a very small spatial footprint di be-
cause many events occur nearby, even if the density of seis-
micity at the time of the event is low.

A better, coupled method was proposed by Choi and
Hall (1999), which we modify for asymmetric temporal
kernels. For each earthquake i, the bandwidths di and hi are
chosen to minimize the function hi � adi under the con-
straint that there are at least k events at a distance smaller
than di and, simultaneously, at a time between ti − hi and
ti. This method is illustrated in Figure 1. The parameter k
controls the overall level of smoothing, while a controls
the relative importance of smoothing in space versus time.
A larger value of a gives a forecast with a higher resolution
in space that is simultaneously smoother in the time domain.

Iterative Method Based on a Pilot Estimate

Another approach to estimate the optimal adaptive band-
widths in equation (2) consists in evaluating iteratively the
bandwidth as a function of a pilot-estimate R̂ of the
spatiotemporal seismicity density. Abramson (1982) showed
desirable statistical properties of the resulting density esti-
mate (e.g., vanishing bias) if the bandwidths scale according

to ∼1=
�������������������
R̂�x; y; t�

q
. This is true for both univariate and multi-

variate kernels. Nearest-neighbor bandwidths, in contrast,
scale as ∼1=R̂�x; y; t� (in 1D), that is, they are more strongly
dependent on the local density. Abramson (1982) also noted
that, in 2D, the two dependencies agree. Nonetheless, here
we are concerned with the practical issues of estimation
and the predictive skill of the resulting density; therefore,
we compare the two approaches. The pilot estimate can
be obtained by using equation (2) with uniform bandwidths
h and d (Silverman, 1986; Stock and Smith, 2002a,b). We
find that the earthquake forecasts based on a pilot
estimate improve when iterating this process several times.
Starting from uniform values (hi � h0, di � d0), R̂�ti; ri�
at the time and location of each earthquake is estimated using
(2), and the modified bandwidths are estimated by

hi � h0

��������������������������������
< R̂�ti; ri� >geo

R̂�ti; ri�

s
; (3)

and

di � d0

��������������������������������
< R̂�ti; ri� >geo

R̂�ti; ri�

s
; (4)

where the symbol <>geo denotes the geometrical average
over all events i � 1;…; N in the learning catalog. After
each iteration, the log-likelihood of the estimated (and nor-
malized) seismicity density LR is estimated by

LR �
XN
i�1

log�R̂�ti; ri��: (5)

If the likelihood after one step is larger than after the previous
step, the bandwidths are reestimated using equations (3) and
(4), the seismicity rate R̂�ti; ri� is updated using equation (2),
and the likelihood is estimated using equation (5) until LR

becomes smaller than its previous value. Typically, we find
that this process stops after two to five iterations.

Long-Term Forecast

The spatiotemporal seismicity density estimated by
adaptive kernels in equation (2) is then used to estimate
the stationary long-term rate at each node of a spatial grid
and to produce long-term earthquake forecasts in California.

Data: The ANSS Earthquake Catalog

We use the Advanced National Seismic System (ANSS)
catalog in the period from 1 February 1981 until 22 July
2011 with magnitude M ≥2 and depth smaller than 100 km.
This is a composite catalog that gathers data from different
seismic networks in the United States. Events likely to be
associated with underground nuclear explosions at the
Nevada Test Site have been removed following Werner et al.
(2011). There are also problematic events that appear twice
(or more often) in the catalog; these are mostly small events.
For instance, there are eight nearly identical events listed in
the ANSS catalog within 0.2 s on 20 August 2003, with about
the same location and magnitude, suggesting a catalog arti-
fact. We did not attempt to remove all the duplicate events;
we only removed 68 events that had exactly the same time,
location, and magnitude as the preceding event. This leaves
188,319 events with latitudes ranging between 30.5° N and
44° N and longitudes between 126.4° W and 112.1° W. The
catalog is reasonably complete above M 2 in the central part
of California and even down toM 1:5 in some places, but the
completeness magnitude increases close to the boundaries. In
particular, there is a sharp decrease in the density of small
events south of the Mexican border below 32° N. Correcting
for catalog incompleteness is thus important when using
small events to provide earthquake forecasts. In this study,
we use the completeness map that was estimated by Werner
et al. (2011) in each cell from the peak of a locally smoothed
magnitude distribution. We also correct for changes in the
detection threshold following large earthquakes, following
the method described by Helmstetter et al. (2006) and
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Werner et al. (2011). For each earthquake with M >5, we
use the relation given by Helmstetter et al. (2006) for the
completeness magnitude Mc as a function of the magnitude
M of the last large earthquake and the time T since this earth-
quake. We then assume that the magnitude distribution obeys
the Gutenberg–Richter law in order to estimate the rate of
M ≥2 earthquakes from the rate of M ≥ Mc events.

To evaluate the predictive power of our models, we
divide the catalog into two parts, a learning catalog and a
target catalog. Only events in the learning catalog are used
to compute the kernel bandwidths and the predicted earth-
quake density in all space–time bins. The target catalog is
used to evaluate the model by computing the likelihood of
the density using events in the target catalog. Following

Werner et al. (2011), we use the time interval from 1 February
1981 until 31 December 2003 for the learning catalog. The
target catalog contains all earthquakes from 1 January 2004
until 22 July 2011. Figure 2 illustrates the catalogs used in
this study. The learning catalog with magnitudes M ≥2 is
shown in Figure 2a, and the target catalog with magnitudes
M ≥4 is shown in Figure 2b. We have also tested the models
on a declustered target catalog to evaluate the influence of
aftershocks on the predictive skill of the forecasts. For that
purpose, we declustered using the method of Reasenberg
(1985) with the same parameters and modifications that
Helmstetter et al. (2007) used. The declustered catalog is
shown in Figure 2c for the same target period (1 January
2004–22 July 2011) as for the (clustered) target catalog
shown in Figure 2b.

Definition of the Grid

To adapt to the rules of CSEP’s long-term earthquake
predictability experiment in California, we produce forecasts
on the grid covering the region defined by Schorlemmer and
Gerstenberger (2007) for California shown in Figure 2 with a
grid spacing of 0.1°. Because the cell size is much larger than
the minimum value of the bandwidth (fixed to 0.5 km), we
need to integrate the estimated seismicity rate in each cell to
obtain the expected number of events per cell.

Correction for Catalog Incompleteness

Because of the variability of the detection threshold in
time and space, we introduce a weight w in equation (2)
associated with each earthquake (kernel), defined by

wi � 10b�Mc�ti;ri�−Md�; (6)

where b is the exponent of the Gutenberg–Richter magnitude
distribution, Mc�ti; ri� is the completeness magnitude
estimated at the time and location of earthquake i, and Md
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Figure 1. Illustration of the coupled near-neighbor method for
estimating adaptive kernel bandwidths di and hi in space and time,
respectively, by minimizing the sum hi � adi subject to smoothing
over k near-neighbors. Results are obtained for k � 3 and for dif-
ferent values of a: a � 100 (in light gray) and a � 20 day=km (in
dark gray).
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Figure 2. Map of earthquakes in the (a) learning, (b) target, and (c) declustered target catalogs. The gray line marks the limit of the CSEP
testing area. The learning catalog includes 151,518M ≥2 earthquakes from 1 February 1981 until 31 December 2003. The target catalog and
the declustered target catalog cover the time window from 1 January 2004 until 22 July 2011 and contain, respectively, N � 423 and N �
228 events with magnitude M ≥4. Circles indicate M ≥6 earthquakes.
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is the minimum magnitude of earthquakes in the learning
catalog. We use the completeness magnitudes calculated by
Werner et al. (2011, their fig. 2b), which were calculated
from the locally estimated magnitude distributions. In addi-
tion,Mc is modeled to increase after largeM ≥5 earthquakes
using equation 15 of Helmstetter et al. (2006) to model
increases in the detection threshold after mainshocks. Earth-
quakes with magnitudes smaller than the local completeness
magnitude were deleted from the catalogs.

Magnitude Distribution

In this study, we do not attempt to estimate the future
distribution of magnitudes; the likelihood function and prob-
ability gain only consider the spatial distribution of earth-
quakes. Nevertheless, we need a magnitude distribution in
order to extrapolate the rate ofM ≥ Md events up to the mag-
nitude threshold Mt of target earthquakes and to correct for
catalog incompleteness using equation (6). For this goal, we
use a simple Gutenberg–Richter magnitude distribution with
b � 1. However, following Helmstetter et al. (2007) and
Werner et al. (2011), we introduce a correction for the
Geysers, a hydrogeothermal area in northern California. In
this region, we assume a piecewise Gutenberg–Richter law
with an exponent b � 1 for M <3:4 and b � 2 for M ≥3:4.
The observed and modeled cumulative magnitude distribu-
tions are shown in Figure 3. When Md is 2, the ratio of M ≥
Mt earthquakes for the piecewise linear magnitude distribu-
tion and the Gutenberg–Richter magnitude distribution with
b � 1 is 0.13 for Mt of 4 and 0.013 for Mt of 5.

Estimating Stationary Rates

We estimate the time series of the seismicity rate in each
cell using adaptive kernels with a time step of 10 days. We
also tried a longer time step of 100 days and obtained very
similar results. The difference in probability gain was always
smaller than one percent; the shorter time step usually pro-
duced better results. We also performed one simulation with
an even shorter time step of one day and found that the gain
increased by less than 0.04%. Therefore, we chose a step of
10 days as a good compromise between accuracy and
computational effort. We did not try reducing this time step
further because it considerably increases the computation
time. The long-term rate Np�ix; iy� in each spatial cell (ix,
iy) is then estimated by the median of the distribution of
the 10-day rates in this cell. By choosing the median rate
per cell, we effectively remove the influence of aftershock
sequences without recourse to declustering algorithms. An
illustration is shown in Figure 4 for a cell located at a latitude
of 33.95° and a longitude of 116.45° W, close to the 1992
M 7.3 Landers earthquake.

Testing and Optimizing the Forecasts

As mentioned previously, here we only test the spatial
distribution of seismicity and not the total number of pre-
dicted events or the magnitude distribution. We therefore
normalize the predicted density so that the total expected
number of events equals the total number of events in the
target catalog. CSEP experiment rules for California fixed
the minimum magnitude of target earthquakes to Mt of 4.95
for long-term forecasts. However, in this work we will also
consider other values of Mt to test if the probability gain
remains constant, which might suggest that the spatial distri-
bution of large earthquakes is similar to that of smaller events.

The log-likelihood is defined by

L �
XNx

ix�1

XNy

iy�1

logp�Np�ix; iy�; n�ix; iy��; (7)

where n�ix; iy� is the number of events that occurred in the
cell (ix, iy). Assuming a Poisson process, the probability
p�Np; n� of observing n events in one cell with a predicted
rate Np is given by

p�Np; n� �
Nn

p exp�−Np�
n!

: (8)

Werner and Sornette (2008) andWerner et al. (2011) discussed
the (in-)adequacy of this Poisson distribution for the variability
in the number of earthquakes over the entire region and in each
cell; we do not attempt to resolve these issues here.

The model parameters are optimized by maximizing
the likelihood L using a simplex algorithm. The inverted
parameters are the minimum density Rmin in equation (2) and
the parameters used to estimate the kernel bandwidths. If
the bandwidths are estimated from a pilot estimate, the model
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Figure 3. Observed (blue) and modeled (red line) cumulative
magnitude distribution in the Geysers area (38:7 < latitude
< 38:9° N and 122:7 < longitude < 122:9°W) using all earth-
quakes until 31 December 2003. The fit uses a piecewise
Gutenberg–Richter law with an exponent b � 1 for M <3:4 and
b � 2 for M ≥3:4.
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parameters are the global values h0 and d0. For the coupled
near-neighbor method, we invert for the number k of neigh-
bors and the parameter a.

We define the gain G as the probability gain per target
earthquake relative to a spatially uniform Poisson model
(Kagan and Knopoff, 1977)

G � exp
�
L − Lu

Nt

�
: (9)

The likelihood of the uniform model Lu is given by equa-
tions (7) and (8)

Lu � −Nt �
XNx

ix�1

XNy

iy�1

n�ix; iy� log�Nu� − log�n�ix; iy�!�:

(10)

The rate in each cell is given by Nu � Nt=Nc, with Nc being
the total number of cells in the testing area and Nt the total
number of targets (we neglect differences in the surface areas
between cells at different latitudes).

When comparing two models that have the same total
number Nt, equation (9) can be simplified. Using equa-
tion (10) we obtain

L − Lu �
XNx

ix�1

XNy

iy�1

n�ix; iy� log�Np�ix; iy�=Nu�

�
XNt

i�1

log�Np�i�=Nu�; (11)

where Np�i� is the predicted rate in the bin in which earth-
quake i occurred. Here, the gain estimated from (9) repre-
sents the geometrical average of the ratio of the predicted
rate for each model

G � exp
� X
i�1;Nt

log�Np�i�=Nu�
Nt

�
�< Np�i�=Nu >geo :

(12)
When the total number of predicted events is conditioned on
being equal to the observed number, maximizing the model

likelihood is thus equivalent to maximizing the geometric
average of the expected rates in cells with earthquakes.

Model Comparison using the t-test and W-test

We used the t-test and the W-test proposed by Rhoades
et al. (2011) in order to compare different models. The t-test
evaluates whether the information gain of a model is signifi-
cantly different from that of another model. We have renor-
malized the predicted rate for all models so that the total
expected number of events is equal to the observed number.
We denote by NA�i� the expected rate at the location of earth-
quake i under model A and by NB�i� the rate under model B.
In this context, the information gain per earthquake defined
by equation 17 of Rhoades et al. (2011) reduces to

I � 1

Nt

X
i�1;Nt

xi; (13)

where xi � log�NA�i�=NB�i��. The information gain I is
related to the probability gain defined by (9) of models A
and B by I � log�GA=GB�.

The sample variance of xi is given by equation 18 of
Rhoades et al. (2011)

s2 � 1

Nt − 1

X
i�1;Nt

x2i −
1

N2
t − Nt

� X
i�1;Nt

xi

�
2

: (14)

The so-called T-value is then defined by Rhoades et al.
(2011)

T � I
������
Nt

p
s

: (15)

If xi are independent and obey a normal distribution, then T
has a student distribution with Nt − 1 degrees of freedom.
For large Nt, the student distribution rapidly converges to
a normal distribution. The information gain of model A
can then be considered significantly greater than for model B
if T >2 at the 95% confidence interval.

The Wilcoxon signed-rank test or W-test (e.g., Siegel,
1956) can also be used in the case where xi are not normally
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Figure 4. (a) Seismicity rate per day ofM ≥4 earthquakes as a function of time in the cell located at a latitude of 33.95° and a longitude of
116.45° W. The straight line represents the median value. Bandwidths were estimated using the coupled near-neighbor method with param-
eters k � 14 and a � 226 (model 3 in Table 1). The peak of the seismicity rate in 1985 corresponds to a small local cluster of M <4
earthquakes. The seismicity rate also increases in 1992 after the M 6:2 Joshua Tree and M 7:3 Landers mainshocks and in 1999 after
the M 7:1 Hector Mine earthquake. (b) The distribution of the seismicity rate is shown with the median value (dashed line).
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distributed but remain symmetric and independent (Rhoades
et al., 2011). This test evaluates whether the median value of
xi is significantly different from 0; that is, if the predicted
rates NA�i� differ significantly from NB�i�. This test returns
a probability pW of observing a value larger than the median
of xi by chance. Avalue pW < 0:05 indicates that the median
value of xi is significantly different from 0.

Results

Comparison of the Iterative and Near-Neighbor
Methods

We evaluated the two methods for estimating kernel
bandwidths that we mentioned previously and varied the
time and magnitude intervals for the learning and target
catalogs. We varied the minimum magnitude Md for events
in the learning catalog and the minimum magnitude Mt for
events in the target catalog. The results are summarized in
Table 1.

The results shown in Table 1 are slightly better with the
near-neighbor method for small magnitudesMd of the learn-
ing catalog, while the pilot density performs generally better
for Md ≥3. Our final, preferred forecast for future seismicity
corresponds to model 4 in Table 1. It has the same parameters
as model 3 (which boasts the highest gain for Mt ≥4), but
uses all available data for the learning catalog, from 1 Feb-

ruary 1981 until 22 July 2011. Because the learning and tar-
get catalogs partly overlap, the prediction gain G � 5:27 is
larger than the value G � 4:60 obtained for model 3.

Figure 5 compares the kernel bandwidths in time and
space estimated using the two methods. The coupled near-
neighbor method provides on average smaller values of the
temporal bandwidth h and the spatial bandwidth d. In the
pilot-density method, h is proportional to d, except for values
of d < 0:5 km that were replaced by 0.5 km to account for
location accuracy. In contrast, when using the near-neighbor
method, there is only a weak positive correlation between h
and d (Fig. 5c). Letting the data speak for themselves thus
seems to suggest that forcing a proportionality between tem-
poral and spatial smoothing may not be adequate for repre-
senting seismicity fluctuations.

Comparison with the Model of Werner et al. (2011)

We compare the results with a long-term forecast gen-
erated with the method described by Werner et al. (2011),
hereafter referred to as W11. This model uses the method
of Reasenberg (1985) for declustering the (learning) seismi-
city and adaptive kernels in space to smooth the location of
past earthquakes.

To benchmark the predictive skill of the new methods,
we regenerated a forecast using the method of Werner et al.

Table 1
Definition of the Catalogs, Model Parameters, and Results*

Learning Catalog Target Catalog Parameters Results

Model Md Nl Mt Nt k a h0 d0 Nmin G

1 2.0 151518 2.0 26145 5 382 – – 1:2 × 10−3 5.50
2 2.0 151518 3.0 3875 13 247 – – 4:6 × 10−3 4.41
3 2.0 151518 4.0 423 14 226 – – 8:2 × 10−5 4.60
4 2.0 188005 4.0 423 14 226 – – 8:2 × 10−5 5.27
5 2.0 151518 5.0 36 7 365 – – 6:6 × 10−5 7.40
6 3.0 16502 3.0 3875 7 151 – – 1:4 × 10−4 3.98
7 3.0 16502 4.0 423 2 124 – – 7:1 × 10−6 4.37
8 3.0 16502 5.0 36 1 547 – – 1:0 × 10−5 8.69
9 4.0 1700 4.0 423 1 177 – – 1:3 × 10−5 3.31
10 4.0 1700 5.0 36 1 292 – – 1:3 × 10−7 5.85
11 2.0 151518 2.0 26145 – – 62.1 0.27 1:7 × 10−3 5.32
12 2.0 151518 3.0 3875 – – 59.9 0.78 1:8 × 10−5 4.28
13 2.0 151518 4.0 423 – – 45.1 0.25 3:1 × 10−6 4.38
14 2.0 151518 5.0 36 – – 16.9 0.17 1:6 × 10−6 7.29
15 3.0 16502 3.0 3875 – – 33.3 0.52 8:4 × 10−4 4.08
16 3.0 16502 4.0 423 – – 92.4 0.48 6:5 × 10−5 4.41
17 3.0 16502 5.0 36 – – 135 0.53 3:6 × 10−6 9.29
18 4.0 1700 4.0 423 – – 149 2.14 6:3 × 10−5 3.60
19 4.0 1700 5.0 36 – – 177 1.24 8:8 × 10−5 7.06

*Nl and Nt are the total number of events in the learning and target catalogs, respectively. k, a, h0 and
d0 are smoothing parameters. Nmin is a minimum constant rate, in units of number of events with M ≥
Mt per day in the testing area. G is the probability gain per earthquake relative to a Poisson model with a
uniform rate. Time variables are given in units of days and distances in km. The first 10 models were
constructed with the coupled near-neighbor method, while the subsequent models are based on the pilot
density. Model 4 is our preferred model for future seismicity, which uses all available data for the
learning catalog from 1 February 1981 until 22 July 2011. All other models use only data until
31 December 2003 for the learning catalog, so that there is no overlap with the target catalog.
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(2011) using a (declustered) input catalog that covers the
same learning period (up to 31 December 2003) as the input
for the two new methods. We have optimized the smoothing
parameter k used in that study, defined as the distance to the
kth nearest neighbor, using the same target catalog as in our

new models. Werner et al. (2011) preferred k � 10 based on
the then available data, but optimizing the forecast for the
present target window yields k � 26, yielding a smoother
forecast. Figures 6, 7, and 8 compare new forecasts with
the long-term forecast W11. All models were built using data

Figure 5. (a) Comparison between the bandwidths in time h and (b) space d estimated using the coupled near-neighbor method (model 3
in Table 1, solid line) and the method based on a pilot density (model 13 in Table 1, dashed line). (c) Relation between the temporal and
spatial bandwidths for each earthquake, using the coupled near-neighbor method (points) and the pilot density (black circles). Values of d
smaller than 0.5 km were replaced by 0.5 km to account for location accuracy.

Figure 6. Comparison of our models (a) 3 and (d) 13 with (b and e) model W11. All models use the same input catalog from 1981 to 2004
above M ≥2 to estimate the long-term rate. The color-bar gives the predicted number of events per cell and per day above Mt � 4 in log
scale. Black squares indicateM ≥5 earthquakes that occurred from 1 January 2004 until 22 July 2011. Ratio of predicted rates according to
our model (c) 3 or (e) 13 and model W11, in log scale.
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from 1981 until 2004 with magnitudesM ≥2 to calculate the
long-term rate of M ≥4 earthquakes. On average, model 3
based on the near-neighbor method is smoother than W11.
In comparison, model 13 based on the pilot estimate has
more contrast; it is more focused in zones of dense seismicity
and predicts a lower rate close to the borders of the testing
area. The zone where the new models differ most from
model W11 is close to the point 42.4° N and 122.1° E, where

the rate predicted by W11 is more than 1000 times greater.
An M 6 mainshock occurred in this area in 1993, followed
by numerous aftershocks, not all of which seem to have been
removed by the declustering method of Reasenberg (1985)
used to generate W11. The seismicity rate in this zone in
2011 remains higher than it was before the mainshock.
However, the period of the learning catalog preceding the
mainshock is longer than the one after it; therefore, the me-
dian value of the rate in this area computed from the learning
catalog is close to the rate observed before the mainshock,
which is much lower than the rate estimated by W11. Similar
reasons hold for other regions of large differences. In hind-
sight, given the present, slightly better results of the new
methods, one might conclude that the Reasenberg decluster-
ing algorithm failed to remove sufficient aftershocks and is
not optimized for generating forecasts.

Figure 7 compares the probability gains G of models 3
and W11. For both models, G ranges between 4 and 8 as the
minimum magnitude of targets Mt varies between 4 and 7
(and the spatial forecast is held fixed). The gain also shows
no clear trend with Mt, suggesting that moderate and large
earthquakes have the same spatial distribution. We found
slightly larger values of G for our new model compared
with W11.

The target catalog includes a large cluster of earthquakes
triggered by the M 7:2 Baja, California, earthquake of
10 April 2010, raising the question of the influence of after-
shocks on the results. To address this, we also tested a
declustered target catalog shown in Figure 2c and found
small variations of G. Model W11 better predicts the loca-
tions of (presumed) background earthquakes than our new
model when considering declustered target earthquakes with
M ≥4 orM ≥4:5, but our new model is still better forMt of 5
or greater.

In Figure 8, we show that the rate Np�i� predicted by
model 3 for each quake is larger than the rate NW�i� pre-
dicted by W11 for 250 out of 423 earthquakes. The arith-
metic and geometric average of Np=NW are both larger than
one, hence the larger gainG for our new model. Nonetheless,
the differences between the two models in terms of the
expected rates in cells with earthquakes is usually small. The
new model is slightly better for both very large and very
small values of the predicted rate. One earthquake is even
five times more likely according to model W11 relative to
the new model. For intermediate values (0:01 < NW < 1),
the predicted rates by both models are on average very close.

t-test and W-test

We used the t- and W-tests to compare the predictive
skill of our new models with W11. We tested variants of
the new methods (pilot estimate and nearest neighbor) at
different target magnitudes and on both the original and a
declustered target catalog. In Table 2, we summarize those
results. Model A (first column) can be considered as signifi-
cantly better than model B (second column) at the 95%
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confidence interval if T > 2 and pW < 0:05. For large target
earthquakes Mt ≥5, the number of events is too small to
reject any forecast (i.e., the differences between the forecasts
is too small). For smaller thresholds, our new model 3 is
significantly better than W11 when Mt equals 3 or 4. But
W11 is better than the new model in forecasting the declus-
tered target catalog, although the difference is not significant.
In contrast, the pilot-estimate method yields better results
than the near-neighbor method for the declustered catalog.
The gain of model 13 is significantly larger than the gain
of model 3 when Mt equals 3 or 4, and larger than the gain
of W11 when Mt is 3.

Concentration Plot

Figure 9 is a concentration plot (Rong and Jackson,
2002) that compares the distribution of the predicted events
with observed number of events and allows for an evaluation
of the earthquake forecasts with respect to the observations.
The forecast rates of all spatial bins are sorted in ascending
order, and their cumulative distribution is then plotted. To
compare the forecast to observations, the number of observed
earthquakes is sorted according to the same order as the
forecast rates and their cumulative distribution plotted. A
concentration diagram provides a visual inspection of the
concentration (or smoothness) of a forecast, and whether this
is matched by the observed distribution of earthquakes. A
good model concentrates most earthquakes in cells with high

predicted rate toward the right part of the diagram. Moreover,
if the model was fully consistent with the observations, the
distribution of the observed number of events (red line)
would match the predicted number of events (blue line).

However, we see a significant difference between these
two curves. Our model predicts too few events in cells where
the predicted rate Np is smaller than 0.05, while it overpre-
dicts the number of events in cells with a predicted rate in the
range between 0.05 and 1. This could suggest that the model
is not smooth enough, even though the smoothing param-
eters were optimized to maximize the forecast likelihood.
To test if the difference is significant, we generated 100 syn-
thetic catalogs consistent with our model (light blue lines in
Fig. 9). However, as is apparent from the difference between
the red line (observations) and the blue lines (synthetics), the
random fluctuations observed in the synthetics cannot ex-
plain the deviation between the model and the observations.

This difference can be partly explained by aftershocks:
when using the declustered target catalog (green line in
Fig. 9), the difference between the model and the observa-
tions decreases significantly. But the green curve is still a
little outside of the confidence interval given by the synthetic
catalogs in areas of very dense seismicity (predicted rate lar-
ger than 1). This suggests that the model is a little too smooth
in very active zones. This inconsistency might also suggest
that the background seismicity is not stationary, but that there
are slow variations of the tectonic loading. We repeated this
analysis with model W11 and obtained very similar results.

Table 2
Results of the t-test and W-test for Comparing Different Models

Model A Model B Mt Nt Declustered GA GB T pW

n.n.* W11 3.0 3875 no 4.36 4.13 8.20 2 × 10−20

n.n.* W11 4.0 423 no 4.60 4.38 2.73 7 × 10−4

n.n. W11 5.0 36 no 7.10 6.50 1.75 0.01
n.n. W11 3.0 2002 yes 4.65 4.70 −1.21 0.28
n.n. W11 4.0 228 yes 4.44 4.49 −0.45 0.68
n.n. W11 5.0 23 yes 6.51 6.28 0.53 0.14
p.l. W11 3.0 3875 no 4.11 4.13 −1.12 0.79
p.l. W11 4.0 423 no 4.38 4.38 −0.05 0.72
p.l. W11 5.0 36 no 6.95 6.50 1.09 0.11
p.l.* W11 3.0 2002 yes 4.94 4.70 4.87 2 × 10−15

p.l. W11 4.0 228 yes 4.73 4.49 1.83 4 × 10−3

p.l. W11 5.0 23 yes 6.71 6.28 0.75 0.25
n.n.* p.l. 3.0 3875 no 4.36 4.11 8.99 7 × 10−9

n.n. p.l. 4.0 423 no 4.60 4.38 2.61 0.12
n.n. p.l. 5.0 36 no 7.10 6.95 0.44 0.94
n.n. p.l.* 3.0 2002 yes 4.65 4.94 −6.93 6 × 10−22

n.n. p.l.* 4.0 228 yes 4.44 4.73 −2.41 2 × 10−4

n.n. p.l. 5.0 23 yes 6.51 6.71 −0.50 0.33

Results of the t and W tests for comparing a model A with another model B for different
values of the minimum target magnitudeMt, with or without declustering the target catalog. In
columns 1 or 2, n.n. indicates the near-neighbor method with the parameters of model 3, p.l.
refers to the pilot-estimate method with the parameters of model 13 in Table 1, and W11 refers
to the long-term model of Werner et al. (2011). Nt is the number of target earthquakes. T and
pW are test results described in the t-test and W-test section. The probability gain GA for
model A is significantly larger than GB if T > 2 and pW < 0:05; in this case, asterisks
indicate the best model. The target catalog contains all M ≥ Mt earthquakes from
1 January 2004 until 22 July 2011 with or without declustering.

Adaptive Spatiotemporal Smoothing of Seismicity for Long-Term Earthquake Forecasts in California 2527



Our model may still be improved by including a spa-
tially variable b-value, in order to account for the spatial
variability of the magnitude distribution (e.g., Wiemer and
Schorlemmer, 2007). We could also use a different kernel
function in time and space. For instance, a power-law kernel
with heavier tails would result in a smoother density in cells
with intermediate and very little activity, and more focused
density in zones of very dense seismicity.

Conclusion

We presented two new methods for long-term earth-
quake forecasting based on adaptive kernels, which are used
to smooth past seismicity in both space and time. The long-
term seismicity rate in each cell is estimated from the median
value of the seismicity rate in that cell, thereby avoiding the
need for a controversial declustering algorithm. Most other
long-term smoothed seismicity forecasts, including ours
(Helmstetter et al., 2007; Werner et al., 2011), are based on
spatially smoothing declustered catalogs using uniform or
adaptive kernels.

One of our previous long-term forecasts was submitted
to the prospective, five-year Regional Earthquake Likelihood
Models (RELM) experiment in California, which started in
January 2006 and ended in 2011 (Field, 2007). Schorlemmer
et al. (2010) evaluated the models after the first half of the
testing period and found that the model of Helmstetter et al.
(2007) performed better than its competitors. The final eva-
luation confirmed this result (Zechar et al., unpublished
manuscript, 2012). The retrospective testing performed here
suggests that our new method might be even better: When
evaluated using the catalog ofM ≥4 earthquakes for the peri-
od 2004–2011, our new model performs slightly better than
model W11 (itself an improvement of the model by Helm-
stetter et al., 2007) when both models are built from the same
learning catalog (1981–2004 and M ≥2). When compared
with the model of Helmstetter et al. (2007) using target earth-
quakes with M ≥4 or M ≥5 for the period 1 January 2006–
15 July 2011, the new model produces a slightly larger gain.
The new forecast is a little smoother and seems to better re-
move the influence of previous large aftershock sequences.

While our new model slightly improves the forecast
likelihood, it is not fully consistent with the data, as can be
shown from the concentration plot. The difference between
the observations and the model is greatly reduced but not
totally suppressed by using a declustered catalog. This sug-
gests that the model may be improved by better optimizing
the smoothing or by including spatial variations of the mag-
nitude distribution. In particular, it would be interesting to
test different kernels in space and time, for instance, replac-
ing the Gaussian kernel by a power law. To demonstrate the
(truly prospective) predictive value of the new forecasting
method presented here, we have submitted this new long-
term forecast to CSEP experiments in California. The pro-
spective test will start on 1 January 2013. We will also apply
our model to other areas around the globe and submit those
models to CSEP.

Data and Resources

We used the Advanced National Seismic System (ANSS)
earthquake catalog made publicly available by the Northern
California Earthquake Data Center at www.ncedc.org (last
accessed July 2011) in the period from 1 February 1981 until
22 July 2011 with magnitude M ≥2 and in the spatial region
defined by the RELM collection region, defined in table 2 by
Schorlemmer and Gerstenberger (2007).

Acknowledgments

The authors thank Jeremy Zechar and an anonymous reviewer for care-
fully reading the paper and providing many constructive suggestions. A.H. is
supported by the French National Research Agency under Grant ASEIS-
MIC. M.J.W. was partially supported by the Southern California Earthquake
Center (SCEC). SCEC is funded by NSF Cooperative Agreement EAR-
0106924 and USGS Cooperative Agreement 02HQAG0008. This research
was supported by the Southern California Earthquake Center. SCEC is funded
byNSFCooperative Agreement EAR-0529922 and USGSCooperative Agree-
ment 07HQAG0008. The SCEC contribution number for this paper is 1667.

10
−3

10
−2

10
−1

10
0

10
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of earthquakes  per cell

cu
m

ul
at

iv
e 

di
st

rib
ut

io
n

Figure 9. Cumulative distribution of the number of events (ob-
served or forecasted) as a function of the minimum value of the
forecasted rate calculated using our model 3. The blue curve repre-
sents the cumulative distribution of the expected number of events
per cell. The red and green curves show respectively the cumulative
observed number of events per cell in the target catalog and in the
declustered catalog as a function of the predicted rate. These curves
should overlap if the model were fully consistent with the data.
Light blue curves show the observed number of events in 100 syn-
thetic catalogs, generated using a Poisson process with an expected
rate in each cell given by our model Np�ix; iy�. The dotted line
shows the expected number of events assuming a uniform Poisson
process. In addition, the solid black line shows the cumulative num-
ber of observed events as a function of the observed number of
events in each cell, this represents the curve that would be obtained
for a perfect model with Np�ix; iy� � n�ix; iy�.
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