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Evidence Synthesis for Decision Making 3:
Heterogeneity—Subgroups, Meta-
Regression, Bias, and Bias-Adjustment

Sofia Dias, PhD, Alex . Sutton, PhD, Nicky ]. Welton, PhD, A. E. Ades, PhD

In meta-analysis, between-study heterogeneity indicates the
presence of effect-modifiers and has implications for the
interpretation of results in cost-effectiveness analysis and
decision making. A distinction is usually made between
true variability in treatment effects due to variation in
patient populations or settings and biases related to the
way in which trials were conducted. Variability in relative
treatment effects threatens the external validity of trial evi-
dence and limits the ability to generalize from the results;
imperfections in trial conduct represent threats to internal
validity. We provide guidance on methods for meta-regres-
sion and bias-adjustment, in pairwise and network meta-
analysis (including indirect comparisons), using illustrative
examples. We argue that the predictive distribution of
a treatment effect in a “new” trial may, in many cases, be

more relevant to decision making than the distribution of
the mean effect. Investigators should consider the relative
contribution of true variability and random variation due
to biases when considering their response to heterogeneity.
In network meta-analyses, various types of meta-regression
models are possible when trial-level effect-modifying cova-
riates are present or suspected. We argue that a model with
a single interaction term is the one most likely to be useful
in a decision-making context. Illustrative examples of
Bayesian meta-regression against a continuous covariate
and meta-regression against “‘baseline’ risk are provided.
Annotated WinBUGS code is set out in an appendix.
Key words: cost-effectiveness analysis; Bayesian meta-
analysis; comparative effectiveness; systematic reviews.
(Med Decis Making 2013;33:618-640)

hen combining results of different studies in

a meta-analysis, heterogeneity (i.e., between-
trials variation in relative treatment effects) has im-
plications for the interpretation of results and deci-
sion making. We provide guidance on techniques
that can be used to explore the reasons for heteroge-
neity, as recommended in the National Institute for
Health and Clinical Excellence (NICE) Guide to
Methods of Technology Appraisal." We focus
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particularly on the implications of different forms
of heterogeneity, the technical specification of mod-
els that can estimate or adjust for potential causes of
heterogeneity, and the interpretation of such models
in a decision-making context. There is a considerable
literature on the origins and measurements of het-
erogeneity,” and this is beyond the scope of this
article.

Heterogeneity in treatment effects is an indication
of the presence of effect-modifying mechanisms—in
other words, of interactions—between the treatment
effect and the trial or trial-level variable. A distinc-
tion is usually made between 2 kinds of interaction
effects: clinical variation in treatment effects, result-
ing from variation between treatment effects due to
different patient populations, settings, or protocols
across trials and deficiencies in the way the trial
was conducted. The first type of interaction is said
to represent a threat to the external validity of trials,
limiting the extent to which one can generalize trial
results from one situation to another. The second
threatens the internal validity of trials: the trial deliv-
ers a biased estimate of the treatment effect in its tar-
get population, which may or may not be the same as
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Figure 1 Posterior (solid) and predictive (dashed) densities for
a treatment effect with mean = 0.7, standard deviation = 0.2, and
heterogeneity (standard deviation) = 0.68. The area under the
curve to the left of the vertical dotted line is the probability of a neg-
ative value for the treatment effect.

the target population for decision. Typically, these
biases are considered to vary randomly over trials
and do not necessarily have a zero mean. For exam-
ple, the biases associated with markers of poor trial
quality, such as lack of allocation concealment or
lack of double blinding, have been shown to be asso-
ciated with larger treatment effects.>* A general
model for heterogeneity that encompasses both types
of interaction has been proposed,® but it is seldom
possible to determine what the causes of heterogene-
ity are and how much is due to true variation in clin-
ical factors and how much is due to other unknown
causes of biases.

In a decision-making context, the response to high
levels of heterogeneity is a critical issue. Investigators
should compare the size of the treatment effect with
the extent of between-trials variation. If the latter
approximates the former, interpretation of mean
treatment effects is difficult.®” Figure 1 portrays a sit-
uation in which arandom effects (RE) model has been
fitted. The posterior mean of the mean treatment
effect is 0.70 with a posterior standard deviation
(SD) of 0.2, making the mean effect clearly different
from zero with a 95% credible interval (Crl) of
(0.31, 1.09). However, the posterior mean of the
between-trials standard deviation is o = 0.68, compa-
rable in size to the mean effect. What is a reasonable

ARTICLE

confidence interval for our prediction of the outcome
of a future trial of infinite size? An approximate
answer in classical statistics is found by adding the
variance of the mean to the between-trials variance,
which gives SD* + ¢*=0.50, giving a predictive stan-
dard deviation of 0.71. Note that the 95% predictive
interval is now (-0.69, 2.09), easily spanning zero
effect, including a range of harmful effects. If we
interpret these distributions in a Bayesian way, we
would find that the probability that the mean effect
is less than zero is only 0.0002, whereas the probabil-
ity that a new trial would show a negative effect is
much higher: 0.162 (Figure 1).

This issue has been discussed before,”® and it has
been proposed that, in the presence of heterogeneity,
the predictive distribution, rather than the distribu-
tion of the mean treatment effect, better represents
our uncertainty about the comparative effectiveness
of treatments in a future ‘“‘rollout” of a particular
intervention. In a Bayesian Markov chain Monte
Carlo (MCMC) setting, a predictive distribution is
easily obtained by drawing further samples from the
distribution of effects:

8rLew “N(d>("2)>

where d is the estimated (common) mean treatment
effect and o the estimated between-trial heterogene-
ity variance.

Where there are high levels of unexplained hetero-
geneity, the implications of this recommendation for
the uncertainty in a decision can be quite profound,
and it is therefore important that the degree of hetero-
geneity is not exaggerated and that the causes of the
heterogeneity are investigated.”'® The variance
term in the predictive distribution should consist
only of true variation between trial populations,®
but at present, there is no clear methodology to distin-
guish between different sources of variation in treat-
ment effect. Recent meta-epidemiological work on
the determinants of between-study variation is begin-
ning to shed some light on this."*

Meta-regression is used to relate the size of a treat-
ment effect obtained from a meta-analysis to potential
effect modifiers—covariates—that may be character-
istics of the trial participants or connected with the
trial setting or conduct. These covariates may be cat-
egorical or continuous. In common with other forms
of meta-analysis, meta-regression can be based on
aggregate (trial-level) outcomes and covariates, or
individual patient data (IPD) and covariates when
available. However, even if we restrict attention to
randomized controlled trial (RCT) data, the study of
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effect-modifiers is inherently observational*'? as it is

not possible to randomize patients to one covariate
value or another. As a consequence, meta-regression
inherits all the difficulties of interpretation and infer-
ence that attach to nonrandomized studies: con-
founding, correlation between covariates, and, most
important, the inability to infer causality from
association.

We provide guidance on methods for meta-regres-
sion and bias-adjustment that can address the pres-
ence of heterogeneity using aggregate data and trial-
level covariates and discuss the limitations of this
approach and the potential advantages of meta-
regression with IPD.

SUBGROUP EFFECTS (APPENDIX: EXAMPLE 1)

We start with the simplest form of meta-regression:
adjusting for subgroup effects in a pairwise meta-
analysis. The theory set out in this section is then gen-
eralized to other types of meta-regression and to mul-
tiple treatments. The methods outlined here can be
seen as extensions to the common generalized linear
modeling framework for pairwise and network meta-
analysis."®

In the context of treatment effects in RCTs, a sub-
group effect can be understood as a categorical trial-
level covariate that interacts with the treatment.
The hypothesis would be that the size of the treat-
ment effect is different, for example, in male and
female patients or that it depends on age group or pre-
vious treatment. Separate analyses can be carried out
for each group and the relative treatment effects com-
pared. However, if the models have random treat-
ment effects, having separate analyses means
having different estimates of between-trial variation.
As there are seldom enough data to estimate the
between-trial variation, it may make more sense to
assume that it is the same for all subgroups. Further-
more, running separate analyses does not immedi-
ately produce the test of interaction that is required
to reject the null hypothesis of equal effects. It is
therefore preferable to have a single integrated analy-
sis with a single between-trial variation term and an
interaction term, @, introduced on the treatment
effect, as follows:

O = + (3i1x + Bxi) 51y, (1)

where x; is the trial-level covariate for trial i, which
can represent a subgroup, a continuous covariate, or
baseline risk; 6;;, is the linear predictor'® (e.g., the
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log-odds or mean) in arm k of trial i; p; are the trial-
specific baseline effects in a trial i, treated as unre-
lated nuisance parameters; 3,1 are the trial-specific
treatment effects of the treatment in arm k relative
to the treatment in arm 1 in that trial, with k=1, 2 and

[ 1 if uistrue
Ty = {0 otherwise (2)

We can rewrite equation (1) as

0i1 = 1,
0i2 = w; +9; 12 + Bx;

and note that the treatment and covariate interac-
tion effects (8 and B) act only in the experimental
arm, not in the control. For an RE model, the trial-spe-
cific log-odds ratios come from a common distribu-
tion: §;19~N(d12,02). For a fixed effect (FE) model,
we replace equation (1) with 6; =p; + (di2 +
Bx;)l(x+1y. In the Bayesian framework di,, § and o
will be given independent (noninformative) priors:
for example, dy,, B ~ N(0, 100%) and o ~ Uniform(0, 5).

META-REGRESSION MODELS IN NETWORK
META-ANALYSIS

In a network meta-analysis (NMA) context, vari-
ability in relative treatment effects can also induce
inconsistency'* across pairwise comparisons. The
methods introduced here are therefore also appropri-
ate for dealing with inconsistency. Unless otherwise
stated, when we refer to heterogeneity in this context,
this can be interpreted as heterogeneity and/or
inconsistency.

A large number of meta-regression models can be
proposed for NMA, each with very different implica-
tions. There are 3 main approaches: unrelated inter-
action terms for each treatment, exchangeable and
related interaction terms, and one single interaction
effect for all treatments. We argue that the third model
is the most likely to have a useful interpretation in
a decision-making context.

Consider a binary between-trial covariate (e.g., pri-
mary v. secondary prevention trials) in a case where s
treatments are being compared.'®'® We take treat-
ment 1 (e.g., a placebo or standard treatment) as the
reference treatment in the NMA. Following the
approach to consistency models adopted previ-
ously,"® we have (s — 1) basic parameters for the rela-
tive treatment effects d,,, di3, . . ., dis of each
treatment relative to treatment 1. The remaining (s —
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1)(s — 2)/2 treatment contrasts are expressed in terms
of these parameters using the consistency equations:
for example, the effect of treatment 4 compared with
treatment 3 is written as ds, = dis — dq5.1> We set out
a range of fixed treatment effect interaction models,
which are later extended to random treatment effects.

1. Unrelated Treatment-Specific Interactions

If there is an interaction effect between, say, pri-
mary/secondary prevention and treatment, but these
interactions are different for every treatment, the
model will have as many interaction terms as there
are basic treatment effects (e.g., Bz, B13s - - -, B1s)s
each representing the additional (interaction) treat-
ment effect in secondary prevention (compared
with primary) in comparisons of treatments 2, 3, . .
., § to treatment 1. These terms are exactly parallel
to the main effects d;», di3, . . ., dis, which now repre-
sent the treatment effects in primary prevention pop-
ulations. As with the main effects, for trials
comparing, say, treatments 3 and 4, the interaction
term is the difference between the interaction terms
on the effects relative to treatment 1, so that B3, =
B1s — B13. The fixed treatment effects model for the
linear predictor is

Oir, = 1 + (dtihtik + Btu-t,kxi)l{k#l}
= T (diry, — dusy + (Brey, — B )%i) L1y 3)

with t;; representing the treatment in arm k of trial i,
x; the covariate/subgroup indicator, and I defined in
equation (2). In all models, we set dy; = 841 = 0. The
remaining interaction terms are given unrelated
vague prior distributions in a Bayesian analysis.

The relative treatment effects in secondary preven-
tion are di, + Biz, dig + Bis, . . . dis + B1s The
interpretation is that the relative efficacy of each of
the s treatments in primary prevention populations
is entirely unrelated to their relative efficacy in sec-
ondary prevention populations.

2. Exchangeable and Related Treatment-Specific
Interactions

This model has the same structure as the model
above, but now the (s — 1) “basic’ interaction terms
are drawn from a random distribution with a common
mean and between-treatment variance: B,~N (b,72),
for treatment kK = 2, . . ., s. The mean interaction
effect and its variance are estimated from the data,
although informative priors that limit how similar
or different the interaction terms are can be used.

ARTICLE

The interpretation is that there are real differences
between the relative treatment effects, although these
are centered on a common mean, with a common
variance.

3. Same Interaction Effect for All Treatments

In this case, there is a single interaction term b that
applies to the relative effects of all the treatments rel-
ative to treatment 1, so that 3;, =bfork=2,...,s. The
treatment effects relative to treatment 1, d,», d5...d 4
in primary prevention, are all higher or lower by
the same amount, b in secondary prevention:
di» + b,dy3 + b...d,s + b. However, the effects
of treatments 2, 3, . . ., s relative to each other in
primary and secondary prevention populations are
the same because the interaction terms cancel out.
For example, consider the effect of treatment 4 rela-
tive to treatment 3 in secondary prevention:
di4 +b — (d13 + b) = d14 — di3, which is the same as
in primary prevention. This means that the choice
of reference treatment becomes important, and
results for models with covariates are sensitive to
this choice.

Note that although we have presented the models
in the context of subgroup effects, models for meta-
regression with continuous covariates, including
baseline risk, have the same structure.

If an unrelated interactions model is being consid-
ered (model 1), this requires 2 connected networks
(one for each subgroup), including all the treatments,
that is, with at least (s — 1) trials in each. With related
interaction effects (model 2), it may not be necessary
to have 2 complete networks, but a substantial num-
ber of trials are needed to identify both random treat-
ment effects and random interactions. However, to
use such a model, there needs to be a clear rationale
for exchangeability of interactions with a common
mean and variance. One rationale could be to allow
for different covariate effects for different treatments
within the same class. Thus, treatment 1 is a standard
or placebo treatment, whereas some of the treatments
2, ..., sbelong to a “class.” For example, one might
imagine one set of exchangeable interaction terms
for aspirin-based treatments for atrial fibrillation rel-
ative to placebo and a second set of interactions for
warfarin-based treatments relative to placebo."”

Although exchangeable and related interactions
seem an attractive model in theory, they could
lead to situations where the relative efficacy or the
relative cost-effectiveness of a set of active treatments
in the same class, and hence optimal treatment deci-
sions, will depend on covariate values. However,
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differences between interaction terms are unlikely to
be robust, and treatment decisions could then be
driven by statistically insignificant interaction terms.
Therefore, although these more complex models can
be fitted,"”'® their best role may be in exploratory
analyses. Here we explore only model 3, which
assumes an identical interaction effect across all
treatments with respect to the reference treatment.

Network Meta-Regression with a Continuous
Covariate

When dealing with a continuous covariate, we will
use centered covariate values.’® This is achieved by
subtracting the mean covariate value, x, from each x;.
To fit a random treatment effects model that assumes
a common interaction effect for all treatments with
covariate centering, we rewrite equation (3) as

Bir = w; + (3516 + (B, — Busy ) (i — %)) Ip01), (4)

where Bll =0, Blk =b U( =2,..., 7) and 8i71k"’N
(du, — dlti170-2)‘

We retain the treatment-specific interaction effects
but set them all equal to b, so that the terms cancel out
in comparisons not involving the reference treat-
ment. To produce treatment effect estimates at cova-
riate value z, the outputs from this model should be

“uncentered”: dy, —b(x —2), k=2,...,s.

Example: Certolizumab Meta-Regression on Mean
Disease Duration (Appendix: Example 2)

Data are available from a review of trials of certolizu-
mab pegol (CZP) for the treatment of rheumatoid arthri-
tis in patients who had failed on disease-modifying
antirheumatic drugs, including methotrexate (MTX).*°
Twelve MTX controlled trials were identified, compar-
ing 6 different treatments with placebo (Figure 2).

Table 1 shows the number of patients who have
improved by at least 50% on the American College
of Rheumatology scale (ACR50) at 6 months, ry, out
of all included patients, n;, for each arm of the
included trials, along with the mean disease duration
in years for patients in each trial, x; (i=1,...,12; k=1,
2). The crude odds ratios (ORs) from Table 1 are plot-
ted (on a log-scale) against mean disease duration in
Figure 3, with the numbers 2 to 7 representing the
OR of that treatment relative to placebo plus MTX
(chosen as the reference treatment). Example 1 in
the Appendix gives details of priors and the Win-
BUGS?*' code for the model in equation (4).

Table 2 shows the results of fitting fixed and ran-
dom treatment effects NMA'® and interaction models
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CZP + MTX (2)

Adalimumab+ MTX (3)

Etanercept+ MTX (4)
Placebo + MTX (1)

Infliximab+ MTX (5)

Rituximab+ MTX (6)
Tocilizumab+ MTX (7)

Figure 2 Certolizumab example®’: treatment network. Lines con-
necting 2 treatments indicate that a comparison between these
treatments has been made. The numbers on the lines indicate
how many randomized controlled trials compare the 2 connected
treatments. CZP, certolizumab pegol; MTX, methotrexate.

with disease duration as the covariate. The estimated
ORs for different durations of disease are represented
by the parallel lines in Figure 3. Note that the treat-
ment effects obtained are the estimated log-odds
ratios at the mean covariate value (x = 8.21 years in
this case) and that credible interval lines have not
been included in Figure 3.

The deviance information criterion (DIC) provides
ameasure of model fit that penalizes model complex-
ity**—lower values of the DIC suggest a more parsi-
monious model. We calculate the DIC as the sum of
the posterior mean of the residual deviance, D,
and the leverage, pp.'* The DIC and posterior means
of the residual deviances in Table 2 do not decisively
favor a single model (differences less than 3 or 5 are
not considered meaningful). The fit of the FE model
is improved by including the covariate interaction
term b, which also has a Crl that does not include
zero. Addition of the covariate to the RE model
reduces the heterogeneity from a posterior median
of 0.34 to 0.28, but the CrI for the interaction parame-
ter b includes zero. In this example, the meta-regres-
sion models are all reasonable but not strongly
supported by the evidence, although the finding of
smaller treatment effects with a shorter disease dura-
tion has been reported previously.'®

Should the use of biologics be confined to patients
whose disease duration was above a certain thresh-
old? This seems reasonable, but it would be difficult
to determine this threshold on the basis of this evi-
dence alone. The slope is largely determined by treat-
ments 3 and 7 (adalimumab and tocilizumab), which
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Table 1 Certolizumab Examplezoz Number of Patients Achieving ACR50 at 6 Months,” r, Out of the Total
Number of Patients, n, in Arms 1 and 2 of the 12 Trials and Mean Disease Duration (in Years) for Patients in

Trial 1, x;
Arm 1 Arm 2
Study Name Treatment in Treatmentin No. Achieving Total No. of No. Achieving Total No. of Mean Disease
Arm 1, t;; Arm 2, t;, ACR50, rjy Patients, n;; ACRS50, r;, Patients, n;, Duration (Years), x;
RAPID 1 Placebo CZP 15 199 146 393 6.15
RAPID 2 Placebo CZP 4 127 80 246 5.85
Kim 2007 Placebo Adalimumab 9 63 28 65 6.85
DEO019 Placebo Adalimumab 19 200 81 207 10.95
ARMADA Placebo Adalimumab 5 62 37 67 11.65
Weinblatt 1999 Placebo Etanercept 1 30 23 59 13
START Placebo Infliximab 33 363 110 360 8.1
ATTEST Placebo Infliximab 22 110 61 165 7.85
Abe 2006 Placebo Infliximab 0 47 15 49 8.3
Strand 2006 Placebo Rituximab 5 40 5 40 11.25
CHARISMA® Placebo  Tocilizumab 14 49 26 50 0.915
OPTION Placebo Tocilizumab 22 204 90 205 7.65

All trial arms had methotrexate in addition to the placebo or active treatment. CZP, certolizumab pegol.

“Three months was used when this was not available.
YAGCR50 at 3 months.

are the only treatments trialed at more than 1 disease
duration and appear to have different effects at each
duration (Figure 3). However, the linearity of rela-
tionships is highly questionable, and the prediction
of negative effects for treatment 6 (rituximab) is not
plausible. This suggests that other explorations of
the causes of heterogeneity in this network should
be undertaken (see below).

Network Meta-Regression on Baseline Risk

The meta-regression model presented above can be
extended to use the baseline risk in each trial as
a covariate, taking into account the error in the esti-
mation of baseline risk and its correlation to the OR.
The model is the same as in equation (4) but now x;
= w;, the trial-specific baseline for the control arm in
each trial. An important property of this Bayesian for-
mulation is that it takes the ‘“‘true” baseline (as esti-
mated by the model) as the covariate and
automatically takes the uncertainty in each p; into
account.”?®** Naive approaches, which regress
against the observed baseline risk, fail to take the cor-
relation between the treatment effect and baseline
risk, as well as the consequent regression to the
mean phenomenon, into account.

Example: Certolizumab Meta-Regression on Base-
line Risk (Appendix: Example 3)

ARTICLE

Both FE and RE models with a common interaction
term were fitted. Due to covariate centering, the treat-
ment effects in Table 3 for the models with covariate
adjustment are the effects for patients with a baseline
log-odds ACR50 of —2.421, the mean of the observed
log-odds on treatment 1. This corresponds to a base-
line ACR50 probability of 0.082.

In both models, the 95% Crls for covariate term
exclude zero, suggesting a strong interaction effect
between the baseline risk and the treatment effects.
The estimated RE model is shown in Figure 4: the dif-
ferences between the lines represent treatment differ-
ences controlling for baseline risk. However, note
that there is considerable uncertainty around these
lines, which is not represented in Figure 4. The DIC
statistics and the posterior means of the residual devi-
ance also marginally favor the RE model with the
covariate. In interpreting the results of this model, it
should be noted that treatment effect is being defined
on a percent change scale: the extent of change is
therefore automatically increased as the baseline is
lowered. Hence, the observed interaction may to
some extent be an artifact of the measurement scale.

BIAS AND BIAS-ADJUSTMENT
If it is thought that heterogeneity is due to bias

in some of the included studies, models for bias-
adjustment can be used. The difference between

623



DIAS AND OTHERS
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disease duration

Figure 3 Certolizumab example®’: plot of the crude odds ratio (OR)
(on a log-scale) of the 6 active treatments relative to placebo plus
methotrexate (MTX) against mean disease duration (in years).
For plotting purposes, the odds of response on placebo plus MTX
forthe Abe 2006 study were assumed to be 0.01. The plotted numbers
refer to the treatment being compared with placebo plus MTX, and
the lines represent the relative effects of the following treatments
compared with placebo plus MTX based on a random effects meta-
regression model (from top to bottom): etanercept plus MTX (treat-
ment 4, dotted green line), certolizumab pegol (CZP) plus MTX (treat-
ment 2, solid black line), tocilizumab plus MTX (treatment 7, short-
long dash purple line), adalimumab plus MTX (treatment 3, dashed
red line), infliximab plus MTX (treatment 5, dot-dashed dark blue
line), and rituximab plus MTX (treatment 6, long-dashed black
line). Odds ratios above 1 favor the plotted treatment, and the hori-
zontal line (thin dashed) represents no treatment effect.

“bias-adjustment” and the meta-regression models
described above is slight but important. In meta-regres-
sion, we concede that even within the formal scope of
the decision problem, there are distinct differences in
relative treatment efficacy. In bias-adjustment, we
have in mind a target population for decision making,
but the evidence available, or at least some of the evi-
dence, provides biased, or potentially biased, estimates
of the target parameter, perhaps because the trials have
internal biases, they concern different populations or
settings, or both.

Adjustment for Bias Based on Meta-Epidemiologi-
cal Data

Confronted by trial evidence of mixed quality,
investigators have 3 options: 1) to restrict attention
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to studies of high quality, ignoring what may be a sub-
stantial proportion of the evidence; 2) to include tri-
als of both high and low quality in a single analysis,
which risks delivering a biased estimate of the treat-
ment effect; or 3) to use all the data but simulta-
neously adjust and down-weight the evidence from
studies at risk of bias.?® The latter uses information
on the expected bias, as well as between-study vari-
ation in bias, derived from statistical analysis of
meta-epidemiological data. The analysis assumes
that the study-specific biases in the data set of
interest are exchangeable with those in the meta-
epidemiological data used to provide the prior dis-
tributions used for adjustment. This approach can
form the basis for sensitivity analyses to show
whether the presence of studies at risk of bias, with
potentially over-optimistic results, has an impact
on the decision.?®

It is expected that this bias-adjustment method
will be used more when more data are available on
how the degree of bias depends on the nature of the
outcome measure and the clinical condition.* In prin-
ciple, the same form of bias-adjustment could be
extended to other types of bias or to mixtures of
RCTs and observational studies. Each of these exten-
sions, however, depends on the applicability of anal-
yses of very large meta-epidemiological data sets that
are starting to become available.'"*°

Estimation and Adjustment for Bias in Network
Meta-Analysis

In NMA, if we assume that the mean and variance
of the study-specific biases are the same for each
treatment, it is possible to simultaneously estimate
the treatment effects and the bias effects in a single
analysis and to produce treatment effects that are
based on the entire body of data and also adjusted
for bias.?” If A is placebo or standard treatment and
B, C, and D are all active treatments, it would be rea-
sonable to expect the same bias distribution to apply
to the AB, AC, and AD trials. But it is less clear what
the direction of the bias should be in BC, BD, and CD
trials. Assuming that the average bias is always in
favor of the newer treatment, this becomes a model
for novelty bias.?®*? Another approach might be to
propose a separate mean bias term for active v. active
comparisons.?”

This method can in principle be extended to
include syntheses that are mixtures of trials and
observational studies, and it can also be extended to
any form of “internal” bias. A particularly interesting
application is to ‘“‘small-study bias,” which is one
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Table 2 Certolizumab Examplezoz Posterior Mean, SD, and 95% CrlI for the Interaction Estimate (b) and Log-

Odds Ratios dxy of Treatment Y relative to Treatment X

No Covariate Covariate ‘“‘Disease Duration”
FE RE? FE RE?
Mean SD CrI Mean/ Median SD Crl Mean SD Crl Mean/ Median SD Crl
b NA NA NA NA NA NA 0.14 0.06 (0.01, 0.26) 0.14 0.09 (-0.03, 0.32)
dis 2.21 0.25 (1.73,2.72) 2.27 0.39 (1.53,3.10) 2.50 0.29 (1.96, 3.08) 2.57 0.42 (1.79, 3.44)
dis 1.93 0.22 (1.52, 2.37) 1.97 0.33 (1.33,2.64) 1.66 0.25 (1.19, 2.16) 1.71 0.34 (1.04, 2.41)
dqs 3.47 1.34 (1.45, 6.74) 3.46 1.41 (1.26,6.63) 2.82 1.34 (0.71, 5.96) 2.77 1.42 (0.42, 6.01)
dis 1.38 0.17 (1.06, 1.72) 1.48 0.33 (0.90,2.21) 1.40 0.17 (1.08,1.74) 1.48 0.30 (0.95, 2.15)
die 0.00 0.71 (~1.40, 1.39) 0.01 0.82 (-1.61, 1.63) —0.42 0.73 (-1.86, 1.04) —0.44 0.84 (-2.08, 1.21)
di; 1.65 0.22 (1.22, 2.10) 1.56 0.38 (0.77,2.28) 1.98 0.28 (1.45, 2.53) 2.00 0.45 (1.12, 2.93)
o NA NA NA 0.34 0.20 (0.03,0.77) NA NA NA 0.28 0.19 (0.02, 0.73)
D" 37.6 30.9 33.8 30.2
pp 18.0 21.2 19.0 21.3
DIC 55.6 52.1 52.8 51.4

Posterior median, standard deviation (SD), and 95% credible interval (Crl) of the between-trial heterogeneity (o) for the number of patients achieving
ACR50 for the fixed effects (FE) and random effects (RE) models with and without covariate “disease duration” and measures of model fit: posterior
mean of the residual deviance (D,s), effective number of parameters (pp), and deviance information criterion (DIC). Results are based on 100,000 iterations
from 3 independent chains after a burn-in of 40,000 iterations. Treatment codes are given in Figure 2. NA, not applicable.

#Using informative prior for o (for details, see Appendix).

"Compare with 24 data points.

Table 3 Certolizumab Examplezoz Posterior Mean, SD, and 95% CrI for the Interaction Estimate (b) and Log-

Odds Ratios dxy of Treatment Y Relative to Treatment X

FE RE
Mean SD CrI Mean/Median SD CrI

b -0.93 0.09 (-1.03, —0.69) -0.95 0.10 (-1.10, -0.70)
dis 1.85 0.10 (1.67, 2.06) 1.83 0.24 (1.35, 2.29)
dis 2.13 0.11 (1.90, 2.35) 2.18 0.22 (1.79, 2.63)
dis 2.08 0.34 (1.47, 2.80) 2.04 0.46 (1.19, 2.94)
dis 1.68 0.10 (1.49, 1.86) 1.71 0.22 (1.30, 2.16)
dqe 0.36 0.50 (-0.72, 1.27) 0.37 0.59 (-0.86, 1.45)
di; 2.20 0.14 (1.93, 2.46) 2.25 0.27 (1.75, 2.79)
[ NA NA NA 0.19 0.19 (0.01, 0.70)
D,.? 27.3 24.2

Pp 19.0 19.4

DIC 46.3 43.6

Posterior median, standard deviation (SD), and 95% credible interval (Crl) of the between-trial heterogeneity (o) for the number of patients achieving
ACRS50 for the fixed effects (FE) and random effects (RE) models with covariate “baseline risk’”” and measures of model fit: posterior mean of the residual
deviance (D,.s), number of parameters (pp), and deviance information criterion (DIC). Results are based on 100,000 iterations from 3 independent chains
after a burn-in of 60,000 iterations. Treatment codes are given in Figure 2. NA, not applicable.

“Compare with 24 data points.

interpretation of “publication bias.” The idea is that  Elicitation of Bias Distributions
smaller studies have greater bias. The “‘true” treat-

ment effect can therefore be conceived as the effect This method®* is conceptually the simplest of all
that would be obtained in a study of infinite size,  bias-adjustment methods, applicable to trials and
which is taken to be the intercept in a regression of ~ observational studies alike, but it is also the most dif-
the treatment effect against the study variance.?**! ficult and time-consuming. One of its advantages is

that it can be used when the number of trials is
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Figure 4 Certolizumab example®’: plot of the crude odds ratio (OR)
of the 6 active treatments relative to placebo plus methotrexate
(MTX) against odds of baseline response on a log-scale. For plot-
ting purposes, the odds of response on placebo plus MTX for the
Abe 2006 study were assumed to be 0.01. The plotted numbers refer
to the treatment being compared with placebo plus MTX, and the
lines represent the relative effects of the following treatments
(from top to bottom) compared with placebo plus MTX based on
a random effects meta-regression model: tocilizumab plus MTX
(treatment 7, short-long dash purple line), adalimumab plus MTX
(treatment 3, dashed red line), etanercept plus MTX (treatment 4,
dotted green), certolizumab pegol (CZP) plus MTX (treatment 2,
solid black line), infliximab plus MTX (treatment 5, dot-dashed
dark blue line), and rituximab plus MTX (treatment 6, long-dashed
black line). Odds ratios above 1 favor the plotted treatment, and the
horizontal line (dashed) represents no treatment effect.

insufficient for meta-regression approaches. Each
study is considered by several independent experts
using a predetermined protocol that itemizes a series
of potential internal and external biases. Each expert
is asked to provide information that is used to develop
a combined bias distribution. The mean and variance
of the bias distributions are statistically combined
with the original study estimate and its variance to cre-
ate a new, adjusted estimate of the treatment effect in
each study. The final stage is a conventional synthesis
of the adjusted study-specific estimates using stan-
dard pairwise or network meta-analysis methods.

DISCUSSION

We have detailed methods to explore or explain
heterogeneity in pairwise and network meta-analyses
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using study-level covariates, including baseline risk
(variation in ‘“‘baseline” natural history is dealt with
in another tutorial in this series®”), although we
have not covered the closely related topic of outlier
detection."®*?°

However, meta-regression based on aggregate data
and study-level covariates suffers from several bias
and confounding problems as well as typically hav-
ing low power. When a categorical covariate is con-
sidered, one can contrast a within-trial comparison
(e.g., treatment effects reported separately for males
and females) and a between-trial comparison where
different trials are run on male and female patients.
The contrast is similar to the difference between
a paired and an unpaired t test. With between-trial
comparisons, a given covariate effect (i.e., interac-
tion) will be harder to detect as it has to be distin-
guishable from the “random noise” created by the
between-trial variation. However, for within-trial
comparisons, the between-trial variation is con-
trolled for, and the interaction effect needs only to
be distinguishable from sampling error. A further
drawback of between-trial comparisons is that,
because the number of observations (trials) may be
very low while the precision of each trial may be rel-
atively high, it is quite possible to observe a highly
statistically significant relation between the treat-
ment effect and the covariate that is entirely spuri-
ous.’® Furthermore, between-trial comparisons are
more vulnerable to ecologic bias or ecologic fallacy,*”
where, for example, a linear regression coefficient of
treatment effect against the covariate in the
between-trial case can be entirely different from the
coefficient for the within-trial data.

With continuous covariates and IPD, not only does
the within-trial comparison avoid ecological bias, but
it also has far greater statistical power to detect a true
covariate effect. This is because the variation in
patient covariate values will be many times greater
than the variation between the trial means,*®* and
the precision in any estimated regression coefficient
depends directly on the variance in covariate values.
For these reasons, IPD meta-analyses and meta-
regression are taken to be the “gold standard,’*°
although IPD is not available in most situations.

Two broad approaches to IPD meta-regression
have been considered.*! In the 2-step approach, the
analyst first estimates the interaction effect sizes
and their standard errors from each study and then
conducts a standard meta-analysis on these summa-
ries. This is appropriate for inference on the existence
of an interaction, but for decision making, we recom-
mend a 1-step method in which main effects and
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interaction are estimated simultaneously. This is
because the parameter estimates of the main effects
and interaction terms will be correlated, and their
joint uncertainty can most easily be propagated
through the decision model by estimating them simul-
taneously. IPD RE pairwise meta-analysis models have
been developed for continuous,*** binary,** sur-
vival,*® and ordinal*® variables. Although most of the
models are presented in the single pairwise compari-
son context, it is possible to extend them to an NMA
context.***”=°! Criteria for determining the potential
benefits of IPD to assess patient-level covariates have
recently been outlined.>?

When IPD is available only in a subset of studies, it
is possible to incorporate both types of data in the
same analysis using dual effect models.*®°%%3°
This makes the best possible use of all available
data, but a decision has to be made on whether
between-study variability is to be included in the esti-
mation of effects. Statistical tests are unlikely to have
sufficient power to inform a decision. In an NMA
with IPD, we would recommend use of models with
a single interaction term for each covariate, at least
within a class of treatments, for decision making,
but more complex structures have been attempted.*®

Finally, it needs to be appreciated that in cases
where the covariate does not interact with the treat-
ment effect but modifies the baseline risk, the effect
of pooling data over the covariate is to bias the esti-
mated treatment effect toward the null effect. This
is a form of ecologic bias known as aggregation
bias,” which does not affect strictly linear models,
where pooling data across such covariates will not
create bias. Usually, it is significant only when both
the covariate effect on baseline risk and the treatment
effect are quite strong. It is a particular danger in

survival analysis because the effect of covariates
such as age on cancer risk can be particularly marked
and because the log-linear models routinely used are
highly nonlinear. When covariates that affect risk are
present, even if they do not modify the treatment
effect, the analysis must be based on pooled estimates
of treatment effects from a stratified analysis for
group covariates and regression for continuous cova-
riates and not on treatment effects estimated from
pooled data.

Bias-adjustment methods are another form of
accounting for differences between studies. These
methods should be considered semi-experimental
as there is a need for further experience with applica-
tions and for further meta-epidemiological data on
the relationships between the many forms of internal
bias that have been proposed.*® However, they repre-
sent reasonable and valid methods for bias-adjust-
ment and are likely to be superior to no bias-
adjustment in situations where data are of mixed
quality. At the same time, caution is required as the
method is essentially a meta-regression based on
“between-studies” comparisons, with no certainty
of a causal mechanism.

We have suggested that choice between models
with and without the covariate or bias-adjustment
coefficients should be based on examining the DIC
and the CrI of the regression coefficient. However,
in general, the DIC is not able to inform choice
between RE models with and without covariates as
both will tend to fit equally well and have a similar
effective number of parameters. Other considera-
tions, such as a reduction in the heterogeneity, will
play a greater role in choosing between RE models.
For FE models with and without covariates, the DIC
is suitable for model choice.

APPENDIX
Heterogeneity and Meta-Regression—Illustrative Examples and WinBUGS Code

This appendix gives illustrative WinBUGS code for all the examples presented in the main article. All program-
ming code is fully annotated. The program codes are printed here but are also available as WinBUGS system files
from http://www.nicedsu.org.uk. Users are advised to download the WinBUGS files from the website instead of
copying and pasting from this document. We have provided the codes as complete programs. However, the major-
ity of each meta-regression program is identical to the programs in Dias and others.’**® We have therefore high-
lighted the main differences in bold, to emphasize the modular nature of the code. The code presented is
completely general and will be suitable for fitting pairwise or network meta-analyses with any number of treat-
ments and multiarm trials. We also provide an indication of the relevant parameters to monitor for inference and
model checking for the various programs. The nodes to monitor for the FE models are the same as those for the
RE models, except that there is no heterogeneity parameter.
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Table A1 gives an index of the programs and their relation to the examples in the main text. Note that for
each example, there are RE and FE versions of the code. All FE code can be run using the same data structure
described for RE.

Table A1 Index of WinBUGS Code with Details of Examples and Sections Where They Are Described

Program Fixed or Random Effects Example Name Model Specification
1 (a) RE Statins (subgroups) Meta-regression with subgroups
(b) FE
2 (a) RE Certolizumab (mean disease dura- Meta-regression with continuous covariate
(b) FE tion)
3 (a) RE Certolizumab (baseline risk) Meta-regression with adjustment for base-
(b) FE line risk

FE, fixed effects; RE, random effects.

Example 1. Statins: Meta-Regression with Subgroups

A meta-analysis of 19 trials of statins for cholesterol lowering v. placebo or usual care' included some
trials on which the aim was primary prevention (patients included had no previous heart disease) and others
on which the aim was secondary prevention (patients had previous heart disease). Note that the subgroup
indicator is a trial-level covariate. The outcome of interest was all-cause mortality, and the data are presented
in Table A2. The potential effect-modifier, primary v. secondary prevention, can be considered a subgroup in
a pairwise meta-analysis of all the data, or 2 separate meta-analyses can be conducted on the 2 types of study.

Table A2. Meta-Analysis of Statins v. Placebo for Cholesterol Lowering in Patients with and without
Previous Heart Disease'®: Number of Deaths Due to All-Cause Mortality in the Control and Statin Arms of
19 Randomized Controlled Trials

Placebo/Usual Care Statin
Trial ID No. of Deaths, r, No. of Patients, n, No. of Deaths, r, No. of Patients, n, Type of Prevention, x,

1 256 2223 182 2221 Secondary
2 4 125 1 129 Secondary
3 0 52 1 94 Secondary
4 2 166 2 165 Secondary
5 77 3301 80 3304 Primary

6 3 1663 33 6582 Primary

7 8 459 1 460 Secondary
8 3 155 3 145 Secondary
9 0 42 1 83 Secondary
10 4 223 3 224 Primary

11 633 4520 498 4512 Secondary
12 1 124 2 123 Secondary
13 11 188 4 193 Secondary
14 5 78 4 79 Secondary
15 6 202 4 206 Secondary
16 3 532 0 530 Primary

17 4 178 2 187 Secondary
18 1 201 3 203 Secondary
19 135 3293 106 3305 Primary

The number of deaths in arm k of trial i, r,, is assumed to have a binomial likelihood 7, ~ Binomial( D>y )
i=1,...,19; k=1, 2. Defining x; as the trial-level subgroup indicator such that

i

{0 if study 7 is a primary prevention study

1 if study i is a secondary prevention study
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our interaction model is 0, =p, + (61.,1,( +Bx; )1 41y » Where 0, =logit(p, ) isthe linear predictor (see Dias
and others™). In this setup, p, represent the log-odds of the outcome in the “control” treatment (i.e., the treat-
ment indexed 1), and 3, ,, are the trial-specific log-odds ratios of success on the treatment group compared
with control for primary prevention studies. See the main text for further details of the model.

WinBUGS code to fit 2 separate fixed or random effects models is given in the appendix to Dias and oth-
ers.” The WinBUGS code for a single analysis with an interaction term for subgroup with RE is given in
program 1(a), and the FE code is given in program 1(b). Although this example includes only 2 treatments,
the code presented below can also be used for subgroup analysis with multiple treatments and including
multiarm trials.

Program 1(a): Binomial Likelihood, Logit Link, Random Effects, Meta-Regression with Subgroups (Statins
Example)

# Binomial likelihood, logit link, subgroup
# Random effects model for multi-arm trials

model{ # *** PROGRAM STARTS
for(i in 1:ns){ # LOOP THROUGH STUDIES
wli,1] <- 0 # adjustment for multi-arm trials is zero for control arm
deltali,1] <- 0 # treatment effect is zero for control arm
muli] ~ dnorm(0,.0001) # vague priors for all trial baselines
for (k in 1mali]) { # LOOP THROUGH ARMS
r[i,k] ~ dbin(pli.k]l,n[i,k]) # binomial likelihood

# model for linear predictor, covariate effect relative to treat in arm 1
logit(plik]) <- mu[i] + delta[i,k] + (betalt[i,k]]-beta[t[i,1]]) * xIi]
rhat[i,k] <- pli,k] * n[ik] # expected value of the numerators
devlik] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k])) #Deviance contribution
+ (nfikl-rfik]) * (log(nlik]-r[ik]) - log(n[ik]-rhat[i,k])))
}

resdev(i] <- sum(devl(i,1:na[i]]) # summed residual deviance contribution for this trial
for (k in 2:nali]) { # LOOP THROUGH ARMS
deltali,k] ~ dnorm(md/[i,k],taud[i,k]) # trial-specific LOR distributions
md|[ik] <- d[t[i,k]] - d[t[i,1]] + sw[ik] # mean of LOR distributions (with multi-arm trial correction)
taud|i,k] <- tau *2*(k-1)/k # precision of LOR distributions (with multi-arm trial correction)
wli,k] <- (deltali,k] - d[t[i,k]] + d[t[i,1]]) # adjustment for multi-arm RCTs
swli,k] <- sum(wli,1:k-1])/(k-1) # cumulative adjustment for multi-arm trials
}
}
totresdev <- sum(resdev(]) # Total Residual Deviance
d[1]<-0 # treatment effect is zero for reference treatment
beta[1] <- 0 # covariate effect is zero for reference treatment
for (k in 2:nt){ # LOOP THROUGH TREATMENTS
d[k] ~ dnorm(0,.0001) # vague priors for treatment effects
betalk] <- B # common covariate effect
}
B ~ dnorm(0,.0001) # vague prior for covariate effect
sd ~ dunif(0,5) # vague prior for between-trial SD
tau <- pow(sd,-2) # between-trial precision = (1/between-trial variance)
} # *** PROGRAM ENDS

To obtain posterior summaries for other parameters of interest, the nodes d, B, and sd need to be moni-
tored. To obtain the posterior means of the parameters required to assess model fit and model comparison,
dev, totresdev, and the DIC (from the WinBUGS DIC tool) need to be monitored.
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Additional code can be added before the closing brace to estimate all the pairwise log-odds ratios and odds
ratios and to produce estimates of absolute effects, given additional information on the absolute treatment effect
on one of the treatments, for given covariate values. For further details on calculating other summaries from the
results and on converting the summaries onto other scales, refer to the appendix in Dias and others."

H#HHAHHHH R HHA R R R R R R

# Extra code for calculating all odds ratios and log odds ratios, and absolute effects, for covariate

# values in vector z, with length nz (given as data)

H#HHAHHHHHHHH AR HHA AR HH A HHH AR AR R A AR R

for (k in 1:nt){

for (j in 1:nz) { dz[j,k] <- d[K] + (beta[k]-beta[1])*z[j] } # treatment effect when covariate = z[j]
}
# pairwise ORs and LORs for all possible pair-wise comparisons
for (c in 1:(nt-1)) {
for (k in (c+1):nt) {
# when covariate is zero
or[c,k] <- exp(d[k] - d[c])
lor[c,k] <- (d[k]-d[c])
# at covariate=z[j]
for (j in 1:mz) {
orzlj,c,k] <- exp(dzlj,k] - dzl[j,cl)
lorz[j,c.,k] <- (dzlj,kl-dzl[j,c])
}
}
}

# Provide estimates of treatment effects T[k] on the natural (probability) scale

# Given a Mean Effect, meanA, for ‘standard’ treatment 1, with precision (1/variance) precA, and covariate
value z[j]

A ~ dnorm(meanA,precA)

for (k in 1:nt) {

for (j in 1mz){
logit(T[j,k]) <- A + d[k] + (beta[k]-beta[1]) * z[j]
}
}

For a meta-regression with 2 subgroups, vector z would be added to the list data statement as list(z=c(1),
nz=1).

The data structure is identical to that presented in Dias and others'® but now has an added column x[] that
represents the value of the covariate (taking values 0 or 1) for each trial. The remaining variables represent
the number of treatments, nt, and the number of studies, ns; r[,1] and n[,1] are the numerators and denom-
inators for the first treatment, r[,2] and n[,2] are the numerators and denominators for the second listed
treatment, t[,1] and t[,2] are the treatment number identifiers for the first and second listed treatments, and
nal] is the number of arms in each trial. Text is included after the hash symbol (#) for ease of reference to the
original data source. Note that the data are provided as a list and a table component. Both components need
to be loaded into WinBUGS for the program to run.

# Data (Statins example)
list(ns=19, nt=2)

t[,1] t[,2] nall r[,1] n[,1] r[,2] n[,2] x[] # ID name
1 2 2 256 2223 182 2221 1 # 1 48
1 2 2 4 125 1 129 1 # 2 Bestehorn
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1 2 2 0 52 1 94 1 # 3 Brown

1 2 2 2 166 2 165 1 # 4 CCAIT

1 2 2 77 3301 80 3304 O # 5 Downs

1 2 2 3 1663 33 6582 0 # 6 EXCEL

1 2 2 8 459 1 460 1 # 7 Furberg

1 2 2 3 155 3 145 1 # 8 Haskell

1 2 2 0 42 1 83 1 # 9 Jones

1 2 2 4 223 3 224 0 # 10 KAPS

1 2 2 633 4520 498 4512 1 # 12 LIPID

1 2 2 1 124 2 123 1 # 13 MARS

1 2 2 11 188 4 193 1 # 14 MAAS

1 2 2 5 78 4 79 1 # 15 PLAC 1

1 2 2 6 202 4 206 1 # 16 PLAC 2

1 2 2 3 532 0 530 0 # 17 PMSGCRP
1 2 2 4 178 2 187 1 # 18 Riegger

1 2 2 1 201 3 203 1 # 19 Weintraub
1 2 2 135 3293 106 3305 O # 20 Wscotland
END

# Initial values

# Initial values for delta can be generated by WinBUGS.

#chain 1

list(d=c( NA, 0), mu=c(0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0), B=0, sd=1)

#chain 2

list(d=c( NA, -1), mu=c(-3,-3,3,-3,3, -3,3,-3,3,-3, -3,-3,3,3,-3, 3,-3,-3,3), B=-1, sd=3)
#chain 3

list(d=c( NA, 2), mu=c(-3,5,-1,-3,7, -3,-4,-3,-3,0, 5,0,-2,-5,1, -2,5,3,0), B=1.5, sd=0.5)

Program 1(b): Binomial Likelihood, Logit Link, Fixed Effects, Meta-Regression with Subgroups (Statins
Example)

# Binomial likelihood, logit link, subgroup
# Fixed effects model with one covariate

model{ # *** PROGRAM STARTS
for(i in 1:ns){ # LOOP THROUGH STUDIES
muli] ~ dnorm(0,.0001) # vague priors for all trial baselines
for (k in 1:nali]) { # LOOP THROUGH ARMS
r[i,k] ~ dbin(p[ik],n[i,k]) # binomial likelihood

# model for linear predictor, covariate effect relative to treat in arm 1
logit(pli,kl) <- mulil + d[t[i,k]] - d[t[i,1]] + (betalt[i,k]]-betalt[i,1]]) * xIil
rhat[ik] <- pli,k] * n[ik] # expected value of the numerators
dev[ik] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k])) #Deviance contribution

+ (nli,k]-r[i,k]) * (log(nlik]-r[i,k]) - log(n[ik]-rhat[i,k])))
}

resdevl[i] <- sum(devli,1:nalil]) # summed residual deviance contribution for this trial
}
totresdev <- sum(resdev(]) # Total Residual Deviance
d[1] <-0 # treatment effect is zero for reference treatment
beta[1] <- 0 # covariate effect is zero for reference treatment
for (k in 2:nt){ # LOOP THROUGH TREATMENTS
d[k] ~ dnorm(0,.0001) # vague priors for treatment effects
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betalk] <- B # common covariate effect

}
B ~ dnorm(0,.0001) # vague prior for covariate effect
} # *** PROGRAM ENDS
# Initial values
#chain 1
list(d=c( NA, 0), mu=c(0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0), B=0)
#chain 2
list(d=c( NA, -1), mu=c(-3,-3,3,-3,3, -3,3,-3,3,-3, -3,-3,3,3,-3, 3,-3,-3,3), B=-1)
#chain 3
list(d=c( NA, 2), mu=c(-3,5,-1,-3,7, -3,-4,-3,-3,0, 5,0,-2,-5,1, -2,5,3,0), B=1.5)

The results (including the model fit statistics’) of the 2 separate analyses and the single analysis using
the interaction model for fixed and random treatment effects models are shown in Table A3. For the FE
models, convergence was achieved after 10,000 burn-in iterations for separate analyses (20,000 iterations
for the joint analysis), and results are based on 50,000 samples from 3 independent chains. For the RE
models, 40,000 burn-in iterations were used for the separate analyses, 50,000 burn-in iterations were
used for the joint analysis, and results are based on 100,000 samples from 3 independent chains. Note
that in an FE context, the 2 analyses deliver the same results for the treatment effects in the 2 groups,
whereas in the RE analysis, due to the shared variance, treatment effects are not quite the same: they are
more precise in the single analysis, particularly for the primary prevention subgroup, where there was
less evidence available to inform the variance parameter, leading to very wide Crls for all estimates in
the separate RE meta-analysis. However, within the Bayesian framework, only the joint analysis offers a
direct test of the interaction term f, which, in both cases, has a 95% CrI that includes the possibility of
no interaction, although the point estimate is negative, suggesting that statins might be more effective in
secondary prevention patients.

Table A3. Statins Example'®: Posterior Mean, SD, and 95% Credible Interval (Crl) for the Log-Odds Ratio
(LOR) and Odds Ratio (OR) for All-Cause Mortality When Using Statins for Primary and Secondary
Prevention Groups

Fixed Effects Random Effects

Primary Prevention Secondary Prevention Primary Prevention Secondary Prevention

Separate Analyses Separate Analyses

Mean/ Mean/
Mean SD Crl Mean SD CrI Median SD Crl Median SD Crl
LOR -0.11 0.10 (-0.30, -0.31 0.05 (-0.42, -0.18 0.74 (-2.01, -0.36 0.16 (-0.72,
0.09) -0.21) 1.12) —0.06)
OR 0.90 0.09 (0.74, 0.73 0.04 (0.66, 1.12 3.65 (0.13, 0.71 0.11 (0.49,
1.09) 0.81) 3.07) 0.94)
G NA NA NA NA NA NA 0.79 0.98 (0.06, 0.16 0.23 (0.01,
3.90) 0.86)
resdev 16.9° 29.0° 11.9° 28.3°
Pp 6.0 15.0 9.3 16.8
DIC 22.9 44.0 21.1 45.1
(continued)
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Table A3. (Countinued)

Single Analysis with Interaction Term, f, for Subgroup

Single Analysis with Interaction Term, f, for Subgroup

Mean/ Mean/
Mean SD Crl Mean SD Crl Median SD Crl Median SD Crl
B -0.21 0.11 (-0.42, -0.29 0.26 (-0.86,
0.01) 0.20)
LOR -0.11 0.10 (-0.30, -0.31 0.05 (-0.42, -0.07 0.20 (-0.48, -0.36 0.16 (-0.72,
0.09) —-0.21) 0.36) —-0.07)
OR 0.90 0.09 (0.74, 0.73 0.04 (0.66, 0.95 0.21 (0.62, 0.70 0.11 (0.49,
1.09) 0.81) 1.43) 0.94)
c NA NA NA NA NA NA 0.19 0.20 (0.01,
0.76)
resdev® 45.9 42.6
pD 21.0 24.2
DIC 66.9 66.8

Posterior median, standard deviation (SD), and 95% credible interval (Crl) of the between-trial heterogeneity (o) for All-Cause Mortality When Using
Statins for the fixed and random effects models and measures of model fit: posterior mean of the residual deviance (resdev), number of parameters (p,),
and deviance information criterion (DIC). LOR <0 and OR <1 Favor Statins. NA, not applicable.

*Compare with 10 data points.
"Compare with 28 data points.
‘Compare with 38 data points.

Example 2. Certolizumab: Continuous Covariate

This example and results are described in the main text. The WinBUGS code for RE meta-regression model
with a continuous covariate and noninformative priors is given in program 2(a), and the FE code is given in

program 2(b). The relevant nodes to monitor are the same as in program 1.

Program 2(a): Binomial Likelihood, Logit Link, Random Effects, Meta-Regression with a Continuous Covariate
(Certolizumab Continuous Covariate Example)

# Binomial likelihood, logit link, continuous covariate
# Random effects model for multi-arm trials

model{
for(i in 1:ns){
wli,1] <- 0
deltali,1] <- 0
muli] ~ dnorm(0,.0001)
for (k in 1:mali]) {
r[i,k] ~ dbin(pli,k],n[i,k])

# *** PROGRAM STARTS

# LOOP THROUGH STUDIES

# adjustment for multi-arm trials is zero for control arm
# treatment effect is zero for control arm

# vague priors for all trial baselines

# LOOP THROUGH ARMS

# binomial likelihood

# model for linear predictor, covariate effect relative to treat in arm 1 (centring)
logit(pli,k]) <- muli] + delta[i, k] + (betalt[i,k]]-beta[t[i,1]]) * (x[i]-mx)
# expected value of the numerators
dev[ik] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k])) #Deviance contribution
+ (nli,k]-r[i,k]) * (log(nlik]-r[ik]) - log(n[ik]-rhat[i,k])))

rhat[i,k] <- pli,k] * n[ik]

)

resdevl[i] <- sum(devl[i,1:nalil])

for (k in 2:mali]) {

deltali,k] ~ dnorm(md/[i,k],taud[i,k])

taud[ik] <- tau *2*(k-1)/k

ARTICLE

# summed residual deviance contribution for this trial

# LOOP THROUGH ARMS

# trial-specific LOR distributions

md[i k] <- d[t[i,k]] - d[t[i,1]] + sw[i,k] # mean of LOR distributions (with multi-arm trial correction)
# precision of LOR distributions (with multi-arm trial correction)
wli,k] <- (deltali,k] - d[t[i,k]] + d[t[i,1]]) # adjustment for multi-arm RCTs
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swlik] <- sum(wl[i,1:k-1])/(k-1) # cumulative adjustment for multi-arm trials
}
}

totresdev <- sum(resdev](]) # Total Residual Deviance
d[1]<-0 # treatment effect is zero for reference treatment
betal1] <- 0 # covariate effect is zero for reference treatment
for (k in 2:nt){ # LOOP THROUGH TREATMENTS

d[k] ~ dnorm(0,.0001) # vague priors for treatment effects

betalk] <- B # common covariate effect

}

B ~ dnorm(0,.0001) # vague prior for covariate effect
sd ~ dunif(0,5) # vague prior for between-trial SD
tau <- pow(sd,-2) # between-trial precision = (1/between-trial variance)
} # *** PROGRAM ENDS

The data structure is the same as in program 1, but now we have more than 2 treatments being compared
and need to add the mean covariate value mx to the list data, for centering.

# Data (Certolizumab example — covariate is disease duration)

list(ns=12, nt=7, mx=8.21)

t[,1] t[,2] nal] n[,1] n[,2] r[,1] [,2] x[] # D Study name

1 3 2 63 65 9 28 6.85 # 1 Kim 2007 (37)

1 3 2 200 207 19 81 10.95 # 2 DE019 Trial (36)

1 3 2 62 67 5 37 11.65 # 3 ARMADA Trial (34]
1 2 2 199 393 15 146 6.15 # 4 RAPID 1 Trial (40)
1 2 2 127 246 4 80 5.85 # 5 RAPID 2 Trial (41)
1 5 2 363 360 33 110 8.10 # 6 START Study (57)
1 5 2 110 165 22 61 7.85 # 7 ATTEST Trial (51)
1 5 2 47 49 0 15 8.30 # 8 Abe 2006 (50)

1 4 2 30 59 1 23 13.00 # 9 Weinblatt 1999 (49)
1 6 2 40 40 5 5 11.25 # 11 Strand 2006 (62)

1 7 2 49 50 14 26 0.92 # 12 CHARISMA Study (64)
1 7 2 204 205 22 90 7.65 # 13 OPTION Trial (67)
END

To estimate all the pairwise log-odds ratios, odds ratios, and absolute effects, for covariate values 0, 3, and
5, vector z could be added to the list data as list(z=c(0,3,5), nz=3).

# Initial values

# Initial values for delta can be generated by WinBUGS.

#chain 1

list(d=c( NA, 0,0,0,0,0,0), mu=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0,0), sd=1, B=0)

#chain 2

list(d=c( NA, -1,1,-1,1,-1,1), mu=c(-3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3), sd=0.5, B=-1)
#chain 3

list(d=c( NA, 2,-2,2,-2,2,-2), mu=c(-3, 5, -1, -3, 7, -3, -4, -3, -3, 0, 5, 0), sd=3, B=5)

In a RE model with Uniform(0, 5) prior for o, the heterogeneity parameter is not identifiable. This is
because there is a trial with a zero cell and not many replicates of each comparison. Due to the paucity of
information from which the between-trial variation can be estimated, in the absence of an informative prior
on o, the relative treatment effect for this trial will tend toward infinity. We have therefore used an informa-
tive half-normal prior, represented by the solid line in Figure A1, which ensures stable computation: ¢ ~
Half-Normal(0,0.322).
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density

This prior distribution was chosen to ensure that, a priori, 95% of the trial-specific ORs lie within a factor
of 2 from the median OR for each comparison. Under this prior, the mean ¢ is 0.26. To fit the RE meta-
regression model with this prior distribution, the line of code annotated as “vague prior for between-trial SD”
in program 2(a) should be replaced with the following 2 lines:

sd ~ dnorm(0,prec)I(0,)  # prior for between-trial SD
prec <- pow(0.32,-2)

This prior should not be used unthinkingly. Informative prior distributions allowing wider or narrower
ranges of values can be used by changing the value of prec in the code above.

In this example, the posterior distribution obtained for o is given by the dotted line in Figure A1 and shows
that the range of plausible values for ¢ has not changed much, but the probability that ¢ will have values

close to zero has decreased.

Program 2(b): Binomial Likelihood, Logit Link, Fixed Effects, Meta-Regression with a Continuous Covariate
(Certolizumab Continuous Covariate Example)

# Binomial likelihood, logit link
# Fixed effects model with continuous covariate

model{ # *** PROGRAM STARTS
for(i in 1:ns){ # LOOP THROUGH STUDIES
muli] ~ dnorm(0,.0001) # vague priors for all trial baselines
for (k in 1:malil) { # LOOP THROUGH ARMS
r[i,k] ~ dbin(p[ik],n[i,k]) # binomial likelihood

# model for linear predictor, covariate effect relative to treat in arm 1
logit(pli,k]) <- muli] + d[t[i,k]] - d[t[i,1]] + (betalt[i,k]]-beta[t[i,1]]) * (x[i]-mx)
rhat[i,k] <- pli,k] * n[i,k] # expected value of the numerators
dev[ik] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k])) #Deviance contribution
+ (nli,k]-r[i,k]) * (log(nlik]-r[i,k]) - log(nl[ik]-rhat[i,k])))
}

resdevl[i] <- sum(devl[i,1:nalil]) # summed residual deviance contribution for this trial

}
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totresdev <- sum(resdev(])
d[1] <-0
beta[1] <- 0
for (k in 2:nt){
d[k] ~ dnorm(0,.0001)
betalk] <- B
}
B ~ dnorm(0,.0001)
}

# Initial values
#chain 1

# Total Residual Deviance

# treatment effect is zero for reference treatment
# covariate effect is zero for reference treatment
# LOOP THROUGH TREATMENTS

# vague priors for treatment effects

# common covariate effect

# vague prior for covariate effect
# *** PROGRAM ENDS

list(d=c( NA, 0,0,0,0,0,0), mu=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), B=0)

#chain 2

list(d=c( NA, -1,1,-1,1,-1,1), mu=c(-3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3), B=-2)

#chain 3

list(d=c( NA, 2,-2,2,-2,2,-2), mu=c(-3, 5, -1, -3, 7, -3, -4, -3, -3, 0, 5, 0), B=5)

Example 3. Certolizumab: Baseline Risk

This example and results are described in the main text. The WinBUGS code for the meta-regression model
with adjustment for baseline risk for random and fixed treatment effects is similar to programs 2(a) and 2(b),
respectively, but now x[i] is replaced with mul[i] in the definitions of the linear predictor. The variability of
the normal prior distribution needs to be reduced to avoid numerical errors (this only minimally affects the
posterior results). The relevant nodes to monitor are the same as in program 1.

Program 3(a): Binomial Likelihood, Logit Link, Random Effects, Meta-Regression with Adjustment for
Baseline Risk (Certolizumab Baseline Risk Example)

# Binomial likelihood, logit link
# Random effects model for multi-arm trials

model{
for(i in 1:ns){
wli,1] <- 0
deltali,1] <- 0
muli] ~ dnorm(0,.001)
for (k in 1:nali]) {
r[i,k] ~ dbin(plik],nl[i,k])

# *** PROGRAM STARTS

# LOOP THROUGH STUDIES

# adjustment for multi-arm trials is zero for control arm
# treatment effect is zero for control arm

# vague priors for all trial baselines

# LOOP THROUGH ARMS

# binomial likelihood

# model for linear predictor, covariate effect relative to treat in arm 1
logit(pli,k]) <- muli] + delta[i,k] + (beta[t[i,k]]-betalt[i,1]]) * (mul[i]-mx)

rhat[i,k] <- p[i,k] * n[ik]

# expected value of the numerators

devlik] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k])) #Deviance contribution
+ (n[i,k]-r[i,k]) * (log(nlik]-r[i,k]) - log(n[ik]-rhat[i,k])))

}

resdev[i] <- sum(devl[i,1:nalil])

for (k in 2:nali]) {

deltali,k] ~ dnorm(md[i k] ,taud[i,k])

# summed residual deviance contribution for this trial
# LOOP THROUGH ARMS
# trial-specific LOR distributions

md[i,k] <- d[t[i,k]] - d[t[i,1]] + sw[i,k] # mean of LOR distributions (with multi-arm trial correction)

taud[ik] <- tau *2*(k-1)/k

tion)

# precision of LOR distributions (with multi-arm trial correc-

wli,k] <- (delta[i,k] - d[t[i,k]] + d[t[i,1]]) # adjustment for multi-arm RCTs
swlik] <- sum(wl[i,1:k-1])/(k-1) # cumulative adjustment for multi-arm trials

}
}

636 e MEDICAL DECISION MAKING/JUL 2013



HETEROGENEITY AND META-REGRESSION

totresdev <- sum(resdev(]) # Total Residual Deviance
d[1]<-0 # treatment effect is zero for reference treatment
betal1] <- 0 # covariate effect is zero for reference treatment
for (k in 2:nt){ # LOOP THROUGH TREATMENTS

d[k] ~ dnorm(0,.0001) # vague priors for treatment effects

betalk] <- B # common covariate effect

}

B ~ dnorm(0,.0001) # vague prior for covariate effect
sd ~ dunif(0,5) # vague prior for between-trial SD
tau <- pow(sd,-2) # between-trial precision = (1/between-trial variance)

# *** PROGRAM ENDS

The data structure is the same as example 1, but without variable x[].
# Data (Certolizumab, baseline risk)
list(ns=12, nt=7, mx=-2.421)

t[,1] t[,2] nal] n[,1] nl[,2] r[,1] r[,2] # D Study name

1 3 2 63 65 9 28 # 1 Kim 2007 (37)

1 3 2 200 207 19 81 # 2 DEO019 Trial (36)

1 3 2 62 67 5 37 # 3 ARMADA Trial (34)
1 2 2 199 393 15 146 # 4 RAPID 1 Trial (40)
1 2 2 127 246 4 80 # 5 RAPID 2 Trial (41)
1 5 2 363 360 33 110 # 6 START Study (57)
1 5 2 110 165 22 61 # 7 ATTEST Trial (51)
1 5 2 47 49 0 15 # 8 Abe 2006 (50)

1 4 2 30 59 1 23 # 9 Weinblatt 1999 (49)
1 6 2 40 40 5 5 # 11 Strand 2006 (62)

1 7 2 49 50 14 26 # 12 CHARISMA Study (64)
1 7 2 204 205 22 90 # 13 OPTION Trial (67)
END

# Initial values

# Initial values for delta and other variables can be generated by WinBUGS.

#chain 1

list(d=c( NA, 0,0,0,0,0,0), mu=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0,0), sd=1, B=0)

#chain 2

list(d=c( NA, -1,1,-1,1,-1,1), mu=c(-3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3), sd=0.5, B=-1)
#chain 3

list(d=c( NA, 2,-2,2,-2,2,-2), mu=c(-3, 5, -1, -3, 7, -3, -4, -3, -3, 0, 5, 0), sd=3, B=5)

Program 3(b): Binomial Likelihood, Logit Link, Fixed Effects, Meta-Regression with Adjustment for Baseline
Risk (Certolizumab Baseline Risk Example)

# Binomial likelihood, logit link
# Fixed effects model with one covariate (independent covariate effects)

model{ # *** PROGRAM STARTS
for(i in 1:ns){ # LOOP THROUGH STUDIES
muli] ~ dnorm(0,.001) # vague priors for all trial baselines
for (k in 1:mali]) { # LOOP THROUGH ARMS
r[i,k] ~ dbin(p[i,k],n[i,k]) # binomial likelihood

# model for linear predictor, covariate effect relative to treat in arm 1
logit(plik]) <- mu[i] + d[t[i,k]] - d[t[i,1]] + (betalt[i,k]]-beta[t[i,1]]) * (muli]-mx)
rhat[ik] <- pli,k] * nl[ik] # expected value of the numerators
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devli,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k])) #Deviance contribution
+ (nfik]-r[i,k]) * (lognlik]-r[i,k]) - log(nlik]-rhat[i,k])))

}
resdev[i] <- sum(dev[i,1:nali]])
}

totresdev <- sum(resdev(])
d[1] <-0
beta[1] <- 0
for (k in 2:nt){

d[k] ~ dnorm(0,.0001)

betalk] <- B

}

B ~ dnorm(0,.0001)
}

# Initial values
#chain 1

# summed residual deviance contribution for this trial

# Total Residual Deviance
# treatment effect is zero for reference treatment
# covariate effect is zero for reference treatment

# vague priors for treatment effects
# common covariate effect

# vague prior for covariate effect
# *** PROGRAM ENDS

list(d=c( NA, 0,0,0,0,0,0), mu=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0,0), B=0)

#chain 2

list(d=c( NA, -1,1,-1,1,-1,1), mu=c(-3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3), B=-2)

#chain 3

list(d=c( NA, 2,-2,2,-2,2,-2), mu=c(-3, 5, -1, -3, 7, -3, -4, -3, -3, 0, 5, 0), B=5)
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