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Densities of aphids (Aphis gossypii and A. spiraecola) and mummified aphids at different phenological stages of a
blueberry crop were estimated for the purpose of developing sampling plans. Our data set comprised 99 samples
taken during the period 2006–2008 in four fields in Buenos Aires Province, Argentina. Estimation of population
density based on the proportion of sample units infested by individuals was investigated. We also calculated the
minimum number of sample units to estimate the density of individuals on buds and buds þ flowers using
enumerative sampling. The relative precision of both methods was compared. Moreover, an enumerative sequential
sampling protocol was developed. The presence–absence sampling plan gave density estimates with large variances
(as measured by confidence intervals and large standard errors). The aggregation of mummies was similar on buds
and buds þ flowers, so the required number of sample units for density estimates was the same. Relative precision of
estimates was much lower for the presence–absence sampling than the enumerative sampling, even at intermediate
densities. An enumerative sequential plan would be the most appropriate and useful method in management plans
for aphids and mummified aphids in blueberries.

Keywords: Aphis gossypii; Aphis spiraecola; enumerative sampling plan; mummified aphids; presence–absence
sampling plan; Vaccinium corymbosum

1. Introduction

Aphids affect a wide variety of crop plants such as
citrus, tobacco, alfalfa, cereals, cotton and beans, and
also orchard crops, in various parts of the world
(Blackman and Eastop 2000; Delfino 2004; Kavallier-
atos et al. 2002, 2007; Imwinkelried et al. 2004;
Tomanović et al. 2009). They support complexes of
parasitoid wasps (Braconidae, Aphelinidae) (Berta et al.
2002; Kavallieratos et al. 2005a, 2010), which can also
be attacked by other parasitoids (secondary parasitoids
or hyperparasitoids).

Blueberries (Vaccinium corymbosum L.) are tradi-
tionally grown in the northern Hemisphere, but there
are also productive areas in Australia, New Zealand,
Chile and Argentina. In blueberry fields in the USA,
Illinoia pepperi (MacGillivray) (Hemiptera: Aphidi-
dae) is the aphid species that is considered to be a
sporadic pest and can reach high densities (Isaacs et al.
2008). In Chile, Aphis gossypii Glover, Macrosiphum
euphorbiae (Thomas) and Myzus persicae (Sulzer)
(Hemiptera: Aphididae) are occasional pests of blue-
berries (Larraı́n et al. 2007). In blueberry fields in
Argentina, A. gossypii Glover and A. spiraecola Patch
are the most common aphid species (Rocca and Greco
2011). These two species are closely related and
morphologically similar (Vanlerbergue-Masutti and
Chavigny 1998). In Argentina, A. gossypii is reported
to be a pest of strawberries, lemons, apples, oranges,

pears, tangerines and sweet peppers, and A. spiraecola
is reported to be a pest of apples and pears
(SINAVIMO 2012). Aphis gossypii is an important
vector of the cotton leafroll dwarf virus (CLRDV)
(known as ‘‘blue disease’’) and the citrus tristeza virus
(CTV), but in blueberries there has been no record of
damage by viruses until now. These aphid species often
reach high densities; however, the economic threshold
levels have not yet been ascertained.

Broad-spectrum insecticides are applied to blue-
berries in Argentina when growers consider that aphid
density is high, albeit that they lack the tools to
estimate the density of aphids accurately. On the other
hand, to know parasitoid density is useful to minimize
adverse effects of pesticides on natural enemy popula-
tions, because applications could be avoided if para-
sitoid density were high. Such knowledge may lead to
more accurate management decisions aimed at con-
trolling aphids in blueberries (Kavallieratos et al.
2005b). Estimating the population density from pre-
sence–absence sampling plans appears to be an
effective alternative to the counting method (enumera-
tive sampling), given the small size and the high
numbers of individuals on plants (Nachman 1984;
Binns and Nyrop 1992). However, presence–absence
sampling requires more samples than enumerative
sampling in order to estimate densities with the same
level of precision.
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In this paper we report the development of a
presence–absence sampling plan to estimate the density
of aphids (A. gossypii and A. spiraecola) and a
presence–absence sampling plan to obtain an estimate
of the density of mummified aphids at different
phenological stages of blueberries in Argentina.
(Mummified aphids contain the pupal or adult stages
of parasitoid wasps that have previously developed
inside the living aphid, as larvae.) We also calculate the
minimum number of samples to assess the density of
aphids and mummified aphids by enumerative sam-
pling and by sequential sampling with a fixed precision
level.

2. Materials and methods

The study was conducted from June/July of 2006 to
December of 2008 in four commercial blueberry fields,
approximately 4 ha each, located in different sites of
the province of Buenos Aires (Argentina). The four
fields selected were Gobernador Castro (S3383809.700,
W5985106.400), San Pedro (S3384206.900 , W5985108.900),
Chascomús (S35040042.700 , W57856055.8 0) and Colonia
Urquiza (S3485702.700 , W58804055.900). The distance
between them ranged between 10 km and 286 km. An
anti-hail mesh was installed in the first two fields.

A random sampling design was used. Samples were
taken monthly covering all blueberry phenological
stages (Rivadeneira and Bouvet 2007). Each sample
consisted of 60 sample units conformed by two sub-
sampling units (three vegetative buds and three
bunches of flowers), depending on the resources
available to aphids in each phenological stage of the
plant (Table 1). To determine the optimum number of
sub-sample units per sample unit (n), the variance of
within-plant sub-samples must be compared with the
variance of the between-plant sub-samples and set
against the effort of sampling within the same plant or
of moving to another plant and sampling within it. If
the interplant variance is the major source of overall
variance, and unless the cost of moving from plant to
plant is very high, n will be of the order of 1 or less
(which means 1 in practice) (Southwood 1978). The
dispersion of aphids is aggregated at both field and
plant scales (Way and Cammell 1970), so both of these
sources of variance will be important. Moreover, given

that sampling in the same plant consumes less time
than moving to another randomly selected plant, we
decided to take three vegetative buds and three
bunches of flowers (hereinafter called ‘‘flowers’’) per
plant instead of taking one vegetative bud and one
bunch of flowers per plant. Sub-sample units were
sealed separately in plastic bags for each sample unit
and were transported to the laboratory in portable
refrigerators.

All sample units were reviewed under a stereoscopic
microscope and the number of aphids per plant
structure was recorded. Both A. gossypii and A.
spiraecola cause similar damage and are found together
on the same plant parts (Rocca 2010). These species are
morphologically similar, so it is very difficult to
distinguish between them with the naked eye. In order
to devise useful sampling guidelines for growers, we
decided to perform the analysis without distinguishing
the species.

All mummified aphids per sub-sample unit were
placed in Petri dishes, which were covered with plastic
film until emergence of parasitoids or hyperparasitoids.
All aphids per sub-sample unit were also placed in Petri
dishes covered with plastic film during 2 days to verify
parasitism. For the analysis of parasitism, mummified
aphids at the time of sampling and those appearing
two days afterwards were considered. The percentage
of mummified aphids was calculated as: (number of
mummified aphids per sub-sample unit/number of
aphids þ number of mummified aphids per sub-sample
unit) *100. The percentage of hyperparasitized mummi-
fied aphids was calculated as: (number of hyperparasi-
toids per sub-sample units/number of aphids þ number
of mummified aphids per sub-sample unit) *100 (Kaval-
lieratos et al. 2005a).

In total, 122 samples (field/date data sets) were
collected for aphids and mummified aphids. Of these,
99 had mean densities higher than zero individuals per
sample unit and were used to develop the sampling
plans.

Considering the phenological stages shown in Table
1, when the crop is at V2, V3, V1-R1 and R4 the plants
have vegetative buds, and when the crop is at V1-R2,
R3 and R4 the plants have vegetative buds and flowers;
therefore, different sampling schemes in each case were
required. Samples were pooled according to the

Table 1. Phenological stages of blueberry crops in Buenos Aires province, Argentina: months that each stage involves and
resources available to aphids.

Phenological stages Month Resources

V2 Summer budding Jan-Feb-Mar Vegetative buds
V3 Dormancy and presence of senescent leaves Apr-May Relict vegetative buds
V1-R1 Budding starts, spring budding and flower bud formation June-July Occasionally vegetative buds
V1-R2 Spring budding and flowering starts Aug-Sep Vegetative buds, flowers
R3 Open flower, fruit formation, unripened fruit Oct Vegetative buds, flowers
R4 Ripe fruit Nov-Dec Vegetative buds, relict flowers

Source: Adapted from Rivadeneira and Bouvet (2007).
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phenological stage. In 35 samples, the sample unit for
aphids was conformed by vegetative buds, while in 30
samples it was conformed by vegetative buds plus
flowers. For mummified aphids, in 11 samples the
sample unit consisted of vegetative buds whereas in 22
samples it consisted of vegetative buds plus flowers.

2.1. Presence–absence sampling plans for aphids and
mummified aphids

For each sample, aphid density (expressed as the
average number of aphids per sample unit), and the
proportion of sample units with aphids were calcu-
lated. The same procedure was performed to develop
presence–absence sampling plans for mummified
aphids.

A distribution-free equation to describe the rela-
tionship between the density (m) and the proportion of
sample units with individuals (1 7 p) (Gerrard and
Chiang 1970) was used:

lnðmÞ ¼ aþ b lnð� lnð1� pÞÞ; ð1Þ

where a and b are coefficients estimated by simple
linear regression (SLR) and p is the proportion of
sample units without individuals.

Four regression analyses on the data were per-
formed: (1) aphids on vegetative buds, (2) aphids on
vegetative buds þ flowers, (3) mummified aphids on
vegetative buds and (4) mummified aphids on vegeta-
tive buds þ flowers.

The population densities (m̂) in each case were
therefore estimated by:

m̂ ¼ exp ðâþ b̂ lnð� lnð1� pÞÞÞ; ð2Þ

We estimated the variance of the estimated density
logarithm using the term suggested by Schaalje et al.
(1991):

vs ¼ c1þ c2þ ðc4� c3Þ; ð3Þ
where

c1 ¼ b̂
2
1� ð1� pð ÞÞ

h i
= nð1� pÞ lnð1� pÞð Þ2
h i

c2 ¼MSE 1=Nþ ln � lnð1� pÞð Þ � �p½ �2=SSP
n o

c3 ¼ exp âþ b̂� 2
� �

âþ b̂ ln � lnð1� pÞð Þ
h in o

=n

c4 ¼MSE;

and n is the number of unit samples, N is the number of
samples used to fit the regression equation, MSE is the
residual mean squared error from the SLR of ln(m) on
ln(7ln(1 7 p)), �p is the mean value of ln(7ln(1 7 p))
for the samples used in the regression, SSP is the sum
of squared deviations of the ln(7ln(1 7 p)) values
from �p, and â and b̂ are SLR estimates of parameters of
the Taylor (1961) mean-variance (s2) relationship:

ln s2
� �

¼ aþ b ln mð Þ: ð4Þ

The confidence intervals to ln(m̂) are:

lnðm̂Þ � tN�2;1�a=2
ffiffiffiffi
vs
p

; lnðm̂Þ þ tN�2;1�a=2
ffiffiffiffi
vs
p� �

: ð5Þ

In this expression ln(m̂) stands for the prediction based
on the regression (1) and tN72,1–a/2 is the 1 7 a/2
quantile of Student’s t-distribution with N 7 2 degrees
of freedom. By applying the exponential function we
obtained 90% confidence intervals for m̂ from vs
estimated for 60 sample units.

2.2. Enumerative sampling plan for aphids and
mummified aphids

This procedure consists in determining an appro-
priate number of sample units from the field to
estimate the density with a desired level of precision.
For the estimation of minimum sample size for a
given density and a given level of precision, repre-
sented by the proportion of standard error of the
mean (D), the formula provided by Finch et al. (1975)
was used:

n ¼ axðb�2Þ
.
D2; ð6Þ

where a and b are Taylor’s estimates and x is the
mean. Taylor’ parameters obtained for aphids on
vegetative buds and aphids on vegetative buds þ
flowers were compared by the t-test. The same was
done for mummified aphids. When slopes and inter-
cepts were not significantly different, the entire data
set was used to develop a sampling plan that included
vegetative buds and vegetative buds þ flowers. This
relation was examined for D¼ 0.1, 0.2 and 0.3, the
highest precision level being 0.1, which corresponded
to the lowest proportion of standard error of the
mean.

We analyzed the relative precision of estimates
based upon enumerative and presence–absence plans,
expressed in terms of the coefficient of variation or
relative precision (Nachman 1984). For the enumera-
tive sampling plan it is:

CðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðxÞ

p
x

¼
ffiffiffiffiffiffiffiffi
a=n

p
xðb�2Þ=2:

Whereas, the coefficient of variation associated with
the binomial sampling plan is:

Cðm̂Þ ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vsðln m̂Þ

p
:

2.3. Enumerative sequential sampling plan

To construct stop-lines for fixed-precision levels of a
sequential sampling plan the following formula from
Green (1970), based on Taylor’s power law, was
used:
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Tn ¼
an 1�bð Þ

D2

	 
1=ð2�bÞ
; ð7Þ

where Tn is the cumulative total of individuals for the
sample units, a and b are Taylor’s estimates, and D is
the precision level.

Sample units are taken and individuals are counted,
then if the point (ni, Tni) is below the line for the required
precision level it is necessary to continue the sampling
because the predetermined level of precision has not been
achieved. When the point (ni, Tni) is above the boundary
line for the desired level of precision the density can be
estimated as Tni/ni at the desired level of precision.

3. Results

The density of aphids per sample unit ranged from 0.02
to 15 individuals per three vegetative buds and 0.05 to
30 individuals per three vegetative buds þ three
flowers. The density of mummified aphids ranged
from 0.03 to 0.6 and 0.02 to 8 per three vegetative buds
and three vegetative buds þ three flowers, respectively.

The parasitoid complex of A. gossypii and A.
spiraecola in blueberry fields in Argentina was com-
posed of Aphidius colemani Viereck, Aphidius ervi
Haliday, Lysiphlebus testaceipes (Cresson), Diaeretiella
rapae (McIntosh) (Hymenoptera: Braconidae) and
Aphelinus sp. (Hymenoptera: Aphelinidae). The percen-
tages of parasitism were variable and ranged between
0.4% and 100%. Aphidius colemani and L. testaceipes
were the most abundant parasitoids with a mean relative
abundance of 66% and 23%, respectively. Hyperpar-
asitoids, namely Pachyneuron sp., Asaphes sp. (Hyme-
noptera: Pteromalidae), Dendrocerus carpenteri (Curtis)
(Hymenoptera: Megaspilidae) and Syrphophagus sp.
(Hymenoptera: Encyrtidae), were also found in all
fields, causing up to 40% of hyperparasitism.

3.1. Presence–absence sampling plans for aphids and
mummified aphids

Estimation of the intercept and the slope by linear
regression between the density (m) and the proportion
of sample units with aphids (1 7 p) gave the values
2.87 and 1.27, respectively, for the vegetative bud
sample units. For vegetative bud þ flower sample units
these were 3.24 and 1.43. The R2 values obtained in the
regression were 0.62 for buds and 0.68 for buds þ
flowers. Both regressions were significant at P 50.001.
The intercept and the slope by linear regression
between the density and the proportion of sample
units with mummified aphids were 0.85 and 1.02,
respectively, for vegetative buds sample units and 1.97
and 1.26 for vegetative bud þ flower sample units. The
R2 values obtained in the regression were 0.68 and 0.79.
Both regressions were significant at P 50.001. The
relationship between densities and proportion of

sample units with individuals at 90% confidence
interval is shown in Figure 1a–d.

3.2. Enumerative sampling plan for aphids and
mummified aphids

Taylor’s parameters (Table 2) were significantly
different in respect of buds or buds þ flowers as
sample units for aphids (intercept: t¼ 5.65; df¼ 32;
P¼50.05; slope: t¼ 2.36; df¼ 61; P¼50.05), but
they were not significantly different to mummified
aphids (intercept: t¼ 1.30; df¼ 30; P¼40.05; slope:
t¼ 0.45; df¼ 29; P¼40.05). So, enumerative and
sequential enumerative sampling plans for mummified
aphids were developed with all of the data set (N¼ 33).
As the density of aphids and mummified aphids
increased, minimum sample size required for a
specified precision level decreased (Figure 2a–c).

The minimum number of sample units required
under low density scenarios, for example, 5 aphids per
sample unit, was 41000, �310 and �136 for precision
levels of 0.1, 0.2 and 0.3, respectively (Figure 2a). For
buds þ flowers it was �980, �245 and �110 for preci-
sion levels of 0.1, 0.2 and 0.3, respectively (Figure 2b). As
the mean density of aphids increased to 30 aphids per
sample unit, minimum sample size decreased
(�705, �175 and �78 for vegetative buds at precision
levels of 0.1, 0.2 and 0.3 respectively, and �575, �145
and �65 for vegetative buds þ flowers at the same
precision levels) (Figure 2a–b). The sample size required
to estimate the density of mummified aphids was lower
than those for aphids. For 5 mummified aphids per
sample unit, the sample size was 4500, �150 and �65
at a precision level of 0.1, 0.2 and 0.3, respectively (Figure
2c). As the mean density of mummified aphids increased
to 30, sample size decreased (� 285, �65 and �30 at a
precision level of 0.1, 0.2 and 0.3 respectively).

Figure 3 shows the relative precision of estimates
based upon both sampling plans. In the enumerative
sampling plan, relative precision increased with increas-
ing density, however the presence–absence sampling
plan provided the most precise estimates for intermedi-
ate densities. Anyway, the relative precision was always
higher for enumerative plan than presence–absence plan.
For example, a density of 5 aphids per three vegetative
buds would be estimated with a standard error of the
density higher than 100%, even taking a large number of
sample units (n¼ 300). Instead, a significantly lower
number of sample units (n¼ 100) would allow the
estimation of the same density with a standard error of
approx. 30% by enumerative sampling.

3.3. Enumerative sequential sampling plan

The stop lines constructed for a precision level D¼ 0.2,
corresponding to aphids on vegetative buds, aphids on
vegetative buds þ flowers and mummified aphids on
vegetative buds þ flowers, are shown in Figure 4. To

324 M. Rocca and N.M. Greco

D
ow

nl
oa

de
d 

by
 [

D
r 

M
ar

ga
ri

ta
 R

oc
ca

] 
at

 1
0:

39
 2

2 
A

ug
us

t 2
01

2 



Figure 1. Relationship between the proportion of sample units with individuals and mean number of individuals per sample
unit. a: Aphids per three vegetative buds, data were fitted to the equation y¼ 0.0551 ln(x) þ 0.175 (R2¼ 0.885); b: aphids per
three vegetative buds þ three bunches of flowers, data were fitted to equation y¼ 0.0844 ln(x) þ 0.2007 (R2¼ 0.941); c:
mummified aphids per three vegetative buds, the data were fitted to equation y¼ 1.0238 ln(x) þ 0.8519 (R2¼ 0.679); d:
mummified aphids per three vegetative buds þ three bunches of flowers, the data were fitted to equation y¼ 1.2631
ln(x) þ 1.9713 (R2¼ 0.788). Broken lines denote 90% confidence intervals.
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evaluate when the sampling would stop, convex lines
that represent the expected cumulative number of
individuals were calculated as Tn¼ xn for densities of
x¼ 5 and x¼ 30 individuals per sample unit. For
example, at density of x¼ 5 aphids per three vegetative
buds the sampling would stop after taking 310 sample
units, whereas the sampling would stop after 175
sample units at density of x¼ 30 (Figure 4).

4. Discussion

In all sites sampled, aphids were recorded mainly on
vegetative buds and flowers, as is the case in blueberry
fields in the USA and Chile (Larraı́n et al. 2007; Isaacs

Table 2. Taylor’s parameters used for enumerative sam-
pling plan for aphids and mummified aphids.

Aphids A1 a2 b3 R24

Vegetative buds 20.37 1.31a* 1.69a** 0.97
Vegetative buds þ flowers 15.86 1.20b* 1.70b** 0.96
Mummified aphids
Vegetative buds 7.12 0.85a* 1.46a** 0.89
Vegetative buds þ flowers 12.26 1.09a* 1.60a** 0.95
All data set 11.25 1.05 1.60 0.94

1Antilogarithm of a; 2y-intercept value for Taylor’s model; 3slope
value for Taylor’s model; 4Correlation coefficient value for good-
ness-of-fit for Taylor’s model; *a-values are significantly different
from 0 (a ¼ 0.05); ** b-values are significantly different from 1
(a ¼ 0.05). Values followed by the same letter within a column are
not significantly different (P 5 0.05).

Figure 2. Sample size as a function of density, for various precision levels (D¼ 0.1, D¼ 0.2 and D¼ 0.3) in enumerative
sampling plans. a: aphids per three vegetative buds, b: aphids per three vegetative buds þ three bunches of flowers; c: mummified
aphids per three vegetative buds þ three bunches of flowers.
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et al. 2008). The most abundant parasitoids were
Aphidius colemani and Lysiphlebus testaceipes. Aphidius
colemani is an Oriental species that has spread to South
America, presumably accidentally (Starý 1975), and it
is the most abundant parasitoid species in Argentina
(Starý and Delfino 1986). The North American species
L. testaceipes was introduced (and became established)
in Argentina in 1984 for the purpose of controlling
Schizaphis graminum (Rondani) (Hemiptera:

Aphididae) (Botto et al. 1991). Despite relatively high
levels of hyperparasitism the parasitism was not
disrupted during the study period.

Presence–absence and enumerative sampling plans
have been developed for various aphids and their
predators (Feng et al. 1993; Trumper and Gyenge
1998; Hodgson et al. 2004; Athanassiou et al. 2005),
lepidopteran leafminers (Hamilton et al. 2004), white-
flies (Naranjo et al. 1996), mites (Nachman 1984;

Figure 3. Standard error of density estimates expressed as percentage of the mean number of individuals per sample unit as a
function of density for different sample sizes. Full lines: estimates based on the proportion of unit samples with individuals in a
sample. Broken lines: estimates based on enumerative sampling. a: aphids per three vegetative buds; b: aphids per three vegetative
buds þ three bunches of flowers; c: mummified aphids per three vegetative buds þ three bunches of flowers.
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Greco et al. 2004), thrips and their predators (Deli-
georgidis et al. 2002), among others. Sampling plans
for estimating parasitized aphid densities are very
important in order to evaluate the mortality caused by
parasitoids; however, sampling plans for estimating
mummified aphids’ density are not very common (Giles
et al. 2003).

Counting all aphids or mummified aphids on each
sample unit is time-consuming; sampling can be made
easier and less time-consuming by substituting bino-
mial counts (presence–absence) for complete counts
(Binns and Nyrop 1992). For both aphids and
mummified aphids the presence–absence sampling
plan gave density estimates with large confidence
intervals and large standard errors (4100%). Gen-
erally, a level of 20% can be considered as an
acceptable precision level in pest management (South-
wood 1978). On the other hand, in enumerative
sampling, high variation in the number of individuals
among sample units may lead to an exponential
increase in the sample size required for sufficient
precision (Kapatos et al. 1996). The number of sample
units required to estimate density, at different densities
of aphids, was greater on vegetative buds than on
vegetative buds þ flowers. This is consistent with
stronger aggregation of aphids on buds. Moreover,
estimation of aphid density on vegetative buds would
require a greater number of sample units, due to the
fact that these insects were less abundant on vegetative
buds than on flowers, as was observed also by Isaacs
et al. (2008). Sampling of mummified aphids would
require the same minimum number of sample units
when the plant has only vegetative buds or vegetative
buds þ flowers, because they show similar spatial
patterns.

Nachman (1984) proposed the combination of
presence–absence and enumerative sampling plans to
estimate densities of Tetranychus urticae and Phyto-
seiulus persimilis Owing to increasing the sample size

used for the presence–absence method equal reliability
may be attained. He found that the optimum sampling
strategy was to use the enumerative plan at low
densities, but to switch to the presence–absence plan
at intermediate densities. In our case, we found that the
relative precision was much lower for the presence–
absence sampling than for the enumerative sampling,
even at intermediate densities, so the latter would be
the more appropriate method at any density. The same
occurred for mummified aphids, but slightly smaller
standard errors of estimates were found. However,
besides it being necessary to count all individuals, the
enumerative sampling plan requires a preliminary
estimation of density at each sampling date to estimate
the sample size. The advantage of using an enumerative
sequential sampling plan is that the number of sample
units required to estimate the density is not fixed in
advance. It allows one to stop sampling when the
number of sample units is enough to estimate the
density with a representative fixed-precision level
(standard error to mean ratio of 0.20). This method
appears to be the most appropriate and useful in
management plans for aphids on blueberries.

The evaluation of the expected performance of a
sampling plan in the field is the final step before it can
be widely adopted by decision-makers and researchers
as a reliable tool in integrated pest management
strategies (Trumper and Gyenge 1998). In this case,
such a decision should also be based on the knowledge
of economic threshold levels and optimal host–para-
sitoid relationship to control aphids in blueberry fields
(Giles et al. 2003).
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