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The bone and fat interface is implicated in the pathogenesis of postmenopausal osteoporosis. The association
between circulating omentin-1 levels and bonemineral density (BMD) in postmenopausal women has never been
assessed. A total of 382 healthy postmenopausal womenwere randomly selected. Omentin-1, visfatin, adiponectin,
the receptor activator of nuclear factor-κB ligand (RANKL), osteoprotegerin, high sensitivity C-reactive protein,
degradation products of C-terminal telopeptides of type I collagen, and osteocalcin were measured by highly
specific enzyme-linked immunosorbent assaymethods. BMDwas determined for the lumbar spine (L2–L4) and the
proximal femur using dual-energy X-ray absorptiometry. In multivariable-adjusted linear regression, serum
omentin-1 levels were inversely correlated with BMD at the lumbar spine (β=−0.11, p=0.020). In multiple
regression analyses, serum visfatin and adiponectin levels were not significantly correlated with BMD at different
skeletal sites after controlling for age, body mass index, and bone-related markers. However, the highest quartile
of adiponectin compared to the lowest quartile, after adjusting for potential confounders, revealed an inverse
association with BMD in the lumbar spine (β=−0.19, p=0.010). In conclusion, circulating omentin-1 levels had
an inverse correlationwith BMD at the lumbar spine in Iranian postmenopausal women. To further understand the
role of omentin-1 in bone and mineral metabolism, large-scale longitudinal studies focusing on BMD and
osteoporotic fractures are warranted.

© 2012 Elsevier Inc. All rights reserved.
Introduction

A growing body of clinical evidence has indicated that adipose
tissue is an endocrine organ. This tissue produces a variety of biologi-
cally active protein factors called adipocytokines, which are pleiotropic
molecules that not only regulate food intake and energy metabolism
but also are implicated in the complex interactions between fat and
bone [1,2].

Adiponectin is one of the adipocytokines that are expressed
specifically and abundantly in adipose tissue [3]. Adiponectin is
negatively correlated with different obesity measures as well as insulin
resistance indices [4,5]. It also plays an important role in glucose
homeostasis and has anti-inflammatory and anti-atherogenic proper-
ties [6]. Adiponectin also influences osteoclastogenesis indirectly by
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stimulating the receptor activator of nuclear factor-κB ligand (RANKL)
and inhibiting osteoprotegerin (OPG) production in osteoblasts [7].

Visfatin (nicotinamide phosphoribosyltransferase or pre-B-cell
colony-enhancing factor 1) is secreted abundantly by the visceral fat
of humans and mice and mimics the action of insulin [8]. Human studies
have shown inconsistent and conflicting results regarding associations
between visfatin and the insulin-mimetic effect, insulin resistance, beta
cell function impairment, adiposity, subcutaneous versus visceral fat
distribution, and diabetes [9]. Visfatin acts as nicotinamide phosphor-
ibosyl transferase (NAMPT), an enzyme involved in the nicotinamide
adenine dinucleotide (NAD+) salvage pathway [10]. The age-related
reduction of NAMPT activity may be involved in senile osteoporosis
because treatment with the NAMPT inhibitor FK866 increases adipocyte
formation and reduces mineralization in primary cultured bone marrow
stromal cells [11].

Omentin-1 is a novel 34 kDa adipocytokine, which in comparison
with subcutaneous adipose tissue, is highly and selectively expressed
in visceral adipose tissue [12,13]. Furthermore, omentin-1 enhances
insulin action and Akt phosphorylation [14]; it is inversely related to
obesity [15] and is down regulated by insulin and glucose [13]. In an
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in vitro study to investigate the effects of omentin-1 on bone
metabolism, omentin-1 reduced osteoclast formation by stimulating
OPG and inhibiting RANKL production in osteoblasts [16].

Although adiponectin has been investigated as a potential
contributor to bone metabolism in women [4,17–19], the relationship
between circulating levels of visfatin and BMD in postmenopausal
women has not been fully elucidated. Moreover, there is no human
study in the medical literature to investigate circulating omentin-1
levels in relationship to BMD in postmenopausal women. However,
we recently reported a correlation between omentin-l concentrations
with BMD in multiple sclerosis [20], and Guo LJ [21] investigated the
relationship between serum omentin-1 level and BMD in girls with
anorexia nervosa. The aim of the current study was to correlate
omentin-1, visfatin, and adiponectin levels with BMD, bone-related
mediators, and cytokines in healthy Iranian postmenopausal women
in order to determine whether these adipocytokines may be related
to BMD.

Materials and methods

Community sampling

The study designwas described in a previous study [22]. In brief, 382
postmenopausal women who participated in the Iranian Multicentral
Osteoporosis Study were evaluated fromApril 4 to September 22, 2006.
The mean age (mean±SD) of the women was 59.0±7.5 years (range,
50–83 years). Theywere randomly selected from13 clusters in Bushehr
Port (the center of Bushehr province, which has the longest border
with the Persian Gulf). All were community dwelling and ambulatory.
The following exclusion criteria were used: 1) the known presence of
generalized bone diseases including hyperparathyroidism, hypopara-
thyroidism, thyroid disorders, rheumatoid arthritis, Cushing disease,
and steroid-induced osteoporosis; renal osteodystrophy; or other
metabolic diseases; 2) a history of malignant diseases, type 1 diabetes
mellitus, and liver diseases; 3) drug addiction; and 4) restriction to bed
rest within the last 2 weeks after an illness or complete bed rest for
3 months.

Physical examinations

A stadiometer was used to measure height and weight. Heavy
outer garments and shoes were removed before the participants'
height and weight were measured. Body mass index (BMI) was
calculated. Waist circumference was defined at the midway level
between the costal margins and the iliac crests. Hip circumference
was measured at the level of the greater trochanters.

BMD was determined for the lumbar spine (L2–L4) and proximal
femur (neck) using dual-energy X-ray absorptiometry on an Osteocore II
bone densitometer (Osteocore II Osteodensitometer; Medilink, France).
To eliminate operator discrepancies, the same operator tested all the
women during the study. Duplicate measurements were obtained from
30womenwho agreed to undergo a repeat assessment on the same day,
and the precision errors were calculated using the root mean square
method. The coefficients of variation (CVs; precision) ofmeasurements of
the lumbar spine and femoral neck were 0.8% and 1.6%, respectively.

Laboratory measurements

A fasting blood sample was taken. All samples were promptly
centrifuged and separated, and the analyses were carried out at the
Persian Gulf Health Research Center on the day of blood collection.

The measurement of C-reactive protein (CRP) by a high sensitivity
(hs) CRP assay and CRP HS enzyme-linked immunosorbent assay
(ELISA) (DRG International) was conducted. The minimum detectable
concentration of the CRP HS ELISA assay was estimated to be 0.1 mg/L.
In addition, the functional sensitivity was determined to be 0.1 mg/L
(as determined with inter-assay coefficient of variationb20%).

Serum OPG levels were measured using an ELISA commercial kit
(Biomedica Gruppe, Vienna, Austria). The detection limit of the assay
was 0.14 pmol/L. The mean intra- and inter-assay coefficients of
variation of the OPG assay were 4% to 10% and 7% to 8%, respectively.

The receptor activator of nuclear factor-κB ligand (RANKL) levels
was measured using an ELISA with an additional enhancement
system (ampli-sRANKL; Biomedica Gruppe). The detection limit of
the assay was 0.4 pg/mL. The mean intra-assay and inter-assay CVs of
the RANKL assay were 8% to 9% and 6% to 3%, respectively.

The N-MID Osteocalcin ELISA (Nordic Bioscience Diagnostics A/S)
was used for the quantitative measurement of osteocalcin in sera. The
intra-assay CVs for the low (7.0 ng/mL), medium (21.8 ng/mL), and
high (43.2 ng/mL) values were 3.4%, 2.0%, and 2.4%, respectively.

The serum CrossLaps enzyme-linked immunosorbent assay (Nordic
Bioscience Diagnostics A/S, Herlev, Denmark) was used for the
quantification of degradation products of C-terminal telopeptides of
type I collagen in sera. The intra-assay CVs for low (0.242 ng/mL),
medium (0.375 ng/mL), and high (0.476 ng/mL) valueswere 5.4%, 5.0%,
and 5.1%, respectively.

Serum alkaline phosphatase was determined by spectrophotometry
using p-nitrophenylphosphate as substrate (Pars Azemon, Tehran, Iran).
Intra- and inter-assay CVs were 1.5% and 2.6%, respectively.

Serum omentin-1 concentrations were measured using manual
omentin-1 (human) detection (ELISA kit [intelectin-1 (human) ELISA
kit, Apotech Corporation, Switzerland]). The detection limit of the assay
was 0.4 ng/mL (range 0.5 to 32 ng/mL). Themean intra-assay and inter-
assay CVs of the omentin-1 assaywere 4.51% to 7.4% and 4.19% to 9.27%,
respectively. The antibodies used in this kit are specific tomeasurement
of natural and recombinant human omentin-1.

To detect visfatin in the serum samples, commercially (Cat. No.
V0523EK) available enzyme-linked immunosorbent assay kit (Adipo-
Gen, Seoul, Korea) was used according to the manufacturer's in-
structions. The assay sensitivity for visfatin was 0.10 ng/mL; the intra-
and inter-assay coefficients of variance were 3.8–5.5% and 6.4–9.5%,
respectively.

To detect adiponectin in the serum samples, commercially (Cat.
No.AG-45A-0001EK-KI01) available enzyme-linked immunosorbent
assay kits (AdipoGen, Incheon, Korea) were used according to the
manufacturer's instructions. The limit of detection of the assay was
100 pg/mL; the intra- and inter-assay coefficients of variance were
2.9% to 3.8% and 2.8% to 5.5%, respectively.

Statistical analysis

Normal distribution of the datawas ascertained by theKolmogorov–
Smirnov test. Because the distributions of serum hs-CRP, OPG, RANKL,
osteocalcin, and adipocytokines were skewed, logarithmically trans-
formed values were used for the statistical analysis.

Pearson correlation analysis was used to study the relationships
between adipocytokine values and the anthropometric and biochemical
variables. Partial correlation analysis was performed to assess the
association between adipocytokine levels, anthropometric indices, and
biochemical variables, with adjustment for age and weight. The standard
multiple linear regression models were used to assess the association
between circulating adipocytokine levels (independent variable) and
BMD at a number of skeletal sites (dependent variables). The models
were adjusted for age, BMI, and bone-related markers. Probability values
b5% were considered statistically significant. All statistical analyses were
performed using the PASW Statistics GradPack 18 (SPSS Inc., Chicago, IL).

Results

The characteristics of the study participants are shown in Table 1. The
age (mean±SD) of the women was 59.0±7.5 years. The prevalence of



Table 1
Basic characteristics of bone related variables and adipocytokines in an Iranian
postmenopausal population (382 participants).

Mean or median SD or interquartile
range

Age, y 59.0 7.50
Body max index, kg/m2 28.34 4.73
Waist-to-hip ratio 0.92 0.06
Calcium, mg/dL 9.84 0.64
Phosphorus, mg/dL 3.93 0.50
Alkaline phosphatase, U/L 245.36 90.21
CrossLaps, ng/mL 0.59 0.43–0.79
Osteocalcin, ng/mL 9.82 8.18–12.58
RANKL, pg/mL 1.64 0.96–2.96
OPG, pg/mL 72.1 57.05–95.0
hs-CRP, mg/L 2.0 0.94–4.23
Omentin-1, ng/mL 12.37 7.90–18.32
Visfatin, ng/mL 2.92 1.65–4.41
Adiponectin, μg/mL 10.84 7.84–14.17
Femoral neck BMD, g/cm2 0.844 0.184
Lumbar BMD, g/cm2 0.946 0.186

Data are means or medians and standard deviations (SDs) or interquartile ranges. RANKL,
receptor activator of nuclear factor-κB ligand; hs-CRP, high-sensitivity C-reactive protein;
OPG, osteoprotegerin; BMD, bone mineral density.

Table 3
Multiple linear regression analysis for the association between adipocytokines (indepen-
dent variables), and bone mineral density (dependent variables) in postmenopausal
women.

Lumbar BMD Femur neck BMD

β p β p

Omentin-1 Age-adjusted −0.12 0.018 −0.46 0.646
Age-, BMI-adjusted −0.09 0.040 0.01 0.776
Full modela −0.11 0.020 0.02 0.612

Visfatin Age-adjusted 0.12 0.019 0.93 0.073
Age-, BMI-adjusted 0.03 0.439 0.01 0.994
Full modela 0.03 0.522 −0.01 0.758

Adiponectin Age-adjusted −0.13 0.013 −0.08 0.124
Age-, BMI-adjusted −0.07 0.148 −0.01 0.737
Full modela −0.06 0.248 −0.02 0.725

BMI, body mass index; BMD, bone mineral density.
a Full model included age, BMI, hs-CRP, osteoprotegrein, RANKL, CrossLaps, osteocalcin,

alkaline phosphatase, smoking, hormone replacement therapy, and supplementationwith
calcium and vitaminD in addition to adipocytokines (omentin-1, visfatin, or adiponectin).
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consumption of oral calcium, vitamin D supplementation, and hormone
therapy was 5.7%, 4.2%, and1.0%, respectively. None of the participants
had a history of alcohol consumption. According to the World Health
Organization (WHO) criteria (a BMD 2.5 standard deviations or more
below the mean for young white adult women; report of a WHO Study
Group, 1994), 38 women (9.2%) were considered osteoporotic. BMD
at the lumbar spine and femoral neck decreased progressively with
increases in age (pb0.0001).

The results of the serum levels of the studied adipocytokines are
shown as median and interquartile range in Table 1.

Omentin-1

Bivariate correlation analysis showed a correlation between omentin-
1 and serum phosphorus (r=0.12, p=0.026), waist circumference (r=
−0.12, p=0.024), and BMD at the lumbar spine (r=−0.13, p=0.017).
However, no significant correlationswere found between omentin-1 and
age, BMI, bone turnover markers, hs-CRP, markers of bone metabolism,
and BMD at the femoral neck in postmenopausal women (p>0.05,
Table 2).In the total population, correlations between serum omentin-
Table 2
Unadjusted, and age- and weight adjusted correlation analyses between adipocytokines an

Omentin-1 Visfatin

Unadjusted Adjusted Unadjusted

r p r p r p

Age 0.028 0.619 0.024
BMI −0.079 0.157 −0.035 0.529 0.161
Waist circumference −0.125 0.024 −0.079 0.155 0.150
hs-CRP −0.024 0.664 0.001 0.988 0.285 b

OPG 0.025 0.655 0.016 0.778 0.055
RANKL 0.020 0.727 0.015 0.791 −0.010
Osteocalcin −0.019 0.738 −0.048 0.394 −0.155
CrossLaps 0.026 0.639 0.007 0.900 −0.128
Alkaline phosphatase −0.047 0.400 −0.062 0.268 −0.021
Calcium 0.066 0.232 0.046 0.407 0.130
Phosphorus 0.123 0.026 0.118 0.033 0.087
Femur neck BMD −0.034 0.542 0.005 0.935 0.084
Lumbar BMD −0.132 0.017 −0.112 0.044 0.113
Visfatin 0.037 0.502 0.046 0.411
Adiponectin −0.016 0.771 −0.022 0.696 −0.180
Omentin-1 0.037

RANKL, receptor activator of nuclear factor-κB ligand; hs-CRP, high-sensitivity C-reactive p
1levels and serum phosphorus (r=0.12, p=0.033) and BMD at the
lumbar spine (−0.11, p=0.044) persisted after adjustment for age and
weight (Table 2).

Table 3 shows the results of multiple linear regression analyses for
the correlation between circulating omentin-1 levels and BMD at
different sites after controlling for age, anthropometric measures, and
bone-related variables.

In multiple regression analyses, serum omentin-1 levels showed
significant negative correlation with BMD at the lumbar area after
controlling for age, BMI, and bone-related markers (β=−0.11,
p=0.020).

Visfatin

Bivariate correlation analyses for circulating visfatin levels in relation
to anthropometric measures and bone-related biochemical markers
are presented in Table 2. Age- and weight-adjusted visfatin levels had
correlationswith BMI (r=0.14, p=0.009), hs-CRP (r=0.25, pb0.0001),
osteocalcin (r=−0.15, p=0.009), CrossLaps (r=0.11, p=0.039),
calcium (r=0.14, p=0.011, and adiponectin (r=−0.17, p=0.002)
levels (Table 2). However, no significant correlations were found
between age- and weight-adjusted visfatin and OPG, RANKL, alkaline
phosphatase, phosphorus, and BMD at all sites in postmenopausal
women (p>0.05, Table 2).
d bone related variables in postmenopausal women.

Adiponectin

Adjusted Unadjusted Adjusted

r p r p r p

0.665 0.180 0.001
0.004 0.145 0.009 −0.161 0.004 −0.075 0.179
0.007 0.091 0.105 −0.144 0.009 −0.080 0.150
0.0001 0.255 b0.0001 −0.134 0.016 −0.096 0.087
0.327 0.055 0.327 0.024 0.666 −0.102 0.067
0.866 −0.002 0.971 0.057 0.310 0.072 0.202
0.006 −0.148 0.009 0.200 b0.0001 0.151 0.007
0.021 −0.115 0.039 0.156 0.005 0.097 0.084
0.711 −0.014 0.799 0.030 0.573 0.005 0.925
0.019 0.141 0.011 −0.130 0.013 −0.143 0.010
0.118 0.085 0.129 −0.050 0.365 −0.042 0.452
0.130 0.031 0.581 −0.140 0.008 −0.033 0.560
0.043 0.068 0.223 −0.190 b0.0001 −0.093 0.097

−0.180 0.001 −0.172 0.002
0.001 −0.172 0.002
0.502 0.046 0.411 −0.016 0.771 −0.022 0.696

rotein; OPG, osteoprotegerin; BMD, bone mineral density.
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In multiple regression analyses, serum visfatin levels were not
significantly correlated with BMD at different sites after controlling
for age, BMI, and bone-related markers (Table 3).

Analysis by the highest quartile versus the lowest quartile of
visfatin did not reveal an association with BMD in either the lumbar
spine or femoral neck (Table 4).

Adiponectin

Serum adiponectin showed correlations with age, BMI, waist
circumference, hs-CRP, bone turnover markers, calcium, visfatin levels,
and BMD at all sites (Table 2). In bivariate analyses, serum adiponectin
levels had significant negative correlations with BMD at the lumbar
spine (r=−0.14, p=0.008) and femoral neck (r=−0.19, b0.0001;
Table 2). This correlation did not persist when adiponectin levels were
adjusted for age and weight (Table 2). However, correlations between
serum adiponectin levels and serum osteocalcin (r=0.15, p=0.007)
and visfatin (r=−0.17, p=0.002) persisted after adjustment for age
and weight (Table 2).

In multiple regression analyses, serum adiponectin levels were not
significantly correlated with BMD at different sites after controlling
for age, BMI, and bone-related markers (Table 3). However, the highest
quartile of adiponectin compared to the lowest quartile revealed
an inverse association with BMD in the lumbar spine (β=−0.33,
pb0.0001). This reverse association persisted after adjustment for age,
BMI, and bone-related indicators (β=−0.19, p=0.010; Table 4).

The highest quartile versus the lowest quartile of adiponectin level
had significant association with lower OPG levels after adjustment for
age and BMI (p=0.019).

Discussion

In current study of overweight/obese postmenopausal women, we
found that omentin-1 was a predictor of lower lumbar BMD. Moreover,
the highest quartile versus the lowest quartile of circulating adiponectin
levels was predictive of BMD at the lumbar spine. However, our
analyses revealed no significant association between serum visfatin
levels and BMD in either the lumbar spine or femoral neck.

Omentin-1 is a newly identified depot-specific adipokine in human
adipose tissue that may modulate insulin sensitivity by its paracrine or
endocrine functions [13].It was shown that omentin-1 levels were
inversely correlated with measures of obesity and insulin resistance
and positively correlated with adiponectin levels [15]. It was also
reported that omentin-1 levels were lower in patients with meta-
bolic syndrome than in controls [23]. Omentin inhibits vascular
Table 4
Multiple linear regression analysis for the association between the highest quartiles of
adipocytokine levels versus the lowest quartiles of adipocytokine levels (independent
variables), and bone mineral density (dependent variables) in postmenopausal women.

Visfatin Adiponectin

β p β p

Lumbar BMD Unadjusted 0.04 0.556 −0.33 b0.0001
Age-adjusted 0.13 0.060 −0.24 0.002
Age-, weight-adjusted 0.01 0.869 −0.20 0.002
Age-, waist-adjusted 0.04 0.556 −0.19 0.004
Full modela 0.01 0.949 −0.19 0.010

Femur neck BMD Unadjusted 0.15 0.043 −0.25 0.001
Age-adjusted 0.16 0.020 −0.14 0.057
Age-, weight-adjusted 0.05 0.355 −0.10 0.103
Age-, waist-adjusted 0.07 0.265 −0.09 0.150
Full modela 0.03 0.662 −0.10 0.166

BMI, body mass index; BMD, bone mineral density.
a Full model included age, BMI, hs-CRP, osteoprotegrein, RANKL, CrossLaps, osteocalcin,

alkaline phosphatase, smoking, hormone replacement therapy, and supplementationwith
calcium and vitamin D in addition to the highest quartile of adiponectin or visfatin levels
versus the lowest quartile of adiponectin or visfatin levels.
inflammation through the inhibition of TNF-alpha-induced superoxide
production in vascular smooth muscle cells [24], induces vasodilation
[25], and plays a protective role against arterial calcification [26]. Serum
omentin-1 levels were reported lower in type 2 diabetes patients with
carotid plaque than in those without carotid plaque [27]. The results of
these studies confirm that omentin-1may be a good adipocytokine [25].

Regarding its effects on bone, omentin-1 inhibited osteoblast
differentiation in vitro. In co-culture systems of osteoblasts and osteoclast
precursors, it reduced osteoclast formation through stimulating OPG
and inhibiting RANKL production in osteoblasts. In vivo, omentin-1
also attenuated bone loss induced by estrogen deficiency by lowering
serum RANKL/OPG ratio [16]. Recently, we found that higher circulating
omentin-1 was associated with higher BMD at the femoral neck in
patients with multiple sclerosis [20].

The endothelial isoform of nitric oxide synthase (eNOS) isoform
regulates osteoblast activity and bone formation and is widely expressed
in bone [28]. The NO derived from the eNOS pathway acts as a mediator
of the effects of estrogen in bone, and its relative deficiency may be
involved in postmenopausal women [29]. Omentin-1 can stimulate the
Akt–eNOS signaling pathway [30].

The extant medical literature shows sufficient in vitro and in vivo
evidence indicating that omentin-1 may play a protective role in
BMD. However, in the current study, omentin-1 levels had an inverse
relationship with BMD at the lumbar spine in postmenopausal women.
Since there is no previously reported study in postmenopausal women,
the results of further work are required replicating the relationship
between omentin-1 and BMD. However, recently it has been suggested
that omentin-1 may exert a negative effect on bone mass in girls with
anorexia nervosa [21].

Regarding the explanation for the observed inverse relationship of
adiponectin (as a good adipocytokine) with BMD [31], we hypothe-
sized that the observed higher circulating omentin-1 in lower BMD
might be a physiological compensation and adaptation to protect
bone from osteopenia. This explanation was suggested to explain the
observed negative correlation of OPG as a protector of bone from
osteopenia with BMD [32].

Visfatin has some insulin mimetic properties and antiapoptotic
activity. It also has a regulatory role in inflammation [33,34].
However, its operative molecular mechanism is not fully elucidated
[35]. Visfatin regulates insulin secretion, insulin receptor signaling,
and mRNA expression of diabetes-related genes in mouse pancreatic
beta-cells [36]. Visfatin (NAMPT)-mediated systemic nicotinamide
adenine dinucleotide (NAD) biosynthesis could alter the enzymatic
activities of NAD-dependent deacetylase Sirt1 and affect important
metabolic pathways that are essential for regulating glucose-stimulated
insulin secretion in pancreatic beta cells [37]. Recently, Li et al. [11]
reported that the age-related reduction of NAMPT-mediated NAD
biosynthesis and decreased Sirt1 activity could affect the determination
of the lineage fate of mesenchymal stem cells in mice. Thus, they
suggested that age-related reduction of NAMPT activity could be
considered a possible cause for reduced osteogenesis and increased
adipogenesis in older individuals [11].

A few studies in the medical literature investigated the relation-
ship between visfatin and BMD. PBEF/NAMPT/visfatin serum levels
correlated negatively with BMD in inflammatory bowel disease [38].
BMD was the predictor for visfatin in acromegaly [39]. However, no
convincing data to support an association between visfatin and BMD
was found in female athletes [40], Chinese men [41], and postmen-
opausal women [42]. Similar to these studies, no correlation between
circulating visfatin and BMD at all skeletal sites was found in the
current study. Interestingly, we found a significant negative correla-
tion between bone turn over markers and circulating visfatin in
postmenopausal women. Therefore, larger studies across wide age
groups are warranted to evaluate visfatin in relation to BMD.

Adiponectin affects osteoblast directly and osteoclast indirectly. It
stimulates the proliferation and differentiation of human osteoblasts
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via the p38 mitogen-activated protein kinase (MAPK) signaling
pathway [43]. In contrast, adiponectin indirectly activates osteoclasts
by stimulating RANKL and inhibiting OPG production in osteoblasts
[7]. Adiponectin was associated with lower bone mass and decreased
biomechanical measures of functional strength in growing mice [44].

A number of clinical studies reported the inverse association of
adiponectin and BMD in women [4,17–19,45]. In a longitudinal study,
baseline fat mass and adiponectin were associated with decreases in
total bone mineral mass in older women [46]. In the Rancho Bernardo
Study, adiponectin was inversely associated with BMD at the femoral
neck, total hip, lumbar spine, and midshaft radius after 4.4 years and
at the femoral neck and total hip almost 9 years later in postmeno-
pausal women [47].

Likewise, in the current study, postmenopausal women with the
highest quartile of serum adiponectin levels had lower lumbar BMD,
compared with those who had the lowest quartile of adiponectin.

Evidence from a systemic review and meta-analysis showed that
adiponectin is themost relevant adipokine negatively associated to BMD,
independent of gender,menopausal status, and fatmass parameters [48].
Therefore, human studies suggest adiponectin as a negative factor for
BMD. However, the increase in levels of adiponectinwas hypothesized as
a physiological compensation and adaptation to low BMD status [31].

We observed a positive correlation between bone turnover markers
and serum adiponectin levels. In fact, age- and weight-adjusted
adiponectin was significantly correlated with serum osteocalcin concen-
trations. Thus, adiponectin may promote a bone remodeling state.
We also found that age- and BMI-adjusted to the highest quartile versus
the lowest quartile of adiponectin level had a significant associationwith
lower OPG levels. This finding is consistent with previous in vitro [7] and
in vivo studies [49].

This study has several potential limitations. Since Iran is among
sub regions with the highest female BMI in the World [50], the
mean BMI of the randomly selected participants of our study was
high (BMI=28.34 kg/m2). Adiponectin and omentin-1 are inversely
related to obesity [4,5,15]. Therefore, finding from the current study
may not be generalizable to individuals with low or normal BMI. We
had no longitudinal data for the computation of longer-term effects of
adipocytokines on BMD. Thus, the cross-sectional study design of our
study did not allow us to examine the cumulative effects of adipocyto-
kines and BMD over the course of the participants' lives. The changes in
these adipocytokines over time could not be reflected in the current
study because we assessed the investigated adipocytokines with single
measurements. Since the studied adipocytokines are involved in insulin
resistance and the metabolic syndrome, we did not adjust the regression
models for the metabolic syndrome and measures of insulin resistance
including HOMA-IR. Wemeasured the adipocytokines in serum, and it is
unclear to what extent this measurement correlates to local adipocyto-
kine action within the bone microenvironment. The measurement of
additional adipocytokines, inflammatory markers, and cytokines, includ-
ing TNF-alpha, merits consideration in order to elucidate the complex
system that regulates bone, fat, the immune system, and inflammation.
Finally, the findings from this postmenopausal cohort may not be
generalized to other sex and age groups.

In conclusion, the current study demonstrated for the first
time that postmenopausal women exhibit an inverse relationship be-
tween circulating levels of omentin-1 and BMD at the lumbar spine.
Although causalities cannot be determined by this cross-sectional
study, we hypothesized that omentin-1 might be involved in some
basic mechanisms of bone and mineral metabolism. Thus, to further
understand the role of omentin-1 in bone metabolism, large-scale
longitudinal studies focusing on BMD trends and osteoporotic fracture
rates, in parallelwithmore in vivo and in vitro detailed studies for bone-
specific omentin-1 effects, are necessary in the future. Because the bone
and fat interface is a promising target for the treatment and prevention
of osteoporosis, it continues to attract widespread attention in current
research.
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