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ABSTRACT 

Purpose: To reliably determine the amplitude of the transmit radiofrequency (B��) field in 

moving organs like the liver and heart, where most current techniques are usually not feasible. 

Methods: B�� field measurement based on the Bloch-Siegert (BS) shift induced by a pair of 

Fermi pulses in a double-triggered modified Point RESolved Spectroscopy (PRESS) sequence 

with motion-compensated crusher gradients has been developed. Performance of the sequence 

was tested in moving phantoms and in muscle, liver, and heart of 6 healthy volunteers each, 

using different arrangements of transmit/receive coils. 

Results: B�� determination in a moving phantom was almost independent of type and 

amplitude of the motion and agreed well with theory. In vivo, repeated measurements led to 

very small coefficients of variance if the amplitude of the Fermi pulse was chosen above an 

appropriate level (CV in muscle 0.6 %, liver 1.6 %, heart 2.3 % with moderate amplitude of 

the Fermi pulses and 1.2 % with stronger Fermi pulses). 

Conclusion: The proposed sequence shows a very robust determination of B�� in a single 

voxel even under challenging conditions (transmission with a surface coil or measurements in 

the heart without breath-hold). 
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INTRODUCTION 

In MRI and MRS, determining the amplitude of the B�� field is crucial to adjust the transmitter 

gain which leads to the desired rotation of the magnetization by the applied radiofrequency 

(RF) pulses. While the adjustment of the mostly homogeneous RF field of a body coil is 

standard in commercially available scanners, the problem of B�� field determination produced 

by surface coils and particularly in moving organs is far from being solved. Generally 

speaking, magnetic resonance based B1 mapping methods can be divided into two groups as 

magnitude-based and phase-based methods (1,2).  

The so-called Double Angle Methods (DAM) use the ratio of two images obtained with two 

different flip angles to calculate the B�� field (3). In order to avoid the T1 dependence, it is 

essential to use long repetition times (TR), which results in increased acquisition times. For 

that reason, time-efficient versions of DAM have been developed which include sequences 

that reset magnetization at the end of each acquisition, known as Saturated Double Angle 

Method (SDAM), or sequences that are combinations of DAM with fast imaging methods (4-

6). Actual Flip Angle Imaging uses two identical RF pulses that are followed by different 

delays. While the method is quite insensitive to T1 (7) and results in accurate B�� field 

determinations, this method has some disadvantages which include sensitivity to flow, low 

signal-to-noise ratios (SNR) due to quick excitations, and possible inaccurate results because 

of insufficient spoiling of transverse magnetization (7-9). To overcome some of these 

limitations, derivatives of the method have been developed which include methods with better 

gradient and RF spoiling schemes (9) and methods that do not use the short TR approximation 

(8,10). Besides these, there are methods based on multi-pulse sequences like the three-pulse 

sequence which uses the ratio of stimulated echo and spin echo images (11). Along with other 

methods (12-18), magnitude-based methods comprise a larger part of B1 mapping methods. 

Phase-based methods cover those employing a pair of composite RF pulses (19), those using 

non-selective 180°x and 90°y pulses which act as 2� and � pulses (20), and those which take 

advantage of adiabatic pulses (21-23). Their disadvantages include sensitivity to main field 

(B0) inhomogeneities (7), requirement for long repetition times, the need for a B0 map for off-

resonance effects (20), and limitations due to specific absorption rate (SAR), respectively. A 

robust phase-based method for B1 mapping uses the Bloch-Siegert (BS) shift phenomenon, 

which is the shift in the resonance frequency of nuclei when an off-resonance RF pulse is 

applied following excitation (1,24). This method was shown to be insensitive to TR, T1 
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relaxation effects, chemical shift, B0 inhomogeneities, and magnetization transfer (1,2). For 

spectroscopy applications, voxel-based B�� field calculations based on a PRESS sequence can 

be designed such that they receive data exactly from the same volume as the subsequent 

signal acquisition (25). 

Most of the methods are not feasible for moving organs and to the best of our knowledge, the 

only successful attempts of B�� mapping in the heart were performed using a magnitude-based 

SDAM with spiral readouts (5,26,27), providing whole heart coverage. The examinations 

were performed in breath-hold during 16-20 heartbeats resulting in acquisitions as long as 

25 s, which makes the method inherently susceptible to irregular heartbeats and poses 

additional problems in patients who have difficulties to hold their breath (5). 

In this work, we aimed to develop and test a method that would provide a single-voxel B�� 

amplitude measurement in the heart within a single heartbeat, such that the method could be 

combined with navigator triggering for the free breathing patient and ECG triggering for the 

heart. BS shift-based B�� sensitization introduced in a PRESS sequence with motion-

compensated crusher gradients offered the best approach to generate such a sequence. Even if 

an additional acquisition without BS effect is necessary to measure the reference phase, the 

two required heartbeats can be separated by an arbitrary time period and double-triggering 

without breath-hold is possible. Since some spectroscopy applications require the use of a 

transmit surface coil, we wanted to test the suggested sequence with different coil 

arrangements, including body, head, or surface coil transmission combined with either head or 

surface coil reception. The determination of B�� amplitude during surface coil transmission is 

particularly important and also demanding since the field falls off rapidly with increasing 

distance from the coil. An additional challenge was the fact that no "gold standard" for the B�� 

determination in the heart is available, which could be used for a comparison with the newly 

developed sequence. Therefore, the study was designed such that the methodological 

complexity was gradually increased (no motion to various types of motion; homogeneous 

transmission with a volume coil to surface coil excitation; experiments in a well defined 

phantom to measurements in muscle, liver, and finally heart in vivo). 
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METHODS 

Figure 1 illustrates the modified Point RESolved Spectroscopy (PRESS) sequence with 

motion-compensated crusher gradients (28,29) and two 8-ms-long Fermi pulses. This PRESS 

sequence can be double-triggered (navigator-triggered prospective acquisition correction 

[PACE] and ECG-triggering) and has been implemented on a 3T MR-system (VERIO, 

SIEMENS, Erlangen, Germany). Fermi pulses were symmetrically applied around the water 

resonance frequency, selectable at various offset frequencies including ± 2 kHz, ± 4 kHz, and 

± 8 kHz. According to the notation of reference (1), the Bloch-Siegert shift ΦBS ,i.e. the phase 

difference between two scans with and without Fermi pulse can be calculated as: 

 φ�� = (	�,���)� ∗ K�� [1] 

 K�� = � (���,�������� !("))#
�$%&(") '()

*  [2] 

where T is the pulse duration and γ the gyromagnetic ratio. KBS is a pulse specific parameter 

which is proportional to the area under the (normalized) pulse envelope and inversely 

proportional to the off-resonance frequency (ωRF) for the Fermi pulses (1). Both Fermi pulses 

were programmed to match their KBS value to 74.01 [rad/G
2
] for the ± 4 kHz offset case, 

which was the value used in the original BS shift-based B�� 
mapping method (1). For a pulse 

with constant offset frequency as used here, ωRF can be extracted from KBS, leading to: 

 φ�� = (	�,���)� ∗ �
+,- ∗ k/�012 [3] 

 k/�012 = � (���,�������� !("))#
� '()

*  [4] 

 B�,��� = 	4φ56∗$%&
7& ���

 [5] 

with kFermi = 29.60 [rad*Hz/µT
2
]. In the current implementation, the Fermi pulses are applied 

twice such that k2*Fermi = 59.20 [rad*Hz/µT
2
]. 

Crusher gradients with two lobes in the standard PRESS sequence were converted into 

motion-compensated crusher gradients having four lobes such that the net zeroth, first, and 

second moments would be equal to zero. For each two-lobe-part, the net area obviously needs 

to be non-zero to act as a crusher for unwanted excitations. The latter two-lobe-part was 
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implemented so that it would be applied after the Fermi pulse to remove also the unwanted 

signals that could be caused by the Fermi pulse. 

Following validation by in vitro experiments using a spherical phantom at rest and with 

motion, the sequence was applied on skeletal muscle and liver in one group of 6 healthy 

volunteers (3 males, 3 females, age 24.7 ± 2.5y, BMI 23.2 ± 3.0 kg/m
2
) and in the heart of 

another group of 6 healthy subjects (5 males, 1 female, age 30.2 ± 3.8y, BMI 

24.4 ± 1.8 kg/m
2
). Informed consent was obtained from all volunteers and the study was 

approved by the Institutional Ethical Committee. Different types of coils were used to 

evaluate possible coil specific problems. In vitro experiments were performed using a 

transmit/receive (Tx/Rx) volume coil (
1
H/

31
P head coil, RAPID Biomedical, Rimpar, 

Germany) and a Tx/Rx surface coil (
1
H/

31
P, RAPID Biomedical, Rimpar, Germany). While 

skeletal muscle and liver were measured with the same surface coil used for the phantom 

experiments, body coil transmission was combined with reception using spine matrix coil and 

body array coil for the heart measurements.  

A phantom (diameter 17 cm, "braino phantom", General Electric, Milwaukee) was measured 

at rest and during various types of motion with different speeds and amplitudes generated by a 

home-built device located inside the scanner room. The displacement in the positive direction 

was controlled by a servo-motor while the phantom was pulled back to its initial position by a 

spring force. Two different speeds and amplitudes were used to test motion dependence and 

were adjusted to resemble the breathing motion determined by a navigator sequence as much 

as possible. Single-shot measurements were taken from a voxel size of 20x20x20mm with an 

echo time of 64.2 ms and a repetition time of 1500 ms. Fermi pulses were applied at offset 

frequencies of ± 2 kHz, ± 4 kHz, and ± 8 kHz with varying voltages in order to validate the 

expected behavior of the BS shift-based phase change in the phantom using a volume coil. 

Surface coil measurements were performed in the phantom by applying the pulses only at 

± 2 kHz offset frequencies as in the in vivo measurements. 

Measurement parameters for the resting skeletal muscle (m.quadriceps femoris) included a 

voxel size of 20x20x20mm, an echo time of 64.2 ms, and a repetition time of 1500 ms like the 

phantom examinations. The sequence was applied with PACE-triggering in liver due to 

respiratory motion and also in breath-hold for comparison. Voxel sizes in the liver varied 

between 20x30x25mm and 40x40x40mm. Echo time used for the liver was 64.2 ms while the 

repetition time was either 1500 ms in breath-hold or determined by the trigger signal. 

Measurements in the heart were taken in PACE/ECG double triggering mode as described in 
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Ith et al. (30) to freeze respiratory and cardiac motion with a voxel size of 12x25x20mm 

positioned in the cardiac septum and a repetition time defined by the respiration rate. ECG 

trigger delay (typically 250 ms) was adjusted such that the sequence started in the late 

contraction/beginning relaxation phase. In order to test the variation of the measured BS shift, 

16 repetitions of single-shot measurements were acquired in the heart with a scan time of 

approximately 2 minutes. 

Except for the heart, DICOM files of single coil receptions were analyzed using MATLAB 

(The MathWorks, Inc.). Due to the array coil arrangement used in the heart and thus inherent 

phase adjustment between the single coils in the DICOM file, which made a determination of 

the BS shift impossible, raw data from the scanner had to be analyzed using a modified 

version of the MATLAB program provided by Maolin Qiu at Yale University (SIEMENS 

IDEA forum). The B�� amplitude was calculated from the phase difference of two single-shot 

acquisitions with and without the application of Fermi pulses according to the relation given 

in Eq. [1]. The phase was calculated from the first point in the time domain signal for each 

scan, since the first point corresponds to the echo top and contains most of the signal 

information. 

B�� maps from a work-in-progress B�� mapping package (3P-MAP, based on the stimulated vs. 

spin echo responses for a 3-pulse sequence, duration 17 s, SIEMENS, Erlangen, Germany) 

were obtained for comparison in all cases except for the heart where the B�� determination 

was not feasible because the 3P-MAP sequence did not have PACE/ECG double triggering 

options. The scanner provides a reference voltage (REF) that corresponds to a 90 degree 

excitation by a rectangular 500 µs pulse, i.e., to a B�� field of 11.75 µT. The determination of 

REF is reliable as long as homogeneous excitation fields (e.g. body coil) are used; however, 

with surface coil excitation, it often underestimates the required RF power since the algorithm 

uses the high intensity signal from the regions close to the coil. 

To describe the repeatability, coefficients of variance were calculated. Agreement between the 

two B�� methods was calculated based on the Lin’s Concordance Correlation Coefficient 

(MATLAB, The MathWorks, Inc.). 
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RESULTS 

In order to compare the behavior of the BS shift effect in the phantom with theory, Fermi 

pulses were applied using four different voltages (120, 180, 240, 300 V with the transmitter 

reference voltage being 174 V) and three different frequency offsets. Fig.2 shows these 

stationary and moving phantom results for the induced phase change with respect to the 

reference scan. Black curves, representing the fitted data for the non-moving phantom, are 

almost perfectly aligned with the measured values of the non-moving phantom. The single BS 

shift-based B�� measurements of the non-moving phantom (red crosses, 15 single-shot 

repetitions) are indistinguishable. When the motion was started with very fast speed and large 

amplitude, the measured phase changes became slightly (average CV of 4.9%) scattered (blue 

crosses) without systematic under- or overestimation of the theoretical curve for the non-

moving phantom. BS shift-based B�� measurements determined the B�� amplitude as 

0.065 µT/V (SD 0.001 µT/V) for the stationary case (black curve) and 0.067 µT/V 

(SD 0.002 µT/V, curve not shown) for the moving case. 3P-MAP was repeated three times for 

the stationary case giving a B�� amplitude of 0.066 µT/V (SD 0.002 µT/V) in the voxel in all 

repetitions. The scanner adjustment corresponds to the B�� amplitude as 0.068 µT/V; however, 

determined over the whole 17 cm-diameter phantom. 

A comparison between the BS shift-based B�� measurement and the 3P-MAP in the phantom 

using the double-tuned surface coil for different types of motion is displayed in Fig.3. 

Average values and error bars, representing the standard deviations, are shown for 10 single-

shot measurements for the BS shift-based B�� measurement and 10 repetitions of the 17-

second-long 3P-MAP sequence. It is evident that with increasing speeds and amplitudes, the 

standard deviation of the 3P-MAP increased. In addition, a systematic overestimation of the 

B�� field was observed even with slow motion. In contrast, the BS shift-based B�� 

measurement continued to produce consistent results. For the fast motion with large 

amplitude, standard deviation of the 10 single-shot measurements for the BS shift-based B�� 

measurement for the calculated flip angle was 0.0384 radians. 

The resting muscle was used to compare the 3P-MAP with the newly developed BS shift-

based sequence in an organ without motion but with a very inhomogeneous B�� profile of the 

transmitting surface coil (explaining the large differences between subjects). Figure 4 shows 

the comparison between the single-shot measurements of the BS shift-based B�� measurement 

and the repetitions of the 3P-MAP sequence. Lin’s Concordance Correlation Coefficient was 
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calculated as 0.98 for the two methods with a calculated mean flip angle difference of 0.0227 

radians. A test of repeatability of the BS shift-based sequence in 15 single-shot repetitions 

each in 6 volunteers resulted in an average coefficient of variation (CV) of 0.6%. 

The next in vivo tests were performed in the liver in order to compare 3P-MAP with BS shift-

based B�� measurements in a slowly moving organ. Since motion during the application of the 

gradients leads to phase shifts, BS shift-based B�� measurements were applied both in breath-

hold and with triggering to test the efficiency of the motion-compensation. Figure 5 

demonstrates the results for the triggered BS shift-based B�� measurement (16 single-shot 

measurements), the breath-hold BS shift-based B�� measurement (7 single-shot 

measurements), and the 3P-MAP sequence (3 repetitions of breath-hold measurements). Lin’s 

Concordance Correlation Coefficient for the triggered BS and breath-hold BS measurements 

was 0.92 and the mean B�� amplitude difference was 0.069 µT (SD 0.090 µT). While the two 

BS-based methods agree very well (Bland-Altman plot Fig.5B), the 3P-MAP shows 

significantly higher B�� amplitudes than those measured by the BS shift-based method (Bland-

Altman plots in Fig.5C and 5D). The same behavior has been observed in the moving 

phantom where the BS-based method was not influenced by the motion (Fig.3). Mean B�� 

amplitude difference between the triggered BS shift-based measurements and 3P-MAP 

measurements was 1.33 µT (SD 0.14 µT). A test of repeatability of the triggered BS shift-

based sequence using surface coil transmission was performed in the liver of 6 volunteers in 

16 single-shot repetitions each and resulted in an average CV of 1.6%. 

The heart with two independent motions of the respiratory and cardiac action represents the 

most challenging organ for motion-sensitive sequences. Figure 7 illustrates the changes in the 

repetitions of the single-shot measurements when the Fermi pulses were applied at different 

voltages relative to the transmitter reference voltage for all volunteers. Similar to the muscle 

and liver results, single-shot repetitions were stable with an average CV of 2.3 % for the B�� 

amplitude change due to the BS shift for 16 single-shot repetitions in 6 volunteers when the 

Fermi pulses were applied at the transmitter reference voltage. Above the reference voltage, 

the variations were even lower (1.2 %, measured in 5 subjects only) while the results were not 

optimal when the Fermi pulse voltages were below the REF voltage (CV of 7.5 %). B�� 

amplitudes (generated by the body coil) were calculated as 10.52 µT, 9.33 µT, 10.43 µT, 

10.07 µT, 13.55 µT, and 9.85 µT in different subjects. The relative difference between the 

subject with the strongest and weakest B�� in the ventricular septum (9.33 µT for a male 

1.93 m tall and weight of 100 kg, vs. 13.55 µT for a female 1.57 m tall and weight of 57 kg) is 
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37% (difference/average) and would correspond to excitation angles of 62 degrees vs. 90 

degrees if the RF field would not be adjusted to the value in the voxel. 
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DISCUSSION AND CONCLUSIONS 

The suggested PACE/ECG-triggered PRESS sequence reveals reliable measurements of B�� 

with single-shot acquisitions (applied twice - once with BS shift and once without). It is 

almost immune against motion related perturbations and can also be applied in the heart. The 

sequence has been validated in vitro and in vivo in various organs and with different coil 

arrangements. 

To begin with, the fitted curves of the measurements in the phantom confirm the theoretically 

expected behavior with the quadratic phase increase with the Fermi voltage as well as the 

linear phase increase with the offset frequency (see Fig.4). Measurements during motion are 

almost identical to the measurements without motion and the variations are still very small, 

proving the robustness of the sequence against motion in vitro. In addition to the compliance 

with theory, the results agree well with the 3P-MAP results when the 3P-MAP is applied in 

the phantom at rest. 

The variation among the repetitions of the single-shot measurements in motionless organs like 

the quadriceps muscle is very small when the BS shift-based sequence is applied. Comparison 

of the sequences in the muscle and the high concordance correlation coefficient indicate the 

high level of agreement between the two methods in an immobile organ where the 3P-MAP 

can be used as a "gold-standard" for the newly developed sequence. Since only the 3P-MAP 

deteriorates with motion while the BS-based B�� values remain stable, we conclude that the 

values measured by the BS-shift method are accurate, even if there is no longer a "gold-

standard" to compare with. 

Single-shot measurements in the heart are highly reproducible with small variances as long as 

the nominal Fermi voltage is above a threshold value like the transmitter reference voltage 

determined by the scanner. Lower Fermi pulse voltages resulted in larger noise of the phase 

shift and thus of the B�� value. This observation is important since the specific absorption rate 

(SAR) of the Fermi pulse is relatively high and imaging implementations of the BS technique 

tend to choose smaller Fermi pulse amplitudes; however, for MR spectroscopy sequences 

with long TR and few acquisitions, this does not apply. Since 3P-MAP does not work in heart 

due to the lack of double-triggering, agreement between BS shift-based sequence and 3P-

MAP cannot be shown. 
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The original BS shift-based B�� mapping sequences, which were modifications of spin echo 

and gradient echo sequences, were applied in the abdomen as a moving organ without breath-

hold (1). Since the sequence was not motion-compensated, artifacts in the phase-encoding 

direction were reported even though they were stated not to affect the results significantly (1). 

In the heart, due to motion complexity, this method would be insufficient without motion-

compensated gradients. Besides the successful tests for B�� mapping in the heart using a 

magnitude-based SDAM with spiral readouts (5,26,27), we were able to determine the single-

voxel B�� amplitude in the heart for the first time using a phase-based B�� measurement 

method without the need of a breath-hold. It will be highly beneficial to single-voxel MRS 

measurements in the heart or in any organ especially when surface coils are used since the 

adjustment routine from the scanner seemed to be insufficient for the flip angle calibration. 

The 37% B�� value difference between two subjects illustrates the importance of a localized 

determination of the RF field strength in the heart. Without adjusting the RF power for the 

heart, the flip-angles for the two subjects would differ as 90 degrees to 62 degrees resulting in 

a considerable reduction of signal quality, e.g. in a PRESS selected spectrum. Based on an 

earlier study on heart lipids without a localized determination of B�� 
(30), we assume that 

insufficient RF adjustment is responsible for a considerable fraction of low quality spectra. 

The direct consequences of incorrect B�� adjustment for spectral quality and accuracy have not 

been shown experimentally in this study; however, there are many publications which show 

the crucial influence of this adjustment e.g. on the pulse profile and thus for the shape of the 

voxel (25,27), signal contamination from neighboring tissues, and also for overall signal 

magnitude. 

Phase dependent methods have to solve the problem of phase wrapping, in particular in 

imaging mode where large differences of regional B�� may occur. In the proposed single voxel 

sequence, even if phase wrapping occurred between the acquisitions with vs. without Fermi 

pulse, unwrapping was straightforward if the Fermi pulse strength was chosen appropriately, 

i.e. approximately at the REF level such that the effect was large enough to generate sufficient 

effects, yet small enough to be below 2*PI. 

An inherent strength of the Bloch-Siegert effect is its independence of the signal amplitude 

which makes it particularly suited for triggered acquisitions where the TR can change 

depending on the breathing and/or cardiac cycle. Under these conditions, amplitude-based 

methods need special corrections; however, Bloch-Siegert shift based methods are immune 

against variations in amplitude and hence TR. 
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Another strength of phase-based methods is the fact that the first point in the FID (or central 

part of the echo) contains the full phase information; i.e. the sequence is inherently short 

which is beneficial in moving organs since it is not necessary to acquire the full acquisition 

window. 

The major limitation of the current method is its single-voxel nature, giving accurate values 

for a specific location, yet not for the complete volume. For single-voxel MR spectroscopy, 

this limitation is not a problem; however, if data acquisition on a whole volume is required, 

for instance to correct for absolute quantities of a CSI experiment or a FID acquisition, this 

limitation would be severe. 2D-Spiral readout methods could be combined with the sequence; 

however, at the price of a longer acquisition window. 

Because it was aimed as a proof of principle, we did not try to shorten the sequence duration 

for the experiments further. Nevertheless, removing the second Fermi pulse from the 

sequence and instead of the reference scan without the BS shift, applying the only Fermi pulse 

with the negative frequency offset is a first step towards shortening the sequence. Fermi 

pulses were applied with positive and negative offsets in the same scan in order to avoid 

problems that might occur between different scans. Combining the crusher lobes with the 

refocusing lobe of the slice-selection gradient and combining all crusher gradients with fewer 

lobes after recalculating the moments further shorten the sequence. By performing these 

modifications, it was already possible to reduce the echo time from 64.2 ms to 42.6 ms. An 

additional potential for a shorter sequence is reducing the duration of the Fermi pulses which 

are relatively long. 

Another limitation of the sequence is the fact that the slice selection gradients and the 

refocusing gradients were only balanced for zeroth moments. However, these gradients were 

considerably smaller than the crusher gradients and their possible effects on the phase due to 

motion would be minimal. 

Using surface coils for transmission poses specific problems due to the large range of B�� 

strengths and the possibility of hotspots close to the coil. Nonetheless, some spectroscopy 

applications (in particular the combination with non-proton nuclei) require surface coils where 

also the proton-part is integrated (e.g. for decoupling). The determination of B�� is particularly 

crucial for such an arrangement; however, a single voxel sequence can only provide the field 

strength in one part of the tissue. 
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SAR issues due to the long Fermi pulses should not be a major problem thanks to the small 

number of only 2 scans in a final implementation and since the acquisition and the reference 

scan can be separated by an arbitrarily long period. The much larger number of scans in the 

current study served only to test the repeatability and will not be necessary in a final 

implementation where two scans are sufficient. 

In conclusion, results suggest that the new BS shift-based PACE/ECG-triggered modified 

PRESS sequence is a robust and fast method for B�� amplitude determination in a single voxel 

within moving organs. 
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FIGURE CAPTIONS 

Figure 1: 

Diagram of the proposed sequence with motion-compensated crusher gradients (cyan) and 

8 ms long Fermi pulses (yellow) following the 180°-pulses (red). Fermi pulses are applied at 

symmetric offset frequencies (+ and -) with respect to the water resonance frequency. The 

sequence can be preceded by a navigator-triggered prospective acquisition correction trigger 

(PACE, not shown) and can also be ECG-triggered. 

Figure 2: 

Phase changes as a function of Fermi pulse voltage and frequency offset for a phantom 

without motion (blue crosses, indistinguishable for the 15 repetitions each) and with motion 

(red crosses showing 15 repetitions each) in a volume transmit/receive coil. The black line 

represents the fit of the measurements without motion with the theoretical behavior according 

to Eq. [3] (scaling of the curve with 0.1245 Hz*rad/V
2
), resulting in a B1

+
 amplitude of 

0.0648 µT/V. The fit of the measurements with motion resulted in a B1
+
 amplitude of 

0.0673 µT/V. As a comparison, the 3P-MAP method repeated three times for the stationary 

case gave a B1
+
 amplitude of 0.0660 µT/V for the selected voxel, while the scanner 

adjustment for the whole object determined a value of 0.0675 µT/V. 

Figure 3: 

Influence of motion (speed and amplitude) on the B1
+
 field determination by the BS shift-

based B1
+
 acquisition (blue) and 3P-MAP sequence (red), using surface coil transmission and 

reception in vitro (10 repetitions each). Without motion, the two methods agree very well 

while increasing motion (in amplitude and speed) deteriorates the results of the 3P-MAP 

sequence resulting in large variations and systematically overestimated values. The BS shift-

based acquisition shows only a small increase of the variation between the 10 repetitions 

without a systematic bias. Error bars represent the standard deviation. 

Figure 4: 

Comparison of B1
+
 field amplitudes determined by the BS shift-based B1

+
 sequence and 3P-

MAP in human quadriceps muscle. Different locations for the voxels in the inhomogeneous 

B1
+
 field of a surface coil transmission mainly explain the variations between subjects. In 

addition, different coil loading could add to the variations since a fixed transmitter voltage 

was used for all subjects. 

Figure 5  

5A) Comparison of the B1
+
 measurements in liver with 3P-MAP (black crosses, 3 repetitions), 

triggered BS shift-based measurements (red crosses, 16 repetitions) and BS shift-based results 

in breath-hold (blue crosses, 7 repetitions) for 6 subjects. Differences between the subjects are 

mainly a consequence of the voxel position. A comparison of the three methods is shown by 

Bland-Altman plots (identical vertical scale) between (B) triggered BS shift-based 

measurements vs. BS shift-based results in breath-hold, (C) triggered BS shift-based 
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measurements vs. 3P-MAP; and (D) BS shift-based results in breath-hold vs. 3P-MAP. In 

order to obtain the same number of examinations for both methods as required in the Bland-

Altman plots, only the first 7 repetitions shown in (A) were used in (B) and 3 in (C) and (D), 

respectively. The comparison of the two BS-based examinations in (B) shows very good 

agreement (zero included in the error range which is small) while the comparisons of BS-

based results with 3P-MAP in (C) and (D) show a significant difference (zero outside the 

error range of 1.96 standard deviations). 

Figure 6  

Radiofrequency field strength (B1
+
) for the 16 repetitions (each with vs. without Fermi pulses) 

in the heart of 6 volunteers (body coil transmission, surface coil detection) with various 

amplitudes of the Fermi pulse (relative to "REF" = voltage which is determined by the 

vendor's adjustment routine). The curves in grey were acquired with Fermi pulses below the 

REF voltage and show relatively large variations while the curves in red and blue were 

measured at the REF voltage and above, respectively, and show very high reproducibility 

within the 16 repetitions. 
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Figure 1:  
Diagram of the proposed sequence with motion-compensated crusher gradients (cyan) and 8 ms long Fermi 
pulses (yellow) following the 180°-pulses (red). Fermi pulses are applied at symmetric offset frequencies (+ 

and -) with respect to the water resonance frequency. The sequence can be preceded by a navigator-
triggered prospective acquisition correction trigger (PACE, not shown) and can also be ECG-triggered.  
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Figure 2:  
Phase changes as a function of Fermi pulse voltage and frequency offset for a phantom without motion (blue 
crosses, indistinguishable for the 15 repetitions each) and with motion (red crosses showing 15 repetitions 

each) in a volume transmit/receive coil. The black line represents the fit of the measurements without 
motion with the theoretical behavior according to Eq. [3] (scaling of the curve with 0.1245 Hz*rad/V2), 

resulting in a sub>1+ amplitude of 0.0648 µT/V. The fit of the measurements with motion resulted in a B1
+ 

amplitude of 0.0673 µT/V. As a comparison, the 3P-MAP method repeated three times for the stationary 
case gave a B1

+ amplitude of 0.0660 µT/V for the selected voxel, while the scanner adjustment for the whole 
object determined a value of 0.0675 µT/V.  
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Figure 3:  
Influence of motion (speed and amplitude) on the B1

+ field determination by the BS shift-based B1
+ 

acquisition (blue) and 3P-MAP sequence (red), using surface coil transmission and reception in vitro (10 

repetitions each). Without motion, the two methods agree very well while increasing motion (in amplitude 
and speed) deteriorates the results of the 3P-MAP sequence resulting in large variations and systematically 
overestimated values. The BS shift-based acquisition shows only a small increase of the variation between 

the 10 repetitions without a systematic bias. Error bars represent the standard deviation.  
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Figure 4:  
Comparison of B1

+ field amplitudes determined by the BS shift-based B1
+ sequence and 3P-MAP in human 

quadriceps muscle. Different locations for the voxels in the inhomogeneous B1
+ field of a surface coil 

transmission mainly explain the variations between subjects. In addition, different coil loading could add to 
the variations since a fixed transmitter voltage was used for all subjects.  
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Figure 5:  
5A) Comparison of the B1

+ measurements in liver with 3P-MAP (black crosses, 3 repetitions), triggered BS 
shift-based measurements (red crosses, 16 repetitions) and BS shift-based results in breath-hold (blue 

crosses, 7 repetitions) for 6 subjects. Differences between the subjects are mainly a consequence of the 
voxel position. A comparison of the three methods is shown by Bland-Altman plots (identical vertical scale) 
between (B) triggered BS shift-based measurements vs. BS shift-based results in breath-hold, (C) triggered 

BS shift-based measurements vs. 3P-MAP; and (D) BS shift-based results in breath-hold vs. 3P-MAP. In 
order to obtain the same number of examinations for both methods as required in the Bland-Altman plots, 
only the first 7 repetitions shown in (A) were used in (B) and 3 in (C) and (D), respectively. The comparison 

of the two BS-based examinations in (B) shows very good agreement (zero included in the error range 
which is small) while the comparisons of BS-based results with 3P-MAP in (C) and (D) show a significant 

difference (zero outside the error range of 1.96 standard deviations).  
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Figure 6:  
Radiofrequency field strength (B1

+) for the 16 repetitions (each with vs. without Fermi pulses) in the heart of 
6 volunteers (body coil transmission, surface coil detection) with various amplitudes of the Fermi pulse 

(relative to "REF" = voltage which is determined by the vendor's adjustment routine). The curves in grey 
were acquired with Fermi pulses below the REF voltage and show relatively large variations while the curves 

in red and blue were measured at the REF voltage and above, respectively, and show very high 
reproducibility within the 16 repetitions.  
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