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Abstract:  

Rationale: Changes in the pulmonary microbiota are associated with progressive respiratory 

diseases including chronic obstructive pulmonary disease. Whether there is a causal relationship 

between these changes and disease progression remains unknown. 

Objective: To investigate the link between an altered microbiota and disease, we utilized a 

murine model of chronic lung inflammation that is characterized by key pathological features 

found in COPD and compared responses in specific pathogen free (SPF) mice and mice depleted 

of microbiota by antibiotic treatment or devoid of a microbiota (axenic). 

Methods: Mice were challenged with LPS/elastase intranasally over 4 weeks, resulting in a 

chronically inflamed and damaged lung. The ensuing cellular infiltration, histological damage 

and decline in lung function were quantified. 

Measurements and Main results: Similar to human disease, the composition of the pulmonary 

microbiota was altered in diseased animals. We found that the microbiota richness and diversity 

were decreased in LPS/Elastase-treated mice, with an increased representation of the genera 

Pseudomonas, Lactobacillus and a reduction in Prevotella. Moreover, the microbiota was 

implicated in disease development as mice depleted, or devoid, of microbiota exhibited an 

improvement in lung function, reduced inflammation and lymphoid neogenesis. The absence of 

microbial cues markedly decreased the production of IL-17A, whilst intranasal transfer of fluid 

enriched with the pulmonary microbiota isolated from diseased mice enhanced IL-17A 

production in the lungs of antibiotic treated or axenic recipients. Finally, in mice harboring a 

microbiota, neutralizing IL-17A dampened inflammation and restored lung function. 
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Conclusions: Collectively, our data indicate that host-microbial cross-talk promotes 

inflammation and could underlie the chronicity of inflammatory lung diseases. 
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Introduction 

The rise in the prevalence of chronic obstructive pulmonary disease (COPD) is a global health 

concern(1). Exposure to cigarette smoke is the most widely associated environmental risk factor 

for the development of the disease(2), which presents as  chronic bronchitis and emphysema that 

lead to progressive and irreversible airflow limitation (3, 4).  While patients can manifest mild to 

severe disease, as defined by the degree of airflow obstruction, the signals leading to increased 

severity and progression remain unclear (3, 5). In spite of the heterogeneity in human disease, it 

is apparent that aberrant inflammatory responses substantially contribute to the decline in lung 

function (5-7). 

Intriguingly, not all people exposed to similar levels of cigarette smoke develop the disease (3). 

Moreover whilst smoking cessation does lead to an improvement in lung function in moderate 

disease, in some cases it does not impact on disease progression (8). One could speculate that 

although environmental triggers enhance the disease, in susceptible individuals the established 

disease can progress through a self-sustained inflammatory cycle. Given the limitations of 

current therapies to arrest COPD progression, it is important to identify the factors that can 

facilitate the establishment of the chronic inflammatory pathways and favor the disease. One 

such factor could be the microbiota. Previously considered sterile, breakthroughs in non-culture 

based detection methods have provided evidence that the respiratory tract harbors a microbiota 

(9-18). Notably, the microbiota in the respiratory tract of healthy volunteers, smokers without 

COPD and patients with severe disease are distinct (9, 10, 12-14). Though microbial dysbiosis 

has been shown to increase susceptibility to chronic diseases such as inflammatory bowel disease 

(IBD)(19, 20), it is currently unknown whether such a phenomenon contributes to COPD.  
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Another emerging hypothesis suggests there is an autoimmune component driving the 

progression of COPD (5, 21, 22). Though controversial, there is both circumstantial and direct 

evidence implicating autoimmune mechanisms in COPD pathogenesis (5, 21, 22). Lymphoid 

follicles play a pathological role in several autoimmune diseases by mediating the generation of 

self-reactive antibodies(23). While lymphoid follicles themselves have been consistently 

observed in both animal models and humans with COPD (24-27), there are conflicting reports 

regarding the production of self-reactive antibodies (28-32), thus the autoimmune concept of 

COPD remains open and might reflect a subtype of the disease. Incidentally, cues from the 

microbiota have been reported to support lymphoid neogenesis(33), the production of self 

reactive antibodies (34) and are implicated in the pathogenesis of a variety of autoimmune 

models (34-36). Whether there could be a similar link between the pulmonary microbiota and 

autoimmune mechanisms in COPD is yet to be established. 

We aimed to elucidate the role of the microbiome in COPD using a murine model(37), which 

mimics key features of human disease. We found that akin to what has been seen in humans, the 

airway microbiota differs between healthy and diseased mouse lungs. We report that the 

microbiota has functional implications as in its absence disease development is abrogated.  
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Materials and methods  

Mice: BALB/c mice were purchased from Charles River, l’Arbresele, Cedex, France. All animal 

experiments were performed according to institutional guidelines and Swiss federal and cantonal 

laws on animal protection. 

Model of chronic pulmonary inflammation: Mice were exposed intranasally to a mixture of 7 ug 

LPS from E. coli O26:B6 (Sigma-Aldrich) and 1.2 U porcine pancreatic elastase (elastin 

products company) in 100 ul once a week for over 4 weeks. Terminal readout was carried out 

one week after the last challenge.  

Assessment of pulmonary lung function: Lung compliance and FEV/FVC parameters were 

measured by Snapshot and NPFE perturbations using the FlexiVent invasive airway mechanics 

system from Scireq. Mice were anesthetized by administering 100 mg/kg ketamine (Ketasol-100, 

Graeub) intramuscularly and of 50 mg/kg pentobarbital (Esconarkon, Streuli Pharma) 

intraperitoneally. Subsequently, mice were tracheotomized and mechanically ventilated at a rate 

of 450 breaths/min and a tidal volume of 10 ml/kg bodyweight. 

Antibiotic treatment: For depleting microbiota prior to the start of experiment mice were given 

10% Enrofloxacin (Baytril) in drinking water for 2 weeks followed by amoxycillin/clavulanic 

acid (Coamoxy-mepha) in the drinking water for another 2 weeks. During the course of the 

experiment mice were maintained on Coamoxy-mepha treatment.  

16S rDNA preparation from BALF and sequencing 

Broncho-alveolar lavage was performed in 1ml volume of sterile PBS and collected in a 2ml 

Biopure tube (Eppendorf). Negative control was obtained by flushing 1ml of sterile PBS into the 

BAL tubing system and processed identically to the mouse BALF samples.  BALF were directly 

centrifuged at 14,000xg for 4min at 4°C and processed in sterile conditions under a laminar flow 
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hood. Pellets were incubated with 9000U of Ready-Lyse Lysozyme (Epicentre) for 1hr at 37°C. 

20ul of proteinase K in 200ul AL buffer (QIAamp DNA Mini Kit) was then added to the solution 

and incubated for 30min at 56°C with shaking. After this step, BALF from 4 mice coming from 

2 different cages were pooled and further processed with QIAmp DNA Mini Kit, according to 

the manufacturer’s protocol. DNA was eluted in 30ul DNAse/RNAse-free water (Sigma). PCR 

for the 16S rDNA library preparation was performed using modified 27F and 338R universal 

primers, which target the V1-V2 hypervariable region of the 16S rDNA gene. Primers were as 

follows:  

27F-5’ 

AATGATACGGCGACCACCGAGATCTACACTATGGTAATTCCAGMGTTYGATYMTGGC

TCAG-3’ and  

338R-5’-

CAAGCAGAAGACGGCATACGAGATNNNNNNNNNNNNAGTCAGTCAGAAGCTGCCTC

CCGTAGGAGT-3’  

where Illumina adaptor sequences are bold, linkers italicized and NNNNNNNNNNNN 

sequences represents the sample-specific MID tag barcodes.  The temperature cycles were set as 

follows: 3 minutes of initial denaturation at 94
O
C, repeated steps of 30 seconds denaturation at 

94
 O

C, 30 seconds of annealing at 56
 O

C, 1.3 minutes extension at 72
O
C and a final step of 5 

minutes at 72
 O

C. PCR reactions were performed in triplicates and one additional PCR negative 

control without DNA template was added for each reaction. Each reaction consisted of 8ul of 

DNA template, 0.44ul of each 27F and 338R primers at 10mM, 2ul of AccuPrime buffer II, 

0.09ul of AccuPrime Taq DNA polymerase high fidelity (Invitrogen) and DNAse/RNAse-free 

water (Sigma) to reach a total volume of 20ul. After amplification, PCR product triplicates were 
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pooled before visualization on a 1.5% agarose gel. The bands of the specific size (approximately 

300bp) were cut and purified with QIAquick gel extraction kit (Qiagen). Recovered DNA was 

then quantified using the Quant-iT PicoGreen ds assay (Life Technologies) and amplicons were 

pooled in a single tube in equimolar amounts. Sequencing was performed on an Illumina MiSeq 

platform using MiSeq reagent kit V2-500 (pair-end, 2x250). 

 

16S rDNA sequencing analysis 

Sequences obtained were processed and analyzed using Quantitative Insights Into Microbial 

Ecology (QIIME, v.1.8.0) software(38). Paired forward and reverse reads were merged using 

fastq-join, demultiplexed, and quality filtered (quality Phred score Q>20, <3 low quality base 

calls). Operational taxonomic units (OTUs) were assigned using an open reference picking 

strategy with Uclust(39) at 97% identity against the 97% Greengenes reference database 

(v13.8)(40). Alpha diversity rarefaction curves for chao1 and Shannon indexes were calculated 

in QIIME using 10 iterations represented as mean+SD at different sequencing depths (2,000-

98,000). All downstream analyses were performed using a rarefied OTU table at 40,000 

sequencing depth. A heatmap displaying the OTUs represented at more than 0.05% relative 

abundance in a minimum of 2 samples was created using the heatmap.2 function of the gplots 

package in R(41). The dendrogram was generated using Ward’s hierarchical clustering with 

hclust algorithm in R on Bray-Curtis dissimilarity matrix calculated in QIIME. 

 

Preparation and transfer of microbiota-enriched BAL fluid: For preparing the microbiota-

enriched BAL fluid, BAL was performed 3 times using 1ml of PBS per mouse. 5 mice were 

pooled per group. The BAL was then centrifuged at 2000 rpm for 10 minutes at 4 degrees and 
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the pellet containing mouse cells was discarded. The BAL supernatant was aliquoted into biopur 

tubes and centrifuged at 14000g for 10 minutes at 4 degrees and washed with PBS at the same 

speed. The final pellet was snap frozen in liquid nitrogen and stored at -80 till use.  Before 

intranasal administration each aliquot was resuspended in 2 mls of PBS and administered to 

recipient mice in a volume of 100ul per mouse intranasally. 

Neutralization of IL-17A:  For neutralization of IL-17A, mice were treated with 250 ug of anti-

IL-17A (clone 17F3) or the corresponding isotype control antibody (clone MPOC-21) from 

BioXCell. Antibodies were administered intraperitoneally on days 6,10,13,17,20,24 days after 

the first challenge of LPS/elastase challenge. 

 

Results  

Murine model of chronic pulmonary inflammation mimics key pathological features of human 

disease 

To study the underlying pathogenic mechanisms of COPD we utilized a murine model of chronic 

pulmonary inflammation (Figure 1A). Mice were treated with a combination of LPS and elastase 

over 4 weeks. Co-administration of LPS/elastase resulted in an increase in compliance, (P<0.05)  

(Figure 1B) and a decrease in the percentage of forced expiratory volume in 0.1 second over 

forced vital capacity (FEV0.1/FVC), (P<0.01)  (Figure 1C). The decline in lung function was 

associated with emphysematous changes in the lung parenchyma, quantified by both mean linear 

intercept and destruction index parameters (P<0.001) (Figure 1D-F) in addition to 

peribronchiolar and perivascular infiltration of the lung tissue (Figure 1G). There was also an 

enhanced cellular infiltration in the broncho-alveolar lavage fluid (BAL) P<0.001 (Figure 1H), 

with marked increase in macrophages (P<0.05), neutrophils (P<0.05) and lymphocytes 
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(P<0.001) (Figure 1I).  Notably the emphysema and inflammation persisted at least 2 months 

after the cessation of LPS/elastase treatment, P<0.001 (Figure E1A-C). Although neutrophilia 

waned in the BAL, the continued prevalence of hemosiderin-laden macrophages (P<0.01) was 

indicative of chronic inflammation and micro-hemorrhaging months after the final challenge 

(Figure E1D)(42). 

 

Chronic pulmonary inflammation is associated with lymphoid neogenesis, enhanced local 

antibody responses and IL-17A production 

In line with previous data in human disease and animal models of CS induced emphysema,  

(24-27), we observed the formation of lymphoid follicles (LFs) which could be categorized as  

bronchiolar associated (BALT) (P<0.01) , alveolar associated (ALT) (P<0.01) or vascular 

(VALT) (P<0.001)  lymphoid tissue base on their localization (Figure 2A). We found that VALT 

accounted for the majority of LFs. Moreover these LFs persisted even in the absence of 

inflammatory stimuli in mice that were analyzed 9 weeks after the last challenge (P<0.05) 

(Figure E1E). Overall there was an increase in the frequency of germinal center (GC) B cells, 

(P<0.05) (Figure 2B) as identified by Gl7 staining and T follicular helper cells (Tfh), (P<0.01)  

(Figure 2C) as defined by the co-expression of PD-1 and Gl7, in the lungs of LPS/elastase 

treated mice. To assess whether the presence of lymphoid follicles correlated with an increase in 

the local antibody response, we measured the amount of the antibody isotypes IgG1, IgA and 

IgM in the BAL of PBS or LPS/elastase treated mice. All isotypes were increased in the BAL of 

LPS/elastase treated mice, (P<0.05) (Figure 2D). Of note, no increase in the systemic levels of 

any isotype was detected (Figure E2A).  
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We then investigated the reactivity of these antibodies against collagen and elastin, which 

constitute a component of the lung tissue breakdown products. A significant increase in specific 

responses against collagen was detected for IgG1, (P<0.01) and IgA (P<0.001)  but not IgM 

isotypes (Figure 2E-G). A marked increase in specific antibodies against elastin was observed for 

IgA (P<0.05), IgG1 (P<0.01)  and IgM (P<0.05)  antibody isotypes (Figure 2E-G). We did not 

detect an increase in systemic levels of elastin specific IgG1 and IgA responses, although 

collagen specific antibodies were increased (Figure E2 B,C). To further characterize the 

autoimmune aspect of the disease we enumerated IL-17 producing T cells (Figure 2H-K). We 

found that IL-17 production by both γδ+ (P<0.0001) (Figure 2H), and CD4+ T cells (P<0.0001),  

was increased in the diseased lungs (Figure 2I). IL-17A production was also induced when 

sorted γδ+ (Figure 2J) and CD4+ T cells (Figure 2K) populations isolated from the lungs of 

LPS/elastase treated mice were restimulated with collagen or elastin in vitro. Furthermore we 

found that the protein levels of IL-6 and IL-1 beta, cytokines that can enhance IL-17A responses, 

in addition to levels of IL-17A itself, were increased in the BAL fluid of LPS/elastase treated 

animals (Figure E3A-C) 

 

The pulmonary microbiota is altered upon the induction of chronic pulmonary inflammation. 

It has been reported that humans with COPD have an altered airway microbiota(10, 13), thus we 

investigated whether similar changes occurred in our mouse model. We extracted bacterial DNA 

from BAL of mice treated with PBS or LPS/Elastase over 4 weeks and assessed microbiota 

diversity and composition by Illumina 16S rDNA sequencing using a custom protocol. Indeed, 

amplifying bacterial DNA from mouse BAL is particularly challenging given the low biomass 

and subsequent high risk of contamination. For these reasons, we pooled BAL from 4 mice to 
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increase the bacterial biomass and we used stringent negative controls where PBS (as used for 

the BAL) was exposed to the same environment, tubing and extraction kits as the BAL from 

mice. A negative control, where we successfully found an amplified bacterial 16S rDNA 

fragment, was included in the sequence analysis in order to allow conclusions to be drawn from 

low abundance bacterial sequences. We found that microbiota richness and diversity were 

decreased in the pooled BAL of LPS/Elastase-treated mice, as indicated by chao1 richness and 

Shannon diversity rarefaction curves (Figure 3A). Of note, the Shannon index diversity was 

higher in the negative control than the LPS/ elastase group, potentially indicative of an increased 

abundance of certain bacteria in the LPS/ elastase group, which is reflected by the abundance 

component of the Shannon diversity calculation. We next assessed microbiota composition, with 

particular attention to the negative control. We observed that the most abundant OTUs present in 

BAL samples, such as Family Comamonadaceae, Family Flavobacteriacae, and Family 

Microbacteriaceae were also predominant in the negative control but their relative abundance did 

not differ among BAL samples (Figure 3B). Importantly, Ward hierarchical clustering algorithm 

using Bray-Curtis distance efficiently distinguished and clustered BAL samples of the 

treatments, as compared to the negative control (Figure 3B). These data show that a distinct 

microbiota was present in healthy airways, diseased airways and the background control. To 

further investigate the changes in microbiota induced by LPS/Elastase treatment, we excluded 

contaminant OTUs and assessed the differentially abundant genera across the treatments. We 

identified 4 genera of particular note: Prevotella, Pseudomonas, Lactobacillus, and 

Chryseobacterium (Figure 3C). Prevotella was present in the BAL of the PBS control group but 

absent in the BALF of LPS/Elastase treated mice. On the contrary, relative abundance of  

Pseudomonas, Lactobacillus and Chryseobacterium was increased in the BAL of LPS/Elastase 
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treated mice. Overall, as reported for the human airway microbiota, the airways of mice with this 

chronic lung disease are characterized by a distinct microbiota to those with healthy airways. 

 

Microbiota derived signals amplify innate and adaptive inflammation in disease 

To investigate whether microbiota dependent signals contribute to the persistent inflammation, 

we compared responses between SPF mice and mice depleted of a microbiota using an antibiotic 

treatment regime. Before the start of the experiment mice were given 10% Baytril in drinking 

water for 2 weeks followed by treatment with coamoxy-mepha for another 2 weeks. This 

treatment decreased the microbial load by approximately 6 log, (P<0.0001) (Figure E4). During 

the course of the experiment mice were maintained on coamoxy-mepha treatment. We found that 

antibiotic treated mice showed no change in FEV0.1/FVC (Figure 4A) but a significant reduction 

in lung compliance, (P<0.05) (Figure 4B). This was linked to a decrease in inflammation in the 

lungs and airways (Figure 4C), decreased total cell counts, (P<0.01) (Figure 4D) and neutrophil 

(P<0.01) and interstitial macrophage (P<0.01) infiltration in the BAL (Figure 4E,F). Macrophage 

subsets were identified as described in supplementary Figure E5A. Antibiotic treatment also 

resulted in a reduction in the frequency of VALT (P<0.05)  (Figure 4G). Though the total 

antibody levels of IgG1 and IgM in the BAL were unaffected in antibiotic treated mice (Figure 

4H), collagen specific IgG1 responses were significantly reduced (P<0.01)  (Figure 4I). 

Comparatively total IgA responses were reduced (P<0.01) (Figure 4H) and in line with this, 

collagen and elastin specific IgA responses were reduced (P<0.05) (Figure 4J).  

 

Microbiota enhances production of IL-17A by T cells 
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Microbiota dependent signals have been shown to amplify autoimmune diseases in an IL-17 

dependent manner (34-36). Both autoimmune mechanisms and IL-17 (31, 46-54) are implicated 

in the pathogenesis of COPD. Antibiotic treated mice showed a reduced IL-17A response 

(P<0.05)  (Figure 5A). Upon investigation of the cellular sources of IL-17A we found no 

difference in the composition of cells producing IL-17A (Figure 5B) using the gating strategy 

shown in Figure E5B, and both CD4+ and γδ T cells accounted for the majority of IL-17A 

producers. However the frequencies of IL-17A+ within CD4+ T cells and the total number of IL-

17A+ CD4+ T cells were markedly reduced upon antibiotic treatment (P<0.01) while only a 

minor reduction was seen for γδ T cells which was not statistically significant (Figure 5C,D).  

Similar to antibiotic treated mice, axenic mice exhibited reduced recruitment of neutrophils and 

macrophages in the airways (P<0.05, P<0.01 respectively) (Figure E6A-D) and a specific 

reduction in IL-17A producing γδ+ T cells (P<0.05)  (Figure E6E).  

In an attempt to assess whether the altered microbiota in disease could directly enhance IL-17A 

responses, we performed a transfer experiment. Antibiotic treated mice were challenged with 

LPS/elastase on day 0,7 and 21.  Concurrently they were given a solution that was enriched for 

the airway microbiota of PBS or LPS/elastase treated mice intranasally. We found that the 

transfer of this microbiota-enriched solution from LPS/Elastase treated mice resulted in an 

increase in the IL-17A producing cells in the lungs of recipient mice (Figure 5E). In particular 

IL-17A producing CD4+ T cells (Figure 5F) were increased (P<0.05) while γδ+ T cells (Figure 

5G) were unaffected. Performing the same experiment using axenic recipients we observed an 

increase in both the proportion of IL-17A producing CD4+ and γδ T cells (P<0.05)  (Figure 

E6F).  
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IL-17A kinetics correlates with disease severity and targeted neutralization of IL-17A 

ameliorates disease 

We next sought to determine the kinetics of IL-17A production during the induction of disease. 

We modified our existing model to recapitulate different levels of severity similar to COPD in 

humans. We were able to distinguish mild and severe disease based upon the decline in lung 

function seen at different timepoints in the disease model (Figure 6A,B). We found that the 

kinetics of IL-17A production followed the progression of disease (Figure 6C). Moreover both 

IL-17 producing γδ T cells and CD4+ T cells increasingly accumulated in the lungs with 

repeated LPS/elastase challenges (P<0.01) (Figure 6D,E, Figure E7). Based on the kinetics 

observed in mild versus severe disease we performed a targeted neutralization of IL-17A starting 

one day before the second LPS/elastase challenge (Figure 6F). We found that neutralizing IL-

17A did not improve FEV0.1/FVC but reduced lung compliance significantly (P<0.05)  (Figure 

6G,H) in addition to the total cellular and neutrophilic infiltration into the BAL (P<0.01)  (Figure 

6I,J). Neutralizing IL-17A also reduced the total frequency of lymphoid follicles (P<0.05), 

without specifically affecting any particular subtype (VALT, ALT or BALT) (Figure 6K). This 

was also associated with a reduction in total IgG1 (P<0.05)  whilst IgA and IgM were increased 

(P<0.05, P<0.01 respectively) (Figure 6L).  Overall targeting the IL-17A pathway was effective 

at ameliorating inflammation and uncoupling the autoimmune component of the disease.  

 

Discussion  

Alterations in the gut microbiome have been extensively documented for chronic diseases such 

as inflammatory bowel disease (IBD) (19, 20).  Although the gut microbiota can impact upon 

systemic immune responses, there is an emerging paradigm supporting the importance of host-
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microbe interactions localized within a single habitat, such as that found in the lung and skin (55, 

56). Several studies have shown that the composition of the airway microbiota in healthy lungs 

differs from lungs of patients with COPD, although as yet whether disease creates a habitat for 

the bacteria, or whether the bacteria cause disease hasn’t been delineated (10, 13, 14). Our 

findings implicate a functional role for the microbiota in COPD. It is noteworthy that there were 

many similarities in the types of changes seen in microbial composition in the airways of mice as 

in humans. Specifically, we found that the overall diversity of the pulmonary microbiome was 

reduced, Prevotella was absent while the bacterial genera Pseudomonas, Lactobacillus were 

increased in abundance in the LPS/ Elastase treated animals as compared to controls (43). This 

correlates with studies in humans, showing that Prevotella is a common colonizer of the airways 

of healthy subjects, when compared to asthmatic or COPD patients(13, 43). Consistently 

Pseudomonas is increased in asthmatic and COPD patients(43), and its presence correlates with 

COPD severity(44). Similarly the relative abundance of Lactobacillus is also increased in 

asthmatic and COPD patients(43) and an additional study has linked it to COPD severity(10). 

Chryseobacterium levels were also increased in the BAL of LPS/Elastase treated mice. This did 

not correlate with any published data in COPD patients, but studies have shown that 

Chryseobacterium infection in individuals with cystic fibrosis correlates with Pseudomonas (45).  

A key question still facing the field is where does the airway microbiota originate? (57). Recent 

studies suggest the pulmonary microbiome originates from the dispersal of microbes from the 

nasal and oral cavities (58, 59).  It is possible that this ‘seeding’ population is altered in COPD 

patients and this subsequently affects the microbiome in the lungs.  Alternatively the state of 

chronic inflammation in the diseased lungs may provide a selection pressure facilitating 

colonization by specific bacteria. Considering our experiments were performed under controlled 
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conditions with mice housed in isolated and filtered cages, our results support the concept that 

inflammatory conditions allow the outgrowth of bacteria that are part of the steady-state 

‘healthy’ microbiota. 

Increased levels of IL-17A have been implicated in stable COPD (52), and a recent study has 

shown that the number of CD4+ IL-17A+ cells in the small airways positively correlates with 

airflow limitation (46). Tracking the development of disease progression in our model showed 

that IL-17A production increased with disease severity. Moreover we observed temporal changes 

in the cellular sources of IL-17A (Figure E7). We found that γδ T cells accounted for the 

majority of the few IL-17A producing cells in the healthy and mildly diseased lungs. In severe 

disease there was an expansion of both IL-17A producing CD4+ and γδ T cells.  Signals from 

commensal bacteria have been shown to enhance the expansion of both γδ+ T cells as well as 

Th17 cells (34, 60-62) and exacerbating IL-17 mediated inflammation in experimental 

autoimmune encephalitis (EAE) and arthritis (34-36). In particular, specific bacteria can induce 

Th17 responses amongst which segmented filamentous bacteria (SFB) have been extensively 

studied (34, 36). Although SFB were not detected in the lung in our study, it is likely that the 

outgrowth of other lung bacteria resident in the diseased lungs could also promote IL-17 

responses. In the current study, we attempted to transfer the microbiota from the BAL of either 

PBS or LPS/elastase treated mice into the airways of mice depleted (with antibiotics) or devoid 

(germ-free) of a microbiota. This transfer consisted of a microbial pellet that had been isolated 

(excluding host cells and soluble components in suspension) from the BAL performed on mice, 

however in addition to the enriched microbial components of this pellet, acellular material from 

the lungs could also have been enriched. Transfer of the microbiota-enriched solution derived 

from mice that had previously been treated with LPS/ elastase, increased the production of IL-17 
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in recipient mice, as compared to the solution derived from mice previously treated with PBS. 

Whether this experimental approach led to a sufficiently large increase in IL-17 levels to 

influence lung function remains to be determined. There are several technical limitations to the 

experimental approach of transferring the airway microbiota. For instance, it is unclear whether 

viable bacteria are required to see this effect. Another important caveat is we are unable to 

distinguish between the influence of the microbes and that of other potential constituents of the 

processed BAL fluid, for example cellular debris. With the current state-of-the-art, and the very 

low bacterial biomass in the airways of mice, we are limited with feasible approaches to address 

this point. As such, from this study we can only conclude the microbiota changes in the airways 

of mice treated with LPS/ Elastase, similar to that reported in humans; depletion (antibiotics) or 

absence (axenic/ germ-free mice) of a microbiota ameliorates disease; and transfer of a 

microbially-enriched fraction of the BAL from diseased animals increases the disease-causing 

IL-17 inflammatory pathway in recipient mice. A further possibility is that the role of the 

microbiota in promoting disease in our model is due to the gut microbiota, indeed, we have 

previously reported a gut-lung axis with mice fed a high fiber diet being protected against 

allergic airway inflammation(63). However, in the current study we expect the airway microbiota 

to play a more fundamental role as we did not find changes in the gut microbiota in our model 

(data not shown). It remains possible that certain changes in the gut microbiota could impact 

upon the development of COPD, and future in-depth metagenomic approaches could provide the 

answer. 

Concurrent with the development of the IL-17 response in our model, we found an autoimmune 

component of the inflammation evolved. It is tempting to speculate that the microbially-

enhanced IL-17 response promotes an autoimmune component, that further perpetuates the 
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disease. The increased availability of self-antigens due to the destruction of lung tissue might 

also allow the expansion of auto-reactive T cells. Further supporting an autoimmune component 

to disease pathogenesis, lymphoid follicles have consistently been observed in animal models 

and in humans with COPD (24-27). Recently Bracke et al demonstrated a pathogenic role of LFs 

in disease (26). In this study they abrogated LF formation by targeting CXCL13 and observed a 

decrease in the local antibody response with a concomitant improvement in specific aspects of 

disease such as inflammation and alveolar wall destruction. Microbial colonization and 

infections are more frequent in patients with very severe disease. From an evolutionary 

standpoint, LFs in chronic lung diseases might arise to combat infections by enhancing the local 

immune response. However self-antigens derived from the collateral damage of the lung tissue 

might also be presented within LFs and result in the production of autoantibodies (22, 64). While 

sequence analysis of B cell clones isolated from LFs in COPD lungs has indicated the presence 

of an oligoclonal, antigen specific humoral response (25), there are conflicting reports regarding 

the production of self-reactive antibodies (28-32). It is important to note that most of these 

studies assess systemic antibody levels, which may not be representative of responses within the 

lung. Another caveat in these studies is the identification of the relevant autoantigen, which may 

vary considerably amongst patients.  In our model and in the CS-induced model of emphysema, 

LF formation is associated with an increase in local antibodies levels in the BAL while systemic 

antibodies were unaffected (25, 26). In line with this data, the deposition of IgG complexes has 

been demonstrated in lungs of patients with severe COPD, although their antigenic specificity is 

unknown (30, 65). A limitation of our study is that we investigated self-reactive antibodies to 

only 2 self-antigens: collagen and elastin, which constitute only a portion of the breakdown 

products of the lung tissue.  In the future it would be valuable to comprehensively characterize 
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the repertoire of the self-reactive antibodies in COPD patients and investigate whether specific 

antibody signatures are correlated with disease severity. This could distinguish a subset of COPD 

patients in whom disease pathogenesis has a clear association with autoimmunity and ultimately 

identify patients that would benefit the most from treatments targeting B cells(66, 67). 

The beneficial versus detrimental role of local antibody responses could be determined by 

different antigen specificities and associated isotypes. It has been reported that compared to 

COPD patients, healthy smokers exhibit a preferential switching to IgA (68). IgA responses at 

mucosal surfaces are associated with protective immunity, and blunted IgA responses in COPD 

can be linked to increased susceptibility to infections (69). Conversely self-reactive antibodies, in 

particular IgG1 isotypes, are more prevalent in severe disease and implicated in pathogenesis 

(30, 65, 68). In our study, depleting the microbiota had a profound affect on the total IgA levels 

suggesting that a proportion of these antibody responses may be directed against the microbiota. 

However the absence of a microbiota also reduced the levels of self-reactive IgA and IgG1 

antibodies. Whether this is due to the cross reactivity between microbial and self-antigens or an 

indirect effect by the induction of IL-17, as seen in a model of autoimmune arthritis (34), is 

unknown.  Our data suggests that microbial cues could impact not only the specificity but also 

the isotype of antibody responses generated locally.  

Our data implicates the airway microbiota as a key player in the promotion of local IL-17A 

responses, and consequently the development of chronic lung disease. This pathway impacts 

upon both innate and adaptive inflammatory processes, regulates lymphoid neogenesis and the 

expansion of autoreactive T and B cells. The microbiota-enhanced local autoimmunity likely 

contributes to disease chronicity, although autoimmunity only represents one pathogenic 

mechanism linked with COPD. The characterization of dysbiotic microbial communities and 
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their associated inflammatory signature could pave the way for personalized medicine to disrupt 

the chronic cycle of tissue damage and the heterogeneity seen in COPD. 
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Figure legends  

Figure 1: Murine model of chronic pulmonary inflammation mimics key pathological 

features of human disease. (A) BALB/c mice were administered LPS (7ug) and elastase (1.5U) 

in a volume of 100ul intranasally once a week for 4 weeks. Terminal analysis was carried out 1 

week after the last challenge. (B) Lung compliance and (C) FEV0.1/FVC were measured by 

FlexiVent invasive airway mechanics system.  (D) Paraformaldehyde fixed sections of lung were 

stained with hematoxylin and eosin (Hand E) and emphysema and destruction of lungs was 

scored by (E) mean linear intercept and (F) destruction index (n=3-5). (G) Representative H and 

E stained lung sections showing perivascular and peribronchiolar inflammation in LPS/elastase 

treated mice. (H) The total cell and (I) differential counts in the broncho-alveolar alveolar lavage 

(BAL) was determined (n=5). Error bars represent standard error of mean. Data representative of 

at least 2 independent experiments. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001 

 

Figure 2: Chronic pulmonary inflammation is associated with lymphoid neogenesis, 

enhanced local antibody responses and IL-17A production. (A) Representative pictures of 

brochial associated (BALT), vessel associated(VALT) and alveolar associated (ALT) lymphoid 

tissue in H and E stained lung sections and their quantification. Data pooled from 2 experiments 

(n=6-8). (B) Germinal center B cells and (C) follicular T helper cells in cells from lungs were 

quantified by flow cytometry. Data pooled from 2 experiments. (D) Levels of IgG1, IgA and 

IgM in BAL supernatant were measured by ELISA. Data pooled from 2 experiments (n=8-9). 

Collagen and elastin specific (E) IgG1 (F) IgA and (G) IgM responses were quantified by 

ELISA. Data pooled from 2 experiments (n=8-9). (H) Cells isolated from lungs and airways of 

indicated groups were stimulated in vitro with PMA, ionomycin and monensin for 4 hours. IL-17 
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production by γδ T cells was quantified by flow cytometry. Data representative of at least 3 

independent experiments. (I) IL-17 production by CD4+ T cells was quantified by flow 

cytometry in cells isolated from lungs and airways of indicated groups stimulated in vitro with 

PMA, ionomycin and monensin for 4 hours,. Data representative of at least 3 independent 

experiments. (J) FACS sorted γδ T cells from pooled lungs and airways samples of 5 mice 

treated with LPS/elastase were stimulated with bone marrow derived dendritic cells (BMDCS) 

alone (media), or BMDCs pulsed with collagen or elastin. (K) CD4+ T cells were sorted by flow 

cytometry from pooled lungs and airways samples of 5 mice treated with LPS/elastase. Sorted 

CD4+ T cells were then stimulated with bone marrow derived dendritic cells (BMDCs) alone 

(media), or BMDCs pulsed with collagen or elastin. . *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p 

≤ 0.0001. 

 

Figure 3: The pulmonary microbiota is altered upon the induction of chronic pulmonary 

inflammation. Eight mice per group were treated with PBS or LPS/Elastase for 4 weeks and 

DNA was extracted from 4 pooled BAL per group, resulting in 2 sample sets per group for 

Illumina MiSeq 16S rDNA sequencing. (A) Richness (chao1) and diversity (Shannon) 

rarefaction curves of the 16S rDNA library constructed from pooled BAL of PBS or 

LPS/Elastase treated mice. (B) Heatmap showing the relative abundance of major bacterial 

genera (OTUs>0.05% of relative abundance in minimum 2 samples) in pooled BAL of PBS or 

LPS/Elastase treated mice and negative control. Dendrogram was drawn from Ward hierarchical 

clustering algorithm using Bray-Curtis dissimilarity matrix. (C) Bar graphs representing the 

relative abundance of specific genera showing differences between the BAL of PBS or 

LPS/Elastase treated mice. OTU (Operational Taxonomic Unit). 
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Figure 4: Microbiota derived signals amplify innate and adaptive inflammation in disease. 

Mice harboring a specific pathogen free (SPF) microflora (water) or mice depleted of microbiota 

by antibiotic treatment were subjected to LPS/elastase treatment over 4 weeks. Analysis was 

carried out a week after last challenge (A) Lung compliance and  (B) FEV/FVC was measured 

using FlexiVent invasive airway mechanics system. Data are pooled from 2 experiments (C) 

Representative slides of H and E stained lung sections showing peri-broncheolar and 

perivascular inflammation in water and antibiotic treated groups (D) Number of cells infiltrating 

the broncho-alveolar lavage was determined. (E) Neutrophils, (F) alveolar and interstitial 

macrophages in the BAL were enumerated by flow cytometry. Data representative of 2 

independent experiments. (G) Vascular associated, alveolar associated or bronchial associated 

lymphoid follicles were quantified in H and E sections of lungs. Error bars represent standard 

error of mean. (n=4) (H) Levels of IgG1, IgA and IgM in BAL supernatant were measured by 

ELISA. Collagen and elastin specific (I) IgG1 (J) IgA responses were quantified by ELISA. 

Error bars represent standard error of mean. Data pooled from 2 experiments (n=9). *p ≤ 0.05, 

**p ≤ 0.01. 

 

Figure 5: Microbiota enhances production of IL-17A by CD4+ and γδγδγδγδ7 T cells. Cells 

isolated from lungs and airways of control (water) or antibiotic were stimulated in vitro with 

PMA, ionomycin and monensin for 4 hours. (A) Ex vivo stimulated cells were surface stained, 

fixed and permeabilized for detection of cytokines Interferon gamma and IL-17A. (B) Cellular 

sources of IL-17A were analyzed by flow cytometry. Pie charts represent the composition based 

on mean values from 4-5 mice per group. (C) Total number of CD4+ T cells producing IL-17A 

or (D) γδ  T cells were determined by flow cytometry. Data representative of 2 independent 
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experiments. (E) Antibiotic treated  mice were challenged with LPS/elastase on day 0,7 and 21. 

Everyday starting at day 12 until day 20 and then on days 22 to 24, they received microbiota 

(sequenced in Figure 3) isolated from either PBS challenged SPF mice or LPS/elastase 

challenged SPF mice in 100ul intranasally. On day 25, cells isolated from the lungs of the 

recolonized antibiotic treated recipients were restimulated with PMA ionomycin and IL-17 

production was analyzed by flow cytometry. Total number of IL-17A producing (F) CD4+ T 

cells and (G) γδ T cells were also determined by flow cytometry. *p ≤ 0.05, **p ≤ 0.01. 

 

Figure 6: IL-17A kinetics correlates with disease severity and targeted neutralization of IL-

17A ameliorates disease. (A) BALB/c mice were challenged with 1, 2,3 or 4 doses of 

LPS/elastase. Analysis was carried out 1 week after indicated number of challenges. (B) Invasive 

lung function measurement was carried out using the flexivent system. (C) The kinetics of 

RORt expressing and IL-17A producing cells in ex vivo stimulated cells from lungs and 

airways of mice challenged with 1,2,3 or 4 times PBS or LPS/elastase. (n=4-5 per time point per 

group. The kinetics of IL-17A producing (D) CD4+ and (E) γδ  T cells in mice challenged with 

1,2,3 or 4 times PBS or LPS/elastase. (n=4-5 per time point per group). (F) Targeted 

neutralization of IL-17A based on its production in mild to severe disease. Mice were challenged 

with LPS/elastase over 4 weeks and administered anti IL-17A antibody or isotype control at 

indicated time points. (G) Lung compliance and (H) FEV/FVC was measured using the 

FlexiVent invasive airway mechanics system. (I) Number of cells recovered in the broncho-

alveolar lavage was determined. (J) Neutrophils in the BAL were enumerated by differential cell 

counts. Data representative of atleast 2 independent experiments. (K) Vascular associated, 

alveolar associated or bronchial associated lymphoid follicles were quantified in H and E 
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sections of lungs. Error bars represent standard error of mean. (n=4-5) (L) Levels of IgG1, IgA 

and IgM in BAL supernatant were measured by ELISA. Data pooled from 2 experiments (n=9). 

*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. 
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Microbiota promotes chronic pulmonary inflammation by enhancing IL-17A and 

autoantibodies 

Koshika Yadava, Céline Pattaroni, Anke K. Sichelstiel, Aurélien Trompette, Eva S. Gollwitzer, 

Olawale Salami, Christophe von Garnier, Laurent P. Nicod, Benjamin J. Marsland 

 

Online data supplement 

Supplementary methods 

Cell isolation from the lung and airways: Broncho alveolar lavage was performed in a volume of 

1ml. Cells were counted using a coulter counter (IG Instrumenten- Gesellschaft AG, Basel, 

Switzerland). Isolated cells were subjected to differential cell staining using Diff-Quik solution 

(Dade Behring, Siemens Healthcare Diagnostics, Deerfield, IL) and also analyzed by flow 

cytometry. Single cell suspensions from lung and trachea were obtained by digestion with 2 

mg/ml Collagenase IV (Invitrogen) counted using a coulter counter and analyzed by flow 

cytometry.  

 

Histological analysis: Lungs were inflated and fixed with 2% PFA.  Paraffin embedded sections 

of the lungs were subjected to hematoxylin and eosin (H&E) using standard protocols. 

Pulmonary emphysema was quantified by measuring mean linear intercept for airspace 

enlargement and destruction index for alveolar wall destruction(1, 2).   Lymphoid follicles were 

defined as an association of over 50 cells and further discriminated on the basis of their location. 

Flow cytometry: A combination of the following antibodies was used for surface staining of cells 

CD11c APC-Cy7, CD11b PerCP-Cy5.5,F480 APC, Ly-6G Biotin, Ly-6C Pacific Blue, MHCII 

alexafluor 700, CD4 PerCP-Cy5.5, CD8b FITC, γδ TCR Biotin, CD3 Pacific Blue, Streptavidin 
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PE-Cy7. To analyze cytokine production, cells from lung digests were stimulated with 10
-7

 M 

PMA, 1 ug/ml ionomycin and 2x10
-6

 M monensin for 4h at 37°C (indicated chemicals were 

purchased from Sigma-Aldrich). Subsequently, cells were surface stained, fixed and stained 

intracellularly with RORtPE, IFN APC, IL-17A Alexa700. All antibodies were purchased 

from Biolegend. Stained cells were acquired on a BD FACS CANTO or BD FACS LSRII and 

analyzed by using FlowJo software (Tree Star). For specific restimulation bone marrow derived 

dendritic cells were cultured with mouse lung collagen at 2ug/ml (elastin products company) or 

elastin peptides at 2ug/ml or media overnight. FACS  sorted CD4 and  T cells were cultured 

with these BMDCs and monensin for 4 hours at 37 degrees. Subsequently, cells were surface 

stained, fixed and stained intracellularly.   

 

ELISA:  Total immunoglobulin (Ig) in serum and BAL were determined by ELISA. Briefly, 

NUNC MaxiSorp 96-well plates were coated with either 2ug/ml goat anti-mouse IgG1, IgA, IgM. 

Samples were incubated overnight at 4°C prior to addition of 1ug/ml final of 

alkalinephosphatase-conjugated goat anti-mouse IgG1, IgA or IgM (all antibodies were from 

SouthernBiotech, Birmingham, AL). For detection of specific responses the plates were coated 

with mouse collagen at 50ug/ml (elastin products company), elastin peptides at 10ug/ml(elastin 

products company). 

 

 

 

 

 

Page 44 of 54
 AJRCCM Articles in Press. Published on 02-December-2015 as 10.1164/rccm.201504-0779OC 

 Copyright © 2015 by the American Thoracic Society 



 

 

Supplementary figures: 

Figure E1: Changes induced by LPS/elastase treatment are chronic. (A) BALB/c mice were 

administered LPS (7ug) and elastase (1.5U) in a volume of 100ul intranasally once a week for 4 

weeks. Terminal analysis was carried out 8 weeks after the last challenge. (B) 

Paraformaldehydes fixed sections of lung were stained with hematoxylin and eosin (Hand E) and 

emphysema was scored by mean liner intercept. Error bars represent standard error of 

mean.(n=3-5)  (C) The total cell and (D) differential counts in the bronchiolar alveolar lavage 

(BAL) was determined. (D) Representative slides showing persistence of hemosiderin-laden 

macrophages in BAL of mice administered LPS/elastase. Arrows show the HLM. (E) Lymphoid 

follicles were further quantified based on there location as either vascular associated, alveolar 

associated or bronchial associated. Error bars represent standard error of mean.(n=3-5) 

 

Figure E2: Systemic antibody levels are largely unaffected in chronic pulmonary 

inflammation. (A)Levels of IgG1, and IgA in serum of mice treated with PBS or LPS/elastase 

were measured by ELISA. Error bars represent standard error of mean. Data pooled from 2 

experiments. (n=10) (B) Collagen and elastin specific IgG1 and (C) IgA responses were 

quantified by ELISA. Error bars represent standard error of mean Data pooled from 2 

experiments (n=10). 

 

Figure E3: LPS/elastase treatment results in increase in the levels of cytokines associated 

with the IL-17A pathway. Levels of (A) IL-6, (B) IL-1β and (C) IL-17A were measured in 
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BAL supernatant of indicated groups(n=4) by multiplex assay. Data representative of at least 2 

independent experiments.  

 

Figure E4: Antibiotic treatment efficiently reduces the total microbial load. DNA was 

extracted from the feces of PBS or LPS/elastase treated mice. qPCR amplified 292 bp fragment 

of v1-v2 rRNA gene for detection of all bacteria. Number of copies determined  using a 

standard curve. . . .     

 

Figure E5: Gating strategy to identify (A) alveolar macrophages and interstitial 

macrophages and (B) IL-17 producing cells 

 

Figure E6: Microbiota enhances IL-17A in chronic pulmonary inflammation. SPF and germ 

free mice were treated with LPS/elastase for 4 weeks. (A) Total cells infiltrating the BAL were 

determined. (B) Neutrophils and (C, D) macrophage subsets in the BAL were enumerated by 

flow cytometry. (E)Total number of γδ +T cells as well as IL-17 producing γδ+ T cells in the 

lungs and airways were quantified by flow cytometry. (F) Germ free mice were challenged with 

LPS/elastase on day 0,7 and 21. Everyday starting at day 12 until day 20 and then on days 22 to 

24, they received microbiome isolated from either PBS challenged SPF mice or LPS/elatase 

challenged SPF mice in 100ul intranasally. Terminal analysis was carried out on day 25. Cells 

isolated from the lungs of the recolonized germ free recipients were restimulated with PMA 

ionomycin and IL-17 production in CD4 + and γδ + T cells was analyzed by flow cytometry. 

 

Figure E7: Temporal changes in cellular sources of IL-17 in disease. The kinetics of IL-17A 

production by ex vivo stimulated cells from mice challenged with 1,2,3 or 4 times PBS or 
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LPS/Elastase. (n=4-5 per time point per group) pie charts showing the cellular sources of IL-17A 

in 1 time or 4 times PBS treated mice versus 1 time LPS/elastase or 4 times LPS /Elastase treated 

mice. Pie charts represent mean of 4-5 mice per group. 
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Figure E1  
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Figure E2 
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Figure E3 
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Figure E4 
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Figure E5: Gating Scheme for (A)macrophages and (B)IL-17 producing cells . 
 

 

 

A 

B 
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Figure E6 
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Figure E7 
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