
1 
 

Antibody drug conjugates for tumor targeting – 
novel conjugation chemistries and the promise of 

non-IgG binding proteins 

Hannes Merten†, Fabian Brandl†,‡, Andreas Plückthun*,†, and Uwe Zangemeister-

Wittke*,†,‡ 

 
†Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-

8057 Zurich, Switzerland 
‡Institute of Pharmacology, University of Bern, Inselspital INO-F, CH-3010 Bern, 

Switzerland 

 

Corresponding authors:  

*Andreas Plückthun, Department of Biochemistry, University of Zurich, 

Winterthurerstrasse 190, CH-8057 Zürich, Switzerland, E-mail: plueckthun@bioc.uzh.ch, 

Phone: +41-44-635-5570, Fax: +41-44-635-5712 

*Uwe Zangemeister-Wittke, Department of Biochemistry, University of Zürich, 

Winterthurerstrasse 190, 8057 Zürich, Switzerland and Institute of Pharmacology, University 

of Bern, Inselspital INO-F, 3010 Bern, Switzerland. E-mail: uwe.zangemeister@pki.unibe.ch, 

Phone: +41-31-632 3290, Fax: +41-31-632 4992 

 
 

  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bern Open Repository and Information System (BORIS)

https://core.ac.uk/display/33092564?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 
 

Abstract  

Antibody-drug conjugates (ADCs) have emerged as a promising class of anti-cancer 

agents, combining the specificity of antibodies for tumor targeting and the destructive 

potential of highly potent drugs as payload. An essential component of these 

immunoconjugates is a bifunctional linker capable of reacting with the antibody and the 

payload to assemble a functional entity. Linker design is fundamental, as it must provide high 

stability in the circulation to prevent premature drug release, but be capable of releasing the 

active drug inside the target cell upon receptor-mediated endocytosis. Although ADCs have 

demonstrated an increased therapeutic window, compared to conventional chemotherapy in 

recent clinical trials, therapeutic success rates are still far from optimal. To explore other 

regimes of half-life variation and drug conjugation stoichiometries, it is necessary to 

investigate additional binding proteins which offer access to a wide range of formats, all with 

molecularly defined drug conjugation. Here, we delineate recent progress with site-specific 

and biorthogonal conjugation chemistries, and discuss alternative, biophysically more stable 

protein scaffolds like Designed Ankyrin Repeat Proteins (DARPins), which may provide such 

additional engineering opportunities for drug conjugates with improved pharmacological 

performance. 
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1. Introduction  

The fundamental problem of all chemotherapeutic agents is their small therapeutic window. 

While most compounds in use today preferentially attack proliferating cells, classical 

chemotherapy causes side effects which limit the tolerated doses below the clinically effective 

ones. To increase the therapeutic window, dose-limiting toxicity must be reduced while at the 

same time effectiveness must be maintained. Antibody-drug conjugates (ADCs) combine the 

unique specificity of antibodies for tumor-associated antigens to discriminate between normal 

and malignant cells, and the cytotoxic effect of a small molecule drug as payload 1-3 . 

Nonetheless, far from being a magic bullet, ADCs normally will have several liabilities as 

well: on-target, by the target antigen being expressed in healthy tissues, and off-target, on the 

one hand by an unspecific uptake of the whole conjugate by healthy cells, and on the other, by 

the drug coming off the antibody. Additionally, the high specificity offers an escape 

mechanism to the tumor cells by down-regulating the relevant surface antigen 4. These 

general considerations emphasize the importance of a judicious choice of the target antigen 

for minimizing on-target toxicity, while molecular engineering optimizing half-lives and 

general molecular properties is needed for minimizing off-target toxicity of the conjugate. 

Finally, linker chemistries must be considered to optimize toxin release after cellular uptake, 

but not prematurely. 

The first cytotoxic agents used for antibody payloading were vinblastine, doxorubicin, 

methotrexate, and melphalan. In the most promising of these first-generation ADCs, 

doxorubicin was attached to the anti-Lewis Y antibody BR96, using an acid-labile hydrazone 

bond. Despite impressive effects in tumor xenograft models 5, BR96-doxorubicin, however, 

demonstrated very low antitumor activity and tolerability in patients 6, 7. Binding of the 

antibody to normal epithelial tissues, low drug potency, and insufficient stability of the 

conjugate were made responsible for the clinical failure of this first-generation ADC. In the 

meantime, the spectrum of tumor-selective antigens has increased and more potent anti-cancer 

agents with cellular IC50 values in the pM range have become available for antibody 

payloading 2. 

Another important element in ADC design is the choice of the linker which connects 

the chemically different targeting molecules to a functional chemical entity and maintains the 

distinct biological functions of the components. To provide high potency and tolerability, the 

linker must be stable to prevent premature drug release in the circulation but capable of 

releasing it inside the cell upon receptor-mediated endocytosis, such that the (usually) 
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hydrophobic drug can cross the endo-lysosomal membrane into the cytosol. Currently, two 

categories of linkers, cleavable and non-cleavable, are used, which address these requirements 

by different mechanisms 2. The next crucial step is then to attach the linker-drug constructs to 

specific reactive sites in the antibody.  

With common antibodies, conjugation is possible at lysines, cysteines or N-glycans. 

The conjugation at lysines, considering the large number in an IgG, will be stochastic and 

result in heterogeneous synthetic products characterized by variable drug-antibody ratios 

(DARs), at least over a certain range. The conjugation at cysteines can either be to disulfides 

(typically at the hinge), which need to be reduced first, or to genetically introduced cysteines 

8. While reaction conditions have been optimized to obtain desired DARs, pharmacological 

performance may well depend not only on the DAR, but also on the precise location of the 

drug on the binding protein 9. 

Recent biotechnological advances have provided a multitude of protein modification 

strategies to better fix the number and location of payload attachment in ADCs 8, 10. Also, a 

number of enzymatic conjugation strategies have been reported that allow the attachment of 

the drug to a tag introduced to the antibody 11. In addition, alternative non-IgG formats have 

become available, which can be engineered to a variety of half-lives, expressed at very high 

yields and better tolerate the engineering procedures required for well-defined DARs and 

optimal efficacy 12, 13. Here, we delineate recent progress in ADC design and the perspectives 

for engineering novel tailor-made drug-conjugated binding protein formats with desired 

pharmacological properties.  

2. Clinical benefit for tumor-targeting ADCs  

Owing to a better understanding of the pharmacological determinants of tumor 

targeting and recent progress in protein engineering, bioconjugation chemistries and the 

generation of highly potent payloads, the ADC pipeline is rapidly growing with currently 

more than 100 entities in clinical trials. For oncology indications, however, clinical results are 

still far from exciting and many challenges remain to help this technology establish its place 

in cancer therapy (www.clinicaltrials.gov).  

ADCs approved by the US Food and Drug Administration (FDA) or currently in 

advanced clinical trials are shown in Table 1. So far, only three ADCs were approved by the 

FDA. They employ either the tubulin polymerization inhibitors monomethyl auristatin E and 

F (MMAE, MMAF), derivatives of maytansine or the DNA-strand breaking calicheamicin 
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(Table 1). These payloads outperform the potency of classical chemotherapeutic drugs by a 

factor of 1000 2. As the first, gemtuzumab ozogamicin (Mylotarg®), which consists of an anti-

CD33 antibody linked to calicheamicin, was granted accelerated approval in 2000 for the 

treatment of relapsed acute myeloid leukemia (AML) 14. It was withdrawn from the market 10 

years later, due to excessive toxicity and lack of anti-tumor activity in a post-approval clinical 

trial with newly diagnosed AML 15. Since then, several randomized studies have been 

completed which nevertheless demonstrate efficacy of this ADC for the same indication using 

a modified dosing regimen 16. It may well be that gemtuzumab ozogamicin will soon find 

reapproval for this disease. However, this history impressively shows how narrow the 

therapeutic window in ADCs really can be, and that clinical reality can be very different from 

seemingly straightforward concepts. 

The next approved candidate was brentuximab vedotin (Adcetris®), an anti-CD30-

MMAE immunoconjugate, which obtained accelerated FDA approval for the treatment of 

Hodgkin's lymphoma and anaplastic large cell lymphoma in 2011 17. In 2013 finally, ado-

trastuzumab emtansine (T-DM1/Kadcyla®), an ADC combining an anti-HER2-antibody with 

the maytansinoid DM1, obtained market approval for the treatment of HER2-positive 

metastatic breast cancer (Table 1) 18. However, the recently reported failure of Kadcyla® to 

meet the primary endpoint of a phase III study in breast cancer patients (NCT01120184; 

BO22589) denotes an unpleasant setback in the field. A deeper understanding of the intrinsic 

properties of the distinct functional components is key to more successful ADC design in the 

future and to improve the perspectives of the whole ADC concept for cancer therapy.  

3. Linker chemistries  

One critical component of the ADC entity is the linker tethering the cytotoxin to the 

antibody. To achieve a maximal therapeutic window, it must be stable in the circulation, yet 

allow efficient drug release inside the cell upon receptor-mediated endocytosis. Therefore, it 

must exploit the differences between the extra- and intracellular environment, respect the 

properties of the target antigen for internalization and must be compatible with the chemistry 

of the payload. Linker design, hence, does not follow predefined guidelines and needs to be 

determined empirically for each ADC 2, 3.  

Currently used linkers in ADCs are either cleavable or non-cleavable 1. Payloads not 

tolerating substitutions without loss of activity require cleavable linkage which depends on 

intracellular processing such as acidic hydrolysis or enzymatic cleavage in the endo/lysosome, 
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leading to release and thus activation of the drug. This allows bystander killing of non-

targeted tumor cells when hydrophobic drugs are used, which is particularly advantageous if 

antigens are heterogeneously expressed in tumors 19. Acid-labile hydrazone linkers were 

among the first cleavable linkers used in ADCs. Upon internalization, the acidic pH in 

endosomes (pH 5.0-6.5) and lysosomes (pH 4.5-5.0) leads to hydrolysis of the hydrazone and 

subsequent release of the drug 2, 20. The serum stability of hydrazone linkers, however, is poor 

21, 22. The low clinical efficacy and the safety concerns of gemtuzumab ozogamicin were 

mainly attributed to this linker instability and premature drug release in the circulation 5, 16, 23. 

Cleavable disulfide linkers, in turn, exploit the high concentration of thiols, such as 

glutathione, in the cytoplasm, which reduce a disulfide bond in the linker to liberate the 

payload 1, 24. To decrease reduction by reactive thiols in the serum, the stability of disulfides 

can be increased by introducing methyl groups flanking the disulfide bond to generate a 

sterically protected disulfide linker 25. Although several disulfide-linked ADCs are currently 

under clinical investigation (Table 1), more stable cleavable linkers are engineered in the form 

of lysosomal protease substrates, e.g. containing a valine-citrulline dipeptide bond, which is 

specifically cleaved by cathepsin B 26-28. 

Non-cleavable linkers, on the other hand, avoid premature drug release in the 

circulation by design 1. Instead, the ADC must be proteolytically degraded in lysosomes and 

the payload is released as an active metabolite along with the amino acid it was conjugated to, 

i.e., usually a cysteine or lysine 19, 29. Although the charge of a lysine-Nε-coupled drug 

metabolite may hamper endo-lysosomal escape, it prevents externalization and bystander 

killing 29, 30. This will, on the one hand, lead to enhanced specificity, but on the other hand, 

limit the action of the drug to the very cell that has taken up the ADC. 

Furthermore, as the linker forms part of the active drug, it can be designed to add 

additional valuable functional properties to the drug, like prevention of MDR1 efflux and thus 

drug resistance, by making it more hydrophilic, e.g., in the form of a PEG4Mal linker 31.  

4. Payloads  

Natural products and synthetic chemistry provide a plethora of cytotoxins of which 

only few have been found suitable for use in ADCs 32, 33. First, the drug’s target must be 

crucial for cell viability to achieve highest cytotoxicity even at the low concentrations which 

can be realistically achieved upon internalization. Ideally, the number of drug molecules 

required to kill a cell are well below the number which is delivered by ADCs, that depends on 
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the DAR and the number of ADCs taken up by a cell in a clinical setting. Data using 

radiolabeled humanized antibodies suggests that localization in tumors does not exceed 0.05% 

of the injected dose per gram tissue 2, 34. This, in turn, leads to the unavoidable conclusion that 

the vast majority of the ADC does not end up in tumor cells. 

Drug activation depends on the linker chemistry and occurs after cleavage or by 

lysosomal degradation 1. To show selectivity upon antigen-specific uptake, the payloads’ 

target must be located inside the tumor cell. Many highly potent natural toxins act on the 

surface of cells by blocking ion channels, disturbing blood clotting etc. and are thus 

unsuitable, as cell specificity would not be achievable by a conjugated antibody. On top of 

that, the payload's molecular properties are important, too. It must be small in size to reduce 

immunogenicity, soluble under aqueous conjugation conditions to prevent aggregation, and 

compatible with the linker chemistry 35.  

Consequently, as mentioned above, all ADCs approved or under late clinical 

investigation are payloaded with new generation drugs dominated by the DNA-strand 

breaking calicheamicins 25, 36, 37, duocarmycins 38, the tubulin-targeting maytansines 39, 40 and 

auristatins 17, 41. The mechanisms of action and the chemistry of the coupling and release 

reactions of these warheads have been described in detail elsewhere 1, 42, 43. Table 1 

summarizes representative examples of clinically advanced ADCs using these highly potent 

drugs as payloads. 

5. Conjugation chemistries  

5.1. Site-selective conjugation and the drug to antibody ratio  

Conjugation site-selectivity and stoichiometrically controlled conjugation of cytotoxic 

payloads to antibodies and other non-IgG binding proteins is crucial for tumor targeting. So 

far, all chemistries used for linker-drug conjugation to antibodies in late clinical trials have 

been based on solvent accessible cysteine and lysine residues through either thiol-maleimide 

coupling (e.g. brentuximab vedotin) 17 or amine NHS-ester coupling (e.g. ado-trastuzumab 

emtansine) 44, respectively (Table 1 and Table 2). As IgGs carry a variable number of lysine 

side-chains, this yields heterogeneous products with variable DARs and inter-batch variations. 

For instance, a typical modification of an IgG with an NHS-ester yields an average DAR of 0-

8. Thus, the 40-86 lysine residues on the antibody surface are modified to a variable degree, 

resulting in a sample with potentially 4.5 million different molecules in terms of 

regioisomerism and drug load 45, 46. If thiol-maleimide coupling is used instead, cysteine 
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conjugation occurs after mild reduction of the four inter-chain disulfide bonds in the hinge 

region of an IgG1. Although conjugation is limited to these eight exposed sulfhydryl groups, 

as clinically used IgG1 typically do not have Cys residues in the CDRs, and thus a higher 

coupling specificity compared to lysines can be achieved, it can still yield more than hundred 

different ADC species 46, 47, depending on the degree of loading and considering regioisomers. 

It must be noted that both DAR and conjugation sites are important for ADC function, as they 

influence the molecular properties through the exposed drug moiety. Whereas a drug load of 2 

seems to provide the best pharmacological performance 47, the site of drug conjugation 

determines linkage stability and thus the ADC's tolerability and efficacy 9.  

As a consequence of the limited site-selectivity of drug conjugation with conventional 

linkage strategies, even the clinically approved ADCs represent mixtures of regioisomers with 

different DARs, each of the molecular species showing a different cytotoxicity and safety 

profile 47, 48. Unconjugated antibodies, which can be hardly separated from the preparations, 

block potential binding sites on the tumor surface and thus lower ADC efficacy, whereas drug 

conjugates with high DAR show increased off-target toxicity and are prone to aggregation, 

which narrows the therapeutic window 49. This delineates that current ADC design is still far 

from optimal. To engineer ADCs for higher efficacy and tolerability, site-selective 

conjugation is mandatory to better control the number and attachment site of payloads.  

Recently, Pillow et al. 48 reported a markedly improved homogeneity of trastuzumab-

DM1 generated by engineering cysteine residues at defined sites in the antibody. Since the 

exposed cysteines are derivatized with cysteine or glutathione in the secretory pathway of the 

host cell, a reduction/oxidation process is required (THIOMAB technology), which reforms 

the hinge and CL-CH disulfides 50. The better defined DAR of 2 to 4 and a novel linker 

technique for DM1 increased the efficacy and safety of the resulting ADC 48. This must be 

seen in the context of recent findings that in terms of efficacy, less payload is more 47.  

Another technique to site-specifically conjugate payloads to antibodies is the use of N-

glycans for attachment. Major limitations of this technique, however, are the difficulty to 

obtain homogeneous glycan structures and to avoid unwanted oxidations of the proteins 

resulting from chemical modifications. Furthermore, the glycan structure is important for 

desired antibody functions like ADCC and, when modified, can generate new highly 

immunogenic epitopes 8. 
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5.2 Bioorthogonal conjugation  

In view of the many downsides associated with uncontrolled payloading, engineering 

a unique, orthogonal functional group into proteins, which then can be coupled to a specific 

reaction partner in a bioorthogonal manner, is appealing also for antibody drug conjugation. 

In this constellation, two components, which are fully complementary and, additionally, 

orthogonal to nature’s functional groups on protein (thiols, alcohols or amines), react to form 

a chemical bond. These components must be stable and small, whereas the reaction must be 

fast, and yet conditions must be so mild that the reaction can be conducted with proteins 51. 

The concept of orthogonal chemistry aims to avoid unspecific side-reactions and allows 

stoichiometrically defined modifications. Here, we briefly discuss the various biorthogonal 

conjugation chemistries with potential for ADC generation. The use of enzymes, either for the 

conjugation reaction itself or the incorporation of unique functional groups into proteins, also 

represents a valid concept for drug conjugation, the benefits and drawbacks of which are 

described elsewhere 8, 11, 51.  

The first truly bioorthogonal reaction for protein modification was reported in 2000 

using the Staudinger ligation. Derived from the original Staudinger reaction, a reaction 

between a phosphine and an azide leading to an amine by subsequent hydrolysis, was 

modified to form a stable amide bond linkage 52, by installing an electrophilic trap at the 

phosphine component. A significant drawback of this ligation reaction is the oxygen 

sensitivity of the phosphine reagents and the slow reaction rate constant, and thus it is not 

well suited for conjugation of drugs to protein and not used nowadays.  

5.3 Click chemistries for bioconjugation  

Another approach to biorthogonal protein modification exploits the 1, 3-diploar 

cycloaddition for linking biological components. In this Cu(I)-catalyzed azide-alkyne 

cycloaddition (CuAAC) an azide reacts with a terminal alkyne to form a stable triazole 

(Table 2) 53, 54. The higher reaction rate and the stability of the reactants has made this 

reaction appealing and widely used for bioconjugation 55. Its dependence on cytotoxic copper, 

however, limits the use of such products in biological systems. A copper-free alternative is the 

strain-promoted azide-alkyne cycloaddition (SPAAC), also denoted click chemistry, which 

uses ring-strained cyclooctynes instead of terminal alkynes (Table 2) 56. To improve the 

moderate reaction rates, various derivatives such as fluorinated 57, benzoannulated 58, 59 and 

cyclopropanated 60 cyclooctynes, have been synthesized. Noteworthy are the cyclopropanated 

variant bicyclo[6.1.0]nonyne (BCN) and the benzoannulated derivative dibenzocyclooctyne 
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(DBCO), also denoted as aza-dibenzocyclooctyne (DIBAC). Both reactants improve reaction 

rates 100-fold over cyclooctyne. Altogether, DBCO was found to best combine high stability 

and efficiency with high hydrophilicity and fast reaction kinetics for the classical SPAAC 

reaction. 

For protein-drug conjugation, it would be most appealing if the site of drug 

conjugation in the protein can be freely chosen. This is the case with non-natural amino acids 

containing azides as they can replace methionines. The aminoacyl tRNA synthase for 

methionine in E. coli accepts the methionine-surrogate azidohomoalanine (Aha), and thus in 

methionine-auxotrophic E. coli strains, after simple Met depletion of the culture, Aha can be 

introduced without any other changes in the E. coli strain 61. However, this requires that the 

protein can be produced in E. coli and thus this strategy favors alternative non-IgG scaffolds. 

Nevertheless, despite the use of rate-optimized cyclooctynes like DBCO and BCN, the 

described reactions are comparably slow (0.1 - 0.3 M-1s-1), and unspecific coupling to 

irrelevant reaction partners present on cell surfaces cannot be excluded and limit the 

orthogonality of the reaction 59, 60, 62. On the other hand, as bioconjugation partners of ADCs 

are usually very pure, such side reactions are unlikely to occur and the stability of the 

components used for cycloaddition remains as an advantage.  

The rate constant of SPAAC with BCN can be highly accelerated using electron-poor, 

aromatic azide components instead of Aha 63. In another study, Borrmann et al. 64 reported 

even more improved rates of cycloaddition by several orders of magnitude using quinones 

instead of azides as reaction partner for BCN. Moreover, this reaction can be temporally 

controlled by oxidation of inert catechols to the reactive quinone. To make these reactions 

applicable to proteins, they must first be charged with aromatic azides, BCN or quinones in a 

stoichiometrically defined, site-specific manner. This no longer possible with a simple met– 

strain of E. coli, but requires amber-suppression technology for site-specific incorporation of 

BCN-lysine or other non-natural amino acids carrying functional groups like quinones or 

norbonenes 65-72. So far, this technology was only used for imaging agents, as it shows 

unfavorably low expression yields 66.  

Also in our hands, amber suppression protein variants showed comparatively low 

expression and also inhomogeneity, since the efficiency of suppression varies with the amber 

site. This requires engineering for purification and thus limits the freedom of molecular 

design (unpublished data). Although this may in principle be overcome using sequence 

optimization 73 and adapted E. coli strains 74, the problem remains that, compared to azide-
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containing non-natural amino acids like Aha, non-natural amino acids like BCN-lysine are 

rather expensive, and, to our knowledge, bacterial strains and vectors carrying tRNA/RS pairs 

for the incorporation of specific non-natural amino acids have not been made commercially 

available.  

Using the amber suppression technology to site specifically incorporate para-

acetylphenylalanine (pAF) in antibodies and to conjugate the drug payload via oxime ligation 

(Table 2) 10, 75, 76, new biologicals could be generated. This technology, when applied to 

trastuzumab emtansine, yields a defined DAR of 2, and the authors believe that the antitumor 

activity and stability is increased compared to drug conjugates produced with the THIOMAB 

method. A possible explanation might be that a retro-Michael addition, leading to the transfer 

of drugs conjugated to cysteines to free thiols in blood serum components, may have partially 

inactivated the ADC 76-78. However, the authors do not provide convincing data showing that 

their own preparation of the THIOMAB antibody had a DAR of 2, as it was published by 

Junutula et al. 50. Furthermore the pAF incorporation still suffers from low expression yields, 

which can only be overcome by extensive cell line engineering, and the oxime ligation 

exhibits low reaction rates, leading to reaction times up to 48 h and is performed at pH 4-4.5, 

which is not tolerated by all proteins.  

5.4 The inverse-electron-demand Diels-Alder reaction for bioconjugation  

The highest rate constants of bioconjugation can be achieved by using the inverse-

electron-demand Diels-Alder reaction of tetrazines and strained alkenes for bioconjugation 79. 

As it has been reported only recently, this results from a decreased closed-shell electron-

electron repulsion between the reaction partners 80. Nothing beats rate constants of up to 106 

M-1s-1 of s-tetrazines with trans-cyclooctene (TCO)-derivatives (Table 2). Since TCO and 

tetrazines can be incorporated in proteins using amber-suppression, numerous applications for 

imaging purposes were reported 72, 81, 82. A downside lies in the diminished stability of the 

most reactive tetrazines in physiological buffers, and, as mentioned above, broad use of the 

amber-suppression-technique is still limited by the high costs of the reagents, low expression 

yields and restrictions in where the modification site can be introduced. Nonetheless, if these 

obstacles can be overcome, the value of this protein payloading technique for ADC generation 

would be immense. 
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6. Binding proteins – antibodies and alternative non-IgG formats 

The key function of the antibody in ADCs is binding to its target antigen, which is 

ideally expressed on the surface of tumor cells in high copy numbers and absent or at least 

low in normal vital tissues. Upon binding, the attached payload is delivered into the cell by 

receptor-mediated endocytosis, detached from the antibody by a variety of mechanisms, and 

transferred to the cytosol, where it acts on its target. An intrinsic property of the full-IgG 

format is its binding to Fc receptors on immune effector cells, which may further boost the 

ADC's cell killing activity. The clinical benefit of this additional effector function, however, 

remains to be demonstrated 49. In addition, binding to the FcRn receptor increases the 

circulation half-life and, hence, tumor localization. However, the comparison of a diabody-

ADC with an IgG-ADC with similar DARs showed only a 3-fold decreased antitumor activity 

of the diabody-ADC, despite a 30-times lower level of exposure 83. The improved tumor 

penetration of smaller conjugates may at least partly compensate the shorter serum half-life 

and thus help explain this finding 49.  

From these data it can be concluded that, by engineering half-life, size, avidity or 

other properties of different binding protein formats over a wide range, which is not possible 

with classical IgGs, the best combination of high activity in the relevant (tumor) tissue and 

low off-target toxicity can be found. Another important advantage of smaller protein 

scaffolds, especially when they can be produced in E. coli, lies in the broader options for 

well-defined drug conjugation, which may be a downside of the classical IgG format.  

Fab- and scFv-ADCs can be engineered for drug conjugation, and indeed, with such 

size-minimized IgG binding proteins, DARs of 1 have been achieved and several IgG-

fragments are currently under preclinical evaluation 49. Axup et al. 84 recently generated a 

highly potent Fab-auristatin using amber suppression for the incorporation of pAF and oxime 

ligation for drug conjugation. Novel biorthogonal chemistries like click chemistry or the 

inverse-electron-demand Diels-Alder reaction, however, have not yet been applied to 

antibody fragments. Hence, non-IgG derived binding proteins allowing the application of new 

bioorthogonal chemistries for fast and site-specific drug conjugation with high yields and 

permitting the screening of a wide range of pharmacological and molecular properties, are 

desired.  

As an alternative to antibodies and their fragments, various non-IgG binding proteins 

with improved biophysical properties have been generated for tumor targeting. Their robust 

nature allows expression in large quantities, they can be engineered to various formats, from 
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mono-, bi- to tetravalent, and with a range of half-life extension features, and they can better 

tolerate the introduction of reactive groups for site-specific and bioorthogonal conjugation 12, 

85. These properties introduced in the design also make these formats compatible with the 

novel bioorthogonal conjugation chemistries described above. Despite this advantage for 

bioconjugate engineering, so far only DARPins have been used for drug conjugation 86. The 

potential of bioorthogonally assembled peptide-drug conjugates for tumor targeting is 

described elsewhere 87.  

DARPins have been introduced recently as a new class of binding proteins which are 

superior to antibodies for various biomedical applications 13. Besides showing very high 

expression yields in E. coli, DARPins are much more stable than antibodies and have 

favorable biophysical properties which increase their freedom of engineering as they e.g. 

carry no cysteine and no essential methionine 88. Moreover, DARPins of very high affinity 

can be readily generated using well-established selection techniques such as ribosome display 

and phage display as previously demonstrated 13. We recently described the successful 

generation and preclinical testing of DARPins selected for high stability and affinity, directed 

against well-internalizing cell surface antigens on solid tumors, which are available for tailor-

made drug conjugation 89-91. 

DARPins provide a valuable platform also for manufacturing bioconjugates with 

various chemistries. First, the lack of native cysteines enables site-directed introduction of 

these residues, e.g. at the C-terminus for specific maleimide-based conjugation of effector 

functions, including the cytotoxic payloads known from classical ADCs (Figure 1). Of 

particular interest for drug conjugation of DARPins is also the lack of conserved methionines 

in the protein scaffold. This allows for the facile incorporation of Aha and the expression of 

azide-DARPins using methionine-depleted bacterial cultures 61, 85, which can be done in very 

high yield and at large scales. The only Met present in the original design, besides the initiator 

codon, is in the N-capping repeat, which can be exchanged to leucine without affecting the 

biophysical properties of the protein and is already replaced in some DARPins through the 

random mutagenesis in ribosome display 85. Additionally, DARPins are usually expressed 

with an N-terminal MRGSH6 tag, from which the methionine is not cleaved 92, and this is also 

true when an amino acid analog is introduced 93. Conversely, if the second amino acid is small 

(e.g., Ala, Gly or Ser), the analog will be cleaved off, allowing the introduction of a unique 

methionine surrogate such as Aha at desired positions elsewhere in the chain (Figure 1) 85. 

The possibility to engineer dual functionality (azide and thiol) into DARPins enables the 
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design of tailor-made drug conjugates with desired pharmacological properties, e.g. by site-

specific payloading with a cytotoxin like MMAF and additional coupling of a half-life 

extension module like serum albumin 86. Such a conjugate demonstrated nanomolar potency 

in vitro and a hundred-fold increased serum half-life. This is the first evidence that alternative 

binding proteins like DARPins are very compatible with the advanced bioorthogonal 

conjugation chemistries and can be engineered further to optimize the pharmacological 

properties of the targeting molecules. Importantly, not only the half-life can be engineered but 

also bispecific binding proteins can be easily designed from such scaffolds, allowing the 

optimization of drug conjugate performance for tumor targeting 94. 

7. Conclusion and perspective  

ADCs combine the specificity of antibodies for tumor-associated antigens to 

discriminate between normal and malignant cells, and the cytotoxic effect of novel drug 

agents as payload. The choice of the linker design is crucial for potency and tolerability as it 

determines stability of the ADC and the site where the drug is released and activated. Despite 

intensive research in these fields and a growing number of candidates in clinical trials, so far 

only two ADCs have been granted approval for oncology indications, indicating that there is 

still ample space for improvements. Clearly, in the parameter space between choice of target, 

optimal half-life, maximal target-tissue toxicity and minimal systemic toxicity, optima are not 

so easily found, as all parameters are mutually dependent on each other. Nonetheless, for 

every molecule, defined conjugation and regiochemistry are important components. For 

whole antibodies, engineered cysteine sites (THIOMAB technology) and the incorporation of 

pAF with amber suppression technology are two methodologies addressing this problem, each 

with its own strengths and weaknesses. 

For site-specific, stoichiometrically defined and fast drug conjugation, proteins can 

now be engineered to contain non-native functional groups to perform novel bioorthogonal 

reactions. Such alternative binding proteins, e.g. DARPins, are very compatible with the 

novel biorthogonal conjugation chemistries for payloading and can be engineered for variable 

half-life, avidity and bispecificity. They hold promise to establish a new generation of 

functionally improved drug conjugates for cancer therapy as a broad range of desired 

pharmacological and biophysical functions can be readily introduced into these binding 

proteins.  
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Figure 1: Double functionalized DARPin (blue) for bioconjugation of effector modules (R1 
and R2) at defined positions in the DARPin scaffold.  
A unique azidohomoalanine (pink) and cysteine (green) can be introduced at any position for 
bioconjugation by click or thiol chemistry, respectively, for producing stoichiometrically 
defined DARPin-cytotoxin bioconjugates. The position of azidohomoalanine and cysteine can 
be moved to any desired position in the DARPin scaffold, and they are shown at the termini 
merely for clarity. Figure adapted from 85. 
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ADC Drug Linker Coupling reaction Antigen Lead indication 

Approved       

Brentuximab vedotin 
(Adcetris®) 

MMAE Valine-citrulline Cys + maleimide CD30 HL, ALCL 

Ado-trastuzumab 
emtansine (Kadcyla®) 

DM1 Thioether Lys + NHS (SMCC) Her2 Breast cancer 

Phase III      

Gemtuzumab ozogamicin Calicheamicin Hydrazone Lys + AcBut CD33 AML 

Inotuzumab ozogamicin Calicheamicin Hydrazone Lys + AcBut CD22 ALL, NHL 

Brentuximab vedotin 
(Adcetris®) 

MMAE Valine-citrulline Cys + maleimide CD30 HL, T-cell lymphoma 

Ado-trastuzumab 
emtansine (Kadcyla®) 

DM1 Thioether Lys + NHS (SMCC) Her2 Gastric cancer, Breast 
cancer 

Phase II      

Glembatumumab vedotin MMAE Valine-citrulline Cys + maleimide gpNMB Breast cancer, Melanoma 

Pinatuzumab vedotin MMAE Valine-citrulline Cys + maleimide CD22 NHL 

Polatuzumab vedotin MMAE Valine-citrulline Cys + maleimide CD79b B-cell lymphoma 

SAR3419 DM4 Disulfide Lys+ NHS (SPDP) CD19 B-cell lymphoma 

Lorvotuzumab mertansine DM1 Disulfide Lys + NHS (SPP) CD56 aSCLC 
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Table 1: ADCs FDA-approved or currently in advanced clinical trials (www.clinicaltrials.gov).  
AcBut, 4-(4'-acetylphenoxy) butanoic acid; ALCL, Anaplastic Large Cell Lymphoma; ALL, Acute Lymphoblastic Leukemia; AML, 
Acute Myelogenous Leukemia; HL, Hodgkin's Lymphoma; NHL, Non-Hodgkin Lymphoma; NHS, N-hydroxysuccinimide; SCLC, Small 
Cell Lung Cancer; SMCC, succinimidyl-4-(N-maleimidomethly)cyclohexane-1-carboxylate; SPDP, succinimidyl 3-(2-
pyridyldithio)propionate; SPP, N-succinimidyl 4-(2-pyridyldithio)pentanoate 
aHalted 
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Reaction 
Chemistry Reaction scheme Reaction

Rate 
Conjugation Site in 

Protein 
Incorporation 

Method 

Amine-NHS 

 

fast Lysine, terminal amine Natural 

Thiol-Maleimide 
Michael Addition 

 

fast Cysteine Natural 

Oxime Ligation 

 

slow p-Acetylphenylalanine 
Amber 

suppression 

Cycloaddition 
CuAAC 

 

slow Azidohomoalanine 
Methionine - 
auxotrophic 

E.  coli 

Cycloaddition  
SPAAC 

 

slow Azidohomoalanine 
Methionine - 
auxotrophic 

E.  coli 



20 
 

 
 

 
 
 
 
 
 

 
Table 2: Conjugation Chemistries for ADCs.  
R1: protein, e.g., antibody, R2: drug or linker. Please note that many reactions can be performed with reverse location of functional groups 
e.g. tetrazine-charged proteins. Here, we list the most common techniques. For reaction details see 75, 95. 
 
 

Inverse-electron-
demand Diels-
Alder reaction 

 

very fast 
trans-Cyclooctene-

Lysine 
Amber 

suppression 
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