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Abstract

Current methods for detection of copy number variants (CNV) and aberrations (CNA) from targeted sequencing
data are based on the depth of coverage of captured exons. Accurate CNA determination is complicated by
uneven genomic distribution and non-uniform capture efficiency of targeted exons. Here we present CopywriteR,
which eludes these problems by exploiting ‘off-target’ sequence reads. CopywriteR allows for extracting uniformly
distributed copy number information, can be used without reference, and can be applied to sequencing data
obtained from various techniques including chromatin immunoprecipitation and target enrichment on small gene
panels. CopywriteR outperforms existing methods and constitutes a widely applicable alternative to available tools.
Background
Genetic and epigenetic aberrations underlie many dis-
eases and disorders. Recent advances in DNA sequen-
cing technologies have facilitated the discovery of these
changes, allowing disease gene discovery at an unprece-
dented rate [1,2]. Until now, the vast majority of efforts
to uncover disease-genotype relations have deployed
whole-exome sequencing (WES) or targeted sequencing
on a smaller gene panel. These approaches enrich for
the protein-coding sequences of the genome, or a subset
of that, to focus the sequencing effort and reduce cost
and data complexity compared to whole-genome se-
quencing (WGS) [3,4].
While WES has been successful in identifying disease-

related mutations, it is well established that changes in
copy number contribute to pathogenesis as well [5,6].
For this reason targeted sequencing efforts are com-
monly complemented with arrayCGH, SNP arrays, or
low-coverage whole-genome sequencing (LC-WGS)
[7-10], which increases the cost significantly. More re-
cently, approaches that use reads mapping to captured
regions (on-target reads) have been used as a cost-
effective alternative to identify copy number aberrations
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(CNAs) [11-14]. Generally, the tools that apply this ap-
proach use the depth of coverage (DOC) of the captured
exons as a measure of copy number status. Although
DOC-based methods have proven useful for CNA detec-
tion from WGS data, their application to WES data suf-
fers from two intrinsic limitations. First, copy number
information from non-exonic regions is absent and can
only be inferred from the exonic DOC. This impairs the
discovery of CNAs in non-exonic regions, which have
been shown to be clinically relevant [15-17]. Second,
there is a large variation in the efficiency of capture baits
to retrieve targeted sequences. All currently existing
tools for DNA copy number profiling from WES apply
sophisticated statistical models, such as principal com-
ponent analysis, hidden Markov models, and singular
value decomposition, for the segmentation and calling of
genomic aberrations to overcome these limitations
[11,12,18-21]. Despite this, the accuracy of copy number
detection from WES is known to be poor when com-
pared to methods that are dedicated to CNA detection
[21]. These effects are even more pronounced when per-
forming targeted sequencing with a small-size gene
panel. Depending on the number of enriched genes,
DNA copy number profiles will only yield sparsely
distributed copy number information, which makes
accurate downstream segmentation analysis more
error-prone.
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The enrichment strategies used for targeted sequen-
cing generally achieve only 40% to 60% efficiency [22];
as a result, a large proportion of the sequence reads
maps outside of these targeted regions. We hypothesized
that such ‘off-target’ reads can be used to obtain DNA
copy number profiles. This would provide not only more
information on gene-poor regions, but also circumvent
the aforementioned limitations of exonic DOC-based
approaches.
Here, we describe the development of a new tool,

called CopywriteR, which can be used to generate high
quality DNA copy number profiles using off-target reads
from targeted sequencing data. We analyze the perform-
ance of CopywriteR relative to other approaches based
on on-target reads, and describe the wide applicability of
the tool.

Results
Detection and removal of genomic regions enriched for
sequence reads
In an attempt to determine whether off-target reads
from targeted sequencing can be used to derive copy
number profiles, we first analyzed whole-exome sequen-
cing (WES) data of a germline DNA sample (C41; for in-
formation about the datasets used in this manuscript,
refer to Additional file 1). We discarded reads mapping
to genomic regions covered by capture baits and se-
quences adjacent to these capture regions, which are fre-
quently co-enriched during the capture procedure. We
then calculated the number of reads that map to
genome-wide consecutive 20 kb windows (bins) to ob-
tain the depth of coverage (DOC). As the effective bin
size was reduced upon removal of reads mapping to cap-
ture regions, we calculated a compensated DOC by div-
iding the DOC by the ratio of the effective bin size (that
is, bin size minus the size of peak regions) to the original
bin size (see Materials and methods). We removed se-
quences mapping within bait regions that were extended
with up to 400 bp of flanking sequences. Despite this
stringent filtering of the data, we were unable to elimin-
ate capture biases and to generate smoothed copy
number profiles (top four profiles in Additional file 2:
Figure S1). We observed that a number of peaks of se-
quence reads on the genome were not overlapping with
capture bait regions (for an example, see Figure 1A),
which could explain the failure to generate high quality
copy number profiles using this method.
Therefore, we decided to use off-target reads for copy

number aberration (CNA) detection and applied the
Model-based Analysis for ChIPseq (MACS) algorithm to
detect peaks in germline samples enriched using various
capture sets (see Additional file 1). First, we calculated
that 125,000 to 170,000 MACS-peaks overlap with cap-
ture regions, depending on the capture set used. While
the majority of exons targeted by baits were found
within these MACS-peaks, we observed that 8% to 11%
of peaks were located in non-exonic regions (Additional
file 2: Figure S2A). Whereas the amount of peaks called
by MACS was dependent on the number of sequence
reads, a maximum was reached for samples with a total
of 100 million reads. This suggests that the number of
‘orphan’ peaks is limited and that they represent parts of
the genome that are reproducibly captured during target
enrichment. We speculated that a fraction of orphan
peaks was caused by co-capture of homologous se-
quences during exome enrichment. Therefore, we calcu-
lated the overlap of MACS-peaks with exons of both
pseudogenes [23] and Ensembl genes [24]. Indeed, about
60% and 25% of orphan peaks constituted pseudogenes
or untargeted Ensembl genes, respectively (Figure 1B).
This was more than what would be observed by chance,
as 10,000 simulations using randomly placed peaks of
the same size distribution did not once reach the ob-
served extent of overlap with either pseudogene or
Ensembl exons (Additional file 2: Figure S2B and C).
We observed a similar effect for other capture sets
(Additional file 2: Figure S2D and E), which suggests
that the majority of orphan peaks can be explained by se-
quence co-capture during exome enrichment strategies.
As such orphan peaks could introduce noise into the copy
number data, we decided to filter sequence reads in
MACS-peaks (termed ‘peak removal’ in the remainder of
the manuscript). This indeed led to a dramatic noise re-
duction (compare top four profiles to bottom profile in
Additional file 2: Figure S1). Global inspection using the
IGV genome browser showed that this procedure effi-
ciently removes distinguishable peaks (Figure 1A).

Off-target sequence reads are uniformly distributed over
the genome
Next, we tested whether sufficient sequence reads were
left for CNA calling after peak removal. We noticed that
among the different capture sets, at least 10% of the in-
put sequence reads were reads with high mapping qual-
ity (Phred-score >37) outside of MACS-peak regions
(Figure 1C). From our experience with low-coverage
whole-genome sequencing (LC-WGS) approaches with
20 kb bins, 5 million reads are sufficient for accurate
CNA detection. This is in line with the number of reads
that map outside of MACS-peak regions (Additional file
2: Figure S3). We found that 86.6% of our samples had
more than 5 million useable off-target reads, suggesting
that most exome sequence datasets will be amenable to
analysis using our approach.
We subsequently tested whether the off-target reads

display a uniform distribution over the genome in a set
of six human germline DNA samples. For this, we per-
formed MACS-based peak calling with subsequent peak
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Figure 1 Copy number information can be obtained from off-target reads. (A) Screenshot from the IGV genome browser, showing an
example of a genomic region with sequence reads mapping to the genome before and after removal of reads in Model-based Analysis for
ChIPseq (MACS) called peaks. In addition, the location of MACS-peaks, capture regions, and genes are shown. (B) Germline DNA sample C41 was
subjected to WES with capture set Agilent SureSelect Human Exon Kit V4. The nature of MACS-peaks that do not overlap capture regions is
displayed. The fraction of these orphan peaks that overlap with pseudogene or Ensembl exons, that do not map to any of the reference genome
chromosomes, that are unmappable, and that do not belong to any of these categories are shown. (C) The distribution of sequence reads of
both germline and tumor DNA samples is shown for the indicated capture sets. Sequence reads are classified into one of these categories: (1)
low mapping quality reads (Phred-score < 37 and/or reads do not pair properly); (2) mitochondrial reads; (3) reads in MACS-peaks; (4) remaining
reads. Error bars represent standard deviations. (D) Germline DNA sample C45 was subjected to WES, and the amount of reads after compensation for
reduced effective bin size is calculated and compared to the corresponding read counts from an exon-based method. Density plots of the number of
sequence reads per data point are shown for each method. (E) A flowchart of the steps incorporated in the CopywriteR tool.
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removal followed by the application of the 20 kb bin
DOC-based approach with a compensated DOC (see
above and Materials and methods). Although in theory
this compensation could lead to a bias, there was no ob-
vious relationship between the compensated DOC and
the effective bin size in male sample C45 (Additional file
2: Figure S4; upper panel). The non-random scattering
pattern of the effective bin sizes was due to clustering of
bins where the same number of MACS-peak regions has
been removed (Additional file 2: Figure S4; lower panel).
When comparing the compensated off-target DOC to
the DOC on capture regions (black and red, respectively;
Figure 1D and Additional file 2: Figure S4), the density
distribution of the off-target DOC appeared normally
distributed and was relatively narrow.
In addition to the above, a small shoulder could be dis-

tinguished representing the sex chromosomes (Figure 1D
and Additional file 2: Figure S4). Therefore, based on the
notion that we can distinguish different copy number
states from off-target reads, we developed ‘CopywriteR’
(Figure 1E), which exploits off-target reads from targeted
sequencing for CNA detection. This method is based on
peak calling using MACS in a matched reference sample
or, when no reference is available, in the sample itself. Se-
quence reads in peaks are removed, and the DOC is calcu-
lated based on fixed-size bins. The DOC is compensated
for peak removal, normalized using loess-based correc-
tions for mappability and GC content, and filtered for
regions of extensive germline copy number variation
(see Materials and methods). CopywriteR is implemented
in R and is available for download from GitHub [25].

Comparison of CopywriteR and methods dedicated to
copy number detection
Next, we assessed the performance of CopywriteR relative
to dedicated copy number detection platforms. Six PDX-
derived human melanoma samples (T98-T103) were ana-
lyzed with Affymetrix SNP6 chips and WES using the
same DNA preparation. To allow a direct comparison of
the copy number data from CopywriteR and Affymetrix
SNP6, we generated pseudo counts of the SNP6 data as
described previously [11-14,20] and in the Materials and
methods. As an example, the copy number profile of sam-
ple T98 was very similar for both methods (Figure 2A; left
panel). In a side-by-side comparison, the segmentation
values for the two methods were nearly identical for all
samples (Figure 2A; right panel). However, the variance of
the SNP6 profiles was higher (Figure 2A; left panel), as
was reflected by the MAD values for SNP6 (mean = 0.56,
range = 0.46 to 0.73) and CopywriteR (mean = 0.26, range
= 0.24 to 0.27). Since the deflection (that is, the difference
between two copy number states) of aberrations between
CopywriteR and SNP6 was similar, the sensitivity of detec-
tion of CNAs was higher for CopywriteR. This was also
reflected by the higher signal-to-noise ratios for
CopywriteR-derived copy number profiles compared to
those of SNP6 (Table 1; [26]). In sum, while CopywriteR
and SNP6 copy number profiles are largely comparable,
the sensitivity for detecting gains and losses is higher
when CopywriteR is used.
To compare the quality of CopywriteR-derived data to

those from arrayCGH, we analyzed DNA of four mouse
small cell lung cancer (SCLC) samples (T21, T23, T43,
and T44) with both Nimblegen 135 K arrays and WES
using the same DNA preparation. For a direct compari-
son of copy number profiles of CopywriteR and Nimble-
gen array methods, we matched the array probes to the
nearest bin center to create pseudo counts. Copy num-
ber profiles were plotted together with their segmenta-
tion values for both methods (Figure 2B). On the
whole-genome level, all aberrations were detected in
arrayCGH and CopywriteR-derived data (Figure 2B; left
panel). We observed that chromosome four of sample
T43 displays a complex copy number profile with mul-
tiple high-level amplifications (Figure 2B; right panel).
Comparison between the techniques showed that copy
number profiles derived from the Nimblegen array plat-
form and from CopywriteR were highly similar, with all
major aberrations detected with both methods. The
signal-to-noise ratio was slightly higher in the arrayCGH
datasets (Table 2). While the technical noise was lower
for the array (mean MAD = 0.24, range = 0.22 to 0.26)
compared to CopywriteR (mean MAD = 0.49, range =
0.42 to 0.61), the biological signal, as denoted by the de-
flection, was higher for CopywriteR. The lower deflection
of copy number profiles obtained from Nimblegen arrays
in comparison with other DNA copy number platforms
has been described before [27,28]. In sum, CopywriteR ac-
curately detects CNAs and performs similar to the dedi-
cated DNA copy number technique arrayCGH.
To further assess the data quality obtained using

CopywriteR, we tested our approach on a set of nine
mouse mammary tumors for which both WES (Nimblegen
or Agilent capture sets) and LC-WGS data were available.
We applied CopywriteR to the WES set, and compared
the profiles with those obtained from LC-WGS (Figure 2C).
CopywriteR-based profiles were highly similar to those ob-
tained from LC-WGS data, and while the technical noise
was higher for CopywriteR compared to LC-WGS (MAD
values of 0.50 versus 0.32), a part of this might be ex-
plained by the lower read count for CopywriteR-derived
copy number profiles. Across all samples, the MAD values
were marginally higher for the CopywriteR method (mean
MAD= 0.38, range = 0.28 to 0.67) compared to LC-WGS
(mean MAD= 0.27, range = 0.19 to 0.60), which is reflected
by the lower signal-to-noise ratio for LC-WGS (Table 3).
To investigate how CopywriteR performs relative to

other methods that are based on on-target reads, we



Figure 2 CopywriteR compares to dedicated copy number detection methods. (A) Six PDX-derived human melanoma were subjected to
WES and analyzed on SNP6 arrays. Pseudo counts were derived (see Materials and methods), and used as a basis for copy number profiles, with
segmentation values (CBS) depicted in red (left panel). After segmentation, segmentation values were represented as a heatmap to show concordance
of the two methods. (B) Four murine small-cell lung carcinomas (SCLC) were subjected to WES and analyzed by arrayCGH. Pseudo counts were cre-
ated and used for creating copy number profiles, with segmentation values (CBS) depicted in red (right panel). Segmentation values were plotted
as in (A) for comparison of the two methods (left panel). (C) Tumor T20 from a breast cancer mouse model was subjected to WES or LC-WGS. Copy
number profiles of chromosome 12 generated with onTarget or CopywriteR methods are compared to the profile from LC-WGS data of the same
material, with segmentation values (CBS) depicted in red (left panel). Segmentation values of onTarget and CopywriteR methods are plotted against
the LC-WGS method, and Euclidian distances and Pearson correlation coefficients of segmentation values are displayed (right panel).
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implemented our own version of the exonic DOC-based
method ExomeCNV [12], which processes copy number
data according to the CopywriteR workflow where pos-
sible (we refer to this method as ‘onTarget’ in the remain-
der of the text; see Materials and methods for details). For
sample T20, we observed that segmentation of onTarget
data did not allow detection of all aberrations, as was most
clearly shown for parts of the p-arm of chromosome 12
(Figure 2C; left panel). In addition, when comparing
to the onTarget method, the segmentation values of



Table 1 MAD values, signal, and signal-to-noise ratios of
CopywriteR and SNP6-derived copy number profiles from
the PDX-derived human melanoma sample set

CopywriteR SNP6

MAD Signal SNR MAD Signal SNR Genomic location

T98 0.206 0.722 3.50 0.547 0.721 1.32 chr6p

T99 0.241 0.344 1.43 0.610 0.302 0.50 chr16

T100 0.225 0.618 2.75 0.680 0.649 0.95 chr1q

T101 0.252 0.996 3.95 0.927 0.829 0.89 chr1q

T102 0.248 0.592 2.39 0.753 0.617 0.82 chr8q

T103 0.237 0.978 4.13 0.516 0.931 1.80 chr2q
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CopywriteR correlated better with LC-WGS, as was
reflected by a higher Pearson correlation coefficient and
a lower Euclidian distance. Thus, from this analysis it
appears that CopywriteR outperforms the onTarget
method.

CopywriteR outperforms exonic read-based methods for
copy number detection
To extend our analysis of the potential of CopywriteR,
we next analyzed the entire sequence dataset of nine
mouse mammary tumors, and measured the perform-
ance of CopywriteR and onTarget approaches based on
downstream segmentation analysis. We included two of
the most recent and best segmentation algorithms, prop-
Seg [20,21] and circular binary segmentation (CBS) [29].
In addition, we included EXCAVATOR, a tool dedicated
to obtaining copy number information from WES ef-
forts. For this analysis, we compared the performance to
results obtained from LC-WGS data.
To assess the similarity between these methods and

the LC-WGS reference, we derived the mean weighted
variant of both the Euclidian distance and the Pearson
correlation coefficient between each set of methods
based on segmentation values obtained using CBS or
propSeg. These measures were then used for clustering
analysis (Figure 3A). We observed that LC-WGS and
CopywriteR-derived copy number states were least dis-
tant, irrespective of the segmentation algorithm that was
applied. Similarly, the correlation between LC-WGS and
Table 2 MAD values, signal, and signal-to-noise ratios of
CopywriteR and arrayCGH-derived copy number profiles
from the murine small-cell lung cancer sample set

CopywriteR Nimblegen

MAD Signal SNR MAD Signal SNR Genomic location

T21 0.351 0.585 1.67 0.246 0.49 1.99 chr2: 141-182 Mb

T22 0.341 0.532 1.56 0.276 0.493 1.79 chr2: 147-182 Mb

T23 0.479 -0.626 1.31 0.219 -0.443 2.02 chr7: 116-153 Mb

T24 0.580 1.115 1.92 0.274 0.737 2.69 chr10: 80-108 Mb
CopywriteR was highest, albeit that these approaches
formed sub-clusters based on the applied segmentation
approach. Also, when comparing copy number profiles
and the resulting segmentation values, CopywriteR and
LC-WGS data appeared most alike (Figure 3B). Thus,
despite the variation in WES and LC-WGS reads among
the samples (see Additional file 1), CopywriteR outper-
forms the onTarget approach, and the segmentation
values of CopywriteR-derived copy number profiles are
more similar to those of LC-WGS than other exonic
read-based methods.
A possible limitation of CopywriteR may be that its

performance depends on the effectiveness of target en-
richment, as a higher capture efficiency would lead to
fewer off-target reads, and therefore result in less accur-
ate copy number information. To exclude this possibil-
ity, we obtained a set of 16 sequence files from The
Cancer Genome Atlas (TCGA) with matching copy
number information from SNP6 arrays (see Materials
and methods), and performed a similar analysis. For the
entire dataset, the mean weighted Euclidian distance of
CBS-derived segmentation values of SNP6 was closest to
those of CopywriteR. In addition, the mean weighted
Pearson correlation coefficient SNP6 also correlated best
with CopywriteR (Additional file 2: Figure S5A). More-
over, while the onTarget method suffered from ‘noisy’
segmentation, this was much less the case for SNP6 and
CopywriteR approaches (Additional file 2: Figure S5B).
Thus, together with our previous analyses, these results
show that CopywriteR outperforms other exonic read-
based approaches.
While comparing the onTarget and CopywriteR ap-

proaches on a dataset of six melanoma PDX (T98-T103)
with matched germline samples, we observed two phe-
nomena that could explain the better performance of
CopywriteR. While the dispersion of the germline samples
in the dataset (C43 to C47) was slightly lower for the
onTarget method compared to CopywriteR (Additional
file 2: Figure S6A; left panel), there were more outliers
(data points >1.5× the interquartile range away from the
first and third quartiles) with onTarget (Additional file 2:
Figure S6A; right panel). These outliers appeared to
specifically concentrate at discrete values, suggesting
that they corresponded to capture regions with low
DOC. Indeed, when we highlighted bins according to
their absolute normalized compensated DOC in the
tumor sample from low (red) to high (dark gray), we
observed that the large majority of outliers obtained
with the onTarget approach are regions with low DOC,
while this was not the case for CopywriteR (Additional
file 2: Figure S6B). Thus, whereas onTarget copy num-
ber profiles display differences in technical noise de-
pending on the bait efficiency, CopywriteR does not
suffer from this limitation.



Table 3 MAD values, signal, and signal-to-noise ratios of CopywriteR, onTarget, and LCWGS-derived copy number
profiles from the murine breast cancer sample set

CopywriteR LC-WGS onTarget

MAD Signal SNR MAD Signal SNR MAD Signal SNR Genomic location

T60 0.262 0.523 2.00 0.176 0.501 2.85 0.159 0.467 2.94 chr6: 52-120 Mb

T56 0.250 0.494 1.98 0.170 0.513 3.02 0.172 0.568 3.30 chr16: 12-25 Mb

T20 0.314 1.099 3.50 0.271 0.978 3.61 0.653 1.135 1.74 chr8:7-16 Mb

T62 0.265 0.421 1.59 0.185 0.403 2.18 0.160 0.376 2.35 chr8: 3-47 Mb

T19 0.252 1.314 5.21 0.163 1.272 7.80 0.591 1.24 2.10 chr8:22-39 Mb

T2 0.395 0.303 0.77 0.255 0.335 1.31 0.230 0.344 1.50 chr5:38-152 Mb

T3 0.293 0.401 1.37 0.212 0.361 1.70 0.181 0.286 1.58 chr15:87-104 Mb

T7 0.597 0.395 0.66 0.538 0.398 0.74 0.330 0.371 1.12 chr6

T50 0.262 0.477 1.82 0.193 0.486 2.52 0.175 0.462 2.64 chr5
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Another explanation for CopywriteR’s better perform-
ance is that segmentation tools appear to perform better
on CopywriteR-derived DOC. One problem with seg-
mentation algorithms is the sheer number of segments
that are called, with over-segmentation frequently occur-
ring. The CBS algorithm appointed a limited number of
segments on CopywriteR-based data for each of the
tumor samples (T98 to T103), and the number was
comparable to that obtained using EXCAVATOR. In
contrast, application of the onTarget method resulted in
clear over-segmentation (Additional file 2: Figure S7A
and B). Thus, in contrast to CopywriteR-derived copy
number information, on-target DOC constitutes a poor
substrate for traditional segmentation algorithms. In
sum, CopywriteR outperforms other exonic read-based
methods, potentially due to both the presence of a high
number of outliers in on-target data and the poor per-
formance of traditional segmentation algorithms on
these types of data.

CopywriteR allows for copy number detection without a
reference
Patient samples are frequently subjected to WES, to-
gether with a matched germline reference sample for
variant detection. In some cases, however, a reference
sample is absent. A similar limitation applies to cultured
cell lines and archival tissue, for which reference mater-
ial is rarely available. Others have already shown that
LC-WGS can be used to generate copy number profiles
without the need for a reference [10,22,30,31]. Copy-
writeR mimics LC-WGS in that it uses uniformly distrib-
uted sequence reads. Therefore, we tested the feasibility
of using CopywriteR without a reference. We analyzed
melanoma PDX sample T99 using CopywriteR and
onTarget methods, both with and without a matching
reference (‘relative’ and ‘absolute’, respectively). Segmen-
tation was subsequently performed using CBS. EXCA-
VATOR does not have an implementation to perform
the analysis without a reference sample and was there-
fore only tested with a reference. All five methods were
able to capture the main somatic copy number aberra-
tions (Figure 4A). As expected, the onTarget-absolute
method was highly noisy due to the differences in bait
efficiency. In contrast, application of CopywriteR-
absolute resulted in copy number profiles that were
highly identical to any of the relative profiles, and this
was also the case for the segmentation values obtained
using CBS (Figure 4B). We then analyzed the segmenta-
tion values for the entire melanoma PDX dataset in
terms of the Euclidian distance and the Pearsons correl-
ation (Figure 4C). While the onTarget-absolute method
displayed limited similarity to the approaches using a
reference, CopywriteR-absolute was highly concordant
with the relative methods. Thus, these analyses show
that CopywriteR is unique in its ability to extract accur-
ate copy number information from targeted sequencing
data without a reference.

CopywriteR can be applied to sequencing data from
various sources
All samples that we analyzed thus far were from frozen
material and thus based on high-quality DNA. Since
(tumor) tissue is often archived as formalin-fixed,
paraffin-embedded (FFPE), we challenged CopywriteR’s
performance with sequencing data obtained from DNA
of such suboptimal quality. We compared the perfor-
mances of CopywriteR and onTarget on WES data ob-
tained from DNA of an FFPE melanoma biopsy. We
observed that the technical noise in the profile of the
onTarget method was higher compared to the CopywriteR
method (Figure 5A), which was also reflected by higher
MAD values for onTarget (0.52) relative to CopywriteR
(0.22). In addition, the onTarget method displayed GC-
content bias (compare the GC-rich chromosomes 19 and
22 with GC-poor chromosomes 13 and 18 [32,33]), which
was absent from the profiles that were analyzed with
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Figure 3 CopywriteR outperforms exonic depth of coverage-based methods. (A) Tumors from a breast cancer mouse model were
subjected to WES or LC-WGS, and analyzed using CopywriteR or onTarget methods. Subsequently, copy number data were segmented using
propSeg or CBS, while the integrated EXCAVATOR tool was used in addition. Weighted Euclidian distances (left) and Pearson correlation
coefficients (right) were calculated between the different approaches for every sample, and the means of those values across all samples are
represented as clustered heatmaps. (B) As in (A); the genome-wide copy number plots for sample T3 are displayed for the indicated analysis
methods, with segmentation values depicted in red.
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CopywriteR. Thus, the better performance of CopywriteR
is also observed for samples of sub-optimal DNA quality.
ChIPseq is a widely used technique combining chro-

matin immunoprecipitation (ChIP) with NGS to identify
the binding sites of DNA-associated proteins. Because
the enrichment of genomic regions containing such
binding sites is relatively poor, we hypothesized that suf-
ficient off-target reads would be available for CopywriteR
to derive accurate copy number profiles. We tested this
on the breast cancer cell line MCF7 for which sequence
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Figure 4 Copy number detection in the absence of a reference. (A) CopywriteR and onTarget methods were applied to WES data of
melanoma PDX sample T99, either with or without C43 as a reference. Genome-wide copy number profiles are shown, with segmentation values
(CBS) depicted in red. (B) CBS-derived segmentation values of the analysis in (A) are represented in a heatmap. (C) Segmentation values of all six
melanoma PDX samples were treated as in (A) and (B), and the weighted Euclidian distances and Pearson correlation coefficients were calculated
for every sample between the different methods. The means of those values across all samples are represented as clustered heatmaps.
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data from both input material as well as multiple ChIP-
seq experiments for a number of DNA-associated pro-
teins (ER, EGR1, GATA3, CTCF, MAX, and EP300) are
available [34]. Using downstream segmentation analysis
with CBS, we observed that CopywriteR accurately and
reproducibly detected copy number changes (Figure 5B;
left panel and Additional file 2: Figure S8).
In addition, we analyzed five publically available ChIP-

seq samples [35] using CopywriteR and CBS, and com-
pared the resulting copy number information to that
from the input material. DNA copy number profiles of
20 kb resolution were very similar between CopywriteR
and input material-derived data, as illustrated in a heat-
map (Figure 5B; right panel) and on genome-wide copy
number profiles (Additional file 2: Figure S9). In sum,
CopywriteR not only performs well on WES data, but
also on other types of next-generation sequencing data,
such as those obtained from ChIPseq.
Based on the performance of CopywriteR on WES, we
wanted to further challenge CopywriteR and test its per-
formance on targeted sequencing of a small-size gene
panel. We used a set of biopsies from four patients with
BRAFV600E-mutant melanoma, where for each patient,
samples before and after vemurafenib (a clinical BRAF in-
hibitor) treatment, as well as matching normal references,
are available. Samples were sequenced following target en-
richment for 1,977 genes (29,596 exons; 115,332 baits;
[36,37]). While the percentage of off-target reads was
similar to that of WES (3.0% to 12.0%), the total amount
of reads (26.9 to 74.9 million reads) was lower in this data-
set. As a result, the number of off-target reads was also
relatively low; we therefore increased the bin size to which
CopywriteR analysis was applied to 100 kb (Figure 5C; left
panel and Additional file 2: Figure S8). For the onTarget
method, copy number information was sparsely available,
and data segmentation was inaccurate as evidenced from



Figure 5 CopywriteR is widely applicable. (A) Sample T97 (FFPE) was subjected to WES, and copy number profiles relative to C41 (fresh frozen
reference material) are displayed for onTarget and CopywriteR methods, with segmentation values (CBS) depicted in red (left panel: whole-genome;
right panel: chromosome 9). (B, left panel) ChIPseq data were obtained from ChIP experiments on the MCF7 cell line with the indicated set of antibodies,
or from the relevant input control. Copy number data were extracted using CopywriteR, and further analyzed employing CBS. Segmentation values are
represented as a heatmap. (B, right panel) Data were analyzed as for the left panel. ChIPseq data were obtained from ChIP experiments on ER+ breast
cancer with ER-antibodies (E), or from the relevant input (I) control. (C, left panel) A set of matched pre- and post-vemurafenib treatment melanoma
samples were subjected to targeted sequencing on a 1,977-gene panel. Copy number information was extracted using CopywriteR and example
regions of the resulting copy number profiles are presented, with segmentation values (CBS) depicted in red. (C, right panel) Segmentation values
were plotted as a heatmap for the pre/post-treatment pairs.
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over-segmentation of the data (155 to 459 segments). In
contrast, CopywriteR produced evenly distributed copy
number information across the entire genome, with accur-
ate segmentation as a result (26 to 53 segments). Although
differences in copy number states might have occurred be-
tween the pre- and post-treatment samples, a heatmap of
the segmentation values demonstrated that they were
highly similar for CopywriteR but not onTarget-derived
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copy number data (Figure 5C; right panel). Thus, while
the inherent focus of targeted sequencing for a small-size
gene panel is limited to a few regions of the genome,
CopywriteR is uniquely able to expand this focus and ob-
tain accurate genome-wide copy number information.

Discussion
Targeted sequencing is commonly used in cancer re-
search and clinical genetics [8,38], mainly for mutation
detection. Such sequencing data can also be used to ex-
tract DNA copy number information, and the demand
for this has led to the recent development of numerous
exonic DOC-based methods (for a review see [21]).
However, the non-uniform genomic distribution of cap-
tured exons and the differences in bait efficiency limit
the detection of CNAs in gene-poor regions, and consti-
tute challenges for downstream analysis.
Here, we describe an alternative to the exonic DOC-

based methods available for CNA detection from tar-
geted sequencing data. By using the off-target reads that
are discarded by conventional methods, we generated
high quality and reproducible DNA copy number pro-
files. The data quality of CopywriteR-derived copy num-
ber information is similar to, or outperforms, dedicated
copy number profiling platforms (Figure 2). In addition,
CopywriteR performs better than exonic read-based
methods with respect to the accuracy of segmentation
(Figure 3 and Additional file 2: Figure S5). Thus, Copy-
writeR constitutes a better alternative to existing tools
for obtaining copy number information from WES.
CopywriteR addresses two main problems of using

exon-based DOC. First, CopywriteR is independent of
the genomic position of capture baits. As opposed to ex-
onic read-based approaches, CopywriteR will provide
copy number information on any region in the genome,
including for gene-poor regions. Second, the independ-
ence of CopywriteR from bait efficiency has the advan-
tage that it permits analysis of samples without a
reference. In sharp contrast, exon-based DOC methods
require a reference, as differences in bait efficiency pre-
clude the use of ‘single-channel’ copy number profiles.
One could compensate for these differences using a cor-
rection based on earlier sequence data using the same
capture set. However, it remains to be shown whether
this is feasible, as bait efficiencies would need to be con-
stant throughout independent experiments.
The applicability of CopywriteR extends beyond WES,

as we have shown that CopywriteR can be applied to
other data types as well, including ChIPseq and targeted
sequencing of small-size gene panels. Preliminary data
suggest that also FAIREseq data are a good substrate for
CopywriteR analysis. Thus, our data suggest that Copy-
writeR can be used to extract copy number information
from many other enrichment strategies too.
CopywriteR opens the possibility to extract accurate
genome-wide DNA copy number profiles, also in set-
tings where this could previously only be reached by
means of additional experiments and expenses. For in-
stance, we show that CopywriteR performs well on tar-
geted sequencing of small-size gene panels, that it has
the unique ability to perform well on FFPE archival tis-
sue, and that it allows extraction of copy number infor-
mation without the need for a reference. These features
are unique to CopywriteR and are clinically highly rele-
vant, since targeted sequencing is the sequencing type of
frequent choice in diagnostic settings, where archival
FFPE tissue often lacks reference material. Thus, Copy-
writeR has the potential to extract important additional
information from both existing and new sequencing ef-
forts, thereby unlocking the full potential of sequencing
data.

Conclusions
Here, we present a novel tool, called CopywriteR, for the
detection of copy number aberrations from targeted se-
quencing. All currently available methods are based on
exonic depth of coverage, and suffer from the problems
that bait efficiencies are non-uniform and that exons are
irregularly distributed over the genome. By exploiting
the off-target sequence reads, CopywriteR bypasses these
problems. It allows for extracting DNA copy number
profiles of a high quality comparable to those of ‘dedi-
cated’ techniques such as SNP array, arrayCGH, and
low-coverage whole-genome sequencing techniques.
CopywriteR outperforms exonic read-based approaches
and has the ability to derive copy number information
even in the absence of a reference. CopywriteR is widely
applicable on sequence data ranging from ChIPseq to
targeted sequencing on a small-size gene panel. Without
the need for additional experiments and expenses, Copy-
writeR opens new possibilities to further mine both
existing and future sequencing efforts.

Materials and methods
Sample selection
CopywriteR was evaluated against WES, targeted sequen-
cing, and ChIPseq datasets. The WES datasets includes:
(1) six PDX-derived human melanoma samples with six
matched germline references (T98 to T103; C42 to C47);
(2) four mouse SCLC samples with one matched germline
reference (T21, T23, T43, and T44; C3); (3) nine mouse
mammary tumors with two matched germline references
(T2, T3, T7, T19, T20, T50, T56, T60, T62; C1, C39);
(4) one melanoma biopsy (FFPE) with matched refer-
ence (T97; C41); and (5) 16 kidney renal cell carcinoma
(KIRC) samples downloaded from the TCGA together
with matching germline references [8]. The targeted sequen-
cing dataset includes matching pre- and post-vermurafenib
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treatments melanoma samples, as well as germline refer-
ences [37]. The ChIPseq datasets include: (1) the breast
cancer cell line MCF7 which was analyzed with multiple
ChIPseq samples with six DNA associated proteins (ER,
EGR1, GATA3, CTCF, MAX, and EP300) as well as input
material as a control [34]; and (2) five breast cancer sam-
ples enriched for ER-binding sites and matching input
control samples [35]. Detailed information (including
origin, sequencing method, sequence depth, and other
sequencing statistics) for all samples is documented in
Additional file 1.
In addition to sequencing data, PDX-derived melan-

oma and TCGA data were analyzed using Affymetrix
SNP6; mSCLC samples were analyzed on Nimblegen ar-
rays; mouse mammary tumors were analyzed by WG-
LCS. The Animal Experimental Committee approved all
animal experiments. Samples were collected following
approval of the Medical Ethical Committee of the NKI
(study code N03LAM) and in compliance with the
Helsinki Declaration. Previously unpublished data have
been made available through the NCBI Gene Expression
Omnibus (GEO) [39] (accession number GSE60259), the
European Nucleotide Archive (ENA) [40] (accession
number PRJEB6954), and the European Genome-
phenome Archive (EGA) [41] (accession number
EGAS00001000617).

Data processing
Segmentation of all copy number profiles was calculated
using CBS [29] as implemented in the R-package
CGHcall 2.22.0 [42], except where indicated using prop-
Seg [20]. The median absolute deviation (MAD) was cal-
culated using madDiff from the R-package matrixStats
0.10.0 [43]. Signal-to-noise ratios were calculated by div-
iding the absolute segmentation value for a large seg-
mented genomic region (called using CBS) by its MAD
value. All human and mouse data were mapped onto the
hg19 and mm10 reference genomes, respectively. Random
sampling of sequence reads was performed using SAM-
tools view -s 0.1.18 [44].

Whole-exome sequencing
DNA libraries were prepared using the Illumina Paired
End Sample Prep Kit according to the manufacturer’s
protocol. Target enrichment was performed using the
Nimblegen SeqCap EZ Mouse 53.4 Mb, Agilent SureSe-
lect Mouse all Exon Kit V1, Agilent SureSelect Human
Exon Kit V4, and Agilent SureSelect Human Exon Kit
50 Mb capture sets. Sequencing was performed on Illu-
mina HiSeq 2000 sequencers. Reads were mapped by
bwa 0 to 7.5 [45] with default settings. SAM files were
processed using Picard 1.101 [46], SAMtools and the
Genome Analysis ToolKit (GATK) release 2.7-4 [47]. In
brief, SAM files were binary compressed, sorted, and
indexed by SAMtools (samtools view, sort, and index
tools), duplicated reads were removed by Picard (with
MarkDuplicates), and base quality score recalibration
and local realignment around indels followed the recom-
mended workflow of the GATK toolkit (RealignerTarget-
Creator, IndelRealigner, BaseRecalibrator, and PrintReads).

Targeted sequencing
DNA of eight melanoma samples was isolated and sub-
jected to targeted sequencing of designed ‘Cancer mini-
genome’ consisting of 1,977 cancer genes, based on [36].
Pools of libraries were enriched for this gene set using
SureSelect technology (Agilent Technologies, Santa Clara,
CA, USA). Enriched libraries were sequenced to an
average coverage of 150× on a SOLiD 5,500 × l instrument
according to the manufacturer’s protocol. Mapping,
variant calling, and annotation was done as previously
described [36,37].

arrayCGH
Mouse SCLC samples were analyzed with Nimblegen
135 K arrayCGH (12 × 135 k WG-T array,
091016_MM9_RK_CGH_HX12) containing 137,221 in
situ synthesized oligonucleotides (Roche Nimblegen,
Madison, WI, USA). Labeling was performed with
250 ng of input DNA according to the manufacturer’s
instructions. Image acquisition of the Nimblegen ar-
rays was performed with the Agilent DNA Microarray
Scanner (Model G2505B, Serial number US22502518)
and image analysis was performed using Nimblescan
software version 2.6 (Roche Nimblegen).

SNP6 data and pre-processing
Melanoma derived from PDX were run on Affymetrix
SNP6 chips for copy number analysis. All arrays were
run according to the manufacturers’ instructions. DNA
processing, preparation, hybridization, and chip scanning
were performed at the Wellcome Trust Sanger Institute
(WTSI). The data were normalized using the CRLMM
[48] package and HapMap reference data as provided by
Affymetrix [49].

Whole-genome low-coverage sequencing
Mouse mammary tumors were analyzed by WGS with
an average genome coverage of 0.2×, and the same read-
count based method was used as applied in CopywriteR.
Total read counts for each sample are documented in
Additional file 1.

CopywriteR workflow
Removal of the enriched regions and retrieval of the off-
target DOC is performed in multiple steps: (1) reads are
filtered for Phred score >37 and for reads mapping in
proper pairs (FLAG 0 × 2) using SAMtools; (2) genomic
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regions enriched for sequencing reads (peaks) are iden-
tified in reference samples using MACS 1.4 [50]; and
(3) reads corresponding to peak regions identified in
step (2) are discarded in sample and reference using
bedtools 2.19.1.
DOC ratios for each bin are calculated as follows: (1)

DOC is calculated for genome-wide 20 kb bins (unless
indicated otherwise) using Rsamtools 1.14.3; (2) DOC is
compensated for reduced effective bin sizes upon removal
of peak region reads (that is, if x is the cumulative length
of all MACS-peaks in base pairs within one 20 kb bin,
compensated DOC = uncompensated DOC * 20,000/
(20,000 - x)); (3) DOC is corrected for GC content and
mappability using two loess normalization steps, and re-
gions of copy number variation are discarded according to
the uniqueness of the ENCODE reference genome [34]
(these correction steps are implemented in CopywriteR);
(4) median normalization and log2 transformation of the
corrected and compensated DOC; (5) subtraction of log2
transformed, corrected, and compensated DOC of the ref-
erence sample (for creating relative copy number profiles);
and (6) reporting in log files.
All the algorithms and methods have been imple-

mented in the CopywriteR package, which uses R and
Unix command-line utilities. CopywriteR takes BAM
files from targeted sequencing as input. CopywriteR is
parallelized where possible to allow simultaneous pro-
cessing of multiple samples, and is executed using three
functions. The first function generates mappability and
GC-content files for the provided bin size. The second
function calculates compensated read counts, performs
the mappability and GC-content-based normalization
steps and applies a filter for regions of germline copy
number variation. The results are provided in tab-
separated format. The third function is optional and al-
lows segmentation using CBS [29] as implemented in
the R-package CGHcall 2.22.0 [42], and plotting of the
results. One parallel run of CopywriteR on a desktop
computer with a 2.7 GHz CPU and 12 GB of RAM on
two samples of 156 and 144 million sequence reads
takes under 2 h. Our package (v1.3), as deployed on the
data described here, is available for download from
GitHub [25].

Comparison array and SNP methods to WES copy number
data
CopywriteR-derived copy number ratios were compared
to Affymetrix SNP6 (PDX-derived melanoma) and Nim-
blegen 135 K (mSCLC) by constructing pseudo counts
matching bins of the CopywriteR analysis. More specific-
ally, for creating Nimblegen pseudo counts, the count of
a particular bin was set to the intensity of the arrayCGH
probe that is nearest to the center of that bin. For Affy-
metrix SNP6 data, the average intensity of all probes that
fall within each bin was set as a pseudo count. Segmen-
tation using CBS [29] was performed on the Nimblegen
and Affymetrix pseudo counts with identical settings as
for the CopywriteR-derived copy number profiles.

Use of onTarget, EXCAVATOR, and segmentation
methods
The onTarget method is near-identical to ExomeCNV
[12] and calculates the mean depth of coverage per base
pair for sequence reads that map to a particular capture
region for a specific capture set. It follows the Copy-
writeR workflow, with the difference that it disregards
background reads, and that it does not apply peak re-
moval in compensation steps. EXCAVATOR, CBS, and
propSeg were used according to the package manuals.

Distance and correlation calculation
For the calculation of the distance and correlation mea-
sures of a set of segmentation values, we first extracted
all overlapping genomic regions between the set, and cal-
culated the weighted Euclidian distance and the weighted
Pearson product-moment correlation coefficient for these
regions (the weighing is based on the length of a specific
overlapping region). When applying this to a set of sam-
ples, we calculated mean weighted variants of the distance
and correlation measures.

Repositories
Locations of pseudogenes (versions human68 and
mouse76) were obtained from pseudogene.org; loca-
tions of Ensembl genes (version Ensembl Genes 75)
were obtained from the Biomart repository.

Additional files

Additional file 1: Tumor and reference samples used in this study.
Description of the material used for sequencing, and specifications of
WES/LC-WGS, depth of coverages, and peaks called by MACS.

Additional file 2: Figures S1 to S9. This document contains
supplementary Figures S1-9.

Abbreviations
Bp: Base pairs; CBS: Circular binary segmentation; CGH: Comparative genomic
hybridization; ChIPseq: Chromatin immunoPrecipitation sequencing;
CNA: Copy number aberration; DOC: Depth of coverage; FFPE: Formalin-Fixed
Paraffin-Embedded; Indel: Insertion/deletion; Kb: kilobases; MACS: Model-based
analysis of ChIPseq; SNP: Single nucleotide polymorphism; WES: Whole-exome
sequencing; WGS: Whole-genome sequencing.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
TK and OK conceived, designed, and implemented the CopywriteR workflow.
AV conceived and designed the algorithm for GC content and mappability
corrections, and for blacklist filtering. TK and OK conceived, designed, and
conducted all analyses. KK, MR, DA, and DP conceived and conducted the
melanoma WES dataset experiments. ML and MH conceived and conducted
the targeted melanoma dataset experiments. EN downloaded and processed

http://genomebiology.com/content/supplementary/s13059-015-0617-1-s1.xlsx
http://genomebiology.com/content/supplementary/s13059-015-0617-1-s2.pdf


Kuilman et al. Genome Biology  (2015) 16:49 Page 14 of 15
the ChIPseq dataset experiments. LB conceived and conducted the mSCLC
experiments. JR and JJ conceived and conducted the breast cancer mouse
model experiments. TK, OK, and DP wrote the manuscript. AV, KK, MR, LB, BY,
JR, JJ, LW, and DA revised the manuscript. KK, DA, MR, LB, JR, JJ, SR, and GX
provided WES samples. All authors read and approved the manuscript.
Acknowledgements
We would like to acknowledge the Center of Personalized Cancer Treatment
(CPCT) for providing samples, Daniel Vis and Sander Canisius for data
acquisition and the High Performance Computing (HPC) facility of the NKI.
This work was supported by a Dutch Cancer Society (KWF) long-term
fellowship to TK, a KWF grant to KK, the ERC Synergy Project CombatCancer
to DSP, and a Queen Wilhelmina Award grant from the Dutch Cancer Society
(KWF Kankerbestrijding) to DSP.

Author details
1Division of Molecular Oncology, Netherlands Cancer Institute, Plesmanlaan
121, 1066 CX Amsterdam, The Netherlands. 2Central Genomic Facility,
Netherlands Cancer Institute, Amsterdam, The Netherlands. 3Experimental
Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, UK. 4Division of
Molecular Genetics, Netherlands Cancer Institute, Amsterdam, The
Netherlands. 5Division of Molecular Carcinogenesis, Netherlands Cancer
Institute, Amsterdam, The Netherlands. 6Division of Molecular Pathology,
Netherlands Cancer Institute, Amsterdam, The Netherlands. 7Center for
Personalized Cancer Treatment, Amsterdam, The Netherlands. 8Department
of Pathology, VU University Medical Center, Amsterdam, The Netherlands.
9Vetsuisse Faculty, Institute of Animal Pathology, University of Bern, Bern,
Switzerland.

Received: 3 January 2015 Accepted: 20 February 2015
References
1. Mardis ER, Wilson RK. Cancer genome sequencing: a review. Hum Mol

Genet. 2009;18:R163–8.
2. Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol.

2008;26:1135–45.
3. Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, et al.

Targeted capture and massively parallel sequencing of 12 human exomes.
Nature. 2009;461:272–6.

4. Hodges E, Xuan Z, Balija V, Kramer M, Molla MN, Smith SW, et al.
Genome-wide in situ exon capture for selective resequencing. Nat Genet.
2007;39:1522–7.

5. Zack TI, Schumacher SE, Carter SL, Cherniack AD, Saksena G, Tabak B, et al.
Pan-cancer patterns of somatic copy number alteration. Nat Genet.
2013;45:1134–40.

6. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell.
2011;144:646–74.

7. Wang T-L, Maierhofer C, Speicher MR, Lengauer C, Vogelstein B, Kinzler KW,
et al. Digital karyotyping. Proc Natl Acad Sci U S A. 2002;99:16156–61.

8. Network CGA. Comprehensive molecular characterization of human colon
and rectal cancer. Nature. 2012;487:330–7.

9. McLendon R, Friedman A, Bigner D, Van Meir EG, Brat DJ, Mastrogianakis
GM, et al. Comprehensive genomic characterization defines human
glioblastoma genes and core pathways. Nature. 2008;455:1061–8.

10. Scheinin I, Sie D, Bengtsson H, van de Wiel MA, Olshen AB, van Thuijl HF,
et al. DNA copy number analysis of fresh and formalin-fixed specimens
by shallow whole-genome sequencing with identification and exclusion
of problematic regions in the genome assembly. Genome Res.
2014;24:2022–32.

11. Magi A, Tattini L, Cifola I, D’Aurizio R, Benelli M, Mangano E, et al.
EXCAVATOR: detecting copy number variants from whole-exome
sequencing data. Genome Biol. 2013;14:R120.

12. Sathirapongsasuti JF, Lee H, Horst BAJ, Brunner G, Cochran AJ, Binder S, et al.
Exome sequencing-based copy-number variation and loss of heterozygosity
detection: ExomeCNV. Bioinformatics. 2011;27:2648–54.

13. Holt C, Losic B, Pai D, Zhao Z, Trinh Q, Syam S, et al. WaveCNV: allele-specific
copy number alterations in primary tumors and xenograft models from
next-generation sequencing. Bioinformatics. 2014;30:768–74.
14. Lonigro RJ, Grasso CS, Robinson DR, Jing X, Wu Y-M, Cao X, et al. Detection
of somatic copy number alterations in cancer using targeted exome capture
sequencing. Neoplasia. 2011;13:1019–25.

15. Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B, et al. Genomic
loss of microRNA-101 leads to overexpression of histone methyltransferase
EZH2 in cancer. Science. 2008;322:1695–9.

16. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP. A
coding-independent function of gene and pseudogene mRNAs regulates
tumour biology. Nature. 2010;465:1033–8.

17. Bierkens M, Krijgsman O, Wilting SM, Bosch L, Jaspers A, Meijer GA, et al.
Focal aberrations indicate EYA2and hsa-miR-375as oncogene and tumor
suppressor in cervical carcinogenesis. Genes Chromosomes Cancer.
2012;52:56–68.

18. Fromer M, Moran JL, Chambert K, Banks E, Bergen SE, Ruderfer DM, et al.
Discovery and statistical genotyping of copy-number variation from
whole-exome sequencing depth. Am J Hum Genet. 2012;91:597–607.

19. Krumm N, Sudmant PH, Ko A, O’Roak BJ, Malig M, Coe BP, et al. Copy
number variation detection and genotyping from exome sequence data.
Genome Res. 2012;22:1525–32.

20. Rigaill GJ, Cadot S, Kluin RJC, Xue Z, Bernards R, Majewski IJ, et al. A
regression model for estimating DNA copy number applied to capture
sequencing data. Bioinformatics. 2012;28:2357–65.

21. Tan R, Wang Y, Kleinstein SE, Liu Y, Zhu X, Guo H, et al. An evaluation of
copy number variation detection tools from whole-exome sequencing data.
Hum Mutat. 2014;35:899–907.

22. Samuels DC, Han L, Li J, Quanghu S, Clark TA, Shyr Y, et al. Finding the lost
treasures in exome sequencing data. Trends Genet. 2013;29:593–9.

23. Zhang Z, Harrison PM, Liu Y, Gerstein M. Millions of years of evolution
preserved: a comprehensive catalog of the processed pseudogenes in the
human genome. Genome Res. 2003;13:2541–58.

24. Flicek P, Amode MR, Barrell D, Beal K, Billis K, Brent S, et al. Ensembl 2014.
Nucleic Acids Res. 2014;42:D749–55.

25. CopywriteR [https://github.com/PeeperLab/CopywriteR]
26. Greshock J, Feng B, Nogueira C, Ivanova E, Perna I, Nathanson K, et al. A

comparison of DNA copy number profiling platforms. Cancer Res.
2007;67:10173–80.

27. Curtis C, Lynch AG, Dunning MJ, Spiteri I, Marioni JC, Hadfield J, et al. The
pitfalls of platform comparison: DNA copy number array technologies
assessed. BMC Genomics. 2009;10:588.

28. Krijgsman O, Israeli D, Haan JC, van Essen HF, Smeets SJ, Eijk PP, et al. CGH
arrays compared for DNA isolated from formalin-fixed, paraffin-embedded
material. Genes Chromosomes Cancer. 2011;51:344–52.

29. Olshen AB, Venkatraman ES, Lucito R, Wigler M. Circular binary
segmentation for the analysis of array-based DNA copy number data.
Biostatistics. 2004;5:557–72.

30. Wood HM, Belvedere O, Conway C, Daly C, Chalkley R, Bickerdike M, et al.
Using next-generation sequencing for high resolution multiplex analysis of
copy number variation from nanogram quantities of DNA from formalin-fixed
paraffin-embedded specimens. Nucleic Acids Res. 2010;38:e151.

31. Magi A, Tattini L, Pippucci T, Torricelli F, Benelli M. Read count approach for
DNA copy number variants detection. Bioinformatics. 2012;28:470–8.

32. Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D, et al. High
resolution analysis of DNA copy number variation using comparative
genomic hybridization to microarrays. Nat Genet. 1998;20:207–11.

33. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial
sequencing and analysis of the human genome. Nature. 2001;409:860–921.

34. ENCODE Project Consortium. An integrated encyclopedia of DNA elements
in the human genome. Nature. 2012;489:57–74.

35. Ross-Innes CS, Stark R, Teschendorff AE, Holmes KA, Ali HR, Dunning MJ,
et al. Differential oestrogen receptor binding is associated with clinical
outcome in breast cancer. Nature. 2012;481:389–93.

36. Vermaat JS, Nijman IJ, Koudijs MJ, Gerritse FL, Scherer SJ, Mokry M, et al.
Primary colorectal cancers and their subsequent hepatic metastases are
genetically different: implications for selection of patients for targeted
treatment. Clin Cancer Res. 2012;18:688–99.

37. Hoogstraat M, Gadellaa-van Hooijdonk CG, Ubink I, Besselink NJM,
Pieterse M, Veldhuis W, et al. Detailed imaging and genetic analysis
reveal a secondary BRAF(L) (505H) resistance mutation and extensive
intra-patient heterogeneity in metastatic BRAF mutant melanoma
patients treated with vemurafenib. Pigment Cell Melanoma Res. 2014;
doi:10.1111/pcmr.12347.

https://github.com/PeeperLab/CopywriteR


Kuilman et al. Genome Biology  (2015) 16:49 Page 15 of 15
38. de Ligt J, Boone PM, Pfundt R, Vissers LELM, Richmond T, Geoghegan J, et al.
Detection of clinically relevant copy number variants with whole-exome
sequencing. Hum Mutat. 2013;34:1439–48.

39. Gene Expression Omnibus. [http://www.ncbi.nlm.nih.gov/geo]
40. European Nucleotide Archive. [http://www.ebi.ac.uk/ena/home]
41. European Genome-phenome Archive. [http://www.ebi.ac.uk/ega/home]
42. van de Wiel MA, Kim KI, Vosse SJ, van Wieringen WN, Wilting SM, Ylstra B.

CGHcall: calling aberrations for array CGH tumor profiles. Bioinformatics.
2007;23:892–4.

43. MatrixStats. [https://github.com/HenrikBengtsson/matrixStats]
44. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The

Sequence Alignment/Map format and SAMtools. Bioinformatics.
2009;25:2078–9.

45. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics. 2009;25:1754–60.

46. Picard. [http://broadinstitute.github.io/picard/]
47. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A

framework for variation discovery and genotyping using next-generation
DNA sequencing data. Nat Genet. 2011;43:491–8.

48. Carvalho B, Bengtsson H, Speed TP, Irizarry RA. Exploration, normalization,
and genotype calls of high-density oligonucleotide SNP array data. Biostatistics.
2007;8:485–99.

49. International HapMap Consortium. The International HapMap Project.
Nature. 2003;426:789–96.

50. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al.
Model-based Analysis of ChIP-Seq (MACS). Genome Biol. 2008;9:R137.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://www.ncbi.nlm.nih.gov/geo
http://www.ebi.ac.uk/ena/home
http://www.ebi.ac.uk/ega/home
https://github.com/HenrikBengtsson/matrixStats
http://broadinstitute.github.io/picard/

	Abstract
	Background
	Results
	Detection and removal of genomic regions enriched for sequence reads
	Off-target sequence reads are uniformly distributed over the genome
	Comparison of CopywriteR and methods dedicated to copy number detection
	CopywriteR outperforms exonic read-based methods for copy number detection
	CopywriteR allows for copy number detection without a reference
	CopywriteR can be applied to sequencing data from various sources

	Discussion
	Conclusions
	Materials and methods
	Sample selection
	Data processing
	Whole-exome sequencing
	Targeted sequencing
	arrayCGH
	SNP6 data and pre-processing
	Whole-genome low-coverage sequencing

	CopywriteR workflow
	Comparison array and SNP methods to WES copy number data
	Use of onTarget, EXCAVATOR, and segmentation methods
	Distance and correlation calculation
	Repositories

	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

