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Abstract We present observations of total cloud cover and cloud type classification results from a sky
camera network comprising four stations in Switzerland. In a comprehensive intercomparison study, records
of total cloud cover from the sky camera, long-wave radiation observations, Meteosat, ceilometer, and visual
observations were compared. Total cloud cover from the sky camera was in 65–85% of cases within ±1 okta
with respect to the other methods. The sky camera overestimates cloudiness with respect to the other
automatic techniques on average by up to 1.1 ± 2.8 oktas but underestimates it by 0.8 ± 1.9 oktas compared
to the human observer. However, the bias depends on the cloudiness and therefore needs to be considered
when records from various observational techniques are being homogenized. Cloud type classification
was conducted using the k-Nearest Neighbor classifier in combination with a set of color and textural
features. In addition, a radiative feature was introduced which improved the discrimination by up to 10%.
The performance of the algorithm mainly depends on the atmospheric conditions, site-specific
characteristics, the randomness of the selected images, and possible visual misclassifications: The mean
success rate was 80–90% when the image only contained a single cloud class but dropped to 50–70% if the
test images were completely randomly selected and multiple cloud classes occurred in the images.

1. Introduction

Clouds are the principal modulator of the Earth’s radiation budget by reflecting solar radiation back to
space and by trapping and reemitting long-wave (thermal) radiation emitted by the surface and the lower
troposphere. Clouds remain the largest uncertainty in the estimates and interpretation of the Earth’s
changing radiation budget [Boucher et al., 2013]. Problems include among others the lack of global
and quantitative surface measurements, many different kinds of inhomogeneities in the data sets, and
insufficient precision to measure the small changes in cloudiness that nevertheless can have large impacts
on Earth’s climate [e.g., Norris and Slingo, 2009]. Most of these deficiencies are due to the absence of observ-
ing systems designed to monitor cloudiness and its variations with high precision. Therefore, it is crucial to
establish such observing systems which allow cloudiness and its variations to be accurately monitored.

Cloudiness has been observed worldwide for decades by human observers. These records are undoubtedly
the most important archive to study long-term changes in cloudiness. However, this observation technique
is being increasingly replaced by automatic methods, mostly due to economical pressure. The replacements
have often caused substantial inhomogeneities in these important records [Dai et al., 2006]. Besides their
costs, the relatively low temporal resolution of human cloud observations—in contrast to the highly
dynamical cloud system—show their limitation and the need for automatic ground-based systems.
Automatic ground-based techniques include devices such as the ceilometer, cloud radar, long-wave
radiometers, pyrradiometers, and hemispherical sky cameras [Boers et al., 2010].

In recent years, the use of hemispherical sky cameras has been steadily increasing. While the first camera
systems, a series of Whole Sky Imagers developed by the Scripps Institution of Oceanography at the
University of California [e.g., Johnson et al., 1989; Shields et al., 2003, 2013] and the commercially distributed
Total Sky imager [Long and DeLuisi, 1998], were relatively expensive due to the high-quality optics and
engineering involved, the rapid development of low-cost digital cameras has favored their application for
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cloud observations. Numerous research groups nowadays use various camera systems developed for their
specific needs [e.g., Feister and Shields, 2005; Kalisch and Macke, 2008; Kreuter et al., 2009].

Cloud detection and the calculation of total cloud cover are based on algorithms which use the
red-green-blue (RGB) image in combination with a camera-dependent threshold to discriminate between
cloud-free and cloudy pixels. Various ratios and/or differences of the three-color channels for cloud
detection have been discussed and are in use [e.g., Long et al., 2006; Heinle et al., 2010; Ghonima et al.,
2012; Kazantzidis et al., 2012]. Hemispherical sky cameras are a powerful alternative to commonly used
cloud observation techniques because of (1) temporally high-resolved observations and (2) imaging of
the total hemisphere on a pixel basis yielding total cover in percentage coverage of the sky. Some of the
deficiencies include the hampered detection of cloudy pixels near the Sun and the limitation of the method
to daytime observations for most of the systems in use. An exception is the DayNight Whole Sky imager
with its high dynamic range and sensitivity which allows night time images to be acquired and processed
[Shields et al., 2013].

Besides total cloud cover, the camera systems allow the clouds to be classified into different cloud classes
using statistical methods. Cloud type classification is an essential requirement to study the effect of various
cloud types on the radiative processes in the atmosphere and on the surface radiation budget in order to
minimize uncertainties. However, cloud type observations have so far been mainly restricted to human
observers and no automatic technique is available on an operational basis. The concept of cloud type
classification using hemispherical sky cameras is based on a nonparametric classifier which discriminates
clouds using various characteristics which describe the spectral and textural properties of clouds [e.g.,
Heinle et al., 2010; Kazantzidis et al., 2012]. It was found that clouds can be correctly classified in 75–95% of
cases. Finally, sky cameras are beginning to be used for intrahour and subkilometer cloud forecasting and
solar irradiance nowcasting [Quesada-Ruiz et al., 2014; Yang et al., 2014]. This broad range of applications
demonstrates the potential of such camera systems in meteorology and climate sciences.

We have established a camera network in Switzerland to observe total cloud cover and to conduct cloud
type classification. We will present the first results and compare the observations of total cloud cover to
corresponding observations from other techniques. In section 2, the network and methods are described.
Section 3 presents the results and includes a comparison of total cloud cover calculated using two different
sky camera algorithms (section 3.1), intercomparisons of total cloud cover derived from various techniques
(section 3.2), and cloud type classification at all sites (section 3.3). The results are discussed in section 4.
Finally, concluding remarks and a brief outlook are given in section 5.

2. Data and Methods
2.1. Camera Network and Hardware
Hemispherical sky cameras have been installed at four sites in Switzerland (see Table 1). In 2010, a camera
system was deployed at the Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center
(PMOD/WRC) in Davos. In 2011, a camera was installed at Payerne, which is a station of the Global Climate
Observing System Reference Upper Air Network and the Baseline Surface Radiation Network (BSRN).
Previous to this, a camera system had also been installed at Zimmerwald observatory, operated by the
Astronomical Institute and the Institute of Applied Physics of the University of Bern. However, due to
technical problems with the camera system in combination with the remoteness of the site, this camera
was only occasionally in operation and the use of its data is limited to cloud type classification in this
study. Finally, the last camera was deployed in 2012 at the high alpine and Global Atmospheric Watch site
Jungfraujoch. All sites are collocated with ancillary observations of various atmospheric parameters used in
this study such as screen level temperature, downwelling long-wave radiation (DLR), and integrated water
vapor. In addition, ceilometer data are available at Payerne and Zimmerwald, and visual cloud observations
at Payerne and Jungfraujoch.

Cloud observations began at Davos, Zimmerwald, and Payerne with a CMS (Schreder GmbH) camera system
(www.schreder-cms.com/) which consists of a commercial Canon digital camera (Canon Power Shot A60)
with a fish eye lens enclosed by a glass dome to protect the optics from the environment. Pictures are
acquired every 5 min and have a resolution of 1200 × 1600 pixels. A second underexposed picture (1/1600 s
exposure) is taken just after the first which has an exposure at 1/500 s (normal exposed picture). Pictures are
taken at a fixed aperture f /8. The underexposed picture is used to determine whether the Sun is covered
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Table 1. Station Names, Coordinates, Altitude, and Date of Installation of the Sky Cameras

Station Coordinates Altitude (masl) Camera Type Begin of Operationa

Payerne (PAY) 46.81◦N, 6.94◦E 490 Schreder 25/3/2011
Zimmerwald (ZIM) 46.87◦N, 7.47◦E 907 Schreder 30/8/2010
Davos (DAV) 46.81◦N, 9.84◦E 1610 Schreder/MOBOTIX 27/3/2010
Jungfraujoch (JFJ) 46.55◦N, 7.98◦E 3584 MOBOTIX 25/7/2012

aDates are formatted as day/month/year.

by clouds or not. If the Sun is not covered by clouds, the underexposed picture is also used to reliably
evaluate the image and to detect those pixels, which are often saturated due to the Sun’s high intensity. Due
to frequent failures particularly during very cold weather conditions, a more robust system was acquired
for Davos and Jungfraujoch. A commercial surveillance camera from MOBOTIX (www.mobotix.com) was
chosen which includes a high-resolution 3 megapixel color sensor with a fish eye lens. Pictures are taken
every minute at an exposure of 1/500 s and have a 1200 × 1600 pixel resolution. The camera in Davos was
installed in April 2013 in a ventilation unit on a solar tracker with shading disks to impede the formation
of ice and snow on the lens and to permanently block the direct beam of the Sun. The same setup was
used at Jungfraujoch, but the camera was not installed on a solar tracker, as it was the case at Payerne
and Zimmerwald.

The MOBOTIX system has not been designed for climate applications while the quality of the optics is
considerably lower compared to the Schreder system. However, the MOBOTIX system is more robust regard-
ing operation under harsh environmental conditions. The pictures of the MOBOTIX were only used for
Jungfraujoch in this study.

2.2. Cloud Detection and Calculation of Total Cloud Cover
2.2.1. Hemispherical Sky Camera
Image processing algorithms calculate total cloud cover by determining whether a cloud is present in
each pixel using the measured color in combination with a reference value. Before the color criteria can
be applied to the images, they need to be preprocessed. Since the horizon at Davos and Jungfraujoch is
characterized by high mountain ridges, the images need to be masked in order to evaluate only the relevant
pixels of the sky. The flat horizon at Payerne and Zimmerwald is cut at a constant angle of 12◦ to remove
buildings and trees near the horizon.

A color mask is generated out of the (normal exposed) RGB color signal using the ratios of the blue to
the green channel and the blue to the red channel for each pixel. The color mask is then compared to a
reference value to generate a blue and a cloudy sky mask of the normal exposed image. The reference value
is set to 2.5 for the Schreder camera while for the MOBOTIX a value in the range 1.82–2.2 is used depending
on the image settings. If the corresponding value of the pixel is greater than the reference value the pixel is
interpreted as blue, otherwise it is interpreted as cloudy. For the Schreder system, the underexposed image
is also used for a precise cloud detection if the Sun is not covered by clouds resulting in brighter pixels. A
single simplified image is obtained by adding the blue sky and cloudy sky masks of the normal and under-
exposed image. In this resulting image, cloudy, cloud-free, and “Sun” pixels are represented by white, blue,
and red colors, respectively (see Figure 1). The total cloud cover is then calculated as the ratio of the total
number of white pixels to the total number of relevant pixels in the processed image.

We will refer to the image processing algorithm and the cloud type classification algorithm which will be
described in section 2.3 as the “PMOD-algorithm.” Total cloud cover and cloud type classification from the
PMOD-algorithm will also be compared to the corresponding outputs from a different image processing
algorithm, the “sky analyzer.” The sky analyzer was developed by the University of Patras [Kazantzidis et al.,
2012]. It uses a combination of the red, blue, and green channels with three distinct thresholds to calcu-
late total cloud cover. According to results, the multicolor criterion outperforms methods that are based
on the ratio or the difference of the red and blue channels for cases of broken or overcast cloudiness under
large solar zenith angles. The comparison of the total cloud coverage values, derived from the proposed
method with SYNOP observations at a nearby airport at Thessaloniki, Greece, showed that 83% and 94% of
the analyzed images agreed to within ±1 and ±2 oktas, respectively. These images were acquired using a
commercial compact digital camera (Canon IXUS II).
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Figure 1. (left) Original and (right) processed image of the sky
over Payerne on the 22 May 2012 12:40 UTC. The processed image
has been rectified. The Sun mask and saturated pixels outside the
mask are colored in red. The calculated total cloud cover is 48% for
this image.

2.2.2. Visual Cloud Observations
Visual observations of total cloud cover
are the longest records of cloudiness
and therefore of great importance for
long-term analysis. The method is
simple: A trained observer looks at the
sky and estimates the total cloud cover
in oktas following the WMO guidelines.
Visual cloud observations are conducted
around 6, 9, 12, 18, 21, and 24 UTC,
and around 6, 9, 12, 15, and 18 UTC
at Payerne and Jungfraujoch, respec-
tively. A visual observation period at
MeteoSwiss covers 15 min from xx:30 to
xx:45 before the official WMO observa-
tion hours. During this period the obser-
vations can be updated and revised.

2.2.3. Observations of Long-Wave Radiation
Observations of downwelling long-wave radiation (DLR) can be used to detect clouds and calculate total
cloud cover during day and night. The Automatic Partial Cloud Amount Detection Algorithm (APCADA)
uses downwelling long-wave radiation, its variability, air temperature, and relative humidity at screen level
height in combination with a set of empirical rules to detect clouds and calculate total cloud cover [Dürr and
Philipona, 2004]. In principle, the apparent emittance of the sky is calculated from screen level temperature
and measured long-wave radiation using the Stefan-Boltzmann law and compared to a calculated apparent
cloud-free emittance. If the ratio of the apparent emittance to the empirical cloud-free emittance is smaller
or equal to 1, the sky is cloud free; otherwise it is cloudy. This ratio is then used in combination with the
standard deviation of DLR calculated over the past 60 min and a set of empirical rules to determine total
cloud cover at a 10 min resolution.

Observations of DLR are conducted at all four sites following Baseline Surface Radiation Network (BSRN)
guidelines. BSRN is dedicated to observe the surface radiative fluxes at a small number of sites in contrasting
climatic zones with instruments of the highest available accuracy and with high temporal resolution, i.e.,
1 to 3 min [Ohmura et al., 1998]. We use high precision instruments such as the Eppley PIR pyrgeometer
and the CG(R)4 pyrgeometer from Kipp&Zonen at all four sites. The DLR is measured every 10 s, and 1 min
averages are recorded. All pyrgeometers are operated in a ventilation unit including a copper heating ring
to continuously blow slightly preheated air over the pyrgeometer domes. This setup impedes the formation
and accumulation of thaw, rime, ice, and snow on the instrument domes.
2.2.4. Meteosat
The geostationary Meteosat satellites of the Second Generation (MSG = Meteosat 8–10) are located directly
over the equator at a longitude of 0◦ and at an altitude of about 36,000 km. MSG carries a radiometer
that measures in 12 different spectral bands in the visible and infrared (SEVIRI; Spinning Enhanced Visible
and InfraRed Imager) at a horizontal resolution of around 3 km (3.2 × 5.5 km over Switzerland) every
15 min. In addition, there is a high-resolution visible (HRV) channel with a spatial resolution of around 1 km
(1.1 × 1.8 km over Switzerland).

MeteoSwiss is currently developing a cloud mask algorithm for the determination of cloud amount from
MSG. The cloud mask algorithm is based on continuous cloudiness scores instead of the traditional binary
decision tree approach which is used in most applications. The scores are calculated for different channels
as well as for different spatial and temporal statistical quantities. Each score yields a probability for the pixel’s
cloud cover. The final result, the cloud cover probability, is obtained by summing up all available scores,
taking into account the varying performance of the scores during day and night and over snow. The most
important advantage of this approach over the decision tree method is that incorrectly assigned pixels
within the tree, and thus subsequent tests following the wrong branch, can be avoided. Thus, the cloud
mask calculated using scores is more cloud or cloud-free conservative. Unlike most cloud masks depending
on clear sky temperature from weather models or coarse climatologies of cloud-free albedo, the cloud
mask builds its own cloud-free background data over time from cloud-screened reflectances and brightness
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Table 2. Conversion Table From Cloudiness Denoted as Percent-
age for the Sky Camera and Meteosat, and the Number of Hits
Divided by the Total Number of Possible Hits n for the Ceilometer

Percent n Okta

Percent ≤ 5 n ≤ 0.0625 0
5 ≤ % < 18.75 0.0625 ≤ n < 18.75 1
18.75 ≤ % < 31.25 0.1875 ≤ n < 0.3123 2
31.25 ≤ % < 43.75 0.3123 ≤ n < 0.4375 3
43.75 ≤ % < 56.25 0.4375 ≤ n < 0.5625 4
56.25 ≤ % < 68.75 0.5625 ≤ n < 0.6875 5
68.75 ≤ % < 81.25 0.6875 ≤ n < 0.8125 6
81.25 ≤ % < 95 0.8125 ≤ n < 0.9375 7
Percent ≥ 95 n ≥ 0.9375 8

temperatures. This renders the
cloud mask independent of external
(nonsatellite) data sets. Furthermore, it
is not necessary that all scores are avail-
able, as a subset is sufficient to obtain a
final aggregated rating [Stöckli, 2013].

For this intercomparison, a cloudiness for
the year 2012 has been processed using
the new algorithm. The parameters have
been derived for a subgrid of 10 × 10
pixels from the SEVIRI HRV channel
(resolution is approximately 1 × 1.5 km
per pixel) with Payerne at the grid
center. Total cloud cover (TCC) is

calculated as the fraction of the sum of completely overcast pixels and partly cloudy pixels over the total
number of pixels:

TCC =
∑

overcast + f
∑

partly cloudy
∑

all pixels
, (1)

The partly cloudy pixels are multiplied by a factor f in order to correct for the fact that broken clouds do not
completely fill the satellite’s field of view. For this study we took a value of 0.75 which was derived from a
validation study of MSG/SEVIRI data using synoptical stations [Karlson et al., 2005].
2.2.5. Ceilometer
The ceilometer used in Payerne is a CBME80 ceilometer from Eliasson. The CBME80 ceilometer measures
cloud height or vertical visibility (if no clouds are present) up to 7500 m, with a resolution of 10 m, and is
able to detect up to four cloud layers. The cloud amount algorithm is an enhanced version of the algorithm
developed by the National Weather Service in the U.S. [e.g., National Oceanic and Atmospheric Administration,
1998]. A detailed description of the algorithm can be found in the User’s Guide of the CBME80 [Eliasson,
2005]. Backscatter return signals are sampled every 30 s and the height of possible cloud “hits” is deter-
mined. In addition, fractional and total cloud covers are calculated every 30 s using the last 30 min of 30 s
data. Thereby, the last 10 min have a double weighting to be more responsive to the latest changes in sky
conditions. As a consequence, a value of total cloud cover is calculated every 30 s from a 30 min interval
which includes a total of 80 samples. It is calculated as the number of hits during the 30 min time interval
divided by the number of possible hits, i.e., 80. The scheme to convert the vertically detected cloud layers to
cloudiness in oktas is denoted in Table 2.
2.2.6. Definition of Total Cloud Cover and Averaging Procedure
In order to compare cloudiness from various techniques the same units of measurement should be used.
Cloudiness is reported as a percentage for sky camera and Meteosat data, while APCADA and the Ceilometer
report cloudiness in okta units. Cloudiness in percentage was therefore converted into okta. According to
the WMO guidelines, the values of 0 and 8 okta correspond to completely cloud-free (0%) and completely
cloudy conditions (100%). We used a slightly modified conversion scheme which allows total cloud cover
up to 5 and over 95% to be within the 0 and 8 okta bins, respectively (see Table 2). This implies that the 0,
1, 7, and 8 okta bins are associated with different ranges (namely, 5 and 13.75%) of total cloudiness condi-
tions rather than the intermediate range (12.5%). Furthermore, no cloud-free cases and only a few overcast
situations would be detected by the sky camera if the WMO definition was used. Note that the ceilometer
algorithm also uses a slightly different conversion scheme to convert the vertical layers to hemispherical
oktas. Cloud hits are also possible in the 0 okta bin as well as the 8 okta bin which does not necessarily have
to be for an overcast sky.

Visual observations are recorded during a 15 min period. To compare the visual cloud observations with the
sky camera data, we averaged total cloud cover from the images acquired during this 15 min period. The
output from the various automatic instruments is available at different time resolutions. While the cloud
cover from the ceilometer at Payerne has a time resolution of 30 s (but derived from the past 30 min of
the respective sample), cloudiness from the sky camera is available at 5 min intervals. Observations of the
downwelling long-wave radiation are taken every minute. The long-wave observations are averaged to
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Figure 2. Long-wave cloud effect as a function of total cloud cover
for six cloud classes and cloud-free conditions at Payerne. The bars
represent 1 standard deviation. Total number of observations is 1346.

10 min bins to be consistent with the
observations of instantaneous screen
level temperature and relative humidity
which are then used for the calculation
of total cloud cover using APCADA.
A Meteosat scan takes about 15 min
and starts at the South Pole. The actual
scanning time over Payerne is 4 min
before each quarter hour. Therefore, we
took the MSG slots at xx:11 and xx:41
and compared the outputs to the corre-
sponding outputs of the other methods.
For the intercomparison at Davos where
only sky camera and APCADA data are
available we used the values at the
full and half hour in order to obtain an
independent data set.

2.3. Cloud Type Classification
Besides the calculation of total cloud
cover, we have adopted and tested the

algorithm of Heinle et al. [2010] to classify the images into seven different cloud classes: cirrus-cirrostratus
(ci-cs), cirrocumulus-altocumulus (cc-ac), stratus-altostratus (st-as), cumulus (cu), stratocumulus (sc),
cumulonimbus-nimbostratus (cb-ns), and cloud free (cf ). The cloud type classification algorithm is
based on a set of statistical features describing the color (spectral features) and the texture of an image
(textural features). Heinle et al. [2010] proposed 12 features for application after extensively testing
numerous features. The spectral features include the mean of the red and blue channels, standard devia-
tion and skewness of the blue channel, and the differences between the red and green, red and blue, and
green and blue channels. The textural features include the energy, entropy, contrast, and homogeneity of
the blue channel. Furthermore, the total cloud cover is used as an additional feature. We have adopted all
these features except the entropy which is—in our opinion—not helpful because the values of the various
cloud classes interfere significantly with each other and, therefore, its use for discrimination is limited.

In addition, we introduced a radiative feature which is based on the long-wave radiation: the “long-wave
cloud effect” (LCE) which describes the radiative effect of clouds on long-wave radiation. We calculate
the long-wave cloud effect as the difference between the measured long-wave radiation (during cloudy
conditions) and the long-wave flux that would be expected at the same time in the absence of the clouds
assuming the same vertical temperature and humidity distribution as for the cloudy case. The cloud-free
flux is calculated using a cloud-free model which accounts for the temperature lapse rate in the atmospheric
boundary layer [Gröbner et al., 2009; Wacker et al., 2014]. The LCE depends among others on the cloud type
(cloud base temperature) and fractional cloud cover. It is smaller for high-level clouds due to their weak
radiative impact on the surface long-wave radiation compared to low-level clouds which have a larger radia-
tive impact and thus a larger long-wave cloud effect (see Figure 2). The cloud class “stratus-altostratus” yields
the highest mean LCE at 75.3 ± 11.5 Wm−2 during overcast conditions and is dominated by the cloud type
stratus nebulosus (fog) which frequently occurs from October to April at Payerne.

The mean success rate of the cloud type classification algorithm was 1.6, 5.5, and 10.8% higher (averaged
over all seasons) at Payerne, Zimmerwald, and Davos, respectively, when using this radiative feature. All
cloud classes were better recognized except stratus-altostratus and cumulonimbus-nimbostratus. For these
two cloud classes the success rate was even lower, probably due to their similar LCE. The overall perfor-
mance of the algorithm at Jungfraujoch was not better most likely due to the higher uncertainties of the
long-wave observations and the corresponding cloud-free model [Wacker et al., 2014].

For the actual classification of an image, the k-Nearest Neighbor (kNN) classifier is used. The kNN method
belongs to the “supervised,” nonparametric classifiers. “Supervised” implies that the separating classes are
known and a training set is used to train the algorithm. We generated such a training sample from the
Payerne data set by visual inspection of the images. This data set was chosen to train the algorithm because
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Figure 3. Difference in cloud cover between the PMOD and the sky
analyzer algorithms for various cloud classes. The cloud classes are
cloud free (cf ), cirrus-cirrostratus (ci-cs), cirrocumulus-altocumulus
(cc-ac), stratus-altostratus (st-as), cumulus (cu), stratocumulus (sc),
and cumulonimbus-nimbostratus (cb-ns). The red line in the boxes
represents the median of the differences. Red crosses are outliers
which are larger than q3+1.5(q3−q1) or smaller than q1−1.5(q3−q1),
where q1 and q3 are the 25th and 75th percentiles represented by
the lower and upper edge of the boxes, respectively. Total number of
observations is 480.

a large number of ancillary data
including synoptic observations and
ceilometer data have facilitated the
generation of the training set. In order
to train the algorithm, the images of the
training set contain only one single cloud
class as previously defined. The training
set contains about 200 pictures for each
cloud class for which the 12 features were
calculated and stored with the assigned
cloud class. The actual classification of a
test image is conducted by calculating
the distance between the feature vector
of the test image and the feature vectors
of each element in the training set. The
class of the test image is then determined
based on the majority vote of the k closest
neighbor classes. If the majority vote
is not unique, the class of the closest
element in the training set determines the
class of the test image. We used k = 3.

In order to study the performance of the
algorithm at the other three stations and
for images which do not necessarily show

one unique cloud class as the Payerne training sample does, we generated independent test samples for the
four sites. The Matlab function “randi” was used to randomly select single images from the whole data set.
The test sets contained 163, 184, 195, and 204 images for Zimmerwald, Payerne, Jungfraujoch, and Davos,
respectively. The selected images were visually and independently classified by two observers, and the
12 features were calculated and stored with the assigned cloud class. If clouds from more than one cloud
class occurred simultaneously in the image, the image was visually classified according to the predominant
cloud class.

The sky analyzer was also used to classify the images from the Payerne sets. Besides total cloud cover,
the sky analyzer uses the same seven color and three textural features as the PMOD-algorithm. In
addition, a metric which describes the existence of raindrops on the glass dome is included in the algorithm
[Kazantzidis et al., 2012]. Furthermore, a number of subclasses are created for every cloud class, based on
parameters that have a large effect on the distribution of light in the sky, namely, the solar zenith angle,
the cloud coverage, and the visible fraction of the solar disk. This is because clouds belonging to the same
type under different atmospheric conditions may vary substantially when the metrics for classification
are considered.

3. Results
3.1. Total Cloud Cover From Two Different Image Processing Algorithms
A data set comprising 480 images from Payerne was selected to compare the PMOD and sky analyzer
algorithms. The images were visually screened and include the occurrence of a single cloud type only. The
definition of cloud types is identical to that used for cloud classification discussed in section 2.3.

The relative mean difference in cloudiness between the two algorithms was 1.0 ± 7.6% (1 standard
deviation). The results differ substantially among the individual cloud types (see Figure 3): Although
the results for cloud-free, stratus-altostratus, and cumulonimbus-nimbostratus yielded good agreement
because most of these events are related to cloudiness of 0 and 100%, respectively (or close to these
values), the discrepancies between the two algorithms were larger for the remaining cloud classes. While
the median of the differences for cirrocumulus-altocumulus, stratocumulus, and cumulus remained small
and about 99% of the images were within ±10% (as represented by the range enclosed by the whiskers), the
median of the differences was substantially larger for cirrus-cirrostratus at 10%.
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Figure 4. Relative frequency of total cloud cover differences between
various techniques at (a) Payerne, (b) Jungfraujoch, and (c) Davos. Total
number of compared outputs for Payerne is 2853, 7714, 6723, and
7947 for the sky camera-human observer, sky camera-APCADA, sky
camera-ceilometer, and sky camera-Meteosat intercomparison,
respectively. The data set from Jungfraujoch contains 1334 and 1293
observations for the sky camera-human observer and sky camera-APCADA
intercomparison, respectively. For the Davos intercomparison, 5806
outputs from the sky camera and from APCADA have been compared.

3.2. Total Cloud Cover From
Different Observational Techniques
For the intercomparison of various
automatic methods at the Payerne
site a data set covering all seasons
in 2012 was used. The data set
comprises simultaneous observations
of total cloud cover derived from
the sky camera using the PMOD-
algorithm, APCADA, ceilometer, and
Meteosat. In order to increase the
number of visual observations to
be compared to the sky camera, a
data set covering a longer period
(2011–2014) was produced. For all
intercomparisons at the Payerne site,
the Schreder system was used.

The sky camera frequently underesti-
mates total cloud cover with respect
to the observer. Indeed, in 43% of
all cases the sky camera calculated
a lower cloudiness as shown by the
frequency distribution of the
residuals in Figure 4 which has a clear
asymmetric shape. In 41% of cases
the two methods reported the same

cloudiness. The outputs were in 70 (84)% of cases within ±1 (2) oktas, and thus, in 16% of all cases the
difference was larger than ±2 oktas.

Compared to the automatic methods, however, the sky camera tends to overestimate cloudiness. While in
the sky camera-APCADA and sky camera-ceilometer comparison the sky camera calculated in 44% of cases
a higher total cloud cover, this fraction was substantially lower in the sky camera-Meteosat comparison
at 31%.

The sky camera data showed the best agreement with Meteosat. In 52% of all cases these two techniques
calculated the same cloudiness, while in the sky camera-APCADA and sky-camera-ceilometer comparison
41 and 43% of the outputs were consistent, respectively. Results from the sky camera-ceilometer, sky
camera-Meteosat, and sky-camera-APCADA intercomparisons were in 64 (75), 72 (84), and 74 (84)% of cases
within ±1 (2) oktas, respectively. Outputs from the sky camera and the ceilometer differed in 24% of cases
by more than ±2 oktas and hence showed the worst agreement, while this fraction was substantially lower
in the other two intercomparisons at 16–17%.

Observations from Jungfraujoch and Davos yielded similar results. For Jungfraujoch a 1 year data record
from the MOBOTIX camera was used (2012/2013). As in Payerne, the sky camera calculated lower values of
total cloud cover more frequently with respect to the observer but higher values compared to APCADA.
Consistency was better between the sky camera and the observer, namely, 49% of the outputs yielded the
same cloudiness and 78 (89)% were within ±1 (2) okta. In the sky camera-APCADA intercomparison 42%
of the observations were consistent and 83 (94)% were within ±1 (2) okta. These results indicate that the
camera type may not have a notable impact on the results at least in the coarse okta measuring system.

A data record going back to 2010 was available at Davos. Note that only pictures acquired with the Schreder
system were used for this intercomparison. The comparison between the sky camera and APCADA was
slightly more consistent compared to Payerne and Jungfraujoch, probably due to the larger data set. In
48% of all cases the two methods yielded the same cloudiness and 84 (92)% of the observations were
within ±1 (2) okta. APCADA underestimated the total cloud cover also at Davos compared to the sky
camera. Indeed, in 70% of the outputs which yielded a different okta value, APCADA calculated a lower total
cloud cover. The underestimation is probably mainly caused by cirrus clouds which cannot be detected
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Table 3. Contingency Matrix for the Payerne Training Set and the Manually Created Payerne Test Seta

Classified as Mean Success

cf ci-cs cc-ac st-as sc cu cb-ns rate
True
Class TS TEST TS TEST TS TEST TS TEST TS TEST TS TEST TS TEST TS TEST

cf 96.7 92.5 (97.5) 3.3 5.0 (2.5) 0.0 2.5 (0.0) 0.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0 0.0 (0.0)
ci-cs 0.0 6.0 (8.0) 98.5 84.0 (82.0) 1.5 2.0 (6.0) 0.0 2.0 (0.0) 0.0 0.0 (2.0) 0.0 6.0 (2.0) 0.0 0.0 (0.0)
cc-ac 0.7 0.0 (0.0) 0.7 10.4 (8.3) 71.4 72.9 (79.2) 0.7 0.0 (0.0) 10.0 4.2 (2.1) 15.7 10.4 (10.4) 0.7 2.1 (0.0)
st-as 0.0 0.0 (0.0) 0.0 0.0 (0.0) 0.8 0.0 (10.0) 94.7 96.7 (53.3) 2.9 3.3 (0.0) 0.0 0.0 (0.0) 1.6 0.0 (36.7)
sc 0.0 0.0 (0.0) 0.0 0.0 (0.0) 1.1 3.9 (10.0) 3.7 11.8 (4.0) 93.7 47.1 (70.0) 0.0 25.5 (4.0) 1.6 11.8 (12.0)
cu 0.6 0.0 (2.0) 0.0 2.0 (2.0) 7.6 2.0 (5.9) 0.6 0.0 (0.0) 0.6 0.0 (0.0) 90.0 96.1 (90.2) 0.6 0.0 (0.0)
cb-ns 0.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0 0.0 (0.0) 5.7 17.6 (0.0) 2.6 7.8 (0.0) 1.8 5.9 (0.0) 89.9 68.6 (100.0) 91.7 78.2 (83.1)

aShown are the relative frequencies in percent of the PMOD-algorithm for the Payerne training set (TS) using the Leave-One-Out Cross-Validation
(LOOCV) and for the test set (TEST). In addition, the corresponding results from the sky analyzer for TEST are given in parentheses. The cloud classes are
cirrus-cirrostratus (ci-cs), cirrocumulus-altocumulus (cc-ac), stratus-altostratus (st-as), cumulus (cu), stratocumulus (sc), cumulonimbus-nimbostratus (cb-ns),
and cloud free (cf ). Highlighted in bold are the percentages of correctly classified cases in the respective cloud class. The test set contains total 321 images.

by APCADA due to their weak signal in the long wave measured at the surface while their radiative effect
in the short wave (and hence in the signal detected by the sky camera) is considerably larger. In fact, sky
camera algorithms for the detection of optical thin cirrus clouds have been developed [e.g., Shields et al.,
1990]. In contrast, the reliable use of APCADA is limited to cloud detection of low level and midlevel clouds
[Dürr and Philipona, 2004; Schade et al., 2009]. As noted by Schade et al. [2009] the underestimation of
APCADA, however, cannot be solely explained by undetected cirrus clouds.

3.3. Cloud Type Classification
The performance of the PMOD cloud type classification algorithm was determined using the Payerne
training set and the Leave-One-Out Cross-Validation (LOOCV) method. In this method, one single picture
from the training set is removed and the algorithm is trained with the remaining data. Then the excluded
element, which is independent of the training data, is classified. This is repeated n times, where n is the
number of elements in the training set, such that each element in the training set is used for validation
exactly once.

The results of the LOOCV method are given in Table 3. The scores of correctly classified pictures ranged from
89.9 up to 98.5% for cumulonimbus-nimbostratus and cirrus-cirrostratus, respectively, and was only sub-
stantially lower for cirrocumulus-altocumulus. Here only 71.4% of the images classified by the observers in
the sky camera image as cirrocumulus-altocumulus were classified by the algorithm as this cloud type, while
the algorithm classified 15.7% of these images as cumulus. Ten percent of the cirrocumulus-altocumulus
images were classified as stratocumulus and the remaining 2.9% were attributed to the other cloud classes.
The mean success rate of the algorithm was 91.7%.

The mean success rate for the random test sets decreased significantly and was between 50 and 57% at
Zimmerwald, Payerne, and Davos (see Figure 5). The x axis of the bar plots denotes the true cloud class as
determined by the observers from the sky camera images. The bars represent the relative frequencies of the
cloud types classified by the PMOD algorithm for the respective cloud class. For example, 80% of the images
from the Payerne test set which were classified by the observers as stratocumulus were also classified as
stratocumulus by the algorithm. However, 10% of the stratocumulus images (as classified by the observers)
were classified by the algorithm as stratus-altostratus and cumulonimbus-nimbostratus, respectively. While
the success rate for cirrus-cirrostratus, stratocumulus, and cloud-free conditions averaged over the three
stations Payerne, Zimmerwald, and Davos remained at 61, 62, and 71%, respectively, the mean hit rate for
the remaining cloud classes was lower at 43–49%. At Zimmerwald, a frequent misclassification at 70% of
the cumulonimbus-nimbostratus class into stratus-altostratus was observed while the algorithm correctly
recognized this cloud class in 68% of cases at Payerne.

Due to its altitude, a particular situation occurs at Jungfraujoch. The site is often within clouds, and cloud
conditions can change rapidly (see Movie S1 in the supporting information). Therefore, a modification
of the cloud classification scheme was necessary in which only cloud-free conditions, cirrus-cirrostratus,
cirrocumulus-altocumulus, altostratus, and fog are discriminated. Furthermore, an additional training set
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Figure 5. Relative frequencies of correctly and incorrectly classified cloud classes for the test sets of (a) Payerne,
(b) Zimmerwald, (c) Davos, and (d) Jungfraujoch. The mean success rate was 50, 55, 57, and 70% for Zimmerwald,
Payerne, Davos, and Jungfraujoch, respectively. The Payerne, Zimmerwald, and Davos test sets were classified using
the PMOD algorithm trained with the Payerne training set. For Jungfraujoch, the PMOD algorithm was trained using
an individual training set consisting of pictures from Jungfraujoch. The sets contain 163, 184, 195, and 204 images for
Zimmerwald, Payerne, Jungfraujoch, and Davos, respectively. The images do not necessarily show one cloud class and
were randomly selected.

was required to train the algorithm for these particular conditions and the specific camera and hardware
characteristics of the MOBOTIX camera. Up to 70% of the Jungfraujoch test set images were correctly
classified using this individual training set (see Figure 5d). While cloud-free conditions were correctly
recognized in over 95% of cases, the classification of altostratus and cirrus-cirrostratus was more
problematic. Indeed, only 44 and 47% of the respective images were correctly classified. The frequent
misclassification of cirrus-cirrostratus as cloud free may be explained by the bright pixels near the Sun
and/or the poor camera quality. The success rate for cirrucumulus-altocumulus and fog was substantially
higher at 58 and 76%, respectively.

4. Discussion

Results from the intercomparisons of total cloud cover indicate that the sky camera overestimates total
cloud cover with respect to the other automatic methods, while an underestimation was observed
compared to the human observations. Since all automatic techniques underestimate cloudiness compared
to the visual observations, it is likely that the human observers at the two study sites have a tendency to
overestimate total cloud cover. Contingency tables calculated for all intercomparisons (but not shown here
because of conciseness) demonstrate that the overestimation is mainly caused by situations when the
observer reported 1 okta and overcast conditions while the automatic methods calculated a cloud-free
sky and 7 oktas, respectively. The overestimation by the sky camera with respect to the other automatic
methods is due to bright pixels close to the Sun, high solar zenith angles, and/or high turbidity in the
atmosphere resulting in a high sky whiteness [Long, 2010]. In addition, Long [2010] mentioned the intensity
range limitations of the detector, i.e., the quality of the camera, which is essential for a correct decision
during such atmospheric conditions. Despite the use of an additional underexposed image, the overesti-
mation persists in this study particularly for specific atmospheric conditions. A sample figure from Payerne
in winter characterized by a high solar zenith angle and a high aerosol optical depth can be found in the
supporting information (Figure S1). The sky camera calculated 2 okta cloudiness despite the fact that no
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Figure 6. Mean bias (circle) and root mean squared error
(corresponding to an uncertainty of approximately 65%, assuming a
normal probability distribution) as a function of cloudiness for the
Payerne intercomparison. Cloud cover refers to the value calculated
using the PMOD algorithm. Mean bias between human observer-sky
camera, APCADA-sky camera, ceilometer-sky camera, and Meteosat-sky
camera was 0.8 ± 1.9, −0.9 ± 2.2, −1.1 ± 2.8, and −0.5 ± 2.3 oktas,
respectively.

cloud was visible which was confirmed
by other methods. Cloud detection
using a haze correction factor derived
from spectral radiation measurements
is therefore more effective than the use
of an underexposed image for such
events [Ghonima et al., 2012; Shields et al.,
2013]. Alternatively, other atmospheric
parameters such as SZA, specific
humidity, (broadband) short- and
long-wave radiation may be used to
determine such a haze correction factor
or sky whiteness index.

The offset between the sky camera and
the other techniques is not constant but
depends on cloud cover (see Figure 6).
The underestimation of the sky camera
(and the remaining automatic methods)
with respect to the human observer is
largest when the sky camera calculates
0–3 oktas. Indeed, the cloudiness
reported by the human observer was
on average 2 oktas higher, while the
bias between the automatic techniques

was close to zero for these okta bins. In addition, the uncertainties between the sky camera and the visual
observations are considerably higher as indicated by a root mean squared (RMSE) error by up to 3 oktas.
For the remaining okta bins, the (positive) offset and the uncertainties between the visual observations
and the sky camera decrease with increasing cloudiness. When the sky camera calculates 7 or 8 oktas, the
outputs from the sky camera and the human observer are consistent and only a weak overestimation
by the sky camera can be on average observed. The remaining automatic techniques, however, tend to
underestimate cloudiness when the sky camera and the human observer report and overcast conditions.
In addition, the uncertainties between the sky camera and the other automatic methods increase with
increasing cloud amount particularly between the sky camera, APCADA and ceilometer. The bias is
smallest at 1 okta or less between the sky camera and Meteosat, but the RMSE is fairly high at 2 oktas for all
sky conditions except when no clouds are in the sky.

The analysis of the Davos data set (same camera system) yielded similar offsets, while the offsets at
Jungfraujoch were slightly different, most likely due to the different camera system used at Jungfraujoch
(MOBOTIX). Note that the uncertainties at Jungfraujoch, however, were not larger despite the poorer quality
of the MOBOTIX system. These results demonstrate that it will be mandatory to consider the dependencies
of the bias on cloudiness instead of applying a constant offset when records of total cloud cover from
various methods will be homogenized.

Regarding the cloud type classification, the true cloud class can be reliably determined if a single cloud
class occurs in the image. However, if various cloud classes are present in the sky the classification is less
reliable as indicated by a mean success rate which can decrease to 50%. A low success rate for a particular
cloud class and station is not necessarily solely due to the algorithm but also due to other factors such as the
randomness of the selection procedure and/or visual misclassification of the cloud class in the camera
image by human observers. In fact, it is more difficult to determine the cloud class in a picture than outside
under the sky. To demonstrate the effect of the randomness in the selection procedure we manually
generated a second test set for the Payerne site. The mean success rate for this test set was more than 20%
higher than for the corresponding automatically generated set (see Table 3) and thus consistent with scores
found in similar studies [e.g., Heinle et al., 2010; Kazantzidis et al., 2012]. The classification was significantly
better for all cloud classes except for stratocumulus when using the PMOD algorithm. The success rate of
the sky analyzer was even slightly higher at 83.1% compared to the PMOD algorithm. All cumulonimbus-
nimbostratus clouds were correctly classified using the sky analyzer. Problematic here was only the

WACKER ET AL. ©2015. The Authors. 705



Journal of Geophysical Research: Atmospheres 10.1002/2014JD022643

classification of the stratus-altostratus class where only 53.3% of the images were correctly recognized
while 10.0 and 36.7% were misclassified as cirrocumuls-altocumulus and cumulonimbus-nimbostratus,
respectively. A similar test set was also produced for Zimmerwald yielding the same results. This implies
that the algorithm, when trained at a particular site, can be applied at any different site as long as the site
characteristics including atmospheric conditions of the training site are representative of the target site
and the same camera system is used. However, if this is not the case as, for instance, at Jungfraujoch, the
algorithm must be trained to the specific conditions and the camera system of the respective site. Therefore,
an individual training set is necessary.

5. Conclusions

We have established a hemispherical sky camera network comprising four sites in Switzerland for observa-
tions of total cloud cover and cloud type classification. Sky cameras have the strong advantage that they
image the whole hemisphere and therefore allow the instantaneous total cloud cover to be reliably calcu-
lated on the basis of highly resolved pixels and hence in percent coverage of the sky. We compared total
cloud cover from the sky camera to the corresponding outputs derived from various techniques including
ceilometer, Meteosat, observations of long-wave radiation, and visual observations. Cloudiness from the sky
camera was within ±1 okta for 65–85% of cases with respect to the other techniques. The sky camera overes-
timates cloudiness with respect to the other automatic methods particularly when the sky whiteness is high
due to haze. All automatic techniques, however, tend to underestimate total cloud cover compared to the
visual observations which were available at two sites. Thus, the sky camera is closest to the visual observer.
The results demonstrate that the replacement of visual observations by automatic methods would intro-
duce a bias in the highly valuable long-term synoptic time series at these sites. In addition, we showed that
a possible homogenization of cloud cover records derived from various observational techniques cannot be
conducted using a constant offset but requires a correction function instead which depends on cloud cover
and used hardware and hence needs to be determined for each site individually.

Besides the observation of total cloud cover, sky cameras offer a variety of other applications such as cloud
type classification, determination of cloud base, and forecasting of cloud motion and solar irradiance. We
studied cloud type classification at four sites using the k-nearest neighborhood classifier in combination
with a total of 12 features including spectral and textural features, cloud cover, and a radiative feature. Over
90% of the images were correctly classified when the algorithm was trained to be site specific, and only one
cloud class occurred in the image. However, when the algorithm was applied to the remaining sites and/or
multiple cloud classes occurred in the image, the mean success rate decreased substantially to 50–80%
depending on the randomness of the image selection procedure and the visual misclassification of the
clouds in the sky camera image by the observers. Moreover, the current cloud type algorithm is sensitive to
site and camera characteristics (e.g., site altitude and camera settings) and site-specific atmospheric condi-
tions. The algorithm can be trained at one site and applied to different locations as long as the cloud classes
are representative and the same camera system is used. Otherwise the algorithm might be revised and
trained to the site-specific conditions and camera system using an individual training set. Consequently, the
development of a uniform and site-independent cloud cover and cloud type algorithm is in this context not
a constructive goal.

Hemispherical sky cameras are a powerful tool to precisely detect clouds and they are currently the only
automatic technique to conduct cloud type classification. However, different cameras and image pro-
cessing algorithms are in use resulting in uncertainties which we estimate to be about 10 % based on a
comparison of two different image processing algorithms conducted in this study. In fact, these issues have
also been addressed in a COST-ES1002(http://www.wire1002.ch/) international workshop on sky cameras
recently held in Patras/Greece(http://www.sky-camera-workshop.info/). There is consensus that it would be
highly valuable to establish a benchmark data set of cloud observations (total cloud cover and cloud type)
from ground and satellite-based retrievals in order to study the performance of the various methods, to
assess their uncertainties and to evaluate possible optimization, standardization, and/or homogenization
procedures. The overall goal of such an action would be the development of a unique ground-based
observing system dedicated to an accurate monitoring of total cloud cover, cloud type, and the variations in
order to improve the validation of satellite-based cloud retrievals and climate model outputs, and therefore
to reduce the persisting uncertainties related to clouds and climate change.
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A certain drawback of most hemispherical sky cameras which are in use for the visible spectral range is their
limitation to daytime. For nighttime operation, either highly sensitive cameras in the visible range such as
the day/night whole sky imagers or cameras operating in the thermal infrared are necessary. In a follow-up
project, we are currently developing a thermal infrared all-sky cloud imager in order to observe clouds in
combination with visible sky cameras during day and night.
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