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Through dedicated measurements in the optical regime we demonstrate that ptychography can
be applied to reconstruct complex-valued object functions that vary with time from a sequence of
spectral measurements. A probe pulse of approximately 1 ps duration, time delayed in increments
of 0.25 ps is shown to recover dynamics on a ten times faster time scale with an experimental limit
of approximately 5 fs.
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X-ray diffraction imaging is a promising concept for re-
alizing lens-less imaging of aperiodic objects with atomic-
scale resolution. The key challenge is to reconstruct the
phase of the diffracted wave and several solutions to this
so-called phase problem have been demonstrated [1–10].
One of the most robust techniques is ptychography. Its
concept is related to the solution of the phase prob-
lem in crystallography as proposed by Hoppe [11]. It
was first demonstrated at optical wavelengths [12], but
its scientific impact is expected to be largest at x-ray
wavelengths, especially after the commissioning of high
brightness coherent x-ray sources. In ptychography the
real space image of an object is reconstructed iteratively
from a series of far-field diffraction patterns. Each pat-
tern is recorded after either moving the object or the
coherent illumination beam in a plane perpendicular to
the propagation direction of the illumination beam. The
transverse shift of the illumination beam is smaller than
its spatial support, so that subsequent patterns result
from different, but overlapping regions of the real space
object. This ensures that the phase can be extracted.
Moreover, the redundant information from overlapping
regions helps to improve the convergence of the iterative
algorithms. The spatial resolution is limited by the po-
sitioning accuracy, the stability of the entire setup, and
by the angular range of scattered wavevectors that can
be recorded with a sufficiently high signal-to-noise ratio.

So far, x-ray ptychography has been successfully ap-
plied in reconstructing real-space objects of up to three
spatial dimensions and a spatial resolution down to 16 nm
has been demonstrated [13]. Here, we propose to ex-
tend ptychography by including the temporal dimension
and thus to facilitate the reconstruction of spatiotem-
poral objects, i.e., one-, two-, or three-dimensional ob-
jects whose shape or structure varies with time. Far-
field diffraction measurements combined with spectral
measurements should allow for reconstructing real-time
movies of aperiodic atomic-scale objects. The accessi-
ble time scales are determined mostly by the range of
the spectral measurements, and with present-day high

brightness coherent XUV and x-ray sources the time res-
olution could potentially reach the attosecond regime.

FIG. 1. Ptychographic iterative scheme for the reconstruction
of a complex-valued, time-varying object function O(t) from a
sequence of N spectra S(ω, n∆t) recorded at probe pulse time
delays n∆t with n ∈ {1, . . . , N}. After all N spectra have
been processed, the first iteration (j = 1) is complete and the
next iteration (j = 2) will start until convergence is reached.
For all n the top arrow implies that the product of the es-
timated object function [On(t) in red] with the time delayed
probe pulse [P (t−n∆t) in blue] is Fourier transformed to the
spectral domain. Then, the modulus of the Fourier transform
is replaced by the square root of the measured spectral in-
tensity. The result is Fourier transformed back to the time
domain and is used to update the estimated object function.

Here, our main goal is to demonstrate that the ptycho-
graphic scheme is able to reconstruct an “object” uniform
in space but varying with time. The “object” is illu-
minated with a sequence of partially overlapping, time-
delayed coherent probe pulses, and for each time delay
a far-field diffraction pattern, i.e., wavelength-resolved
spectrum, is recorded. As in the spatial analog, the exit
field is formally described by a product of the object and
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the probe pulse. Time-domain ptychography then yields
information on the “object” on time scales much shorter
than the duration of the probe pulse.

In general, the one-dimensional phase retrieval prob-
lem is ambiguous and different solutions may result in
the same far-field intensity measurement. In the frame-
work of ptychography [14], however, the uniqueness of
the solution in one and two dimensions is warranted as
long as the illumination pattern is known. The problem
of uniqueness, specifically in the one-dimensional case, is
also discussed in Ref. [15].

The basic algorithm, known as the ptychographic iter-
ative engine (PIE) [16], schematically depicted in Fig. 1,
starts with a random, complex-valued object function.
In every iteration j all measured spectra (n = 1 . . . N)
are processed. The algorithm calculates the exit field
Gn(t, n∆t) for a particular time delay n∆t of the probe
pulse and the current estimate of the object function
On(t)

Gn(t, n∆t) = On(t) P (t− n∆t), (1)

where n ∈ {1, . . . , N} indicates one of the measured
intensity spectra. From Gn(t, n∆t) we calculate the
Fourier transform Gn(ω, n∆t) and replace its modulus
by the square root of the measured spectrum S(ω, n∆t)
while preserving its phase. After an inverse Fourier trans-
formation, the new function G′n(t, n∆t) differs from the
initial estimate and the difference is used to update the
current estimate of the object function,

On+1(t) = On(t) + β U(t− n∆t)

×[G′n(t, n∆t)−Gn(t, n∆t)], (2)

with the weight or window function,

U(t) =
|P (t)|

max(|P (t)|)
P ∗(t)

|P (t)|2 + α
, (3)

and the two constants α < 1 and β ∈ ]0 . . . 1]. The
choice of α is determined mostly by the noise level and β
by the probe pulse duration and the time delay ∆t. The
best approximation to the actual object function appears
typically after only a few iterations j under ideal condi-
tions.

In order to prove the concept and to explore ultrafast
time scales we refer to automated pulse shaping of fem-
tosecond light pulses [17]. This methodology allows one
to modulate the spectrum of a femtosecond light pulse
and thus to tailor its temporal intensity. We will em-
ploy it to generate different object functions on the one
hand and suitably time delayed probe pulses on the other
hand. This approach has the advantage that a variety of
different object functions can be programed and the re-
constructed results can be readily evaluated. Note that

here the object function as well as the probe pulse are
conveniently described by slowly varying field envelopes
O(t) and P (t) modulating the baseband frequency ωp.
As a result, Gn(t, n∆t) is a slowly varying envelope with
a baseband frequency of ωg = 2ωp, around which the
measured spectra will be centered.

FIG. 2. Schematic illustrating the concept of the experimental
setup.

A schematic of the experimental setup is shown in
Fig. 2. The pulse source is an 80 MHz Ti:sapphire oscil-
lator which delivers 80 fs pulses centered at 800 nm. The
first two-dimensional spatial light modulator (SLM1) is
loaded with a binary hologram to diffract the incoming
beam into the plus first and the minus first diffraction
orders. Both beams are independently shaped in time by
a pulse-shaping apparatus, which includes a second two-
dimensional spatial light modulator (SLM2) [17], and are
subsequently focused to a 100-µm-thick beta barium bo-
rate crystal where the exit field, i.e., the product field,
is produced through sum-frequency generation. The re-
sulting spectra centered at 400 nm are analyzed by a
spectrometer covering the range of 300-545 nm with a
resolution of 0.18 nm.

We programed a “long” probe pulse by selecting a spec-
tral slice of width ∆Ω centered at 800 nm from the source
pulse spectrum E0(Ω), i.e., P (Ω) = Mp(Ω) E0(Ω), with

Mp(Ω) =

{
e−iΩn∆t for |Ω| ≤ ∆Ω

2 ,
0 otherwise,

(4)

and the relative frequency Ω = ω−ωp. The time delay
is realized by a linear spectral phase, i.e., e−iΩn∆t. The
pulse-shaping apparatus (SLM2) allows for time delays
within a ±5 ps time window with a measured resolution
of 0.5 as. For sufficiently thin slices, i.e., for ∆Ω� ∆ω,
where ∆ω is the spectral width of the source pulse, the
probe pulse is well approximated by a sinc-shaped slowly
varying envelope.

The object function O(t) is generated by applying
an appropriately chosen transfer function Mo(Ω) to the
SLM2, i.e., O(Ω) = Mo(Ω) E0(Ω). We have applied a
number of different transfer functions, such as polyno-
mial phases, sinusoidal phases, cosinusoidal amplitudes,
and more complex transfer functions. The transfer func-
tions discussed here are given by
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Mo1(Ω) =
1− e−γ

1− e−γ(M+1)

M∑
m=0

(±1)me−imΩτ−γm, (5)

Mo2(Ω) = eiA sin(Ωτ), (6)

where the first applies a combined amplitude and phase
and the second a pure phase modulation. The first trans-
fer function produces a train of exponentially decaying
pulses with M determining the number of pulses, γ their
exponential decay, and τ their temporal separation. The
plus (minus) sign produces a unipolar (alternating) train
of pulses. The sinusoidal phase modulation is determined
by the amplitude A and the time delay τ .

FIG. 3. Theoretical (solid curves) and reconstructed (dashed
curves) amplitude and phase of the object function defined
in Eq. (5) with (a)the plus sign and (b) the minus sign. For
convenience, the phase is only shown in regions where the
amplitude is larger than 0.1. The top panel shows the probe
pulse P (t) with a duration of approximately 900 fs. The cor-
responding parameters are τ = 300 fs, M = 5, and γ = 1/5.

The experimental results as well as the reconstructions
are presented in Figs. 3 and 4. For the probe pulse a

spectral window of 3 nm was used, resulting in a sinclike
pulse P (t) with a duration of approximately 900 fs. The
parameters of the first object function in Eq. (5) were
τ = 300 fs, M = 5, and γ = 1/5 and for Fig. 3 a) the
“plus sign” and for Fig. 3 b) the “minus sign” in Eq. (5)
was selected. The time-frequency distributions show the
measured (top) and the simulated (bottom) spectra as a
function of time delay with an increment of 25 fs. Only
a subset of all measured spectra is used for the recon-
struction, e.g. every tenth spectrum corresponding to a
∆t of 250 fs. The theoretical object functions, as defined
in Eq. (5), are indicated by the solid curves versus time,
i.e., the amplitude (solid red curve) and the phase (solid
blue curve). For convenience, the phase is only shown in
regions where the amplitude is larger than 0.1. The pa-
rameters of the update function were α = 0.3, β = 0.5,
and the sampling rate was exact Nyquist sampling. A
suitable value for α was determined by analyzing the rms
error (rms refers to the root-mean-square difference be-
tween theoretical and reconstructed spectrogram) for a
set of simulated noisy spectra as function of α ∈ [0, 1]
and the signal-to-noise ratio (SNR). For a measured SNR
of > 500, α ≈ 0.3 leads to the smallest rms. Similarly, a
suitable value for β was determined by analyzing the rms
error as a function of β ∈ [0, 1] and the ratio of ∆t and
the probe pulse duration. We would like to emphasize
thatalthough α as well as β can be varied within a wide
range of values, the final result varies very little, however,
the rate of convergence may slow down by a factor of up
to 10.

The parameters for the object function in Eq. (6) were
A = 1.57 rad and τ = 300 fs. Figure 4 shows that the si-
nusoidal spectral phase modulation produces a sequence
of temporal diffraction orders whose amplitude and phase
are well reproduced by the ptychographic reconstruction
algorithm.

FIG. 4. Theoretical (solid curves) and reconstructed (dashed
curves) amplitude and phase of the object function defined in
Eq. (6). The corresponding parameters are A = 1.57 rad and
τ = 300 fs.
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Convergence in the reconstruction is typically observed
after several tens of iterations, and the results shown in
Figs. 3 and 4 are the asymptotic object functions after
900 iterations. In all three cases the reconstructed ampli-
tudes as well as the phases agree very well with the target
object functions. Moreover, comparing the reconstructed
phases in Figs. 3 a), 3 b) and 4 confirms that the temporal
phase, which is a result of the iterative algorithm, is re-
covered with a good degree of accuracy. We do, however,
find small deviations between the reconstructed and the
theoretical object functions, e.g., in Fig. 3, which are due
to a number of experimental uncertainties. For example,
the probe pulse used in the reconstruction process differs
somewhat from the true probe pulse due to a number of
reasons which are related to the pulse-shaping apparatus
itself (details can be found in Ref. [17]). Briefly, the pulse
shaper approximates the spectral transfer function via
the discrete pixels of the spatial light modulator, that is,
the spectral transfer function applied consists of discrete
steps which are separated by small inactive gap regions.
Additionally, the spectral transfer function has to be con-
voluted with the spectral resolution of the grating lens
combination. For all reconstructions in this contribution
we have assumed perfect spectral resolution, continuous
transfer functions, and we have neglected the gaps, which
explains at least part of the deviations observed. How-
ever, we believe that the quality of the reconstruction is
sufficient to prove that ptychography can be applied to
reconstruct ultrafast time-dependent object functions.

The results demonstrate that the ptychographic itera-
tive scheme can extract a time-varying, complex-valued
object function from a sequence of spectra each recorded
for a different time-delayed coherent probe pulse, and we
believe that we have shown sufficient experimental evi-
dence to prove that the concept of ptychography is appli-
cable to ultrafast lensless time-domain imaging. With an
approximately 1-ps-long probe pulse, time-delayed in in-
crements of 250 fs, it was possible to reconstruct temporal
features with a time constant of about 100 fs, i.e., tempo-
ral variations ten times shorter than the duration of the
probe pulse. Given the spectral range of the spectrometer
(300-545 nm), the fastest detectable temporal feature is
approximately 5 fs. This is comparable to ptychography
experiments in the spatial domain, e.g., in Ref. [13], a
700-nm-wide beam was used to reconstruct objects with
a 11 nm resolution. The accuracy with which the time
delay can be adjusted through pulse shaping is excep-
tionally high, here 0.5 as, and thus much better than the
accuracy of most spatial analogs. There are several ap-
plications of this modality, some of which which we will
pursue.

With the experimental parameters chosen appropri-
ately, the scheme may also prove to be useful for ultra-
short pulse characterization purposes. The object func-
tion is identified with the electric field of the unknown
pulse and the probe pulse with a spectrally filtered copy

of it or another suitably prepared probe pulse. A re-
lated and widely used pulse characterization scheme is
frequency-resolved optical gating (FROG), in which a
spectrogram is measured and an inversion algorithm is
used to retrieve the object function, i.e., the unknown
pulse [18]. The ptychographic scheme, however, differs
from FROG in several ways. For example, the time step
is not linked directly to sampling and the temporal res-
olution is dominated by the largest frequency shift de-
tectable rather than by the sampling of the spectrogram.

Also, the methodology is envisaged to be valuable for
time-resolved pump-probe spectroscopy schemes. Typ-
ically, an ultrashort pump pulse triggers a material re-
sponse (object function) which is then probed by an ul-
trashort probe pulse. Irrespective of the specific type of
spectroscopy, the probe pulse duration in most schemes
is shorter than the fastest dynamical feature to be mea-
sured. With the ptychographic probing scheme the re-
quirement of a sufficiently short probe pulse is obviously
relaxed. In nonlinear spectroscopy, the signal is either
measured directly (homodyne) or through spectral inter-
ferometry with a local oscillator (heterodyne). Since a
heterodyne measurement yields the amplitude and phase
of the nonlinear signal, the ptychographic scheme is use-
ful only in homodyne measurements. Therefore, time-
domain ptychography is advantageous if the homodyne
signal is of sufficient strength, because less data have to
be recorded, or if sufficiently short pulses for standard
pump-probe spectroscopy (which includes heterodyne de-
tection) are not readily available, for example, in the
UV. Another advantage, albeit more technical in nature,
is that beam delivery systems no longer need to be ex-
tremely broadband, e.g., dielectric mirrors, wave plates,
etc., which are often expensive and difficult to produce.
For example, in homodyne transient grating spectroscopy
the generated third order polarization can be expressed
as

P(3)(~k, t) = −P (t)

∞∫
0

dt1 χ
(3)(t1) |Ep(t+ τ − t1)|2 ,

(7)
with the time delay τ between the pump pulse Ep(t)

forming the transient grating and the probe pulse P (t).
Ptychography would allow one to reconstruct the con-
volution of the pump pulse and the third-order material
response without the need of a short probe pulse. If the
pump pulse is known from a separate measurement or
assumed to be impulsive, the material response can be
readily extracted. With the emergence of spatially and
temporally coherent pulsed x-ray sources the scheme pro-
posed here may also be applicable to optical-pump-x-ray
probe and x-ray pump-x-ray probe schemes.
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E. Färm, E. Härkönen, M. Ritala, A. Menzel, J. Raabe,
and O. Bunk, Scientific Reports 4, (2014).

[14] B. C. McCallum and J. M. Rodenburg, Ultramicroscopy
45, 371 (1992).

[15] M. Guizar-Sicairos, K. Evans-Lutterodt, A. F. Isakovic,
A. Stein, J. B. Warren, A. R. Sandy, S. Narayanan, and
J. R. Fienup, Opt. Express 18(17), 18374 (2010).

[16] H. M. Faulkner, and J. M. Rodenburg, Ultramicroscopy
103(2), 153 (2005).

[17] T. Hornung, J. Vaughan, T. Feurer, and K. A. Nelson,
Opt. Lett. 29(17), 2052 (2004).

[18] D.J. Kane, J. Opt. Soc. Am. B 25(6), A120 (2008).

http://dx.doi.org/10.1038/srep02369
http://dx.doi.org/10.1038/srep02369

	Time-domain ptychography
	Abstract
	 Acknowledgments
	 References


