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Abstract: 

 

Objectives: Human studies on the role of mannose-binding lectin (MBL) in patients with invasive 

candidiasis have yielded conflicting results. We investigated the influence of MBL and other lectin 

pathway proteins on Candida colonization and intra-abdominal candidiasis (IAC) in a cohort of high-

risk patients. 

Methods: Prospective observational cohort study of 89 high-risk intensive-care unit (ICU) patients. 

Levels of lectin pathway proteins at study entry and six MBL2 single-nucleotide polymorphisms were 

analysed by sandwich-type immunoassays and genotyping, respectively, and correlated with 

development of heavy Candida colonization (corrected colonization index (CCI) >0.4) and occurrence 

of IAC during a 4-week period.  

Results: Within 4 weeks after inclusion a CCI>0.4 and IAC was observed in 47% and 38% of patients 

respectively. Neither serum levels of MBL, ficolin-1,-2,-3, MASP-2 or collectin liver 1 nor MBL2 

genotypes were associated with a CCI>0.4. Similarly, none of the analysed proteins was found to be 

associated with IAC with the exception of lower MBL levels (HR 0.74, p=0.02) at study entry. 

However, there was no association of MBL deficiency (<0.5 µg/ml), MBL2 haplo- or genotypes with 

IAC.  

Conclusion: Lectin pathway protein levels and MBL2 genotype investigated in this study were not 

associated with heavy Candida colonization or IAC in a cohort of high-risk ICU patients.  
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Introduction: 

 

Invasive candidiasis is a frequent complication after recurrent gastrointestinal tract (GIT) perforation or 

acute necrotizing pancreatitis with significant morbidity and a mortality of up to 50% in intensive-care 

unit (ICU) patients(1, 2). It includes candidemia with or without deep-seated infection and intra-

abdominal candidiasis (IAC) with negative blood cultures, the latter being responsible for the majority 

of cases in high-risk surgical ICU patients(2, 3). Broad-spectrum antibiotic treatment favors 

proliferation and colonization of body sites by Candida species (spp.), and disruption of natural barriers 

(GIT perforation, anastomostic leaks, intravascular catheters) enables their translocation into tissues 

and the bloodstream(4). Apart from clinical risk factors, host innate immunity including pattern 

recognition receptors (PRR) seems to influence the risk of colonization and infection with Candida spp 

(5-7).  

The lectin pathway of complement is activated after binding of one or more of the soluble PRRs 

mannose-binding lectin (MBL), collectin liver 1 (CL-L1) and ficolins (ficolin (FCN)-1, -2, and -3) to 

carbohydrate patterns, acetyl groups or immunoglobulin M (IgM) bound to antigens on pathogens and 

dying cells, with subsequent activation of MBL-associated serine protease (MASP)-1 and -2 and 

assembly of the C3 convertase(8). Inter-individual serum concentrations of these PRR and proteases 

vary to a considerable degree with the greatest distribution observed in MBL levels (from undetectable 

to about 10 µg/mL)(9). Well-characterized exon and promoter polymorphisms in the MBL2 gene on 

chromosome 10 are responsible for the remarkable variation in serum MBL levels(10). Consequently, 

low MBL levels may be observed in approximately a third of the population worldwide(10). For the 

ficolins and MASPs a number of major polymorphisms have been described with a much weaker 

genotypic/phenotypic relationship compared with MBL(11-13).  

MBL has been shown to bind to Candida albicans augmenting complement activation(14) and 

facilitating phagocytosis(15) in vitro. In addition, intravenous administration of MBL increased 
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survival in a mouse model of disseminated candidiasis(16). However, human studies have yielded 

conflicting results in patients with invasive candidiasis(17, 18), and a recent genome-wide association 

study did not identify MBL2 polymorphisms as genetic risk factors for candidemia(19). Whereas 

ficolins seem to influence infections with Aspergillus fumigatus(20, 21), data are lacking with regard to 

Candida infections.  

CL-L1 belong to a novel group of pattern recognition molecules comprising collectin-11 (CL-K1), CL-

P1 and CL-L1(22), which are capable of activating the lectin pathway of complement(23). As the 

collectins have been shown to bind to different microorganisms including C. albicans(24) and 

altered/exposed structures in the body, this new group of PRR may also play a role in inflammatory 

conditions. 

Hence, this study was designed to comprehensively assess the influence of MBL and other lectin 

pathway proteins on the predisposition to Candida colonization and IAC in a prospective cohort of 

high-risk surgical ICU patients.   
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Patients and methods: 

Participants: 

This analysis was conducted as part of the observational FUNGINOS cohort study in two Swiss 

University hospital ICUs(25). Consecutive, >18 years old surgical ICU patients with recurrent GIT 

perforation or acute necrotizing pancreatitis not receiving antifungal agents were included and 

prospectively studied until 2 weeks after ICU discharge. A complete description of the study including 

information about clinical workup, recorded clinical variables, microbiological sampling and treatment 

has been reported previously(25). Blood samples for genetic testing and determination of protein levels 

were drawn at study inclusion. During the study period, at least three of five nonsterile sites (mouth, 

urine, stool, skin, respiratory tract) were screened twice weekly for colonization with Candida spp. and 

colonization was graded as weak, moderate, or heavy according to semiquantitative cultures. 

 

Ethics statement:  

The FUNGINOS study including this analysis had been approved by institutional ethical committees, 

and all participants or their legal representatives gave written informed consent for the study. 

 

Definition of endpoints: 

The corrected colonization index (CCI) was developed as a prediction rule to differentiate between 

colonization and invasive infection in surgical patients(26). It is the product of the colonization index 

(calculated as number of colonized sites divided by the number of cultured sites) and the ratio of the 

number of heavily colonized sites to the total number of colonized sites, which was calculated at 

inclusion and twice weekly during the study period. A threshold of >0.4 indicating “heavy” 

colonization was used as endpoint as described previously(26).  

Candidemia was defined as at least one positive blood culture with Candida spp.  
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Intra-abdominal candidiasis (IAC) was defined as a positive culture result from specimens obtained at 

surgery showing either monomicrobial growth of Candida spp., growth of Candida spp. in a 

polymicrobial abscess or moderate/heavy growth of Candida spp. in polymicrobial peritonitis not 

responding to appropriate antibacterial therapy(25). Antifungal treatment was administered according 

to international guidelines with a strong recommendation against administration of antifungal 

prophylaxis regardless of presence/absence of Candida colonization. 

In addition, 30-day mortality and elevated 1-3-β-D-glucan levels (defined as >80 pg/mL) at inclusion 

and at diagnosis of IAC were analyzed as endpoints. 

Association of lectin pathway proteins and SNPs with the above mentioned endpoints was assessed 

during a 4-week high-risk period after diagnosis of recurrent GIT perforation or acute necrotizing 

pancreatitis. 

Patients with pre-emptive antifungal therapy were excluded from the analysis of IAC only (n=18). 

 

Determination of lectin protein serum levels: 

Sera sampled at study inclusion were stored at -80°C before being analyzed in batch with duplicate 

testing by two investigators blinded to any patient data. Quantification of MBL plasma levels was 

performed using a mannan-binding enzyme-linked immunosorbent assay as previously described (27, 

28). Briefly, mannan-coated microtitre plates were incubated with samples at 1:25 and 1:100 dilutions 

for 90 min at room temperature followed by detection of bound MBL with a biotinylated monoclonal 

anti-MBL antibody (HYB 131-01, BioPorto Diagnostics, Denmark). Moderate MBL deficiency was 

defined as serum level < 0.5 µg/ml, and severe as < 0.1 µg/ml, respectively(29).  

Levels of ficolin-1, -2, -3 and MASP-2 were determined using commercially available ELISAs 

(Hycult, the Netherlands). Levels of collectin liver 1 (CL-L1) were determined by using a sandwich-

type time-resolved immunofluorometric assay (TRIFMA) as described in detail previously(23). 
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After extraction of genomic DNA using a QIAcube machine (Qiagen, Switzerland), six MBL2 single-

nucleotide polymorphisms (SNPs) were genotyped (Illumina Veracode genotyping platform (Illumina, 

U.S.A.) or KASP system (LGC Genomics, U.S.A.) chosen on the basis of their remarkable impact on 

MBL levels. Rs1800451 (A/C), rs1800450 (A/B), rs5030737 (A/D) denote SNPs in the exon 1 region, 

whereas rs11003125 (H/L), rs7096206 (Y/X), rs7095891 (P/Q) are variants in the MBL2 promoter 

region.  MBL2 genotypes were classified as low (XA/YO, YO/YO), intermediate (XA/XA, YA/YO) or 

high (YA/YA, XA/YA) producing genotypes according to published literature(30) with exon 1 variant 

alleles collectively designated as O and the wild-type allele as A, and the promoter and the wild-type 

allele of rs7096206 designated as X and Y, respectively. MBL2 SNPs were analyzed separately and 

combined as haplo- and genotype. 

 

Statistical analysis: 

We used the chi-square test for comparisons of categorical variables and allele and haplo-/genotype 

frequencies, and to check for Hardy-Weinberg equilibrium. Cox regression models (dominant model of 

inheritance) were used to analyze the association of clinical endpoints with lectin pathway protein 

levels and SNPs during a 4-week high-risk period considering the diagnosis of recurrent GIT 

perforation or acute necrotizing pancreatitis as the starting date with censoring at death or ICU 

discharge with and without adjustment for age, sex, and other relevant covariates. In addition, 

differences in clinical endpoints according to lectin pathway protein levels were analyzed using the 

Mann-Whitney U test (with reporting of median and interquartile range (IQR) due to the non-Gaussian 

distribution of MBL levels) and the Student’s t test (with reporting of mean and standard deviation 

(SD) for all other proteins), respectively. All testing was two-tailed. Haplotype and linkage 

disequilibrium analysis was carried out with the haploview program (version 4.2). All other analyses 

were performed using SPSS statistics, version 17.0 (SPSS Inc., USA).
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Results: 

Demographic and clinical characteristics: 

The cohort consisted of 89 Caucasian patients admitted to two surgical ICUs and at high risk for IAC, 

68 with recurrent GIT perforation and 21 with acute necrotizing pancreatitis. Demographic and clinical 

characteristics are outlined in Table 1. The majority of patients had multiple risk factors for invasive 

candidiasis including presence of a central venous catheter, total parenteral nutrition and broad-

spectrum antibacterial therapy. C. albicans was the dominant pathogen isolated in the majority of 

yeast-positive abdominal cultures (n=23, 79%). Eighteen (20%) of patients received pre-emptive 

therapy for suspected and 26 (29%) targeted therapy for confirmed invasive candidiasis. After four 

weeks of follow-up, a CCI>0.4 and IAC was observed in 42/89 (47%) and 27/71 (38%) of patients, 

respectively, and 30-day mortality was 8%. 

 

Association of lectin pathway protein levels with clinical endpoints:  

Lectin pathway protein levels were successfully determined in 86/89 patients (sera not available in 

three patients), the exception being CL-L1, which was only measured in 83/89 patients due to lack of 

material. Overall, 28/86 (32.6%) and 11/86 (12.8%) patients demonstrated moderate and severe MBL 

deficiency, respectively. Neither serum levels of tested lectin pathway proteins nor moderate or severe 

MBL deficiency were associated with the development of heavy Candida colonization (CCI>0.4) 

(Table 2). Similar results were observed in patients who were diagnosed with IAC compared to patients 

without IAC with the exception of lower MBL levels, which were associated with the risk of IAC in 

time-dependent analysis only (Table 2). However, this difference was mainly driven by the presence of 

very high MBL levels in the control group (Figure 1), whereas there was no difference in the frequency 

of moderate or severe MBL deficiency (and of MBL2 SNPs, see below for details) in both groups. In 

addition, lectin pathway protein levels were not associated with elevated 1-3-β-D-glucan levels (>80 

pg/mL) at any time point or 30-day mortality (data not shown).  
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Including age, sex, disease severity and risk factors for invasive candidiasis as covariates in 

multivariate Cox regression models did not significantly alter the observed univariate results (data not 

shown). 

 

Association of MBL2 SNPs with clinical endpoints:  

Successful genotyping was achieved for 6 loci in the MBL2 gene in 94 (rs11003125) - 100% of cases, 

and allele frequencies at all positions were in agreement with the predicted Hardy-Weinberg 

equilibrium (p>0.05 for all analyses). Minor allele and haplotype frequencies of the study cohort were 

in accordance with those reported in the literature(31, 32) (Table 3). As expected, median MBL levels 

significantly correlated with MBL2 genotypes (0.01 µg/ml (interquartile range (IQR) 0-0.66) for low 

(XA/YO, YO/YO), 0.42 µg/ml (IQR 0.21-0.87) for intermediate (XA/XA, YA/YO), and 2.69 µg/ml 

(IQR 1.77-3.55) for high (YA/YA, XA/YA) producing MBL2 genotypes, p<0.001). 

Frequencies of MBL2 exon 1 or promoter variant alleles and haplotypes did not differ significantly 

between subjects with and without heavy Candida colonization (Table 3) with the exception of the 

exon 1 variant rs1800451 (A/C) in time dependent analysis only (hazard ratio (HR) 3.85 (interquartile 

range (IQR) 1.18-12.58), p=0.03; not significant when using Fisher’s exact test, 3/42 

heterozygous/homozygous subjects with heavy Candida colonization vs. 0/47, p=0.1). Similarly, 

variant alleles and haplotypes were equally distributed in patients with and without IAC (Table 3) with 

the exception of the promoter variant rs7095891 (P/Q) (hazard ratio 2.25 (IQR 1.05-4.80), p=0.04; 

14/27 (52%) hetero- or homozygous subjects with IAC vs. 12/44 (27%), p=0.05, Fisher’s exact test). In 

particular, there was no difference in MBL2 geno- or haplotypes according to the presence or absence 

of IAC despite small differences in MBL levels in these groups (for details see above). This was also 

the case for the association of variant alleles or haplotypes with elevated 1-3-β-D-glucan levels and 30-

day mortality (data not shown). 
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Discussion:  

PRRs of the lectin pathway of complement have been implicated in the pathogenesis of fungal 

infections in several experimental models(14-16, 20, 21). This is the first human study designed to 

examine not only the role of MBL but also other lectin pathway PRR and its associated protease 

MASP-2 in the predisposition to Candida colonization and intra-abdominal candidiasis. 

Despite convincing experimental data(14-16) we did not demonstrate any association of lectin pathway 

protein levels or MBL2 SNPs/haplotypes with the presence of heavy Candida colonization or IAC in a 

prospective cohort of well-characterized high-risk surgical ICU patients. The notable exceptions are 

weak associations of lower MBL levels and of the promoter variant rs7095891 (P/Q) with IAC, and of 

the exon 1 variant rs1800451 (A/C) with heavy Candida colonization both in time dependent analysis 

only, whose significance are limited in the context of multiple comparisons investigated in this study 

and a lack of association of MBL deficiency, other MBL2 variant alleles and MBL2 low-producing 

genotypes with IAC or heavy Candida colonization.   

Previous studies have yielded conflicting results with regard to invasive candidiasis in surgical or 

hematological patients. Van Till et al. investigated a similar cohort of 88 patients at risk for IAC(17). 

MBL levels were significantly lower in patients with IAC (28/88) compared to patients without IAC, 

and moderate MBL deficiency (<0.5 µg/ml) was encountered more frequently in the IAC group (71 vs. 

42% compared with only 33% in our patients with IAC). The fact, that blood samples were drawn 

much earlier in the previous study (at first laparotomy for perforation or GIT necrosis in the majority of 

subjects) might partly explain the discrepant results between this and our study with regard to MBL 

levels and presence of MBL deficiency in IAC patients, as MBL levels are known to increase over time 

as a consequence of a mild acute-phase reaction(33, 34). This assumption is underscored by a lack of 

difference in MBL2 variant genotypes according to the presence of IAC, and neither MBL levels nor 

genotypes were associated with Candida colonization similar to our results(17). In a second study, 68 

patients with candidemia were compared to blood donors and hospitalized patients with different 
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degrees of Candida colonization(18). Interestingly, MBL levels were significantly higher in 

candidemia patients as compared to the latter two groups, whereas MBL levels were not associated 

with Candida colonization (in comparison to blood donors). Of note, MBL levels were significantly 

lower two days prior to the presence of Candida spp. in the bloodstream highlighting the importance of 

the sampling time for the interpretation of MBL levels in these patients. In our cohort candidemia was 

only detected in two patients, which might be related to early diagnosis and treatment or the more 

frequent use of pre-emptive antifungal treatment (18/89). Lastly, MBL2 variant alleles were similarly 

distributed in adult leukemia patients with and without chronic disseminated candidiasis in a third 

study(35).  

Given conflicting evidence from previous studies and negative results from our comprehensive 

assessment of both MBL geno- and phenotype, MBL probably has a very limited effect in the context 

of invasive Candida infection in adults but further studies with a larger patient population are desirable. 

This is in contrast to vulvovaginal candidiasis, where a recent meta-analysis demonstrated an increased 

risk in women harboring the MBL2 exon 1 codon 54 (A/B) variant(36). We can only speculate that 

other PRR (e.g. toll-like receptor 4(6)) including other lectin PRR (e.g. ficolin-2(37) or collectin-

11(24)) might partially compensate for MBL deficiency in the setting of invasive Candida infection. 

Supporting our hypothesis levels of at least one ficolin and/or MASP-2 were above or close to the 

median in every single patient with severe MBL deficiency in our study (data not shown).  

Ficolins have been implicated in fungal infections recently(20, 21, 38), and ficolin-2 was shown to 

recognize 1-3-β-D-glucan (the major components of Candida cell walls) leading to complement 

activation(37) more than ten years ago. To our knowledge, data on other ficolins and human studies 

investigating their role in Candida infections are lacking. Similar to MBL we were not able to 

demonstrate a role of ficolin-1, -2, -3, CL-L1 or MASP-2 levels in the predisposition to heavy Candida 

colonization or IAC in our cohort. In line, a recent genome-wide association study failed to identify 

polymorphisms in lectin pathway PRR as risk factor for candidemia(19). Larger cohorts are required to 
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confirm our phenotypic findings including data on lectin PRR variant alleles not investigated in the 

current study.  

Our study has limitations including the lack of data on ficolin, CL-L1 and MASP-2 variant alleles in 

the setting of invasive Candida infection. In addition, the use of pre-emptive antifungal treatment in 

20% of patients in our study reduced the power for the analysis of IAC and might have influenced our 

results if those patients had been included in the IAC analysis. The significance of our observation is 

limited by the small sample size of the analyzed cohort and the multiple comparisons investigated. 

Significant differences as described might be a chance result in the setting of multiple statistical 

analyses. Vice versa, it is possible that small differences in the presence of IAC or heavy Candida 

colonization according to lectin pathway protein levels or MBL2 SNPs may only be detectable in a 

larger cohort of patients. In addition, our results do not necessarily exclude a potential association of 

MBL and the lectin pathway with invasive candidiasis not caused by intraabdominal infection (e.g. 

candidemia associated with the presence of intravascular catheters or in the setting of hematologic 

malignancies). 

 

In conclusion, this study does not support an important role for MBL or other lectin pathway proteins 

in the predisposition to Candida colonization or intra-abdominal infection in high-risk surgical ICU 

patients. Our present state of knowledge indicates that possible effects of lectin pathway protein 

abnormalities are likely overwhelmed by conventional risks factors and/or more powerful SNPs in 

other key immune genes or that a single lectin pathway protein deficiency (such as MBL deficiency) is 

compensated by other PRRs including lectin pathway PRR in the setting of invasive Candida infection. 
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Tables 

Table 1: Patient’s demographic and clinical characteristics 

 Characteristics  (n=89) 

Age in years, median (range)  61 (22-86) 

Female sex, n (%) 30 (34) 

Inclusion criteria, n (%)   

Recurrent gastrointestinal perforation  68 (76) 

Acute necrotizing pancreatitis  21 (24) 

Primary diagnosis at ICU admission, n (%)  

Intra-abdominal tumor 23 (26) 

Intestinal ischemia 20 (22) 

Acute necrotizing pancreatitis 20 (22) 

Gastro-intestinal perforation 10 (11) 

Gastro-intestinal bleeding 5 (6) 

Ruptured aneurysm of abdominal aorta 4 (4) 

Others 7 (8) 

Clinical severity at inclusion   

SAPS II score, median (range)  51 (13-87) 

APACHE II score, median (range)  23 (5-37) 

Severe sepsis or septic shock, n (%)  50 (56) 

Mortality, n (%)
1

 15 (17) 

Duration of hospital stay in days, median (range)  44.5 (9-176) 

Duration of ICU stay in days, median (range)  13 (3-74) 

Risk factors for Candida infection at inclusion   
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Central venous catheter  87 (98) 

Proton pump inhibitors  86 (97) 

Urinary catheter  86 (97) 

Total parenteral nutrition  84 (94) 

Antibacterial therapy  77 (87) 

Invasive mechanical ventilation > 24h  61 (69) 

Antifungal therapy   

None  45 (51) 

Pre-emptive therapy for suspected IAC  18 (20) 

Therapy for documented infection   26 (29) 

Abbreviations: IAC, intra-abdominal candidiasis; ICU, intensive-care unit; SAPS, Simplified Acute Physiology 

Score; APACHE score, Acute Physiology and Chronic Health Evaluation score;  

1Mortality was analysed during the high-risk period until discharge from ICU 
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Table 2: Time-dependent analysis of lectin pathway protein levels according to the presence of heavy 

Candida colonization or IAC 

Variables Heavy Candida colonization 

(CCI>0.4, n=42/89) 

IAC 

  (n=27/71)a 

 HR (95% CI) P value HR (95% CI) P value 

MBL serum levelsb 0.84 (0.69-1.04) 0.1 0.74 (0.57-0.96) 0.02 

MBL < 0.5 µg/mL 1.18 (0.63-2.21) 0.6 0.89 (0.40-1.98) 0.7 

MBL < 0.1 µg/ml 1.15 (0.51-2.60) 0.7 0.71 (0.21-2.35) 0.6 

MASP-2 serum levelsb 1.33 (0.89-1.99) 0.2 0.73 (0.41-1.32) 0.3 

FCN-1 serum levelsb 0.64 (0.38-1.07) 0.1 0.75 (0.42-1.36) 0.3 

FCN-2 serum levelsb 1.03 (0.81-1.30) 0.8 0.81 (0.60-1.09) 0.2 

FCN-3 serum levelsb 1.04 (0.95-1.13) 0.4 0.97 (0.87-1.07) 0.6 

CL-L1 serum levelsc 0.95 (0.71-1.27) 0.7 0.78 (0.56-1.09) 0.2 

Time-dependent analysis (Cox regression) of clinical endpoints and lectin pathway proteins during the 4-week high-

risk period considering the diagnosis of recurrent gastrointestinal perforation or acute necrotizing pancreatitis as the 

starting date, with censoring at death or ICU discharge. HR>1 corresponds to an increased risk.  

Abbreviations: CI, confidence interval; CL-L1, collectin liver 1, FCN, ficolin; HR, hazard ratio; MASP, mannose-

binding lectin-associated serine protease; MBL, mannose-binding lectin; IAC, intra-abdominal candidiasis. 

a Patients with pre-emptive antifungal therapy were excluded from the analysis of IAC (n=18).      

b per 1 µg/ml increase in lectin pathway protein serum levels. 

C per 100 ng/ml increase in CL-L1 serum levels. 
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Table 3: Time-dependent analysis of MBL2 SNPs according to the presence of heavy Candida colonization or IAC 

Variables Heavy Candida colonization 

(CCI>0.4, n=42/89) 

IAC 

(n=27/71)a   

 MA/HF HR (95% CI) P value MA/HF HR (95% CI) P value 

MBL2 exon variants       

rs1800451 (A/C) 0.02 3.85 (1.18-12.58) 0.03 0.02 2.71 (0.64-11.59) 0.2 

rs1800450 (A/B) 0.12 0.71 (0.33-1.53) 0.4 0.12 0.59 (0.20-1.70) 0.3 

rs5030737 (A/D) 0.08 1.03 (0.43-2.45) 1 0.08 1.41 (0.49-4.10) 0.5 

MBL2 promoter varians       

rs11003125 (H/L) 0.37 0.70 (0.38-1.31) 0.3 0.37 0.54 (0.25-1.17) 0.1 

rs7096206 (Y/X) 0.22 1.58 (0.86-2.90) 0.1 0.23 1.43 (0.67-3.04) 0.4 

rs7095891 (P/Q) 0.21 1.54 (0.84-2.82) 0.2 0.21 2.25 (1.05-4.80) 0.04 

MBL2 genotypes       

High producing  Reference   Reference  

Intermediate producing  1.08 (0.53-2.21) 0.8  1.20 (0.50-2.91) 0.8 

Low producing  1.56 (0.69-3.55) 0.3  0.98 (0.32-3.01) 1.0 

MBL2 haplotypes       

HYPA 0.32 0.67 (0.35-1.27) 0.2 0.31 0.59 (0.26-1.36) 0.2 

LXPA 0.22 1.60 (0.90-2.84) 0.1 0.23 1.46 (0.73-2.95) 0.3 
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LYQA 0.20 1.25 (0.69-2.27) 0.5 0.19 1.92 (0.93-3.95) 0.1 

LYPB 0.12 0.64 (0.29-1.44) 0.3 0.13 0.52 (0.16-1.68) 0.3 

HYPD 0.05 1.16 (0.50-2.71) 0.7 0.05 1.86 (0.67-5.17) 0.2 

LYPA 0.05 0.89 (0.25-3.17) 0.9 0.05 1.07 (0.29-3.93) 0.9 

Time-dependent analysis (Cox regression, dominant model of inheritance (wildtype vs. hetero- and homozygous)) of clinical endpoints and MBL2 SNPs, haplo- 

and genotypes proteins during the 4-week high-risk period considering the diagnosis of recurrent gastrointestinal perforation or acute necrotizing pancreatitis as 

the starting date, with censoring at death or ICU discharge. MBL2 genotypes were classified as low (XA/YO, YO/YO), intermediate (XA/XA, YA/YO) or high 

(YA/YA, XA/YA) with exon variant alleles collectively designated as O and the wild-type gene as A, and the promoter variant allele (rs7096206) and the wild-

type gene designated as X and Y, respectively. HR>1 corresponds to an increased risk.  

Abbreviations: CI, confidence interval; HR, hazard ratio; MA/HF, minor allele and haplotype frequencies, respectively; MASP, mannose-binding lectin-

associated serine protease; MBL, mannose-binding lectin; IAC, intra-abdominal candidiasis. 

a Patients with pre-emptive antifungal therapy were excluded from the analysis of IAC (n=18).      
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Figure legends: 

Figure 1: Serum levels of lectin pathway proteins  MBL (A), MASP-2 (B), ficolin-1 (C), ficolin-2 

(D), ficolin-3 (E) and collectin liver 1 (F) in patients who developed IAC (n=27) during a 4-week high-

risk period compared to patients without IAC (n=44, controls). Data are reported as scatter-dot plots 

and medians. Mann-Whitney-U- (MBL) or Student’s t-test (MASP-2, ficolin-1, -2, -3, collectin liver 1) 

p values are indicated. Abbreviations: CL-L1, collectin liver 1; MASP, mannose-binding lectin-

associated serine protease; MBL, mannose-binding lectin; IAC, intra-abdominal candidiasis 
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