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Abstract

With the aim of providing a worldsheet description of the refined topological string, we continue the study 
of a particular class of higher derivative couplings Fg,n in the type II string effective action compactified 
on a Calabi–Yau threefold. We analyse first order differential equations in the anti-holomorphic moduli of 
the theory, which relate the Fg,n to other component couplings. From the point of view of the topological 
theory, these equations describe the contribution of non-physical states to twisted correlation functions and 
encode an obstruction for interpreting the Fg,n as the free energy of the refined topological string theory. 
We investigate possibilities of lifting this obstruction by formulating conditions on the moduli dependence 
under which the differential equations simplify and take the form of generalised holomorphic anomaly 
equations. We further test this approach against explicit calculations in the dual heterotic theory.
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1. Introduction

Since the first construction of topological string theory [1], its connection to higher derivative 
couplings in the string effective action has been a very active and fruitful field of study. Indeed, 
in [2], a series of higher loop scattering amplitudes Fg , in type II string theory compactified 
on a Calabi–Yau threefold, was computed and shown to capture the genus g free energy of 
the topological string. These couplings are BPS protected and involve 2g chiral supergravity 
multiplets. The result of [2] is interesting from a number of different perspectives. On the one 
hand, the Fg encode very important target space physics, for example in computing macroscopic 
corrections to the entropy of supersymmetric black holes (see for example [3]). On the other 
hand, they provide a concrete worldsheet description of the topological string which is very 
powerful in studying its properties [4].

During the last two decades, the work of [2] has been extended and many new relations be-
tween topological correlation functions and higher derivative effective couplings in string theory 
have been found [5–13]. Along these lines, it was suggested in [14] that a suitable generalisation 
Fg,n of the Fg could provide a worldsheet description of the refined topological string. The re-
finement of the topological string consists of a one-parameter deformation of topological string 
theory, inspired by recent progress in the study of supersymmetric gauge theories [15–17], so 
that its point-particle limit reproduces the partition function of supersymmetric gauge theories 
in the full �-background. In this correspondence, the topological string coupling gs is identified 
with one of the geometric deformation parameters ε−, while the refinement is an extension as-
sociated to the second parameter ε+. The first proposal successfully satisfying this requirement 
was presented in [18], through explicit computations to all orders in α′ in heterotic string theory.

From the target space point of view, numerous different descriptions of the refinement exist, 
such as the counting of particular BPS-states in M-theory [19], the refined topological vertex 
[20], matrix models using refined ensembles [21] or through a construction of the �-background 
using the so-called flux-trap background [22]. In a recent work [18], we proposed a worldsheet 
description of the refined topologic string using a generalisation of the couplings Fg involving 
two Riemann tensors and 2g − 2 insertions of graviphoton field strengths, by additional inser-
tions of chiral projections of specific vector multiplets. These couplings are of the general form 
discussed in [23,14] (see also [2,8,11–13]). The precise nature of the additional insertions is 
crucial in exactly reproducing the Nekrasov partition function both perturbatively [18] and non-
perturbatively [24]. Specifically, working in heterotic string theory compactified on K3 × T 2, 
we computed in [18] a series of refined couplings F T̄

g,n which include additional 2n insertions 
of the field strength tensor of the vector superpartner of the Kähler modulus of T 2 (T̄ -vector). 
These amplitudes are exact to all orders in α′ and start receiving corrections at the one-loop level 
in gs . At a particular point of enhanced gauge symmetry in the heterotic moduli space, they re-
produce exactly the perturbative part of the Nekrasov partition function in the point particle limit 
for arbitrary values of the deformation parameters.1 A very strong check of our proposal was 
performed in [24] (see [26,27] for reviews and [28,29] for earlier partial results) by computing 
gauge theory instanton corrections to Fg,n, which precisely reproduce also the non-perturbative 
part of the gauge theory partition function.

The connection between the couplings studied in [18] and the full Nekrasov partition function 
is a very strong hint that our proposal for the F T̄

g,n can indeed furnish a worldsheet description 

1 See [25] for a different proposal reproducing the Nekrasov partition function to leading order.
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of the refined topological string. In this context, non-physical states of the topological theory are 
required to decouple from Fg,n. In the unrefined case (i.e. for n = 0), this requirement has first 
been studied in [4]: in the twisted theory, the BRST operator is identified with one of the super-
charges of the original N = 2 worldsheet superconformal theory. Thus, some of the moduli of the 
untwisted theory are not part of the topological BRST cohomology and are ‘unphysical’ from the 
latter point of view. This implies that Fg should possess holomorphy properties. In the supergrav-
ity formulation, this agrees with the fact that the Fg only depend on the chiral vector multiplet 
moduli and can be written in the form of BPS-saturated F-terms in R4|8 superspace. However, as 
pointed out in [4], in string theory, there is a residual dependence on the anti-holomorphic moduli 
due to boundary effects in the moduli space of the higher genus worldsheet. This gives rise to 
a recursive differential equation known as the holomorphic anomaly equation, which relates the 
anti-holomorphic moduli derivative of Fg to combinations of (holomorphic derivatives of) Fg′
with g′ < g.

In this paper we study the question of the decoupling of anti-holomorphic moduli in the case 
of the Fg,n studied in [14,18] by deriving differential equations for the corresponding effective 
couplings. For n > 0, the Fg,n are no longer F-terms, but also contain chiral projections of su-
perfields. Therefore, a priori, there are no constraints on their dependence on anti-holomorphic 
moduli, even at the level of supergravity. However, by analysing the structure of the couplings in 
superspace, we obtain differential equations which relate anti-holomorphic derivatives of Fg,n to 
new component couplings, and the latter can be realised as scattering amplitudes in string theory.

By studying these relations in detail in supergravity, we can reformulate the vanishing of the 
anti-holomorphic vector multiplet dependence in Fg,n as well-defined conditions on the mod-
uli dependence of particular coupling functions in the effective action. The latter conditions go 
beyond the constraints of N = 2 supersymmetry and might be interpreted as a consequence of 
a U(1) isometry present in a special region in the string moduli space, as required from the 
point of view of gauge theory in order to formulate a supersymmetric �-background [15–17]. 
In this case, since such isometries are generically not present in compact Calabi–Yau threefolds, 
the conditions for decoupling the anti-holomorphic vector multiplets might be regarded as Ward 
identities related to the appearance of U(1) isometries in suitable decompactification limits.

Extending the supergravity analysis, we derive explicit differential equations for the Fg,n in 
the framework of the fully-fledged type II string theory compactified on generic Calabi–Yau 
threefolds. We relate all new component couplings involved in these relations in the form of 
higher genus scattering amplitudes and express them as twisted worldsheet correlators on a genus 
g Riemann surface with 2n punctures. The equations we obtain contain corrections induced by 
boundary effects in the moduli space of the higher genus worldsheet. From the string theory 
perspective, the decoupling of non-holomorphic moduli translates into well-defined conditions 
on the worldsheet correlators. The upshot of our approach is that it provides a solid framework, 
based on physical string couplings, in which the above mentioned Ward identities may be anal-
ysed in the full worldsheet theory. In particular, we can formulate conditions under which the 
string-derived differential equations reduce to the recursive structure of a generalised holomor-
phic anomaly equation. Equations of this type were postulated in [30,31] as the definition of the 
refined topological string.

Finally, we also study the differential equations in the dual setup of heterotic string theory 
on K3 × T 2. On the heterotic side, the F T̄

g,n start receiving contributions at the one-loop level 
and therefore constitute the ideal testing-ground for the ideas developed in type II, particularly 
for certain decompactification limits. We find that in the large volume limit of T 2, they satisfy 
recursive differential equations which precisely match with the weak coupling version of our dif-
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ferential equations in type II, hence providing a non-trivial check of our approach. On the other 
hand, we use the heterotic setup to study boundary conditions to the differential equations de-
veloped in this work. Indeed, in [30,31], the field theory limit was used as a boundary condition 
to solve for the couplings Fg,n. In the present case, while the equations in type II are essentially 
covariant with respect to the choice of vector multiplet insertion in Fg,n, only the specific choice 
of the T̄ -vector for F T̄

g,n was found in [18] to reproduce the gauge theory partition function. Here, 
we show that also other choices of vector multiplet insertions lead to the same boundary condi-
tions when expanded around an appropriate point of enhanced gauge symmetry in the heterotic 
moduli space.

The paper is organised as follows. In Section 2, we prepare the ground by discussing the effec-
tive action couplings Fg,n and extract several relations among them implied by supersymmetry. 
In Section 3, we derive equations in type II string theory compactified on a Calabi–Yau threefold. 
We derive all necessary amplitudes at higher genus and identify string theoretic corrections to 
the supergravity equations as boundary terms of the worldsheet moduli space. In Section 4, we 
discuss simplifications of the differential equations which we propose to be the effect of U(1)

isometries of the target space Calabi–Yau threefold. In particular, we point out that, under certain 
conditions, a recursive structure emerges in the equations, both at the supergravity and at the full 
string level in type II. In Section 5, we consider the dual heterotic theory on K3 × T 2. We first 
perform a check of the results obtained in type II from the heterotic dual computation and then 
provide boundary conditions to the differential equations by reproducing the Nekrasov partition 
function for different vector multiplet insertions in Fg,n. Finally, Section 6 contains a summary 
of our results and our conclusions. Several technical results are compiled in three appendices.

2. String effective couplings

The central object of this paper is a particular class of higher-derivative effective couplings 
in N = 2 supersymmetric string compactifications to four dimensions, which were considered 
in [23,14] (see also [2,8,11–13]) in the form of generalised F-terms. In this section, we demon-
strate that supersymmetry requires a number of consistency relations among different component 
couplings.

2.1. Superspace description

We begin by reviewing the general class of string effective component couplings [14] of the 
form ∫

d4x F I1...I2n
g,n (ϕ, ϕ̄)R2

(−)

(
FG

(−)

)2g−2 (
F

I1
(+) · FI2

(+)

)
. . .

(
F

I2n−1
(+) · FI2n

(+)

)
, (2.1)

where R(−) is the (self-dual) Riemann tensor, FG
(−) the (self-dual) graviphoton field-strength 

tensor and FI
(+) the (anti-self-dual) field strength tensor of a physical vector multiplet gauge 

field AI
μ, which we label by the index I , with I = 1, . . . , NV , and μ is a space–time Lorentz 

index. In general, the coupling function F I1...I2n
g,n depends covariantly on the vector multiplet 

moduli in a non-holomorphic fashion. Only the case n = 0 is special, for which (2.1) reduces to 
a series of holomorphic couplings [2] of the vector multiplet moduli.

The supersymmetric version of the component terms (2.1) can be described in standard su-
perspace R4|8 parametrised by the coordinates (xμ, θa

α , θ̄ α̇
a ). To this end, we introduce the N = 2

supergravity multiplet
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Wab
μν = εab

(
FG

(−)

)
μν

+ . . . + (θaσρτ θb)R(−)μνρτ (2.2)

as well as the chiral and anti-chiral vector multiplets

XI = ϕI + θα
a λIa

α + εab(θ
aσμνθb)F I

(−)μν + . . . , (2.3)

X̄I = ϕ̄I + θ̄ a
α̇ λ̄I α̇

a + εab(θ̄aσ̄
μν θ̄b)F I

(+)μν + . . . . (2.4)

In addition, we define the descendent fields

K̄I
μν =

(
εabD̄

aσ̄μνD̄
b
)

X̄I = FI
(+)μν + . . . , (2.5)

where D̄a
α̇ are the (anti-)chiral spinor derivatives. On-shell, these descendants are chiral objects 

in the sense that

D̄i
α̇K̄I

μν = 0 . (2.6)

We can use these superfields to write a superspace version of the component couplings (2.1):∫
d4x d4θ

(
D̄aσ̄μνD̄a

)2
[
F

I1...I2n−2
g,n (X, X̄) (Wab

μνW
μν
ab )g (K̄I1 · K̄I2) . . . (K̄I2n−3 · K̄I2n−2)

]
.

(2.7)

The non-holomorphic coefficient functions FI1...I2n−2
g,n (XI , X̄I ) in (2.7) are generic symmetric 

tensors transforming in some (reducible) representation of the T-duality group. Upon expansion 
in the Grassmann variables they can be related to coefficient couplings, which in turn are related 
to scattering amplitudes that we study in Section 3 in type II string theory.

2.2. Component couplings and differential equations

In (2.7), all vector multiplets have been treated on an equal footing and we have considered 
the couplings FI1...I2n

g,n as generic tensors of the SO(NV ) T-duality group. In the following, we fo-
cus on couplings involving only one singled out vector multiplet, which we denote by (X�, X̄�). 
According to our proposal [18] for a worldsheet description of the refined topological string, ϕ̄�

should be identified with the Kähler modulus of the torus in the heterotic K3 × T 2 compactifi-
cation. Here, however, we do not yet give a particular geometric interpretation of X� pertaining 
to a specific model and we keep the discussion general.

Concerning our notation, we introduce the indices i, j (as well as ı̄, j̄ ) which run over all 
vector multiplets except (X�, X̄�). We also utilise the notation

Fg,n := F
�...�
g,n , F

ı̄
g,n := F

ı̄,�...�
g,n , F

ı̄ j̄
g,n := F

ı̄ j̄ ,�...�
g,n , etc. (2.8)

In order to extract component couplings from the superspace expression (2.7), we perform the 
anti-chiral spinor derivatives as well as the integration over the chiral Grassmann variables. We 
focus on component terms that contain two (self-dual) Riemann tensors and 2g − 2 (self-dual) 
graviphoton field strength tensors. Therefore, we consider

(Wab
μνW

μν
ab )g ∼ θa

α θα
b θb

β θβ
a R(−), μνρτ R

μνρτ

(−)

[
FG

(−) · F (G)
(−)

]g−1 + . . . , (2.9)

and use the leading term to saturate the chiral theta integration, such that it remains to distribute 
the anti-chiral spinor derivatives and choose the contribution θ̄ α̇

a = 0 in the end. We recall that 
the anti-chiral vector multiplets contain only the anti-chiral spinor components λ̄A,a as well as 
α̇
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the anti-self dual part of the gauge field strength tensor FA
(+)μν . For the latter, we denote the three 

independent components as {F (++), F (0), F (−−)}, which are labelled by the charges with respect 
to the anti-self-dual SU(2) ⊂ SO(4) subgroup of the Lorentz group. In particular, we have

(K̄I1 · K̄I2) = F
(++)
I1

F
(−−)
I2

+ F
(0)
I1

F
(0)
I2

+ F
(−−)
I1

F
(++)
I2

+ . . . , (2.10)

where the dots denote higher terms in the Grassmann variables. Furthermore, we also find at the 
component level

(D̄2
� Fg,n)(K̄� · K̄�)

n−1 = T (1)
g,n (F (++)

� )n (F (−−)
� )n + . . . ,

(D̄3
� Fg,n)(K̄� · K̄�)

n−1 = T (2)
g,n (F (++)

� )n (F (−−)
� )n−1F (−−)

� (λ̄−
� · λ̄−

� ) + . . . ,

(D̄�D̄ı̄ Fg,n)(K̄� · K̄�)
n−1 + (D̄2

� Fg,n;ı̄ )(K̄� · K̄�)
n−2(K̄� · K̄ı̄ )

= T
(1)
g,n;ı̄ (F

(++)
� )n (F (−−)

� )n−1 F
(−−)
ı̄ + . . . ,

(D̄3
� Fg,n;ı̄ )(K̄� · K̄�)

n−2(K̄� · K̄ı̄ ) = T
(2)
g,n;ı̄ (F

(++)
� )n (F (−−)

� )n−2 F
(−−)
ı̄ (λ̄−

� · λ̄−
� ) + . . . ,

(2.11)

where the dots denote additional terms (including θ̄ α̇
a ) that we are not be interested in, and DI , D̄Ī

are holomorphic, anti-holomorphic Kähler covariant derivatives. In addition, we have introduced

T (1)
g,n = D̄2

� Fg,n

∣∣
θ=θ̄=0 , T (2)

g,n = D̄3
� Fg,n

∣∣
θ=θ̄=0 ,

T
(1)
g,n;ı̄ = (D̄�D̄ı̄ Fg,n + D̄2

� Fg,n;ı̄ )
∣∣
θ=θ̄=0 , T

(2)
g,n;ı̄ = D̄3

� Fg,n;ı̄
∣∣
θ=θ̄=0 . (2.12)

We can relate these quantities to explicit scattering amplitudes in the effective action:

Fg,n = (n!)2 T (1)
g,n =

〈
(R(−) · R(−))(F

G
(−) · FG

(−))
g−1 (F (++)

� )n (F (−−)
� )n

〉
,

�
g,n

(��|�) = n!(n − 1)!T (2)
g,n

=
〈
(R(−) · R(−))(F

G
(−) · FG

(−))
g−1 (F (++)

� )n(F (−−)
� )n−1 (λ̄−

� · λ̄−
� )

〉
,

Fg,n,ı̄ = n!(n − 1)!T (1)
g,n;ı̄ =

〈
(R(−) · R(−))(F

G
(−) · FG

(−))
g−1 (F (++)

� )n (F (−−)
� )n−1 F

(−−)
ı̄

〉
,

�
g,n

(��|ı̄) = n!(n − 2)!T (2)
g,n;ı̄

=
〈
(R(−) · R(−))(F

G
(−) · FG

(−))
g−1 (F (++)

� )n(F (−−)
� )n−2 F

(−−)
ı̄ (λ̄−

� · λ̄−
� )

〉
. (2.13)

From the definitions (2.12), we deduce that2

D̄�T
(1)
g,n = T (2)

g,n , (2.14)

D̄ı̄T
(1)
g,n = D̄� T

(1)
g,n;ı̄ − T

(2)
g,n;ı̄ , (2.15)

which translate into the following relations for the amplitudes:

D̄�Fg,n = n�
g,n

(��|�) , (2.16)

D̄ı̄ Fg,n = n D̄� Fg,n,ı̄ − n(n − 1)�
g,n

(��|ı̄) . (2.17)

The latter are a consequence of supersymmetry and the particular structure of the effective cou-
plings (2.7).

2 There are several other identities that we can find in this manner, however, in the remainder of this work, we only 
study (2.14) and (2.15).
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3. Differential equations in type II

3.1. Type II genus g amplitudes

In this section, we consider realisations of the couplings (2.13) discussed above as genus-g
string amplitudes in type II string theory on a generic Calabi–Yau threefold X and derive gener-
alisations of the relations (2.16) and (2.17) in the framework of fully-fledged string theory.

3.1.1. Gauge field amplitudes
We begin by providing an expression for the Fg,n,Ī and then proceed to consider the differen-

tial equations they satisfy. The key ingredient to deriving the couplings Fg,n is the vertex operator 
of the (anti-self-dual) vector multiplet gauge field strength tensor F�. In the − 1

2 ghost picture, it 
takes the form

V
(−1/2)
� (z, z̄) = ημpνe− 1

2 (ϕ̂+ ˜̂ϕ) (Sσ̄μνS̃)�� (z, z̄) eip·Z , (3.1)

where z is the insertion point of the vertex on the worldsheet, ϕ̂ ( ˜̂ϕ) are the left-(right-)moving 
super ghost fields and S (S̃) are the left-(right-)moving space–time spin fields. Furthermore, ημ

and pμ are the polarisation and space–time momentum respectively (which satisfy η · p = 0) 
and Zμ are the space–time coordinates. The nature of the vector multiplet is determined by the 
internal field ��. Concretely, upon bosonising the U(1) Kac–Moody currents J and J̃ in terms 
of H and H̃ respectively, we can write

��(z, z̄) = lim
w→z

|w − z| e
√

3 i
2

(
H(w)∓H̃ (w̄)

)
φ̄�(w, w̄) , (3.2)

where φ̄� is an (anti-chiral, chiral) primary ((anti-chiral, anti-chiral) primary) state of the type IIA 
(type IIB) worldsheet theory. Assuming that the vector multiplet gauge fields Aμ

� have no contact 
terms among themselves,3 which would require the subtraction of 1PI reducible diagrams, the 
g-loop amplitude can be written [14] in the form of a twisted worldsheet correlator integrated 
over the moduli space Mg,n of a genus g Riemann surface �g,n with n punctures (located at 
positions u�):

Fg,n =
∫

Mg,n

〈3g−3+n∏
k=1

|μk · G−|2
⎛
⎜⎝ n∏

m=1

∫
�g,n

φ̄�(zm)

⎞
⎟⎠

(
n∏

�=1

φ̂�(u�)

)〉
twist

. (3.3)

Our notation allows us to treat type IIA and type IIB string theory simultaneously. Indeed, for 
the measure, we use the shorthand

|μ · G−|2 :=
⎧⎨
⎩

G−(μ) G̃+(μ̄) . . . type IIA ,

G−(μ) G̃−(μ̄) . . . type IIB ,

(3.4)

where G± (G̃±) are the twisted left-(right-)moving worldsheet supercurrents which are sewed 
with the Beltrami-differentials μk of �g,n. The supercurrents are part of the N = 2 worldsheet 
superconformal algebra that contains additionally the energy–momentum tensor T (T̃ ) as well 

3 Specific conditions for this to happen have been formulated in [14].
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as a U(1) Kac–Moody current J (J̃ ). More details, including the algebra relations between all 
operators, are compiled in Appendix A.

Furthermore, the insertions φ̄� in (3.3) are integrated over the full Riemann surface �g,n, 
while the operators φ̂� are obtained by folding φ̄� with the unique holomorphic three-form ρ on 
the Calabi–Yau space:

φ̂� =
∮

dzρ(z)

∮
dz̄ρ̃(z̄) φ̄� . (3.5)

The φ̂� are not integrated over the worldsheet �g,n, but are localised at the positions u� of the n
punctures.

For convenience, we have compiled the charges and (twisted) conformal dimensions of the 
operators of interest in the following table, distinguishing the type IIA and type IIB setups.

Operator Charge IIA Twisted dim IIA Charge IIB Twisted dim IIB

G+ (1,0) (1,0) (1,0) (1,0)

G̃+ (0,1) (0,2) (0,1) (0,1)

G− (−1,0) (2,0) (−1,0) (2,0)

G̃− (0,−1) (0,1) (0,−1) (0,2)

φ̄� (−1,1) (1,1) (−1,−1) (1,1)

φ̂� (2,−2) (0,0) (2,2) (0,0)

ρ (3,0) (0,0) (3,0) (0,0)

ρ̃ (0,−3) (0,0) (0,3) (0,0)

Notice in particular that the total charges of all insertions in (3.3) add up to (−3g + 3, ±3g ∓ 3)

in the type IIA (type IIB) theory, as is appropriate for a g-loop correlator.
The amplitudes Fg,n,ı̄ defined in (2.13) can be computed in a similar manner as the Fg,n. The 

only difference is that one of the Aμ
� gauge fields is replaced by a different vector multiplet Aμ

ı̄ . 
At the level of the vertex operators, we simply replace the internal state φ̄� in (3.1) and (3.2) by 
another (anti-chiral, chiral) primary ((anti-chiral, anti-chiral) primary) state φ̄ı̄ of the type IIA 
(type IIB) worldsheet theory. Assuming that the gauge fields Aμ

� and Aμ
ı̄ have no contact terms 

among themselves, we can immediately write the following expression for the amplitude in terms 
of a twisted worldsheet correlation function

Fg,n,ı̄ =
∫

Mg,n

〈3g−3+n∏
k=1

|μk · G−|2
⎛
⎜⎝n−1∏

m=1

∫
�g,n

φ̄�(zm)

⎞
⎟⎠

⎛
⎜⎝ ∫

�g,n

φ̄ı̄ (z0)

⎞
⎟⎠

(
n∏

�=1

φ̂�(u�)

)〉
twist

.

(3.6)

Since the charges and (twisted) dimensions of φ̄ı̄ are identical to φ̄�, the total charges of all 
insertions again add up to (−3g + 3, ±3g ∓ 3) respectively.

3.1.2. Gaugino amplitudes
Besides the amplitudes (3.3) and (3.6) presented above, the differential equations (2.16) and 

(2.17) predicted by supergravity also involve �g,n

(��|Ī )
defined in (2.13). The latter has two in-

sertions of gaugini λ̄�α̇
a , whose vertex operators can be obtained from (3.1) by the action of the 
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supersymmetry generators. Using the same procedure as before, one shows that the amplitude is 
computed by replacing two of the φ̄� primary insertions by their superdescendants:

�
g,n

(��|Ī )
=

∫
Mg,n

〈 3g−3+n∏
k=1

|μk · G−|2
⎛
⎜⎝n−2∏

m=1

∫
�g,n

φ̄�

⎞
⎟⎠

⎛
⎜⎝ ∫

�g,n

∮
G+φ̄�

⎞
⎟⎠

⎛
⎜⎝ ∫

�g,n

∮
G̃∓φ̄�

⎞
⎟⎠

×
⎛
⎜⎝ ∫

�g,n

φ̄Ī

⎞
⎟⎠

(
n∏

�=1

φ̂�(u�)

)〉
twist

. (3.7)

Again, the total charges of all insertions add up to (−3g + 3, ±3g ∓ 3) in the type IIA (type IIB) 
theory, respectively.

3.2. Differential equations

3.2.1. Anti-holomorphic derivatives and operator insertion
Having written the relevant couplings in the form of correlation functions of the twisted type 

II worldsheet theory, we can now derive the stringy analogue of equations (2.16) and (2.17). 
In the framework of the twisted worldsheet correlation functions, an anti-holomorphic moduli 
derivative D̄Ī corresponds to an insertion of the following operator

type IIA: −
∮

G+
∮

G̃−φ̄Ī , charge(φ̄Ī ) = (−1,+1) , dim(φ̄Ī ) = (1,1) ,

type IIB: −
∮

G+
∮

G̃+φ̄Ī , charge(φ̄Ī ) = (−1,−1) , dim(φ̄Ī ) = (1,1) .

(3.8)

These types of deformations of the (twisted) worldsheet theory are explained in Appendix A.3, 
where also our notation for the chiral ring is presented. Notice that φI is a (chiral, anti-chiral) 
primary state in type IIA and a (chiral, chiral) primary state in the type IIB theory. Thus, the left 
hand side of equation (2.17) takes the following form (for convenience, we adopt a streamlined 
shorthand notation):

D̄Ī Fg,n = −
∫

Mg,n

〈3g−3+n∏
k=1

|μk · G−|2
(∫

φ̄�

)n (
φ̂�

)n
(∫ ∮

G+
∮

G̃∓φ̄Ī

)〉
twist

, (3.9)

where we are treating the type IIA and type IIB theory simultaneously. Since in the twisted theory 
(G+, G̃∓) have dimensions one, we can deform the corresponding contour integrals to encircle 
different operators in the correlator. We have∮

G+φ̂� =
∮

G̃−φ̂� = 0 in type IIA , (3.10)∮
G+φ̂� =

∮
G̃+φ̂� = 0 in type IIB , (3.11)

due to fact that φ̂� has charge (+2, ∓2). However, there is a non-trivial residue when G+ or G̃∓
encircles φ̄� or one of the operators of the integral measure. Therefore, we find the following 
contributions
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D̄�Fg,n = n

∫
Mg,n

〈3g−3+n∏
k=1

|μk · G−|2
(∫

φ̄�

)n−1 (
φ̂�

)n
(∫ ∮

G+φ̄�

)

×
(∫ ∮

G̃∓φ̄�

)〉
twist

+
∫

Mg,n

〈3g−3+n∑
r=1

∏
k 	=r

|μk · G−|2 (μr · T )(μ̄r · G̃±)

(∫
φ̄�

)n (
φ̂�

)n

×
(∫ ∮

G̃∓φ̄�

)〉
twist

. (3.12)

The first line in this relation corresponds to the amplitude �g,n

(��|�). The second line has an insertion 
of the (left-moving) energy momentum tensor sewed with one of the Beltrami differentials. As 
we discuss in the next section, such a term can be written as a total derivative [4] in the moduli 
space Mg,n and therefore corresponds to a boundary contribution Cbdy

� :

D̄� Fg,n = n�
g,n

(��|�) + Cbdy
� . (3.13)

In a similar fashion as in (3.12), we can write

D̄ı̄Fg,n = −n

∫
Mg,n

〈3g−3+n∏
k=1

|μk · G−|2
(∫

φ̄�

)n−1 (∫ ∮
G+

∮
G̃∓φ̄�

)(
φ̂�

)n

×
∫

φ̄ı̄

〉
twist

− n(n − 1)

∫
Mg,n

〈3g−3+n∏
k=1

|μk · G−|2
(∫

φ̄�

)n−2

×
(∫ ∮

G+φ̄�

)(∫ ∮
G̃∓φ̄�

)(
φ̂�

)n
∫

φı̄

〉
twist

+ Cbdy
ı̄ , (3.14)

where for the boundary contribution we write Cbdy
ı̄ = Cbdy,1

ı̄ + Cbdy,2
ı̄ , with

Cbdy,1
ı̄ =

∫
Mg,n

〈3g−3+n∑
r=1

∏
k 	=r

|μk · G−|2 (μr · T )(μ̄r · T̃ )

(∫
φ̄�

)n (
φ̂�

)n
∫

φ̄ı̄

〉
twist

,

Cbdy,2
ı̄ = −n

∫
Mg,n

〈3g−3+n∑
r=1

∏
k 	=r

|μk · G−|2 (μr · T )(μ̄r · G̃±)

(∫
φ̄�

)n−1 (
φ̂�

)n

×
(∫ ∮

G̃∓φ̄�

) ∫
φı̄

〉
twist

− n

∫
Mg,n

〈3g−3+n∑
r=1

∏
k 	=r

|μk · G−|2 (μr · G−)(μ̄r · T̃ )

(∫
φ̄�

)n (
φ̂�

)n

×
(∫ ∮

G+φ̄�

) ∫
φı̄

〉
twist

. (3.15)
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The first two lines in (3.14) can immediately be interpreted as (derivatives of) the amplitudes 
Fg,n,ı̄ and �g,n

(��|ı̄) given in (3.6) and (3.7) respectively.4 Concretely, we find

D̄ı̄ Fg,n = n D̄� Fg,n,ı̄ − n(n − 1)�
g,n

(��|ı̄) + Cbdy
ı̄ . (3.16)

The two relations (3.13) and (3.16) are very close the predicted relations (2.16) and (2.17) re-
spectively, except for the additional boundary terms Cbdy

� and Cbdy
ı̄ , which we shall discuss in the 

following subsection. As already alluded to, these terms receive contributions from the bound-
aries of Mg,n and encode effects which go beyond the simple on-shell supergravity analysis of 
Section 2.2.

3.2.2. Boundary contributions
The terms Cbdy

� and Cbdy
ı̄ introduced above contain energy momentum tensors sewed with 

the Beltrami differentials. The latter can be re-written as partial derivatives with respect to the 
local coordinates of Mg,n and are thus total derivatives. However, Cbdy

Ī
are not zero, as one 

might naïvely conclude, due to the contributions from boundaries of Mg,n. Geometrically, these 
boundaries correspond to degenerations of �g,n of which there are three different types:

• pinching of a dividing geodesic:
•

•
,

• pinching of a handle: •
• ,

• collision of two punctures: •• .

The first two contributions can be treated in the same manner as in [4] and are discussed in 
detail in Appendix B. The collision of two punctures is more involved and is proportional to 
the curvature on the worldsheet, and is not discussed explicitly. However, we remark that its 
contribution is proportional to C�J̄K̄ , and turns out to play no role in our later considerations. 
Summarising the boundary terms, we find

Cbdy
� = 1

2
C�

JK

⎛
⎝∑

g′,n′

′
DJ Fg′,n′DKFg−g′,n−n′ +DJDKFg−1,n

⎞
⎠

+ (curvature contributions) ,

Cbdy
ı̄ = −1

2
nC�

JK

(∑
g′,n′

′
DJ Fg′,n′,ı̄DKFg−g′,n−n′ +DJDKFg−1,n,ı̄

)

4 Note that the assumption of absence of contact terms allows this re-interpretation.
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+ 1

2
Cı̄

JK

(∑
g′,n′

′
DJ Fg′,n′DKFg−g′,n−n′ +DJDKFg−1,n

)

+ (curvature contributions) .

Here, we have used the shorthand notation

CĪ
JM := e2KCĪ J̄ M̄GJ̄J GM̄M , (3.17)

where K is the Kähler potential. In addition, and throughout the manuscript, the notation �′
means that we exclude the terms (0, 0), (0, 1), (g, n − 1) and (g, n) from the summation range. 
Combined with (3.16), this gives rise to the following equations which are valid at a generic point 
in the full string moduli space up to curvature contributions

D̄� Fg,n = n�
g,n

(��|�) + 1

2
C�

JK

⎛
⎝∑

g′,n′

′
DJ Fg′,n′DKFg−g′,n−n′ +DJDKFg−1,n

⎞
⎠ , (3.18)

D̄ı̄Fg,n = n D̄� Fg,n,ı̄ − n(n − 1)�
g,n

(��|ı̄)

− n

2
C�

JK

(∑
g′,n′

′
DJ Fg′,n′,ı̄DKFg−g′,n−n′ +DJDKFg−1,n,ı̄

)

+ 1

2
Cı̄

JK

(∑
g′,n′

′
DJ Fg′,n′DKFg−g′,n−n′ +DJDKFg−1,n

)
. (3.19)

Notice, as a consistency check, that (3.19) reduces to (3.18) once ı̄ is taken to be �. From the 
point of view of supergravity, apart from the boundary contribution, the equations (3.18) and 
(3.19) agree with the predictions from supersymmetry. In general, ‘anomalous’ contributions like 
Cbdy

� or Cbdy
ı̄ are beyond the simple on-shell analysis performed in Section 2.2, as was pointed 

out in [4–13].
On the other hand, from the point of view of topological string theory, the derivatives D̄Ī

lead to the insertion of the operators (3.8) into the correlator Fg,n, which is outside the BRST-
cohomology. Therefore, whenever the right hand sides of (3.18) and (3.19) vanish (up to the 
anomalous boundary contributions), the Fg,n may be interpreted as topological objects. The 
presence of the Mg,n bulk terms in D�Fg,n,ı̄ and �g,n

(��|Ī )
indicates that the couplings Fg,n gener-

ically receive contributions from non-physical states in the topologically twisted theory. In the 
full string theory, this corresponds to the observation that the Fg,n are not BPS-saturated quanti-
ties, but also receive contributions from non-BPS states. This can be seen from the formulation 
of the couplings in (2.7): they are not (BPS-saturated) F-terms, but are rather D-terms, with the ∫

d4θ (D̄ · D̄)2 essentially acting as an integration over the full R4|8 standard superspace.
However, we note that the situation changes for n = 0. Indeed, in this case, equations (3.18)

and (3.19) reduce to the holomorphic anomaly equation [4] for the topological amplitudes Fg , 
discussed in [2]. The equation then encodes the stronger property that the couplings Fg are 
holomorphic functions of the vector multiplet moduli [2].

4. Non-compact limit

Although we just explained that the correlation functions (3.3) (for n 	= 0) are generically non-
topological, we argued in [18] that the string couplings Fg,n, with F� identified with the vector 
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superpartner of the Kähler modulus of the dual heterotic K3 ×T 2 theory, possess numerous prop-
erties one would expect from a worldsheet realisation of the genus g free energy of the refined 
topological string. Most importantly, we showed that when expanded around a particular point 
in the string moduli space, the Fg,n reproduce in the point-particle limit the (perturbative part) 
of Nekrasov’s partition function in the general �-background. This result was extended beyond 
the perturbative level in [24] and is conceptually a very strong check of our proposal. Given this 
evidence, it is an interesting and important question to study whether the Fg,n can be rendered 
topological in some appropriate limit in the physical moduli space in which the non-physical 
states (from the point of view of the twisted theory) decouple in the worldsheet description. This 
would lead to a vanishing of the bulk contributions in the right hand side of (3.18) and (3.19). 
In the framework of supergravity, this corresponds to rendering the effective couplings Fg,n in 
(2.13) holomorphic, such that the respective couplings (2.1) are BPS-saturated.

The necessity of taking such a limit seems rather natural from the point of view of the gauge 
theory. Indeed, formulating the �-background in four-dimensional space–time requires the pres-
ence of a U(1) isometry in the internal manifold. Such isometries are generically not present in 
compact Calabi–Yau threefolds but may arise in non-compact ones. Therefore, we expect that in 
an appropriate non-compact limit, the differential equations (3.18) and (3.19) are simplified due 
to the presence of additional Ward identities ascribed to the emergent U(1) isometry, such that 
the Fg,n become topological objects. In the following, we analyse necessary conditions for this 
to occur from the point of view of supergravity and of type II string theory.

4.1. Supergravity conditions

The conditions (2.14) and (2.15) derived in supergravity are solely a consequence of su-
persymmetry and the structure of the coupling (2.7). In particular, they do not simply encode 
properties of single tensor components FI1...I2n−2

g,n as a function of the vector multiplets. Rather, 
once these relations are translated into the language of scattering amplitudes (2.16) and (2.17), 
they relate several different objects, instead of just a single type of them and thus give rise to the 
bulk terms. In the following, we derive a set of consistent conditions that can be imposed on the 
component functions Fg,n, Fı̄

g,n, Fı̄ j̄
g,n etc. directly, such that the resulting equations only involve 

a single class of objects.
More specifically, at the level of the amplitudes we impose that both sides in (2.16) vanish 

separately

D̄� Fg,n = �
g,n

(��|�) = 0 , (4.1)

and similarly that (2.17) splits into the following two separate equations

D̄ı̄ Fg,n = 0 , (4.2)

D̄� Fg,n,ı̄ = (n − 1)�
g,n

(��|ı̄) . (4.3)

These condition particularly imply that Fg,n are holomorphic functions of the vector multiplet 
scalars and therefore, the corresponding effective action term (2.1) is BPS-saturated. The equa-
tions (4.2) and (4.3) immediately translate to the level of the component couplings as

D̄� T (1)
g,n = 0 , and T (2)

g,n = 0 , (4.4)

D̄ı̄ T
(1)
g,n = 0 , and D̄� T

(1)
g,n;ı̄ = T

(2)
g,n;ı̄ , (4.5)
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which in turn, respectively, can be written as follows:

D̄3
� Fg,n = 0 ,

D̄2
�D̄ı̄ Fg,n = 0 , and D̄�(D̄�D̄ı̄Fg,n + D̄2

�Fg,n;ı̄ ) = D̄3
�Fg,n;ı̄ . (4.6)

Notice that the latter are equivalent to imposing

D̄2
�D̄Ī Fg,n = 0 , (4.7)

on the effective coupling function Fg,n. This constitutes an explicit condition on the moduli 
dependence going beyond the constraints coming from supersymmetry or T-duality. We expect 
that (4.7) may be interpreted as a direct consequence of the U(1) isometry so that in the full 
quantum theory, (4.7) corresponds to a Ward identity constraining the moduli dependence of the 
effective action couplings. Naturally, the specific action on the individual fields and its geometric 
interpretation in terms of the Calabi–Yau manifold heavily depend on the specific model under 
consideration and is not analysed here.

As a final remark, we note that (4.7) is only a condition on the anti-holomorphic moduli depen-
dence of Fg,n. The fact that we are treating holomorphic and anti-holomorphic vector multiplet 
moduli differently is very reminiscent of the holomorphic limit introduced in [4] (see also [32]
for an application) which is relevant in extracting topological information from the amplitudes 
Fg,n=0.

4.2. Type II conditions

In the previous section, we derived conditions on the moduli dependence of the Fg,n at the 
level of the effective supergravity action. At the full string theory level, we expect the conse-
quences of (4.7) to be more involved: the conditions (4.1)–(4.3) still eliminate the bulk terms on 
the right hand side of eqs. (3.18) and (3.19) and therefore ensure that the Fg,n defined in (3.3)
are topological. However, we expect (4.1)–(4.3) to be modified by boundary contributions in a 
non-trivial fashion. While the type II setup provides a well-posed framework to study these mod-
ifications, it is difficult to analyse them in full generality, i.e. without considering a specific limit 
for a particular Calabi–Yau compactification.

A more basic question is whether (3.19) can take the form of a recursive equation in the de-
compactification limit, such that the right hand side only contains Fg′′,n′′ with (g′′, n′′) < (g, n). 
Indeed, such an equation was postulated in [30,31] as the definition of the free energy of the 
refined topological string on local/non-compact Calabi–Yau manifolds and was termed gener-
alised holomorphic anomaly equation. In fact, the right hand side of the latter is very similar to 
the second line of (3.19). However, if we indeed assume that (4.2) is modified in the following 
way in the full string-theory setting

Dı̄Fg,n

∣∣
lim = 1

2
Cı̄

JK

(∑
g′,n′

′
DJ Fg′,n′DKFg−g′,n−n′ +DJDKFg−1,n

)
, (4.8)

we simultaneously have to require the following modification for (4.3) (up to curvature contribu-
tions)

D̄� Fg,n,ı̄

∣∣
lim = (n − 1)�

g,n

(��|ı̄)

+ 1

2
C�

JK

(∑
g′,n′

′
DJ Fg′,n′,ı̄DKFg−g′,n−n′ +DJDKFg−1,n,ı̄

)∣∣∣∣
lim

. (4.9)
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From the perspective of the effective string couplings, (4.9) plays the role of a consistency con-
dition which supplements (4.8) and is imposed by supersymmetry. We note again that (4.8) and 
(4.9) only contain physical objects, (i.e. string theory scattering amplitudes), and checking them 
in a specific realisation is therefore a well-posed problem. Indeed, in the following section we 
reproduce (4.8) in a specific decompactification limit of the dual heterotic setup on K3 × T 2.

5. Heterotic realisation

The results of the previous sections lend further support to our proposal that the Fg,n studied 
in [18] can furnish a worldsheet description of the refined topological string for specific choices 
of the internal manifold or in suitable decompactification limits. The crucial property for these 
couplings is that in the point particle limit, the Fg,n reproduce Nekrasov’s gauge theory parti-
tion function on the full �-background, with both deformation parameters being non-trivial. In 
[18,24], working in the dual heterotic theory on K3 × T 2, we showed that the Fg,n involving 
insertions of field-strengths in the vector multiplet of the T 2 Kähler modulus correctly reproduce 
the perturbative and non-perturbative parts of the Nekrasov partition function when expanded 
around a particular point in the string moduli space. We denote these couplings by FT̄

g,n in the 
remainder of the section.

An important check of the approach described in the previous sections concerns the differen-
tial equations satisfied by the realisation of the couplings Fg,n in the dual heterotic framework 
on K3 × T 2, since their explicit expression is known by a direct one-loop computation at the 
full string level [18]. We show in the following that, in the large T 2 volume limit, the equations 
satisfied by F T̄

g,n precisely match with the weak coupling limit of (4.8).

5.1. Heterotic one-loop couplings

As discussed in Section 2, the couplings Fg,n at the component level contain terms involving 
two self-dual Riemann tensors R(−), (2g − 2) self-dual graviphoton field strength tensors FG

(−)

and 2n anti-self-dual vector multiplet field strength tensors F�
(+). In the heterotic compactifica-

tion, the vector multiplet moduli space is given by the product of coset manifolds

Mhet
vec = SU(1,1)

U(1)
× O(2,10)

O(2) × O(10)
∈ (S;T ,U,Wa) , a = 1, . . . ,8 , (5.1)

which we parametrise by complex variables S, T , U and Wa . Physically, they correspond to 
the heterotic dilaton, the Kähler, complex structure moduli of T 2 and Wilson lines respectively. 
In order to compute the Fg,n at the one-loop level in heterotic string theory, the relevant piece 
of information is the vertex operator of the vector superpartners F�

(+) of these moduli. For the 

moduli in the coset O(2,10)
O(2)×O(10)

, they take the form

V �(p,η; z) = ημ

[
∂Zμ − i(p · χ)χμ

]
(z) J̄ �(z̄) eip·Z . (5.2)

In this work we adopt a notation similar to [24] and consider an orbifold representation of K3, 
such that (Zμ, Z3, Z4,5) denote the complex coordinates of space–time, the T 2-torus and K3
respectively, with (χμ, χ3, χ4,5) being their fermionic superpartners. Furthermore, ημ and pμ

denote the polarisation and momentum of the gauge field with p ·η = 0, while z is the worldsheet 
position. The relevant quantity distinguishing different multiplets is the right-moving current 
J̄ �. It can either be a bosonic current of T 2, i.e. ∂̄Z3 or ∂̄Z̄3, or a current of the E8 gauge 
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group. For later convenience, we organise the latter in a complex basis (J̄ m, J̄ m†), with m =
1, . . . , 4. In [18], we chose J̄ � = ∂̄Z3, giving V � the interpretation of the vector superpartner of 
the T̄ -modulus of T 2, as already mentioned above.

To explicitly compute the couplings Fg,n at the one-loop level, we can follow the same strat-
egy as in [18] and introduce the generating functional

F(ε−, ε+) =
∑
g,n

ε2n+
(n!)2

ε
2g−2
−

((g − 1)!)2
Fg,n , (5.3)

which can be computed as the partition function of a deformed worldsheet sigma model whose 
action is

S = Sfree −
∫

d2z
[
ε− ∂Z3

(
Z1∂̄Z2 + Z̄2∂̄Z̄1

)
+ ε+

(
Z1∂Z̄2 + Z2∂Z̄1 + χ4χ5 − χ̄4χ̄5

)
J̄ �

]
. (5.4)

It is important to notice that, provided

〈J̄ �(z̄) J̄ �(w̄)〉 = 0 , and 〈J̄ �(z̄) ∂Z3(w̄)〉 = 0 , (5.5)

this action is exact, whereas otherwise it receives additional α′-corrections. Specifically, since 
the internal currents are formulated in a complex basis such that

〈J k(z̄)Jm(0)〉 = 0 , 〈J k(z̄)Jm(0)†〉 = δkm

z̄2
, (5.6)

the deformation (5.4) is not only exact if F� is chosen to be the vector superpartner of the 
T̄ -modulus, but also if it is identified with any one of the gauge fields of the E8 group.5 In these 
cases, the generating functional (5.3) can be computed exactly and, after expanding in powers of 
ε±, we find

Fg,n =
∫
F

d2τ

τ 2
2

Gg,n(τ, τ̄ ) τ
2g+2n−1
2

∑
mi,n

i ,ba∈�2,10

(
PL

ξ

)2g−2 (P �
R

ξ

)2n

q
1
2 |P 2

L| q̄
1
2

PR · PR ,

(5.7)

where the integral is over the fundamental domain F of SL(2, Z), parametrised by τ = τ1 + iτ2
living in the upper half-plane H+, and we also use q = e2πiτ . Furthermore, Gg,n(τ, τ̄ ) is a non-
holomorphic modular form which was computed explicitly in [18] and the summation in (5.7)
is over the �2,10 self-dual lattice parametrised by momenta (PL, P̄L; PR) (for our conventions 
concerning the latter, we refer the reader to Appendix C). The shorthand notation ξ is introduced 
in (C.6). The momentum insertion P�

R in (5.7) denotes a particular component of PR . It reflects 
the choice of V � since it is the zero mode of the current J̄ � in (5.2).

5.2. Differential equations

We now use the explicit expression for the Fg,n to test some of the ideas advocated in the pre-
vious section. In particular, we study decompactification limits of the K3 ×T 2 internal geometry 

5 However, when choosing V � to be the vector partner of the Ū -modulus (with J̄ � being identified with ∂̄Z̄3), there 
are additional corrections to (5.4) as well as (5.7) below, since the second relation in (5.5) is not satisfied.
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and compare them to (4.8) in the weak coupling regime. For convenience, we consider the limit 
corresponding to large torus volume, and work with F T̄

g,n, i.e. F� identified with the field strength 
of the T̄ -vector. The results can be straightforwardly generalised to the other possible insertions 
without altering the main conclusions.

5.2.1. One-loop differential equations for F T̄
g,n

When choosing A�
μ to be the vector superpartner of the T̄ -modulus of T 2 as in [18], we 

have P �
R = PR in (5.7). We are interested in studying these F T̄

g,n in the decompactification limit 
T −T̄

2i
= T2 → ∞. Using the explicit representation of the lattice partition function, we can write6

Dı̄F
T̄
g,n

∣∣
T2→∞

= i

2π
e2K̃ Cı̄j̄ S̄ Gj̄j

∫
F

d2τ

τ 2
2

Gg,n(τ, τ̄ ) τ
2g+2n−1
2 ∂τ

∑
mi,n

i ,ba

(
τ 2

2 DjKg−1,n

) ∣∣∣∣
T2→∞

,

where K̃ is the Kähler potential stripped off its dilaton dependence:

K̃ = − log[(T − T̄ )(U − Ū ) − (W − W̄ )2] . (5.8)

Integrating by parts, and using the modular invariance of the integrand, we find

Dı̄F
T̄
g,n

∣∣
T2→∞ = 1

2πi
e2K̃ Cı̄j̄ S̄ Gj̄j Dj F̃

T̄
g−1,n

∣∣
T2→∞ , (5.9)

where

F̃ T̄
g−1,n ≡

∫
F

d2τ

τ 2
2

(∂τGg,n) τ
2g+2n−1
2

∑
mi,n

i ,ba

(
PL

ξ

)2g−4 (
PR

ξ

)2n

�̂(2,10) . (5.10)

The limit T2 → ∞ simplifies (5.9) by constraining the type of states which can propagate on 
the worldsheet. Indeed, in the next step, we perform the change of variable τ2 → τ2 T2. Notice 
that the worldsheet torus degenerates in this limit, such that the contribution of higher stringy 
modes in (5.9) is suppressed. More specifically, we can separate the integral over the fundamental 
domain F into orbits of the modular group, a procedure which is known as the unfolding [33]
(see [34] and most recently [35] for further developments of these techniques). To be precise, 
we unfold against the (2, 10) self-dual lattice. In the limit of large T2, most contributions are 
exponentially suppressed, except for the so-called degenerate orbit, which can be written in the 
form of an integral over the semi infinite strip

S = {τ ∈H+ : τ2 > 0, |τ1| ≤ 1/2} (5.11)

with vanishing winding numbers n1 = n2 = 0 in the lattice momenta. More explicitly, one finds 
the following recursive relation for the non-holomorphic modular functions Gg,n(τ, τ̄ ):

∂τGg,n

∣∣
T2→∞ = π

2iτ 2
2

Gg−1,n

∣∣
T2→∞ . (5.12)

6 In the following, we discuss the heterotic equivalent of eq. (3.19). While a similar analysis can be made for (3.18), 
we do not discuss it in this paper.
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Remarkably, we find the same type of recursion relation as in the case of Gg,n=0 derived in 
[36]. In both cases, this recursive structure stems from a dependence of the modular form on 
the (extended) second Eisenstein series Ê2 = E2 − π

3τ2
, which may be regarded as a form of 

modular stringy regularisation arising when operators collide on the worldsheet torus. In [36], it 
was shown to be responsible for the holomorphic anomaly and is an inherently stringy effect (see 
also [37–39] for some recent related work).

Equation (5.12) turns (5.9) into a recursion in g in the large volume limit, since

F̃ T̄
g−1,n

∣∣
T2→∞ = − iπ

2
F T̄

g−1,n

∣∣
T2→∞ (5.13)

and consequently, we obtain

Dı̄F
T̄
g,n

∣∣
T2→∞ = 1

2πi
e2K̃ Cı̄j̄ S̄ Gj̄j DjF

T̄
g−1,n

∣∣
T2→∞ . (5.14)

Notice that while it is generically non-trivial, from the point of view of the heterotic theory, to 
distinguish a bulk term of the type II twisted worldsheet theory from a boundary one, in the 
case of (5.14), the right hand side is a pure boundary contribution. Indeed, due to the recursive 
structure, the amplitudes on the right hand side are dual to type II correlators of genus g − 1, 
which are boundary contributions at genus g. Therefore, at least at weak coupling, the FT̄

g,n are 
rendered topological in the decompactification limit T2 → ∞.

5.2.2. Weak coupling limit
In order to compare (5.14) with the explicit form of (4.8), we first derive the weak coupling 

limit of the latter equation. To this end, we recall that the two derivative action for the vector 
multiplets is completely determined in terms of the holomorphic prepotential F(X). In particular, 
the Kähler potential is given by

K = − log[i(ϕ̄I FI − ϕI F̄I )] , (5.15)

where the Kähler metric takes the form GIJ̄ = ∂I ∂J̄ K . Explicitly, the classical piece of F is 
given by

F = S(TU − 1
2W 2)

ϕ0
, (5.16)

where ϕ0 is a compensating field.
Since we are interested in the weak coupling limit (S − S̄) → ∞ of (4.8), we consider the 

following heterotic perturbative expansion:

F T̄
g,n = αg,n(S − S̄) + βg,n +O((S − S̄)−1) . (5.17)

It was shown in [36] that Fg≥2,n=0 (i.e. in the absence of the F� insertions) is independent of 
the heterotic dilaton S at weak-coupling and starts receiving contributions at one-loop, while 
Fg=1,n=0 receives a constant tree-level contribution:

αg≥2,0 = 0 , α1,0 = −iπ . (5.18)

As before, we analyse the couplings F T̄
g,n with n 	= 0 in the limit T −T̄

2i
= T2 → ∞. Plugging this 

result into (4.8) for ı̄ = S̄, we obtain

D ¯F T̄
∣∣ =O((S − S̄)0) . (5.19)
S 0,2 T2→∞
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We have replaced the decompactification limit by T2 → ∞ and Di = (∂i − w∂iK) is the Kähler 
covariant derivative acting on a function of weight w. From (5.19), it follows immediately that 
α0,2

∣∣
T2→∞ = 0.

We can iterate this analysis in two ways. Firstly, by inserting this result into (4.8) for higher 
values of n, we find that α0,n≥1

∣∣
T2→∞ = 0. Secondly, we can also extend this iteration for higher 

values of g. To this end, we consider (4.8) for g = n = 1 and ı̄ = S̄:

DS̄F T̄
1,1

∣∣
T2→∞ =O((S − S̄)0) , (5.20)

so that α1,1
∣∣
T2→∞ = 0. Therefore, by induction, we obtain

αg,n

∣∣
T2→∞ = −iπδg,1δn,0 , (5.21)

i.e. in the large T2 limit, only the prepotential and F1,0 receive a tree-level contribution.
This expression allows us to formulate the weak-coupling limit of (4.8) for ı̄ 	= S̄. Notice 

that to leading order, given the form of the prepotential (5.16), one of the indices of the Yukawa 
couplings Cı̄j̄ k̄ (and therefore also one of the Dj -derivatives) on the right-hand side of (4.8), 
must correspond to S̄. However, in the weak-coupling limit, only F1,0 depends on S̄ such that, 
for g + n ≥ 2, we find

Dı̄F
T̄
g,n

∣∣
T2→∞ = 1

2πi
Cı̄j̄ S̄ e2K̃Gj̄j Dj F T̄

g−1,n

∣∣
T2→∞ . (5.22)

This matches precisely eq. (5.14) derived in the previous section for the couplings FT̄
g,n and 

provides a non-trivial check for our approach, as discussed in Section 4. In particular, it provides 
additional evidence that the physical realisation we proposed in [18] for the Fg,n provides a 
viable candidate for a worldsheet realisation of the refined topological string.

5.3. Nekrasov partition function and boundary conditions

In [30,31], the Nekrasov partition function was interpreted as a boundary condition for 
eq. (4.8) and is thus part of the definition of the refined topological string. It has also been 
shown that consistent solutions to the coupled system exist. From the approach advocated in the 
previous sections, which takes the effective couplings Fg,n as its starting point, it is interesting 
to study whether the example F T̄

g,n is the only class of couplings which captures the Nekrasov 
partition function in the point particle limit. In particular, since the equations (3.19) and (4.8) can 
be formulated for a generic multiplet X�, i.e. covariantly with respect to the T-duality group of 
the string compactification, it would seem surprising if the boundary conditions were to break 
covariance by singling out one specific modulus.

Concretely, in Section 5.1, we discussed a whole family of different heterotic couplings (5.7)
whose one-loop representation (to leading order in α′) only differs by the insertions of the right-
moving momenta P �

R . However, in [18], it was argued that P �
R = PR was crucial for reproducing 

the Nekrasov partition function in the field theory limit, when expanding around a so-called Wil-
son line enhancement point in the heterotic string moduli space. It is therefore very interesting to 
see whether also the more general couplings (5.7) yield the gauge theory partition function at an 
appropriate point in the moduli space. This section is devoted to addressing this question.



I. Antoniadis et al. / Nuclear Physics B 901 (2015) 252–281 271
For simplicity, we restrict the presentation to perturbative corrections.7 In this case, the first 
step to recovering the Nekrasov partition function is to find a point of enhanced gauge symmetry 
in the string moduli space at which both PL and P �

R vanish simultaneously. The rate at which 
these momenta go to zero is proportional to the mass of the BPS states which are responsible for 
the gauge symmetry enhancement. These vector multiplet states generically depend on P �

R, i.e.
the type of insertion A�

μ used for the coupling Fg,n, and we focus on the case of a pure SU(2)

gauge theory.
Using the explicit expressions for the lattice momenta given in Appendix C, it is straightfor-

ward to analyse the various possibilities for P �
R , as already explained in Section 5.1

• P �
R = PR :

The case A�
μ = AT̄

μ (leading to P �
R = PR) was already discussed at length in [18]. Indeed, it 

was found that for

(V
(0)
1 )a = (V

(0)
2 )a = ( 1

2 , 1
2 , v3, . . . , v8) , (5.23)

with generic v3,...,8, the states characterised by

(mi, n
i) = 0 , ba = ±(1,−1,0, . . . ,0) , (5.24)

become massless and, furthermore, both the left- and right-moving momenta vanish at the 
same rate:

PL = PR = V a
2 ba − U V a

1 ba√
(T − T̄ )(U − Ū ) − 1

2 ( W − ̄W)2
−→ 0 . (5.25)

• P �
R = P̄R :

If A�
μ is identified with the vector superpartner of the Ū -modulus (in which case P �

R = P̄R), 
at a similar enhancement point like (5.23) the states (5.24) become massless and

PL = P̄R −→ 0 . (5.26)

• P �
R = P a

R :
Finally, if A�

μ is identified with one of the E8 field strength tensors (such that P �
R = P a

R) we 
can consider

(V
(0)
1 )a = (T̄ − Ū)(1, . . . ,1) , (V

(0)
2 )a = fixed . (5.27)

In the limit T = U , the (winding) states

(m1, n
1)� = (±1,∓1) , (m2, n

2)� = (0,0) , ba� = 0 , (5.28)

become massless and

PL ∝ P a
R ∝ T̄ − Ū −→ 0 . (5.29)

In all three cases, by analysing the contribution of the massless states to the worldsheet integral, 
we precisely reproduce Nekrasov’s partition function in the field theory limit. The analysis pre-
cisely parallels the one given in [18] and is not reproduced here. The fact that different choices 
of the gauge field A�

μ reproduce the Nekrasov partition function in a suitable field theory limit 

7 Based on T-duality, we expect that the results in [24] hold for all choices of X� ∈ O(2,10) in (5.1).

O(2)×O(10)
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is consistent with the fact that the corresponding amplitudes Fg,n are related to one another by 
T-duality transformations, which are unbroken by the boundary conditions imposed in the point-
particle limit.

6. Interpretation and conclusions

In this paper, we have discussed the class of superspace couplings (2.7) in the N = 2 super-
gravity action. We have analysed consistency conditions between its various component terms 
that are imposed by supersymmetry. These do not simply constrain the moduli dependence of 
a single component coupling (e.g. holomorphicity as in the case of n = 0, see [2]), but rather 
relate different component terms with one another. These relations were formulated as first order 
differential equations, e.g. (2.16) and (2.17).

Based on the evidence in support of our proposal [18] for the Fg,n as candidates for the re-
finement of the topological string, following [14], we derived all couplings (2.13) as higher loop 
scattering amplitudes in the framework of type II string theory on a (compact) Calabi–Yau man-
ifold. These string effective couplings were shown to satisfy (2.16) and (2.17) up to additional 
terms which arose as boundary contributions of the moduli space of the genus g worldsheet with 
n punctures. The latter play a similar role as the holomorphic anomaly found in [2] in the case 
of n = 0. The resulting equations (3.18) and (3.19) are solely a consequence of the N = (2, 2)

worldsheet supersymmetry and hold at a generic point in the string moduli space. Provided cer-
tain well-defined conditions are met, these equations reduce to a form involving only one type 
of component couplings and exhibit a recursive structure in both g and n. The resulting equa-
tion (4.8) is structurally similar to the generalised holomorphic anomaly equation proposed in 
[30,31] as a definition for the free energy of the refined topological string on local/non-compact 
Calabi–Yau manifolds.

These results support our proposal [18,24] for the couplings Fg,n as a worldsheet definition 
of the refined topological string. The present work further analyses the necessary conditions for 
the validity of our proposal. At a generic point in the moduli space of a (compact) Calabi–Yau 
manifold, the couplings Fg,n are not BPS-saturated and their (twisted) worldsheet representation 
(3.3) is not topological. This manifests itself in the fact that the Fg,n are related to different classes 
of couplings. We expect that the U(1) isometry, recovered at certain regions in the boundary 
of moduli space, is responsible for a simplification of these equations (see e.g. (4.8)) that is 
appropriate for a topological object. We have provided the well-posed necessary and sufficient 
conditions (4.9) (formulated in terms of physical quantities only) for this modification to happen. 
Furthermore, by analysing the explicit form of the Fg,n in the dual heterotic theory on K3 ×
T 2, we obtained perfect agreement with the weak coupling limit of (4.8). An interesting open 
question concerns the study of explicit examples of Calabi–Yau geometries and the analysis of 
the geometric implications of the consistency conditions derived in this work.

As was also noted in [30,31], the differential equations are not sufficient to define the partition 
function of the free energy of the topological string since it must be supplemented by suitable 
boundary conditions. One such condition is the point particle limit in which the topological free 
energy, when expanded around a point of enhanced gauge symmetry, should reproduce the par-
tition function for N = 2 supersymmetric gauge theories in a general �-background. In the case 
of the string couplings Fg,n, this limit was analysed perturbatively and non-perturbatively in [18,
24] for A�

μ being identified with the vector superpartner of the heterotic T̄ -modulus of T 2, and 
indeed the full gauge theory partition function was reproduced. In this work we have extended 
this analysis and found that all couplings Fg,n with φ� ∈ O(2,10) reproduce perturbatively 
O(2)×O(10)
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Nekrasov’s partition function, when expanded around an appropriate point of enhanced gauge 
symmetry in the string moduli space.

In summary, the findings of this paper further corroborate our proposal that the string scat-
tering amplitudes Fg,n can provide a worldsheet description of the refined topological string. 
Indeed, we have elucidated the conditions under which such an identification is possible. We have 
also shown that our proposal is compatible with other approaches towards the refined topologi-
cal string. In particular, starting only from physical quantities (i.e. string scattering amplitudes), 
we have proposed a way of finding a generalised holomorphic anomaly equation, which e.g. in 
[30,31] was postulated as the definition of the refined topological string.
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Appendix A. World-sheet superconformal field theory

A.1. The N = 2 superconformal algebra

The two-dimensional N = 2 superconformal algebra of central charge c is spanned by the 
energy momentum tensor T , two supercurrents G± and a U(1) Kac–Moody current J . The 
conformal dimensions and the charges of all operators under J are summarised in the following 
table.

Operator Conf. weight U(1)

T 2 0
G± 3/2 ±1
J 1 0

The algebra is realised through the OPE relations among the different operators, which are

T (z)T (w) = c

2(z − w)4
+ 2T (w)

(z − w)2
+ ∂wT (w)

z − w
,

T (z)G±(w) = 3G±(w)

2(z − w)2
+ ∂wG±(w)

z − w
,

T (z)J (w) = J (w)

(z − w)2
+ ∂wJ (w)

z − w
, J (z)G±(w) = ±G±(w)

z − w
,

J (z)J (w) = c

3(z − w)2
, G+(z)G+(w) = G−(z)G−(w) = 0 ,
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G+(z)G−(w) = 2c

3(z − w)3
+ 2J (w)

(z − w)2
+ 2T (w) + ∂wJ (w)

z − w
. (A.1)

Here, we have suppressed all regular terms, which are not important for the computations per-
formed in the main part of this paper.

A.2. Topological twist

In this work, we study correlators in a topologically twisted version of the worldsheet theory 
discussed above. There are two independent ways to redefine the energy–momentum tensor, 
which are known as the A- and the B-twist:

A-twist : T → T − 1

2
∂J , T̃ → T̃ + 1

2
∂̄ J̃ , (A.2)

B-twist : T → T − 1

2
∂J , T̃ → T̃ − 1

2
∂̄ J̃ . (A.3)

These twists have the effect of shifting the dimensions of all operators by (half of) their charge 
as shown in the table below.

Operator A-twisted dimension B-twisted dimension

T (2,0) (2,0)

T̃ (0,2) (0,2)

G+ (1,0) (1,0)

G̃+ (0,2) (0,1)

G− (2,0) (2,0)

G̃− (0,1) (0,2)

J (1,0) (1,0)

J̃ (0,1) (0,1)

With these dimensions, we can identify the operators (G+, G̃−) with the left- and right-moving 
BRST operators in the A-twisted theory, and (G+, G̃+) with the left- and right-moving BRST 
operators in the B-twisted theory. Physical states of the A- and B-type topological theory are 
defined to lie in the cohomology of the corresponding BRST operators. Similarly, the operators 
(G−, G̃+) in the A-twisted model and (G−, G̃−) in the B-twisted model have the right dimen-
sions to be identified with the anti-ghost operators. Indeed, they have the right dimensions to be 
sewed with the Beltrami-differentials of a Riemann surface, thus providing an integral measure 
for the twisted correlators as defined in (3.3).

A.3. Chiral ring

In this section, we briefly review Section 2 of [4]. Our starting point is the chiral ring of 
the (twisted) worldsheet theory of the Calabi–Yau compactification involving the chiral primary 
states which satisfy

φIφJ = CIJ
KφK + [Q, ·] . (A.4)

Here, our convention for the indices is the same as in the bulk of the paper: the index I (Ī ) runs 
over all the (anti-)chiral primaries of the theory. When discussing specific correlation functions 
in Section 3, we single out one primary field (denoted by �) and label the remaining elements of 
the (anti-)chiral ring by i (ı̄) respectively.
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Given the chiral ring, we can define ground states of the theory by acting on a canonical 
vacuum state |0〉. Specifically, we have

|I 〉 = φI |0〉 + Q|·〉 . (A.5)

Geometrically, this corresponds to inserting the state φI on a hemisphere and attaching an in-
finitely long cylinder to the boundary. There are two types of measures on this space of states, 
which are referred to as the topological metric η and the hermitian metric g:

ηIJ = 〈J |I 〉 , gI J̄ = 〈J̄ |I 〉 . (A.6)

The structure of these states generically changes under local deformations of the form

�S = tI

∫ ∮
G−

∮
G̃±φI + t̄Ī

∫ ∮
G+

∮
G̃∓φ̄Ī , (A.7)

where we introduced the deformation moduli (tI , ̄tĪ ). This structure takes the form of a bundle, 
which is usually referred to as the vacuum bundle L of the theory with a base point defined by 
|0〉 and a choice of a base point (t0, ̄t0).

Appendix B. Boundary contributions in type II

In this appendix, we consider explicitly the boundary contributions Cbdy
� and Cbdy

ı̄ to the type II 
equations (3.13) and (3.16). As already mentioned, we do not discuss the collision of two punc-
tures which gives rise to curvature dependent contributions.

B.1. Contribution Cbdy
�

We begin with eq. (3.13) and consider the boundary contribution

Cbdy
� =

∫
Mg,n

〈3g−3+n∑
r=1

∏
k 	=r

|μk · G−|2 (μr · T )(μ̄r · G̃±)

(∫
φ̄�

)n

×
(
φ̂�

)n
(∫ ∮

G̃∓φ̄�

)〉
twist

. (B.1)

Besides the collision of punctures (which we neglect), the boundary components contributing 
to this expression correspond to either a dividing geodesic or a handle degenerating into an 
infinitely long and thin tube. Even though Cbdy

� only has a left-moving energy momentum tensor 
sewed with the Beltrami differentials (and not a right moving one as well), at a generic point in 
the moduli space it only receives contributions when one of the operator insertions is integrated 
over the tube.8 In order to balance all background charges, the only choice for this operator is ∮

G̃∓φ̄�.

Furthermore, we can separate Cbdy
� into the contribution of pinching a handle or a dividing 

geodesic:

Cbdy
� = Bgeo

� +Bhandle
� . (B.2)

8 The reason is, that at a generic point in the moduli space, only states with charges (±1, ∓1) are massless. Indeed, 
in order to yield a non-trivial contribution with no additional insertion on the tube, we would require the existence of 
massless primary states with charges (+1, ∓2) in the worldsheet theory, which are generically not present.
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Here Bgeo
� comes from the degeneration of the Riemann surface into two surfaces of lower genera 

connected by an infinitely long and thin tube:

Bgeo
� = 1

2
C�

JK
∑
g′,n′

′ ∫
Mg′,n′

〈3g′−3+n′∏
�=1

|μ� · G−|2
(∫

φ̄�

)n′ (
φ̂�

)n′ ∮
G−G̃±φJ

〉
twist

×
∫

Mg−g′,n−n′

〈3(g−g′)−3+n−n′∏
�=1

|μ� · G−|2
(∫

φ̄�

)n−n′ (
φ̂�

)n−n′ ∮
G−G̃±φK

〉
twist

,

(B.3)

where we used the same notation as in (3.17), i.e.
∑′

g′,n′ excludes summation over the terms 
(0, 0), (0, 1), (g, n − 1) and (g, n). In particular the exclusion of the terms (0, 1) and (g, n − 1)

is a consequence of the fact that there are no tree-level contact terms between two F̄�-vector 
fields. This was explained in [14] to be a necessary condition to formulate the Fg,n as twisted 
world-sheet correlators like in eq. (3.3). The insertions of the form 

∮
G−G̃−φ in (B.3) can be 

interpreted as Kähler covariant derivatives:

Bgeo
� =1

2
C�

JK
∑
g′,n′

′
DJ Fg′,n′DKFg−g′,n−n′ . (B.4)

On the other hand, Bhandle
� captures the contribution of one of the handles degenerating into an 

infinitely long and thin tube:

Bhandle
� = 1

2
C�

JK

×
∫

Mg−1,n

〈3(g−2)+n∏
�=1

|μ� · G−|2
(∫

φ̄�

)n (
φ̂�

)n
∮

G−G̃±φJ

∮
G−G̃±φK

〉
twist

.

As before, the insertions 
∮

G−G̃±φ can be interpreted as Kähler covariant derivatives:

Bhandle
� = 1

2
C�

JKDJDKFg−1,n . (B.5)

B.2. Contribution Cbdy
ı̄

We now consider the contribution Cbdy
ı̄ defined in (3.15), which can be written as

Cbdy
ı̄ = Bgeo

ı̄ +Bhandle
ı̄ (B.6)

by separating out the boundary components corresponding to the pinching of a dividing geodesic 
and the degeneration of a handle. In the following, we compute these contributions explicitly.

B.2.1. Dividing geodesic
Bgeo

ı̄ comes from the degeneration of the Riemann surface into two surfaces of lower genus 
connected by an infinitely long and thin tube. In order to work it out, we have to distinguish 
between the contribution stemming from the first line (Bgeo,1

ı̄ ) in (3.15) and the last two lines 

(Bgeo,2). Starting with the former and following the discussion of [4], since the insertion of the 
ı̄
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energy–momentum tensor in (3.14) is with respect to the left- and right movers, the expression 
is in fact a double derivative in the moduli parametrising the surface in the vicinity of the de-
generation limit. Therefore, the only non-vanishing contribution arises when one of the operator 
insertions is integrated over the long-thin tube connecting the two surfaces. We assume that we 
are at a point in the string moduli space where only anti-chiral fields of charge (−1, ∓1) and 
dimension (1, 1) become massless and can therefore propagate on the tube. Their contribution 
can be written in the form

Bgeo,1
ı̄ = 1

2
Cı̄

JK
∑
g′,n′

′ ∫
Mg′,n′

〈3g′−3+n′∏
�=1

|μ� · G−|2
(∫

φ̄�

)n′ (
φ̂�

)n′ ∮
G−G̃±φJ

〉
twist

×
∫

Mg−g′,n−n′

〈3(g−g′)−3+n−n′∏
�=1

|μ� · G−|2
(∫

φ̄�

)n−n′ (
φ̂�

)n−n′ ∮
G−G̃±φK

〉
twist

+ n

2
C�

JK
∑
g′,n′

′ ∫
Mg′,n′

〈3g′−3+n′∏
�=1

|μ� · G−|2
(∫

φ̄�

)n′−1 ∫
φ̄ı̄

(
φ̂�

)n′ ∮
G−G̃±φJ

〉
twist

×
∫

Mg−g′,n−n′

〈3(g−g′)−3+n−n′∏
�=1

|μ� · G−|2
(∫

φ̄�

)n−n′ (
φ̂�

)n−n′ ∮
G−G̃±φK

〉
twist

,

where we used the notation (3.17). The insertions of the form 
∮

G−G̃−φ can be interpreted as 
Kähler covariant derivatives:

Bgeo,1
ı̄ =1

2
Cı̄

JK
∑
g′,n′

′
DJ Fg′,n′DKFg−g′,n−n′ + n

2
C�

JK
∑
g′,n′

′
DJ Fg′,n′,ı̄DKFg−g′,n−n′ , (B.7)

with Fg,n,ı̄ being introduced in (3.6).

The contribution of the last two lines of (3.15), i.e. Bgeo,2
ı̄ , is similar, except for the fact that, 

due to charge conservation, only 
∮

G̃∓φ̄� and 
∮

G+φ̄� can propagate. Therefore, their contribu-
tion is

Bgeo,2
ı̄ = − nC�

JK
∑
g′,n′

′
DJ Fg′,n′,ı̄DKFg−g′,n−n′ . (B.8)

B.2.2. Handle degeneration
Bhandle

ı̄ captures the contribution of one of the handles degenerating into an infinitely long and 
thin tube. Starting again with the contribution to the first term (Bhandle,1

ı̄ ) in (3.15) and following 
the same reasoning as in the previous subsection, one of the integrated insertions must be on 
this tube. Furthermore, assuming that g > 1, the only remaining states that can propagate along 
the handle are anti-chiral primary states of charge (−1, −1) and dimension (1, 1). Therefore, we 
obtain the following two contributions:
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Bhandle
ı̄

= 1

2
Cı̄

JK
∫

Mg−1,n

〈3(g−2)+n∏
�=1

|μ� · G−|2
(∫

φ̄�

)n (
φ̂�

)n
∮

G−G̃±φJ

∮
G−G̃±φK

〉
twist

+ n

2
C�

JK
∫

Mg−1,n

〈3(g−2)+n∏
�=1

|μ� · G−|2
(∫

φ̄�

)n−1 ∫
φ̄ı̄

(
φ̂�

)n

×
∮

G−G̃±φJ

∮
G−G̃±φK

〉
twist

The insertions of the form 
∮

G−G̃−φ can again be interpreted as Kähler covariant derivatives:

Bhandle,1
ı̄ = 1

2
Cı̄

JKDJDKFg−1,n + n

2
C�

JKDJDKFg−1,n,ı̄ . (B.9)

The contribution of the last two lines of (3.15) is similar, except for the fact that only 
∮

G̃∓φ̄�

and 
∮

G+φ̄� can propagate. Their contribution therefore gives

Bhandle,2
ı̄ = −nC�

JKDJDKFg−1,n,ı̄ . (B.10)

Appendix C. Lattice momenta

In this appendix, we discuss our conventions for the self-dual lattices which are at the heart 
of heterotic torus compactifications. The basic moduli in the case of T 2 are the two-dimensional 
metric gAB, the B-field BAB and Wilson-line moduli Wa

A. The indices A, B = 1, 2 denote the 
directions on the torus, while a = 1, . . . , 8. An explicit parametrisation is given by

gAB = T2 − W
μ
2 W

μ
2

2U2

U2

(
1 U1

U1 U2
1 + U2

2

)
and BAB =

(
T1 − W

μ
1 W

μ
2

2U2

)(
0 1

−1 0

)
,

(C.1)

where we have used the physical moduli

T = T1 + iT2 , U = U1 + iU2 , Wa = V a
2 − UV a

1 . (C.2)

Using these objects, we can define the lattice momenta of the �2,10 self-dual lattice as

P A
L = mA + V A

a ba + 1
2V A

a V B
a nB + BABnB + gABnB , (C.3)

PR =
(

P a
R

P A
R

)
=

(
ba + V a

AnA

mA + V A
a ba + 1

2V A
a V B

a nB + BABnB − gABnB

)
, (C.4)

where na , ma , ba are integer numbers. These momenta satisfy the relation

1
2

(
P A

L gABP B
L − P A

R gABP B
R − P a

RP a
R

)
= 2(m1n1 + m2n2) − baba . (C.5)

For most of the computations carried out in Section 5, it is useful to work in a complex basis, i.e.
instead of (P A

L ; P A
R , P a

R) we introduce (PL, P̄L; PR, P̄R, P a
R). In order to save writing, we also 

introduce the shorthand notation

ξ =
√

(T − T̄ )(U − Ū ) − 1

2
(W − W̄ )2 , (C.6)
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as well as

Kg,n ≡ τ
2g+2n−3
2

(
PL

ξ

)2g−2 (
PR

ξ

)2n

�̂(2,10) , with �̂2,10 = q |PL|2 q̄ |PR |2+ 1
2 p2

. (C.7)

After some algebra, one can show the following identities:

∂T̄ �̂2,10 = −4πτ2(U − Ū )

ξ2
P̄L PR �̂2,10 ,

∂Ū �̂2,10 = − 4πτ2

ξ2(U − Ū )

×
[

1

2
(Wa − W̄ a)2 P̄L PR + ξ2 P̄L P̄R + ξ(Wa − W̄ a)P a

R P̄L

]
�̂2,10 ,

(∂W̄ )a�̂2,10 = 4πτ2

ξ2

[
(Wa − W̄ a) P̄L PR + ξ P a

R P̄L

]
�̂2,10 . (C.8)

These allow us to prove that the action of anti-holomorphic derivatives on Kg,n is related to that 
of holomorphic derivatives on Kg−1,n up to terms suppressed in the large T2 limit9:

Dı̄Kg,n

∣∣
T2→∞ = − 1

2πi
e2K Cı̄j̄ S̄ Gj̄j ∂τ

(
τ 2

2 DjKg−1,n

)
|T2→∞, (C.9)

where Dı̄ is a suitable Kähler covariant derivative taking into account the weight of Kg,n.
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