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Abstract
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1 Introduction

Robust estimation of multivariate location and scatter for a distribution P on Rq is a recurring topic

in statistics. For instance, different estimators of multivariate scatter are an important ingredient

for independent component analysis (ICA) or invariant coordinate selection (ICS), see Nordhausen

et al. [10] and Tyler et al. [18] and the references therein. Of particular interest are M -estimators

and their symmetrized versions as defined in Sections 2.1 and 2.3, respectively, because they offer

a good compromise between robustness and computational feasibility. The most popular algorithm

to compute M -estimators of multivariate scatter is to iterate a fixed-point equation, see Huber [7]

(Section 8.11), Tyler [17] and Kent and Tyler [8]. This algorithm has nice properties such as

guaranteed convergence for any starting point. However, as discussed later, it can be rather slow

for high dimensions and large data sets. We introduce two alternative methods, a gradient descent

method with approximately optimal stepsize and a partial Newton-Raphson method, which turn

out to be substantially faster.

Computation time becomes a major issue in connection with symmetrized M -estimators.

These estimators are important because of a desirable “block independence property” as explained

in Section 2.3; see also Dümbgen [3] and Sirkiä et al. [16]. If applied to a sample of n observa-

tions X1, X2, . . . , Xn ∈ Rq, symmetrized M -estimators utilize the empirical distribution of all(
n
2

)
differences Xi −Xj , 1 ≤ i < j ≤ n.

In Section 2 we describe briefly the various M -estimators we are interested in. Then we

introduce a general target functional on the space of symmetric and positive definite matrices

in Rq×q which has to be minimized. Section 3 presents some analytical properties of the latter

functional which are essential to understand existing algorithms and to devise new ones. These

parts follow closely a recent survey of multivariate M -functionals by Dümbgen et al. [5]. In

Section 4 we discuss the aforementioned fixed-point algorithm of Kent and Tyler [8] and explain

rigorously why it is suboptimal. Then we introduce two alternative methods, a gradient descent

method with approximately optimal stepsize and a partial Newton-Raphson method. Numerical

experiments in Section 5 show that the new algorithms are substantially faster than the fixed-point

algorithms or the algorithms by Arslan et al. [1]. Proofs are deferred to Section 6.

Some Notation. The space of symmetric matrices in Rq×q is denoted by Rq×qsym, and Rq×qsym,>0

stands for its subset of positive definite matrices. The identity matrix in Rq×q is written as Iq. The
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Euclidean norm of a vector v ∈ Rq is denoted by ‖v‖ =
√
v>v. For matrices M,N with identical

dimensions we write

〈M,N〉 := tr(M>N) and ‖M‖ :=
√
〈M,M〉,

so ‖M‖ is the Frobenius norm of M .

2 The M -estimators and the target functional

LetX1, X2, . . . , Xn be independent random vectors with unknown distribution P on Rq. Our task

is to define and then estimate a certain center µ(P ) ∈ Rq and scatter matrix Σ(P ) ∈ Rq×qsym,>0.

2.1 The scatter-only problem

Let us start with the assumption that µ(P ) = 0. To define and estimate a scatter functional Σ(P )

we consider a simple working model consisting of elliptically symmetric probability densities fΣ

on Rq depending on a parameter Σ ∈ Rq×qsym,>0:

fΣ(x) = C−1 det(Σ)−1/2 exp
(
−ρ(x>Σ−1x)/2

)
,

where ρ : [0,∞) → R is a given function such that C :=
∫

exp
(
−ρ(‖x‖2)/2

)
dx is finite.

Assuming temporarily that this working model is correct, one could estimate the true underlying

matrix parameter by a maximizer of the corresponding log-likelihood function for this model,

Σ 7→ −n logC − 1

2

n∑
i=1

ρ(X>i Σ−1Xi)−
n

2
log det(Σ).

With the empirical distribution P̂ = n−1
∑n

i=1 δXi of the dataX1, X2, . . . , Xn, the log-likelihood

at Σ may be written as n
∫

log fΣ dP̂ . Thus maximization of the log-likelihood function over

Rq×qsym,>0 is equivalent to minimization of Σ 7→ L(Σ, P̂ ), where

L(Σ, Q) := 2

∫
log(fIq/fΣ) dQ

=

∫ [
ρ(x>Σ−1x)− ρ(x>x)

]
Q(dx) + log det(Σ)

for a generic distribution Q on Rq. We include fIq and ρ(x>x), respectively, because often this

increases the range of distributions Q such that L(Σ, Q) is well-defined in R. If L(·, Q) has a

unique maximizer over Rq×qsym,>0, we denote it with Σ(Q). The resulting mapping Q 7→ Σ(Q)

is called an M -functional of scatter. In particular, Σ(P̂ ) serves as an estimator of the scatter
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parameter Σ(P ), assuming that both exist. If P happens to have a density fΣo in our working

model, then Σ(P ) = Σo. If P is merely elliptically symmetric with center 0 and scatter matrix

Σo, for instance, if it has a density f of the form

f(x) = det(Σo)
−1/2go(x

>Σ−1
o x)

with go : [0,∞)→ [0,∞), then at least Σ(P ) = γΣo for some γ > 0.

An important example are multivariate t distributions with ν > 0 degress of freedom. Here

ρ = ρν,q with

ρν,q(s) = (ν + q) log(ν + s) for s ≥ 0. (1)

Note that ρ(x>Σ−1x)− ρ(x>x) equals (q + ν) log
(
(ν + x>Σ−1x)/(ν + x>x)

)
, a bounded and

smooth function of x ∈ Rq.

2.2 The location-scatter problem

Now our working model consists of probability densities fµ,Σ on Rq with parameters µ ∈ Rq and

Σ ∈ Rq×qsym,>0, namely,

fµ,Σ(x) = C−1 det(Σ)−1/2 exp
(
−ρ
(
(x− µ)>Σ−1(x− µ)

)
/2
)
.

Here (µ(P ′),Σ(P ′)) is defined as the minimizer of 2
∫

log(f0,Iq/fµ,Σ) dP ′, where P ′ stands for

P or P̂ . But now we utilize a trick of Kent and Tyler [8] to get back to a scatter-only problem:

With

y = y(x) :=

[
x
1

]
and Γ = Γ(µ,Σ) :=

[
Σ + µµ> µ
µ> 1

]
(2)

we may write log det(Σ) = log det(Γ) and

−2 log fµ,Σ(x) = −2 log(C) + ρ(y>Γ−1y − 1) + log det(Γ).

Hence 2
∫

log(f0,Iq/fµ,Σ) dP ′ equals

L(Γ, Q) =

∫ [
ρ(y>Γ−1y − 1)− ρ(y>y − 1)

]
Q(dy) + log det(Γ)

with Q := L(y(X ′)), where X ′ ∼ P ′. Consequently, if Γ ∈ R(q+1)×(q+1)
sym,>0 minimizes L(·, Q)

under the constraint

Γq+1,q+1 = 1,

then we may write

Γ =

[
Σ(P ′) + µ(P ′)µ(P ′)> µ(P ′)

µ(P ′)> 1

]
,
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and (µ(P ′),Σ(P ′)) solves the original minimization problem. The mappings P ′ 7→ µ(P ′) and

P ′ 7→ Σ(P ′) are called M -functional of location and M -functional of scatter, respectively.

In the special case of ρ = ρν,q with ν ≥ 1 we have the identity

ρν,q(s− 1) = ρν−1,q+1(s) for s > 0,

where we define

ρ0,q(s) := q log(s) for s > 0. (3)

In case of ν > 1 one can show that any minimizer Γ of L(·, Q) does satisfy the equation

Γq+1,q+1 = 1, see [8] and [9]. In case of ν = 1, which corresponds to multivariate Cauchy

distributions, any minimizer Γ of L(·, Q) may be rescaled such that Γq+1,q+1 = 1. Thus in

connection with multivariate t distributions with ν ≥ 1 degrees of freedom, the location-scatter

problem can be reduced to a scatter-only problem.

If P has a density fµo,Σo in our working model, then (µ(P ),Σ(P )) = (µo,Σo). If P is just

elliptically symmetric with center µo and scatter matrix Σo, for instance, if it has a density f of

the form

f(x) = det(Σo)
−1/2go

(
(x− µo)>Σ−1

o (x− µo)
)

with go : [0,∞)→ [0,∞), then µ(P ) = µo and Σ(P ) = γΣo for some γ > 0.

2.3 Symmetrized M -functionals

Suppose that P is (approximately) elliptically symmetric with unknown center µo and unknown

scatter matrix Σo. In many situations one is only interested in the “shape matrix” det(Σo)
−1/qΣo,

i.e. a positive multiple of Σo with determinant 1. Examples are principal components, regression

and correlation measures, where multiplying Σo with a positive scalar has no impact. Then we

may get rid of the nuisance location parameter µo by replacing P with its symmetrization

P	P := L(X ′ −X ′′) with independent X ′, X ′′ ∼ P.

Indeed, P 	 P is (approximately) elliptically symmetric with center 0 and the same shape matrix

det(Σo)
−1/qΣo. We may estimate P 	 P by the measure-valued U -statistic

P̂	P :=

(
n

2

)−1 ∑
1≤i<j≤n

δXi−Xj .
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Then, if we define Σ(Q) to be the minimizer of∫ [
ρ(x>Σ−1x)− ρ(x>x)

]
Q(dx) + log det(Σ)

with respect to Σ, then the shape matrix of Σ(P̂	P ) is a plausible estimator of the true shape

matrix det(Σo)
−1/qΣo. The mapping P 7→ Σ(P	P ) is called a symmetrized M -functional of

scatter.

This symmetrization has a second, even more important advantage: Consider an arbitrary

distribution P , i.e. it may fail to be (approximately) elliptically symmetric. But suppose that a

random vector X ∼ P may be written as X = [X>1 , X
>
2 ]> with independent subvectors X1 ∈

Rq(1), X2 ∈ Rq(2). Then Σ(P ) is block-diagonal in the sense that

Σ(P ) =

[
Σ1(P ) 0

0 Σ2(P )

]
with symmetric matrices Σi(P ) ∈ Rq(i)×q(i)sym . For a further discussion on the use of symmetrized

scatter matrices in multivariate statistics see also Nordhausen and Tyler [13].

2.4 The general settings

Let Q be a probability distribution on Rq. Now we seek to minimize a certain target functional

L(·, Q) on the space Rq×qsym,>0 of symmetric and positive definite matrices in Rq×q, where L(·, ·)

and Q have to satisfy certain conditions:

Setting 0. We assume that Q({0}) = 0, and for Σ ∈ Rq×qsym,>0 we define

L0(Σ, Q) := q

∫
log
(x>Σ−1x

x>x

)
Q(dx) + log det(Σ).

Moreover, we assume that

Q(V) <
dim(V)

q

for any linear subspace V of Rq with 1 ≤ dim(V) < q.

Setting 1. Let ρ : [0,∞) → R be twice continuously differentiable such that ρ′ > 0 ≥ ρ′′.

Further we assume that ψ(s) := sρ′(s) satisfies the following two properties: ψ′ > 0 and q <

ψ(∞) := lims→∞ ψ(s) <∞. For Σ ∈ Rq×qsym,>0 we define

Lρ(Σ, Q) :=

∫ [
ρ(x>Σ−1x)− ρ(x>x)

]
Q(dx) + log det(Σ).

Moreover, we assume that

Q(V) <
ψ(∞)− q + dim(V)

ψ(∞)
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for any linear subspace V of Rq with 0 ≤ dim(V) < q.

Note that for ν > 0, ρ = ρν,q satisfies the conditions of Setting 1 with ψ(s) = (ν+q)s/(ν+s).

Hence ψ(∞) = ν + q, and Q has to satisfy

Q(V) <
ν + dim(V)

ν + q

for proper linear subspaces V of Rq.

Note also that Setting 0 is similar to Setting 1 if we define ρ := ρ0,q as in (3). The main

difference to Setting 1 is that L0(tΣ, Q) = L0(Σ, Q) for arbitrary Σ ∈ Rq×qsym,>0 and t > 0. In

what follows we often write L(Σ, Q) for L0(Σ, Q) or Lρ(Σ, Q).

The assumptions on ρ and Q imply that the functional L(·, Q) has essentially a unique mini-

mizer (see [8], [2] or [5]):

Theorem 1. In Setting 0 there exists a unique matrix Σ0(Q) ∈ Rq×qsym,>0 such that

L0(Σ0(Q), Q) ≤ L0(·, Q) and det(Σ0(Q)) = 1.

In Setting 1 there exists a unique matrix Σρ(Q) ∈ Rq×qsym,>0 such that

Lρ(Σρ(Q), Q) ≤ Lρ(·, Q).

Coming back to the specific situation with independent random variablesX1, X2, . . . , Xn with

distribution P on Rq, the scatter estimators in Sections 2.1, 2.2 and 2.3 correspond to the following

choices of Q:

• Q = P̂ = n−1
∑n

i=1 δXi (Section 2.1);

• Q = n−1
∑n

i=1 δy(Xi) with dimension q + 1 in place of q (Section 2.2);

• Q = P̂	P =
(
n
2

)−1∑
1≤i<j≤n δXi−Xj (Section 2.3).

3 Analytical properties of L(·, Q)

As shown in Dümbgen et al. [5], the functionals L0(·, Q) and Lρ(·, Q) are smooth, strictly convex

and coercive in a certain sense. To make this precise, we utilize the matrix-valued exponential

function: For A ∈ Rq×q let

exp(A) :=
∞∑
k=0

1

k!
Ak.
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In case of A = A> we may write A = U diag(λ)U> with an orthogonal matrix U ∈ Rq×q and

some vector λ = (λi)
q
i=1 ∈ Rq. Then

exp(A) = U diag(exp(λ))U>

with exp(λ) :=
(
exp(λi)

)q
i=1

. Moreover,

log det(exp(A)) = tr(A).

If A ∈ Rq×qsym,>0, i.e. λ ∈ (0,∞)q, then A = exp(log(A)) with

log(A) := U diag(log(λ))U>

and log(λ) := (log λi)
q
i=1.

By means of the matrix-valued exponential function and logarithm, we can describe the behav-

ior ofL(·, Q) in a neighborhood of any matrix Σ ∈ Rq×qsym,>0 quite elegantly. Instead of considering

additive perturbations Σ + A with A ∈ Rq×qsym, we write Σ = BB> for some nonsingular matrix

B ∈ Rq×q, for instance B = Σ1/2, and consider multiplicative perturbations B exp(A)B>. Note

that {
B exp(A)B> : A ∈ Rq×qsym

}
= Rq×qsym,>0.

In case of det(Σ) = 1,

{
B exp(A)B> : A ∈ Rq×qsym, tr(A) = 0

}
=
{

Γ ∈ Rq×qsym,>0 : det(Γ) = 1
}
.

Here is a basic expansion of L
(
B exp(·)B>, Q

)
around 0:

Theorem 2 ([5]). For a nonsingular matrix B ∈ Rq×q define QB := L(B−1X) with X ∼ Q.

Then for A ∈ Rq×qsym,

L
(
B exp(A)B>, Q

)
− L

(
BB>, Q

)
= L(exp(A), QB) = G(A,QB) +

1

2
H(A,QB) + o(‖A‖2)

as A→ 0, where

G(A,QB) :=
〈
A, Iq −Ψ(QB)

〉
,

H(A,QB) :=
〈
A2,Ψ(QB)

〉
+

∫
ρ′′(‖x‖2)(x>Ax)2QB(dx),

and

Ψ(QB) :=

∫
ρ′(‖x‖2)xx>QB(dx).
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Moreover, H(A,QB) is continuous in B, and

H(A,QB)


≥ 0,

> 0 in Setting 0, if A 6∈ {sIq : s ∈ R},
> 0 in Setting 1, if A 6= 0.

Remark 3. The Taylor expansion in Theorem 2 implies that

L(B exp(A)B>, Q) = L(B exp(0)B>, Q) + 〈A,G(QB)〉+O(‖A‖2)

as A→ 0, where

G(QB) := Iq −Ψ(QB) ∈ Rq×qsym.

Hence the matrix G(QB) is the gradient of the function Rq×qsym 3 A 7→ L
(
B exp(·)B>, Q

)
at

0 ∈ Rq×qsym.

Note also that Ψ(QB) is positive definite, because otherwise Q would be concentrated on a

proper linear subspace of Rq.

Remark 4. Note that L0(tΣ, Q) is constant in t > 0 for any Σ ∈ Rq×qsym,>0. In other words, for

any nonsingular B ∈ Rq×q, L0(B exp(xIq)B
>, Q) is constant in x ∈ R. Applying Theorem 2 to

A = xIq yields thatG(Iq, QB) = tr(G(QB)) = 0 andH(Iq, QB) = 0 in Setting 0. This explains

the constraint A 6∈ {sIq : s ∈ R} for H(A,QB) > 0.

Remark 5. The second derivative of the function L
(
B exp(·)B>, Q

)
at 0 ∈ Rq×qsym corresponds

to the quadratic form

Rq×qsym × Rq×qsym 3 (A′, A) 7→
〈
A′, H(QB)A

〉
with the self-adjoint linear operator H(QB) : Rq×qsym → Rq×qsym given by

H(QB)A := 2−1
(
Ψ(QB)A+AΨ(QB)

)
+

∫
ρ′′(‖x‖2)x>Axxx>QB(dx).

Theorem 2 implies that this operator is positive definite in Setting 1. In Setting 0,

Ψ(QB) = q

∫
‖x‖−2 xx>QB(dx),

H(QB)A = 2−1
(
Ψ(QB)A+AΨ(QB)

)
− q

∫
‖x‖−4x>Axxx>QB(dx),

and one easily verifies that H(QB)Iq = 0 and tr
(
H(QB)A

)
= 0 for any A ∈ Rq×qsym. Hence in

both settings one may view H(QB) as a self-adjoint and positive definite linear operator from the

set

W :=

{{
A ∈ Rq×qsym : tr(A) = 0

}
in Setting 0

Rq×qsym in Setting 1

onto itself. In particular, H(QB)−1 stands for the corresponding inverse mapping.
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An important consequence of Theorem 2 is a convexity property of L(·, Q):

Corollary 6. For any nonsingular B ∈ Rq×q and A ∈ Rq×qsym, the mapping

t 7→ L
(
B exp(tA)B>, Q

)
is twice continuously differentiable and convex on R. In Setting 0 it is strictly convex if A 6∈

{sIq : s ∈ R}. In Setting 1 it is strictly convex if A 6= 0.

This corollary implies that Σ = BB> minimizes L(·, Q) if, and only if, the gradient G(QB)

equals 0, i.e.

Ψ(QB) = Iq. (4)

This is equivalent to the fixed-point equation

Σ =

∫
ρ′(x>Σ−1x)xx>Q(dx). (5)

4 Algorithms

4.1 Fixed-point and gradient algorithms

The fixed-point equation (5) gives rise to a fixed-point algorithm which has been proposed and

used repeatedly, see for instance Huber [7] (Section 8.11), Tyler [17] and Kent and Tyler [8]. The

latter two references provide a rigorous proof of convergence for empirical distributions Q, the

general case is covered by Dudley et al. [2]. A basic step works as follows: If Σ ∈ Rq×qsym,>0 is our

current candidate for a minimizer of L(·, Q), then we replace it with∫
ρ′(x>Σ−1x)xx>Q(dx).

When implementing this method it is more convenient to utilize the formulation (4) directly: If

Σ = BB> for some nonsingular matrix B ∈ Rq×q, then∫
ρ′(x>Σ−1x)xx>Q(dx) = BΨ(QB)B>.

Now we use some factorization Ψ(QB) = CC> with nonsingular C ∈ Rq×q and replace B with

BC. Replacing Σ with BΨ(QB)B> yields always an improvement, because

L(BΨ(QB)B>, Q)− L(BB>, Q) < 0 unless Ψ(QB) = Iq; (6)

see [5]. Here is a description of the fixed-point algorithm:

10



Algorithm FP. Choose an arbitrary matrix Σ0 = B0B
>
0 with nonsingular B0 ∈ Rq×q, and let

Q0 := QB0 . Suppose that after k ≥ 0 steps we have determined a nonsingular matrixBk ∈ Rq×q,

corresponding to the candidate Σk = BkB
>
k for Σ(Q). Writing Qk := QBk , we compute

Ψk := Ψ(Qk) =

∫
ρ′(‖x‖2)xx>Qk(dx).

Then we write Ψk = CkC
>
k for some nonsingular Ck ∈ Rq×q and define

Bk+1 := BkCk.

This corresponds to the new candidate Σk+1 := Bk+1B
>
k+1 = BkΨkB

>
k .

This description is similar to the one of Huber [7] (Section 8.11), the main difference being

that we don’t restrict ourselves to the Cholesky factorization of Ψk. Indeed in our implementation

we use Ψk = CkC
>
k with Ck = Uk diag(φk)

1/2, where φk ∈ (0,∞)q contains the eigenvalues of

Ψk and Uk is an orthogonal matrix of corresponding eigenvectors. Our starting point is typically

Σ0 :=

∫
xx>Q(dx).

Our stopping criterion for Algorithm FP is that ‖Iq −Ψk‖ = ‖1q −φk‖ < δ for some given small

number δ > 0, where 1q := (1, 1, . . . , 1)> ∈ Rq.

An important fact is that under the conditions of Theorem 1 the sequence (Σk)
∞
k=0 converges

to a minimizer of L(·, Q), no matter which starting point Σ0 has been chosen; see also Theorem 8

later.

One may view the fixed-point algorithm as an approximate gradient method with constant

stepsize one: Note that with the gradient Gk := G(Qk) of L(Bk exp(·)B>k , Q) at 0 ∈ Rq×qsym,

Σk+1 = BkΨkB
>
k = Bk(Iq −Gk)B>k = Bk exp

(
−Gk +O(‖Gk‖2)

)
B>k .

In the present context an exact gradient method with constant step size one would mean to replace

Σk with Bk exp(−Gk)B>k .

Suboptimality of Algorithm FP. As shown later, the steps performed in Algorithm FP are

clearly suboptimal, at least when Σk is already close to the limit Σ(Q). To understand this thor-

oughly and to devise improvements we first provide a corollary to Theorem 2:
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Corollary 7. Let Σ = BB> for a nonsingular matrix B ∈ Rq×q. Further let Q∗ := QΣ(Q)1/2 . If

we write B = Σ1/2V with an orthogonal matrix V ∈ Rq×q, then for any A ∈ Rq×qsym,

L(B exp(A)B>, Q)− L(BB>, Q) = L(exp(A), QB)

= G(A,QB) +
1

2
H(A,QB) + r(B,A)‖A‖2

= G(A,QB) +
1

2
H(V >AV,Q∗) + r∗(B,A)‖A‖2,

where

|r(B,A)|+ |r∗(B,A)| → 0 as BB> → Σ(Q) and A→ 0.

Moreover,

H(V >AV,Q∗) = ‖A‖2 +

∫
ρ′′(‖x‖2)(x>V >AV x)2Q∗(dx).

Now let us apply this corollary to Algorithm FP. We write Bk = Σ
1/2
k Vk for some orthogonal

matrix Vk ∈ Rq×q. If we fix an arbitrary constant K > 1, then uniformly in A ∈ Rq×qsym with

‖A‖ ≤ K‖Gk‖,

L(Bk exp(A)B>k , Q)− L(BkB
>
k , Q) = L(exp(A), Qk)

= 〈A,Gk〉+
1

2
H(V >k AVk, Q∗) + r∗(Bk, A)‖A‖2

= 〈A,Gk〉+
1

2
H(V >k AVk, Q∗) + o(‖Gk‖2).

In particular, if we choose A = −tkGk with a bounded sequence (tk)k in R,

L(exp(−tkGk), Qk) = ‖Gk‖2
(
−tk +

t2k
2

H(V >k GkVk, Q∗)

‖Gk‖2
+ o(1)

)
.

Consequently, an approximately optimal choice of tk would be a minimizer of the right hand side

without the term o(1), i.e.

t∗k =
‖Gk‖2

H(V >k GkVk, Q∗)

=
(

1 +

∫
ρ′′(‖x‖2)

(x>V >k GkVkx)2

‖Gk‖2
Q∗(dx)

)−1

∈
[(

1− min
A∈W:‖A‖=1

∫
|ρ′′|(‖x‖2)(x>Ax)2Q∗(dx)

)−1
, λmin

(
H(Q∗)

)−1
]
.

The upper bound involves the minimal eigenvalue of the symmetric operator H(Q∗) : W → W.

The lower bound follows from ρ′′ ≤ 0 and is typically strictly larger than 1, for instance if ρ = ρν,q

as defined in (1) or (3). Hence the steps performed during the fixed-point algorithm tend to be too

short!
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Algorithm G. One could easily fix this deficiency as follows: As a proxy for t∗k, which involves

the unknown quadratic form H(·, Q∗), we compute in the k-th iteration the number

tk =
‖Gk‖2

H(Gk, Qk)
= t∗k (1 + o(1)).

The latter equality follows from Corollary 7. Indeed, the latter corollary implies that we obtain

L(exp(−tkGk), Qk) = −‖Gk‖4/(2H(Gk, Qk))(1 + o(1)) ≤ −‖Gk‖2/2(1 + o(1)). Thus we

check whether

L
(
exp(−tkGk), Qk

)
≤ −‖Gk‖2/4. (7)

If yes, we replaceBk withBk+1 = BkCk, where CkC
>
k = exp(−tkGk). Otherwise we perform a

usual fixed-point step as described before. The number 4 in (7) could be replaced with any number

c > 2.

Implementing this gradient method yielded already a substantial reduction of computation

time. This approach of improving a fixed-point algorithm by means of variable step lengths is also

used by Redner and Walker [15] in the context of maximum-likelihood estimation for mixture

models. But in view of Theorem 2 it is certainly tempting to try a Newton-Raphson procedure.

4.2 (Partial) Newton-Raphson procedures

Suppose that our current candidate for Σ(Q) is Σ = BB>. In view of Corollary 7 we should

replace Σ with

Σ̃ = B exp
(
−H(QB)−1G(QB)

)
B>,

because H(QB)−1G(QB) is the unique minimizer of

W 3 A 7→ G(A,QB) +
1

2
H(A,QB) = 〈A,G(QB)〉+

1

2
〈A,H(QB)A〉.

A problem with this promising update Σ̃ is that the computation of the inverse operator H(QB)−1

may be too computer- or memory-intensive. Indeed, we implemented a full Newton-Raphson

algorithm, and it required only very few iterations, as expected. But the running time was even

longer than with Algorithm FP, because the computation and inversion of H(QB), which may

be represented by a symmetric matrix in Rdim(W)×dim(W), was too time-consuming. Note that

dim(W) equals q(q + 1)/2− 1 in Setting 0 and q(q + 1)/2 in Setting 1.

These difficulties with a full Newton-Raphson procedure have been noticed already by Hu-

ber [7] (Section 8.11). Some authors have tried alternative approaches such as conjugate gradient
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methods or quasi Newton methods in which the operator H(QB) is replaced with a surrogate

which is easier to compute and invert; see for instance Huber [6]. According to [7], none of these

attempts was overall convincing.

A partial Newton-Raphson approach turned out to be quite successful. This means that instead

of considering arbitrary multiplicative perturbations B exp(A)B> of a current candidate Σ =

BB>, we restrict A to a particular q-dimensional subspace of Rq×qsym depending on B. Precisely,

consider the matrix Ψ(QB) ∈ Rq×qsym,>0 and its spectral decomposition,

Ψ(QB) = U diag(φ)U>

with an orthogonal matrix U ∈ Rq×q whose columns are eigenvectors of Ψ(QB) and a vector

φ ∈ (0,∞)q containing the corresponding eigenvalues. Now we consider only perturbations Σ =

B exp(A)B> withA = U diag(a)U>, a ∈ Rq. Since exp(U diag(a)U>) = U exp(diag(a))U>,

this leads to the functional

Rq 3 a 7→ L
(
B U exp(diag(a))U>B>, Q)− L(BB>, Q).

Now the Taylor expansion in Theorem 2 may be rewritten as follows:

L
(
B U exp(diag(a))U>B>, Q)− L(BB>, Q)

= L
(
exp(diag(a)), QBU

)
= G̃(QBU )>a+

1

2
a>H̃(QBU )a+ o(‖a‖2),

where

G̃(QBU ) := 1q −
∫
ρ′(‖x‖2)s(x)QBU (dx) = 1q − φ ∈ Rq,

H̃(QBU ) := diag(φ) +

∫
ρ′′(‖x‖2)s(x)s(x)>QBU (dx) ∈ Rq×qsym

with 1q = (1)qj=1 and

s(x) := (x2
j )
q
j=1 for x = (xj)

q
j=1 ∈ Rq.

In Setting 1, H̃(QBU ) is a positive definite matrix, and

arg min
a∈Rq

(
G̃(QBU )>a+

1

2
a>H̃(QBU )a

)
= −H̃(QBU )−1G̃(QBU ).

In Setting 0, the matrix H̃(QBU ) satisfies H̃(QBU )1q = 0 and a>H̃(QBU )a > 0 whenever

a 6= 0, 1>q a = 0. Moreover, 1>q G̃(QBU ) = 0. Thus we may write

arg min
a∈Rq

(
G̃(QBU )>a+

1

2
a>H̃(QBU )a

)
= −(H̃(QBU ) + c 1q1

>
q )−1G̃(QBU )

for any constant c > 0.
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Algorithm PN. Choose an arbitrary matrix Σ0 = B0B
>
0 with nonsingular B0 ∈ Rq×q, and let

Q0 := QB0 .

Suppose that for some integer k ≥ 0 we have already determined a nonsingular matrixBk ∈ Rq×q.

Writing Qk := QBk , we compute

Ψk := Ψ(Qk) =

∫
ρ′(‖x‖2)xx>Qk(dx).

Then we write Ψk = Uk diag(φk)U
>
k with an orthogonal matrix Uk ∈ Rq×q and a vector φk ∈

(0,∞)q. Next we define

Q̃k := (Qk)Uk = QBkUk

and

ak :=

{
−H̃(Q̃k)

−1G̃(Q̃k) in Setting 1,
−
(
H̃(Q̃k) + c 1q1

>
q

)−1
G̃(Q̃k) in Setting 0.

We expect that replacing Bk with Bk exp(diag(ak/2)) results in a change of L(·, Q) of about

a>k G̃(Q̃k)/2 < 0. Now we check whether

L
(
exp(diag(ak)), Q̃k

)
≤ a>k G̃(Q̃k)/4. (8)

If yes, we define

Bk+1 := BkUk exp(diag(ak/2))

which corresponds to the new candidate Σk+1 := Bk+1B
>
k+1 = Bk exp(diag(ak))B

>
k . If (8) is

violated we just perform a step of the fixed-point algorithm and set Bk+1 := BkUk diag(φk)
1/2,

i.e. our new candidate is Σk+1 := Bk+1B
>
k+1 = Bk diag(φk)B

>
k . Again, the number 4 in (8)

could be replaced by any number c > 2.

The new Algorithm PN is also guaranteed to converge to a minimizer of L(·, Q):

Theorem 8. For any starting point Σ0 ∈ Rq×qsym,>0 and in both Settings 0 and 1, Algorithm FP as

well as Algorithm PN yield a sequence (Σk)k converging to a minimizer Σ∗ of L(·, Q).

For general distributions Q it is difficult to compare Algorithms FP and PN explicitly. Recall

that in Algorithm PN we restrict our attention to a particular subspace of Rq×qsym,>0. The following

lemma implies that at least in case of an (approximately) elliptically symmetric distribution Q this

subspace is (almost) the right one to look in for better candidates.

Lemma 9. Suppose that Q is elliptically symmetric with center 0 and scatter matrix Σo ∈

Rq×qsym,>0. Then Σ(Q) = κΣo for some κ > 0. Moreover, for any Σ = BB> with nonsingu-
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lar B ∈ Rq×q and any spectral decomposition Ψ(QB) = U diag(φ)U>,

Σ(Q) = BU exp(diag(a))U>B>

for a vector a ∈ Rq containing the log-eigenvalues of Σ−1Σ(Q).

At this point we should mention that for “well-behaved” distributions Q in high dimension q,

algorithm FP can be rather efficient, because the standardized distributionQ∗ = QΣ(Q)1/2 satisfies

H(A,Q∗) ≈ ‖A‖2

for A ∈W. For instance in Setting 0, if Q∗ is spherically symmetric around 0,

H(A,Q∗) =
q

q + 2
‖A‖2

for allA ∈W. Hence, if Σ = BB> is already close to Σ(Q), the Newton step would be to replace

Σ with

Σnew ≈ B exp(−(1 + 2/q)G(QB))B>,

and for high dimension q this is similar to B exp(−G(QB))B> ≈ BΨ(QB)B>. Indeed our

numerical experiments show that Algorithm PN is particularly useful in situations where Q is

“problematic”, e.g. an empirical distribution of a sample with strong outliers.

4.3 Explicit pseudo-code

Standard M -estimators. Suppose that Q =
∑n

i=1wiδxi with a certain weight vector w =

(wi)
n
i=1 in (0, 1)n such that

∑n
i=1wi = 1 and a data matrix X = [x1, x2, . . . , xn]> ∈ Rn×q.

Then our Algorithm PN may be formulated as in Table 1.

Symmetrized M -estimators. Suppose that

Q =

(
n

2

)−1 ∑
1≤i<j≤n

δxi−xj

for a certain data matrix X = [x1, x2, . . . , xn]> ∈ Rn×q. In principle one could utilize the

algorithm just described withN =
(
n
2

)
in place of n andX replaced by a data matrix X̃ containing

all N differences xi−xj . For large n, however, this may require too much computer memory, and

one should avoid the explicit storage of such a large data matrix X̃ .
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Σ← AlgorithmPN(X,w, δ)

B ←
(∑n

i=1wixix
>
i

)1/2
Y ←XB−1

Ψ←
∑n

i=1wiρ
′(‖yi‖2) yiy

>
i

(U, φ)← Eigen(Ψ)

while ‖1q − φ‖ > δ do
B ← BU
Y ← Y U

H̃ ← diag(φ) +
∑n

i=1wiρ
′′(‖yi‖2)s(yi)s(yi)

> (+ c 1q1
>
q in Setting 0)

a← H̃−1(φ− 1q)
Z ← Y exp(−diag(a)/2)
DL←

∑n
i=1wi

(
ρ(‖zi‖2)− ρ(‖yi‖2)

)
+
∑q

j=1 aj
DL0 ← a>(1q − φ)/4
if DL ≤ DL0 then

B ← B exp(diag(a)/2)
Y ← Z

else

B ← B diag(φ)1/2

Y ← Y diag(φ)−1/2

end if
Ψ←

∑n
i=1wiρ

′(‖yi‖2) yiy
>
i

(U, φ)← Eigen(Ψ)
end while

Σ← BB>

return Σ

Table 1: Pseudo-code for the M -estimator.
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It turned out that the computation time can be reduced substantially if we first compute the

M -estimator Σ(Q̃) for the surrogate distribution

Q̃ :=
1

n

n∑
i=1

δxπ(i)−xπ(i+1)

with a randomly chosen permutation π of {1, 2, . . . , n} and π(n + 1) := π(1). Then we use this

estimator Σ(Q̃) as a starting parameter Σ0 in Algorithm PN.

Table 2 contains pseudo-code for the computation of the symmetrized M -estimator without

using a large data matrix X̃ . Instead it utilizes auxiliary programs to compute the following

objects:

RPermute(n) → a random permutation of {1, 2, . . . , n},

Psi(X) → 1

N

∑
1≤i<j≤n

ρ′(‖xi − xj‖2)(xi − xj)(xi − xj)>,

H(φ,X) → diag(φ) +
1

N

∑
1≤i<j≤n

ρ′′(‖xi − xj‖2)s(xi − xj)s(xi − xj)>,

DL(X,Y , a) → 1

N

∑
1≤i<j≤n

[
ρ(‖yi − yj‖2)− ρ(‖xi − xj‖2)

]
+

q∑
k=1

ak.

5 Numerical examples and comparisons

In most of our simulation experiments we simulated data matrices X = [X1, X2, . . . , Xn]> with

independent rowsXi = (Xij)
q
j=1 having either standard Gaussian or standard Cauchy distribution

on Rq. In the latter case, (Xij)
q
j=1 is distributed as (Zj/Z0)qj=1 with independent random variables

Z0, Z1, . . . , Zq ∼ N (0, 1). In all experiments, iterations were stopped when the gradient Gk =

G(Qk) of our target function satisfies ‖Gk‖ ≤ 10−7, and the number of Monte Carlo simulations

for each setting was 500.

The first three experiments were run on a MacBook Pro (2GHz Intel(R) Core i7, 16GB), the

fourth experiment on a Windows server (two Intel(R) Xeon(R) CPU R5 2440 with 2.40GHz and

64GB). We used R 3.1.2 [14].

Comparisons in scatter-only settings. To compare the three algorithms FP, G and PN, we first

implemented them in pure R code. Table 3 contains the mean number of iterations and the mean

computing times for the scatter estimator Σ(P̂ ) with ρ = ρ1,q based on a data matrixX ∈ R500×q,
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Σ← AlgorithmPN.symm(X, δ)

π ← RPermute(n)
X0 ← [xπ(1) − xπ(2), xπ(2) − xπ(3), . . . , xπ(n) − xπ(1)]

>

B ← AlgorithmPN(X0, (1/n)ni=1, δ)
1/2

Y ←XB−1

Ψ← Psi(Y )
(U, φ)← Eigen(Ψ)

while ‖1q − φ‖ > δ do
B ← BU
Y ← Y U

H̃ ← H(φ,Y ) (+ c 1q1
>
q in Setting 0)

a← H̃−1(φ− 1q)
Z ← Y exp(−diag(a)/2)
DL← DL(Y ,Z, a)
DL0 ← a>(1q − φ)/4
if DL ≤ DL0 then

B ← B exp(diag(a)/2)
Y ← Z

else

B ← B diag(φ)1/2

Y ← Y diag(φ)−1/2

end if
Ψ← Psi(Y )
(U, φ)← Eigen(Ψ)

end while

Σ← BB>

return Σ

Table 2: Pseudo-code for the symmetrized M -estimator.
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Gaussian data Cauchy data
Algorithm FP G PN FP G PN

q = 5

Iterations 83.9 (2) 31.2 (4) 5.1 (0) 116.4 (3) 45.5 (14) 8.5 (1)

Time [ms] 13.5 (0.5) 11.4 (1.8) 1.8 (0.3) 18.5 (1.0) 16.8 (5.3) 2.8 (0.5)

Relative FP 1.18 7.71 FP 1.10 6.53
efficiency G 6.51 G 5.95

q = 10

Iterations 141.6 (1) 46.0 (6) 6.0 (0) 189.4 (3) 69.4 (30) 9.3 (1)

Time [ms] 41.9 (1.0) 25.0 (2.8) 3.1 (0.3) 56.2 (2.3) 37.1 (16.0) 5.0 (1.0)

Relative FP 1.68 13.37 FP 1.51 11.19
efficiency G 7.97 G 7.40

q = 20

Iterations 252.2 (2) 119.2 (6) 6.0 (0) 332.2 (4) 103.7 (43) 10.6 (1)

Time [ms] 176.2 (4.8) 120.2 (7.8) 6.9 (0.3) 230.1 (4.8) 104.4 (43.4) 12.4 (1.3)

Relative FP 1.47 25.65 FP 2.20 18.54
efficiency G 17.49 G 8.41

Table 3: Computation costs and relative efficiencies in scatter-only settings (n = 500, ν = 1).

q = 5, 10, 20. The table entries are the mean iteration numbers and mean computations times in

milliseconds [ms]. In brackets the corresponding inter quartile ranges are recorded as well. The

relative efficiencies are the ratios of the mean computation times. Algorithm G is already more

efficient than Algorithm FP, but obviously Algorithm PN is substantially faster than the other two,

and this advantage grows with the dimension q. Note also that computation costs are higher for

Cauchy data than for Gaussian data.

Comparisons in location-scatter settings. Now we consider the empirical distribution P̂ of the

rows ofX and for given ν ≥ 1 the minimizer
(
µν(P̂ ),Σν(P̂ )

)
of

Lν(µ,Σ, P̂ ) := Lν(Γ(µ,Σ), Q̂)

over all (µ,Σ) ∈ Rq × Rq×qsym,>0. Here Γ(µ,Σ) ∈ R(q+1)×(q+1)
sym,>0 is defined as in (2), Q̂ stands for

the empirical distribution of the augmented data points [X>i , 1]> ∈ Rq+1, 1 ≤ i ≤ n, and

Lν(Γ, Q̂) :=

∫ [
ρν−1,q+1(y>Γ−1y)− ρν−1,q+1(y>y)

]
Q̂(dy) + log det(Γ)

for arbitrary Γ ∈ R(q+1)×(q+1)
sym,>0 .
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In principle, we may apply any of the three algorithms FP, G and PN to the empirical distribu-

tion Q̂ to compute a minimizer Γ̂ of Lν(·, Q̂). In case of ν > 1 this minimizer satisfies automat-

ically Γ̂q+1,q+1 = 1, so Γ̂ = Γ
(
µν(P̂ ),Σν(P̂ )

)
. In case of ν = 1, Γ̂ equals Γ

(
µν(P̂ ),Σν(P̂ )

)
times Γ̂q+1,q+1.

In addition we implemented a variant FP3 of FP proposed by Arslan et al. [1]. Suppose that

(µk, BkB
>
k ) with nonsingular Bk ∈ Rq×q is a current candidate for

(
µν(P̂ ),Σν(P̂ )

)
. Let Q̂k

denote the empirical distribution of the standardized data points B−1
k (Xi − µk), 1 ≤ i ≤ n,

augmented by an additional component 1, and define

Ψk :=

∫
ρ′ν−1,q+1(y>y)yy> Q̂k(dy).

Recall that (µk, BkB
>
k ) equals

(
µν(P̂ ),Σν(P̂ )

)
if, and only if, Ψk = Iq+1. Now we write

Ψk = λkΓ(δk, CkC
>
k ) for some λk > 0, δk ∈ Rk and a nonsingular matrix Ck ∈ Rq×q. Then the

next candidate for
(
µν(P̂ ),Σν(P̂ )

)
equals (µk+1, Bk+1B

>
k+1) with

µk+1 := µk +Bkδk, Bk+1 := BkCk.

To provide a fair comparison, we used the same stopping criterion as for the other algorithms, that

means, we considered the norm of Iq+1 −Ψk.

For n = 100 and q = 10 we simulated data matricesX ∈ Rn×q with independent entries

Xij ∼

{
N (δ, 1) if i ≤ n/10 and j = 1,

N (0, 1) else,

where δ ≥ 0 is a certain parameter quantifying the outlyingness of the n/10 first data vectors.

The left and right half of Table 4 show the resulting computation costs and times for δ = 0, 10, 20

when ν = 1 and ν = 2, respectively. For ν = 1, algorithm FP is more efficient than FP3. Indeed

one can easily verify that the two algorithms are essentially equivalent, the only difference being

how they factorize matrices such as Ψk. For δ = 0, algorithm FP (ν = 1) and algorithm FP3

(ν = 2) are remarkably efficient and even outperform algorithm PN. But for larger values of δ,

leading to heterogeneous data sets, PN is clearly the fastest method.

Comparisons for symmetrized scatter estimators, I. As mentioned in the introduction, com-

putation time becomes a major issue when computing symmetrized scatter estimators. In the

simulation experiments described below we simulated data matricesX ∈ Rn×q with independent

rows following a multivariate standard Gaussian or standard Cauchy distribution on Rq.

21



ν = 1 ν = 2

Algorithm FP FP3 PN FP FP3 PN

δ = 0

Iterations 15.1 (0) 15.1 (0) 9.6 (1) 152.0 (3) 13.8 (1) 8.9 (0)

Time [ms] 2.3 (0.2) 2.7 (0.2) 3.0 (0.2) 21.8 (0.6) 2.8 (0.3) 2.9 (0.1)

Relative FP 0.87 0.77 FP 7.81 7.62
efficiency FP3 0.88 FP3 0.98

δ = 10

Iterations 27.4 (4) 27.4 (4) 12.3 (1) 157.3 (3) 25.8 (3) 11.6 (1)

Time [ms] 4.0 (0.6) 4.7 (0.7) 3.7 (0.3) 22.3 (0.6) 4.9 (0.6) 3.7 (0.3)

Relative FP 0.85 1.09 FP 4.60 6.11
efficiency FP3 1.28 FP3 1.33

δ = 20

Iterations 47.2 (6) 47.2 (6) 17.2 (2) 161.4 (3) 42.0 (4) 15.6 (1)

Time [ms] 6.6 (0.9) 7.8 (1.0) 5.0 (0.5) 23.0 (0.6) 7.9 (1.0) 4.9 (0.4)

Relative FP 0.84 1.31 FP 2.93 4.66
efficiency FP3 1.56 FP3 1.59

Table 4: Computation costs and relative efficiencies in location-scatter settings (q = 10, n = 100).

Our first simulation experiment concerns 2 × 2 different variants of Algorithm PN for sym-

metrized estimators with ρ = ρq,1: On the one hand we compared storing all N = n(n − 1)/2

pairwise differences of data vectors in a big matrix and running the algorithm in Table 1 (“PN-all”)

with a less memory-intensive version where all statistics are computed sequentially as in Table 2

(“PN-seq”). In both cases we first prewhitened the data by means of a scatter estimator based on

n randomly chosen pairs of observations, see the first four lines of pseudo-code in Table 2. On the

other hand we investigated the benefits of the latter prewhitening step and implemented versions

without it (“PN-all.0” and “PN-seq.0”). Figures 1 and 2 show box plots of the computation times

(using pure R code) for dimension q = 10 and sample sizes n = 100 and n = 500, respectively.

One sees clearly that for small to moderate sample sizes version “PN-all” is faster than “PN-

seq”. But for larger sample sizes “PN-seq” becomes clearly preferable. Comparing “PN-all.0”

with “PN-all” and “PN-seq.0” with “PN-seq” shows that prewhitening is particularly beneficial

for the heavy-tailed distribution and larger sample sizes. Note that all computation times for the

symmetrized scatter estimators are in seconds [s] rather than milliseconds [ms] as before.

More efficient code. The new algorithms described in this paper are implemented in the R pack-

age fastM (Dümbgen et al. [4]) which is publicly available on CRAN. This includes implemen-
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Figure 1: Computation times [s] of four variants of AlgorithmPN.symm (q = 10, n = 100, ν = 1).
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Figure 2: Computation times [s] of four variants of AlgorithmPN.symm (q = 10, n = 500, ν = 1).
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Gaussian data Cauchy data
Iter. Time [s] Time [s] Rel. eff. Iter. Time [s] Time [s] Rel. eff.

R C++ R C++

ν = 0

q = 5 4.0 (0) 1.2 (0.3) 0.2 (0.1) 6.81 5.1 (0) 1.3 (0.2) 0.2 (0.1) 5.67

q = 10 5.0 (0) 1.7 (0.4) 0.4 (0.2) 3.91 6.0 (0) 2.1 (0.4) 0.5 (0.3) 4.04

q = 20 5.0 (0) 2.9 (0.7) 0.9 (0.3) 3.13 6.9 (0) 3.7 (1.0) 1.2 (0.3) 3.15

ν = 1

q = 5 4.0 (0) 1.2 (0.3) 0.2 (0.1) 6.40 5.1 (0) 1.3 (0.2) 0.2 (0.2) 5.44

q = 10 5.0 (0) 1.7 (0.4) 0.4 (0.2) 3.96 6.0 (0) 2.0 (0.4) 0.5 (0.3) 3.97

q = 20 5.0 (0) 2.9 (0.8) 0.9 (0.3) 3.11 6.9 (0) 3.7 (1.0) 1.2 (0.4) 3.11

Table 5: Computation costs and relative efficiencies for symmetrized scatter (n = 500).

tations with C++ code which are even more efficient. We did substantial simulation experiments

to compare our package with other implementations of M -estimators, namely (i) the function

cov.trob in the package MASS (Venables and Ripley [19]) and (ii) the function tM in the package

ICS (Nordhausen et al. [11]). Both functions are essentially fix-point approaches. In particular,

tM is based on a maximum-likelihood and EM interpretation of the fixed point equation and uses

algorithm FP3 by Arslan et al. [1] mentioned before. All in all our new algorithms were always

comparable, often faster and in some settings even substantially faster than the other methods. A

fair comparison is difficult, though, because the established algorithms use different stopping cri-

teria. Both cov.trob and tM update the location and scatter parameters separately and do not treat

it as our algorithms do, as a scatter-only problem. For the symmetrized estimator with ρ = ρ0,q,

there is the function duembgen.shape available in the R package ICSNP (Nordhausen et al. [12]),

which is essentially Algorithm FP and utilizes R and C code.

Comparisons for symmetrized scatter estimators, II. Finally, Tables 5 and 6 compare the

performance of the symmetrized estimator as implemented in fastM with pure R code and with

C++ code, where ρ = ρν,q, ν = 0, 1. The results show that Algorithm PN with C++ code is

substantially faster than its pure R version.
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Gaussian data Cauchy data
Iter. Time [s] Time [s] Rel. eff. Iter. Time [s] Time [s] Rel. eff.

R C++ R C++

ν = 0

q = 5 3.2 (0) 7.9 (1.6) 1.9 (0.5) 4.03 4.0 (0) 9.5 (1.4) 2.3 (0.5) 4.06

q = 10 4.0 (0) 14.3 (2.6) 4.3 (0.5) 3.30 4.6 (1) 16.0 (3.5) 4.9 (1.0) 3.27

q = 20 4.0 (0) 33.1 (7.9) 10.1 (0.2) 3.28 5.0 (0) 40.7 (8.3) 12.2 (0.2) 3.33

ν = 1

q = 5 3.2 (0) 7.7 (1.4) 1.9 (0.4) 3.99 4.0 (0) 9.5 (1.4) 2.4 (0.5) 4.00

q = 10 4.0 (0) 14.3 (2.8) 4.4 (0.6) 3.24 4.7 (1) 16.2 (3.4) 5.0 (0.5) 3.25

q = 20 4.0 (0) 33.1 (7.7) 10.1 (0.2) 3.27 5.0 (0) 40.8 (7.9) 12.3 (0.2) 3.32

Table 6: Computation costs and relative efficiencies for symmetrized scatter (n = 2000).

6 Proofs

Proof of Corollaries 6 and 7. For t ∈ R define F (t) := L(B exp(tA)B>, Q) and B(t) :=

B exp((t/2)A). Note that B(t) is nonsingular with B(0) = B. For u ∈ R,

F (t+ u)− F (t) = L(B(t) exp(uA)B(t)>, Q)− L(B(t)B(t)>, Q)

= L(exp(uA), QB(t))

= uG(A,QB(t)) +
u2

2
H(A,QB(t)) + o(u2)

as u → 0. Since both G(A,QB(t)) and H(A,QB(t)) are continuous in t ∈ R, this expansion

shows that F is twice continuously differentiable with F ′(t) = G(A,QB(t)) and

F ′′(t) = H(A,QB(t))


≥ 0,

> 0 in Setting 0 if A 6= 0, tr(A) = 0,

> 0 in Setting 1 if A 6= 0.

In particular, F is convex. It is even strictly convex unless{
A = sIq for some s ∈ R in Setting 0,
A = 0 in Setting 1.

To verify Corollary 7, we utilize the same auxiliary function F = F (· |B,A) and write

L(B exp(A)B>, Q)− L(BB>, Q) as

F (1)− F (0) = F ′(0) +

∫ 1

0
(1− t)F ′′(t) dt = G(A,QB) +

∫ 1

0
(1− t)H(A,QB(t)) dt.
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Now let B = Σ1/2V with an orthogonal matrix V ∈ Rq×q, and define

C(t) := B(t)V > = Σ1/2V exp((t/2)A)V >.

Then

r(B,A) = ‖A‖−2

∫ 1

0
(1− t)

(
H(A,QB(t))−H(A,QB)

)
dt

= ‖A‖−2

∫ 1

0
(1− t)

(
H(V >AV,QC(t))−H(V >AV,QΣ1/2)

)
dt,

r∗(B,A) = ‖A‖−2

∫ 1

0
(1− t)

(
H(A,QB(t))−H(V >AV,Q∗)

)
dt

= ‖A‖−2

∫ 1

0
(1− t)

(
H(V >AV,QC(t))−H(V >AV,Q∗)

)
dt,

so |r(B,A)|+ |r∗(B,A)| is no larger than 3/2 times the supremum of

∣∣H(A′, QΣ1/2Vo exp(Ao)V >
o

)−H(A′, Q∗)
∣∣

over all A′, Ao ∈ Rq×qsym with ‖A′‖ ≤ 1, ‖Ao‖ ≤ ‖A‖/2 and all orthogonal matrices Vo ∈ Rq×q.

But this converges to zero as Σ = BB> → Σ(Q) and A→ 0, because then

∥∥Σ1/2Vo exp(Ao)V
>
o −Σ(Q)1/2

∥∥ ≤ ‖Σ1/2‖‖Vo exp(Ao)V
>
o − Iq‖+ ‖Σ1/2 −Σ(Q)1/2‖

= ‖Σ1/2‖‖ exp(Ao)− Iq‖+ ‖Σ1/2 −Σ(Q)1/2‖

→ 0.

Finally, because G(Q∗) = Iq −Ψ(Q∗) = 0, we may write

H(V >AV,Q∗) =
〈
(V >AV )2, Iq

〉
+

∫
ρ′′(‖x‖2)(x>V >AV x)2Q∗(dx)

= ‖A‖2 +

∫
ρ′′(‖x‖2)(x>V >AV x)2Q∗(dx).

Proof of Theorem 8. Dropping the index k for the moment, suppose that Σ = BB> is our current

candidate parameter. Then one step of Algorithm FP replaces Σ with

BΨ(QB)B> =

∫
ρ′(x>Σ−1x)xx>Q(dx).

Hence L(Σ, Q) changes by

δ1(Σ) := L(BΨ(QB)B>, Q)− L(Σ, Q) = L(Ψ(QB), QB) ≤ 0,
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and the inequality is strict unless Σ minimizes L(·, Q) already, see (6). Note also that δ1(Σ) is a

continuous function of Σ.

Algorithm PN is slightly more difficult to quantify, because the eigenmatrix U in the represen-

tation Ψ(QB) = U diag(φ)U> is not unique. However,

min
a∈Rq

(
G̃(QBU )>a+

1

2
a>H̃(QBU )a

)
≤ min

a∈span(G̃(QBU ))

(
G̃(QBU )>a+

1

2
a>H̃(QBU )a

)
=

−‖G̃(QBU )‖2

2G̃(QBU )>H̃(QBU )G̃(QBU )

=
−‖G(QBU )‖2

2H(G(QBU ), QBU )

=
−‖G(QΣ1/2)‖2

2H(G(QΣ1/2), QΣ1/2)
.

In the last step we utilized that fact thatBU = Σ1/2W for some orthogonal matrixW ∈ Rq×q, and

that G(QBU ) = W>G(QΣ1/2)W , H(G(QBU ), QBU ) = H(G(QΣ1/2), QΣ1/2). Consequently,

the change of L(Σ, Q) with Algorithm PN is at least

δ2(Σ) := max
(
δ1(Σ),

−‖G(QΣ1/2)‖2

4H(G(QΣ1/2), QΣ1/2)

)
≤ 0,

again a continuous function of Σ, and the inequality is strict unless Σ minimizes L(·, Q).

In Setting 1, the minimizer Σρ(Q) is unique, and we may utilize the following standard argu-

ments: Suppose that (Σk)k does not converge to Σρ(Q). We know that L(Σk, Q) is decreasing in

k ≥ 0, and all Σk belong to the compact set {Σ : L(Σ, Q) ≤ L(Σ0, Q)}. Hence there would exist

a subsequence (Σk(`))` with limit Σ∗ 6= Σρ(Q). But then continuity of L(·, Q) and δj(·) would

imply that

L(Σ∗, Q) = lim
`→∞

L(Σk(`), Q)

= lim
`→∞

L(Σk(`)+1, Q)

≤ lim
`→∞

(
L(Σk(`), Q) + δj(Σk(`))

)
= L(Σ∗, Q) + δj(Σ∗)

< L(Σ∗, Q).

In Setting 0, note first that L(Σ, Q), Ψ(QB) and H(QB) remain unchanged if we replace

(Σ, B) with (tΣ, t1/2B) for some number t > 0. Hence, with the same arguments as in Setting 1,

we may conclude that tkΣk → Σ0(Q) as k →∞, where tk := det(Σk)
−q/2.
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Now in case of Algorithm FP an elementary calculation shows that the matrices Mk :=

Σ0(Q)−1/2ΣkΣ0(Q)−1/2 satisfy the equation

Mk+1 =

∫
q

x>M−1
k x

xx>Q
Σ0(Q)1/2

(dx).

Together with the equation Ψ(QΣ0(Q)1/2) = Iq this implies that

λmin(Mk+1) ≥ λmin(Mk) and λmax(Mk+1) ≤ λmax(Mk).

Hence the sequence (Mk)k converges to a multiple of the identity matrix. In other words, (Σk)k

converges to a multiple of Σ0(Q).

The definition of Algorithm PN implies that for sufficiently large k, the new candidate Σk+1 is

given by Bk exp(diag(ak))B
>
k with ak ∈ Rq satisfying 1>q ak = 0. Hence det(Σk+1) = det(Σk)

for sufficiently large k. Consequently (Σk)k converges to a multiple of Σ0(Q).

Proof of Lemma 9. The fact that Σ(Q) is a positive multiple of Σo follows from simple equiv-

ariance considerations as outlined in [5]. Now let Σ(Q) = CC> with nonsingular C ∈ Rq×q,

and let Z := C−1X with X ∼ Q. The random vector Z has a spherically symmetric distribution

around 0 in the sense that for any orthogonal matrix V ∈ Rq×q, the distributions of V >Z and Z

coincide. We may write

Ψ(QB) = IE
[
ρ′(‖B−1X‖2)(B−1X)(B−1X)>

]
= B−1C IE

[
ρ′(Z>C>Σ−1CZ)ZZ>

]
C>B−>.

Next let

C>Σ−1C = V diag(γ)V >

with an orthogonal matrix V ∈ Rq×q and a vector γ ∈ (0,∞)q containing the eigenvalues of

C>Σ−1C, i.e. the eigenvalues of Σ−1Σ(Q). Then

B−1C = Ũ diag(γ)1/2V >
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for another orthogonal matrix Ũ , so

Ψ(QB) = Ũ diag(γ)1/2V > IE
[
ρ′(Z>V diag(γ)V >Z)ZZ>

]
V diag(γ)1/2Ũ>

= Ũ diag(γ)1/2 IE
[
ρ′((V >Z)> diag(γ)(V >Z))(V >Z)(V >Z)>

]
diag(γ)1/2Ũ>

= Ũ diag(γ)1/2 IE
[
ρ′(Z> diag(γ)Z)ZZ>

]
diag(γ)1/2Ũ>

= Ũ diag(γ)1/2 IE
[
ρ′
( q∑
i=1

γiZ
2
i

)
(ZjZk)

q
j,k=1

]
diag(γ)1/2Ũ>

= Ũ diag(γ)1/2 IE
[
ρ′
( q∑
i=1

γiZ
2
i

)
diag

(
(Z2

j )qj=1

)]
diag(γ)1/2Ũ>

= Ũ IE
[
ρ′
( q∑
i=1

γiZ
2
i

)
diag

(
(γjZ

2
j )qj=1

)]
Ũ>,

by spherical symmetry of the distribution of Z. Hence

Ψ(QB) = Ũ diag(φ)Ũ>

with φ ∈ (0,∞)q given by

φj := IE
(
ρ′
( q∑
i=1

γiZ
2
i

)
γjZ

2
j

)
.

Moreover, since ρ′ > 0 and the distribution of (Z2
i )qi=1 is invariant under permuting the compo-

nents of Z,

φj = φk if, and only if, γj = γk.

One may also say that φ is the unique vector of eigenvalues of Ψ(QB), and the columns

ũ1, ũ2, . . . , ũq of Ũ are corresponding eigenvectors. If we consider another spectral decomposition

Ψ(QB) = U diag(φ)U> with U having orthonormal columns u1, u2, . . . , uq, then

U exp(diag(a))U> = Ũ exp(diag(a))Ũ>

for any vector a ∈ Rq such that aj = ak whenever φj = φk. In particular, if we choose a :=(
log(γj)

)q
j=1

, then

BU exp(diag(a))U>B>

= BŨ diag(γ)Ũ>B> = B(B−1C)(B−1C)>B> = CC> = Σ(Q).
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[5] L. DÜMBGEN, M. PAULY, AND T. SCHWEIZER, M-functionals of multivariate scatter, Stat.

Surv., 9 (2015), pp. 32–105.

[6] P. J. HUBER, Robust covariances, in Statistical decision theory and related topics, II (Proc.

Sympos., Purdue Univ., Lafayette, Ind., 1976), Academic Press, New York, 1977, pp. 165–

191.

[7] P. J. HUBER, Robust Statistics, Wiley, New York, 1981.

[8] J. T. KENT AND D. E. TYLER, Redescending M -estimates of multivariate location and

scatter, Ann. Statist., 19 (1991), pp. 2102–2119.

[9] J. T. KENT, D. E. TYLER, AND Y. VARDI, A curious likelihood identity for the multivariate

t-distribution, Comm. Statist. Sim. Comp., 23 (1994), pp. 441–453.

[10] K. NORDHAUSEN, H. OJA, AND E. OLLILA, Robust independent component analysis based

on two scatter matrices, Austrian J. Statist., 37 (2008), pp. 91–100.

[11] K. NORDHAUSEN, H. OJA, AND D. E. TYLER, Tools for exploring multivariate data: The

package ICS, Journal of Statistical Software, 28 (2008), pp. 1–31.

[12] K. NORDHAUSEN, S. SIRKIA, H. OJA, AND D. E. TYLER, ICSNP: Tools for Multivariate

Nonparametrics, 2012. R package version 1.0-9.

[13] K. NORDHAUSEN AND D. E. TYLER, A cautiounary note on robust covariance plug-in

methods, Biometrika, 102 (2015), pp. 573–588.

30



[14] R CORE TEAM, R: A Language and Environment for Statistical Computing, R Foundation

for Statistical Computing, Vienna, Austria, 2013.

[15] R. A. REDNER AND H. F. WALKER, Mixture densities, maximum likelihood and the EM

algorithm, SIAM Review, 26 (1984), pp. 195–239.
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