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Abstract

In a partially ordered semigroup with the duality (or polarity) transform, it is pos-
sible to define a generalisation of continued fractions. General sufficient conditions for
convergence of continued fractions are provided. Two particular applications concern
the cases of convex sets with the Minkowski addition and the polarity transform and
the family of non-negative convex functions with the Legendre–Fenchel and Artstein-
Avidan–Milman transforms.
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1 Introduction

The studies of order reversing involutions (also called dualities or polarities) on partially
ordered spaces have recently gained a considerable attention. If K is a partially ordered
space, then the map from x ∈ K to x∗ ∈ K is said to be an order reversing involution if
x∗∗ = x for all x and x ≤ y implies that y∗ ≤ x∗.

The two main examples are the family of convex sets containing the origin and ordered by
inclusion and the family of convex functions on R

d ordered pointwisely. It is shown in [1, 5]
that the only (up to a rigid motion) order reversing involution on the family of compact
convex sets containing the origin is the classical polar transform, see [11] and Section 4.
For the family of non-negative convex functions on R

d that vanish at the origin, only two
involutions (up to rigid motions) exist: one is the classical Legendre–Fenchel transform [9]
and the other is the A-transform, see [2, 3] and Section 5.
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It is also possible to endow the space K with an addition operation that turns it into an
abelian semigroup. Such an addition may be chosen to be the lattice operation corresponding
to the order or defined otherwise. For example, on the family of closed convex sets partially
ordered by inclusion it is possible to consider the convex hull of the union as the semigroup
operation or add sets using the Minkowski (elementwise) addition. In the case of convex
functions, a natural semigroup operation is the arithmetic addition, while it is also possible
to consider the epigraphical or level sums. In this paper, it is assumed that K is an abelian
semigroup with the additive operation that is consistent with the order.

The order reversing nature of the involution makes possible to define a continued fraction
on a semigroup. In comparison with classical numerical continued fractions, the additive op-
eration is the semigroup addition, while the one over operation is replaced by the involution.
The classical concept of continued fraction is recovered for the semigroup [0,∞] with the
conventional addition and the involution given by the arithmetic inverse. The semigroup
setting differs from the setting of continued fractions in Jordan algebras pursued in [4] and
the studies of multidimensional continued fractions in [7] and [8].

This paper argues that convergence results for continued fractions built from convex
sets and those from convex functions can be derived from general statements concerning
continued fractions on semigroups. The non-existence of an inverse operation to the addition
renders impossible the direct use of most of the tools from the classical theory of continued
fractions, see [6]. Instead, the key emphasis is put on the partial order together with bounds
on the Lipschitz constant for the involution transform. These bounds are needed for properly
chosen subsets of the original semigroup, e.g. for convex sets that contain the unit ball. The
latter in the abstract setting becomes an involution-invariant element, which is also the key
ingredient to define a suitable metric. In this very general setting, several sufficient conditions
for convergence of continued fractions with constant and variable terms are obtained in
Section 3. A particular attention is devoted to periodic continued fractions, whose limits
may be regarded as a generalisation of quadratic irrational numbers in the semigroup setting.

The general results are applied for set-valued continued fractions in Section 4. For exam-
ple, a continued fraction with a constant term being a set K converges if K is sandwiched
between two Euclidean balls with diameters r and R such that either r > 1, or r = 1 and R
is finite, or r < 1 and R < r/(1 − r), see Theorem 4.1. In the set-valued case, we obtain a
necessary and sufficient condition for the convergence that amounts to the fact that an odd-
numbered approximant of the continued fraction is a subset of the ball with radius strictly
less than one. The key argument is the Lipschitz property of the polarity transform meaning
that the Hausdorff distance between the polars of two convex sets containing a centred ball
of radius r is bounded by r−2 times the Hausdorff distance between the original sets.

Section 5 presents several convergence results for continued fractions of convex functions
both for the Legendre–Fenchel and A-transforms. It is rather easy to modify these results to
apply to the semigroup of log-concave functions with the multiplication. Another possible
application left outside of the framework of this paper is for the semigroup of probability
measures with the convolution operation as the addition and the involution inherited by an
application of the involution operation on the original space.
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2 Continued fractions on semigroups

Let K be a partially ordered abelian semigroup with the neutral element e. Assume that
e ≤ x for all x ∈ K and that the order is compatible with the addition, that is x ≤ y for
x, y ∈ K implies x + z ≤ y + z for all z ∈ K. Assume that, the order is weaker than the
semigroup order, i.e. y = x+z for some z ∈ K yields that x ≤ y. In this case, the semigroup
is reduced, meaning that the only invertible element is e.

Assume that K is equipped with an order reversing involution x 7→ x∗ (also called duality
or polarity transform), so that x∗∗ = x and x ≤ y implies that x∗ ≥ y∗. The involution is
not assumed to commute with the addition, i.e. (x + y)∗ is not necessarily x∗ + y∗. Since
e ≤ x for each x ∈ K, we have x∗ ≤ e∗ meaning that e∗ dominates all elements from K and
e∗ + x = e∗ for all x ∈ K.

Consider a sequence {xn, n ≥ 1} of elements from K and define the sequence [x1, . . . , xn],
n ≥ 1, recursively by letting

[x1] = x∗
1,

[x1, . . . , xn+1] = (x1 + [x2, . . . , xn+1])
∗, n ≥ 1 .

The element zn = [x1, . . . , xn] is said to be the nth approximant of the continued fraction
generated by {xn, n ≥ 1}.
Remark 2.1. The dual operation to the addition is defined by setting

x⊕ y = (x∗ + y∗)∗ .

Then [x1, . . . , xn] = x∗
1 ⊕ [x2, . . . , xn]

∗.

Example 2.2. If K = [0,∞] with the conventional addition and involution x∗ = 1
x
, then

zn = [x1, . . . , xn] =
1

x1 +
1

x2+
1

x3+···+ 1
xn

is the nth approximant of the numerical continued fraction, see e.g. [6].

Remark 2.3. The neutral element and its dual influence the continued fraction as follows

[x1, . . . , xm, e
∗, xm+1, . . . , xn] = [x1, . . . , xm],

[x1, . . . , xm, e, xm+1, . . . , xn] = [x1, . . . , xm + xm+1, . . . , xn] , m 6= 0, n,

[e, x1, . . . , xn] = [x1, . . . , xn]
∗ = x1 + [x2, . . . , xn],

[x1, . . . , xn, e] = [x1, . . . , xn−1].

The following result generalises the well-known property of continued fractions with pos-
itive terms.

Lemma 2.4. The nth approximant zn = [x1, . . . , xn] is increasing in each of the even num-
bered terms and decreasing in each of the odd numbered terms. The sequence {z2m, m ≥ 1}
is increasing and {z2m−1, m ≥ 1} is decreasing.
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Proof. A direct check shows that [x1, . . . , xk, . . . , xn] is increasing in xk if k is even and
decreasing if k is odd. Then

z2m+2 = [x1, . . . , x2m, (x2m+1 + x∗
2m+2)

∗] ≥ [x1, . . . , x2m, e
∗] = [x1, . . . , x2m] = z2m .

A similar argument applies to the odd part of the continued fraction.

From now on, assume that K is equipped with the scaling transformation x 7→ ax by
positive real numbers a. It is assumed that the scaling satisfies the distributivity laws and
that (ax)∗ = a−1x∗ for all a > 0 and x ∈ K. In particular, the second distributivity law
implies that ax ≤ bx for a ≤ b.

Fix any h ∈ K such that h∗ = h (in this case h is said to be self-polar) and define, for
x, y ∈ K,

ρh(x, y) = inf{t ≥ 0 : x ≤ y + th, y ≤ x+ th} . (1)

Note that ρh is a semimetric that might take infinite values and is scale-homogeneous, that
is ρh(ax, ay) = aρh(x, y) for a > 0. The (possibly infinite) norm of x ∈ K is defined as
‖x‖h = ρh(x, e).

Let Kh be the family of x ∈ K such that x ≤ ah for some a > 0. Note that Kh is a
sub-semigroup of K. Since ρh(x, y) ≤ a for x ≤ ah and y ≤ ah, ρh(x, y) takes finite values
for x, y ∈ Kh. If x ∈ Kh, then ρh(anx, e) → 0 as an ↓ 0. Denote

K
∗
h = {x ∈ K : x∗ ∈ Kh} .

It is sensible to let 0h = e and ∞h = e∗.
In the following we assume that

⋂

t>0

{x ∈ K : x ≤ y + th} = {x ∈ K : x ≤ y}. (2)

Lemma 2.5. If (2) holds, then ρh is a metric on Kh and the order is closed, that is the set
{(x, y) : x ≤ y} is closed in the product space (Kh, ρh)× (Kh, ρh).

Proof. Because of (2), ρh(x, y) = 0 yields that x ≤ y and y ≤ x, so that x = y. Other
properties of the metric are evidently satisfied. If ρh(xn, x) → 0 and ρh(yy, y) → 0 and
xn ≤ yn for all n, then for a sequence tn → 0 one has

x ≤ xn + tnh ≤ yn + tnh ≤ y + 2tnh ,

so that x ≤ y by (2).

Remark 2.6 (Multiple self-polar elements). If h1 and h2 are two distinct self-polar elements,
then h1 ≤ ah2 either holds for some a > 1 or does not hold for any a > 0. Indeed, by passing
to the polars, the inequality becomes h1 ≥ a−1h2, so that a−1h2 ≤ h1 ≤ ah2. If h1 ≤ ah2,
then a−1ρh1

(x, y) ≤ ρh2
(x, y) ≤ aρh1

(x, y) for all x, y ∈ K.
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Definition 2.7. The continued fraction generated by a sequence xn ∈ K, n ≥ 1, is said to
converge if zn = [x1, . . . , xn] converges in ρh as n → ∞ to an element of K.

Example 2.8. If xn = bnh for a self-polar h ∈ K and non-negative real numbers bn, n ≥ 1,
then zn = [b1, . . . , bn]h, so that the convergence of zn can be derived from the convergence
of the numerical continued fractions. For instance, the Seidel-Stern theorem asserts that zn
converges if and only if

∑
bn = ∞. While it is tempting to conjecture that the continued

fraction in K converges if
∑

xn = e∗, Example 4.6 shows that this is wrong.

Lemma 2.9. Let rnh ≤ xn ≤ Rnh, n ≥ 1, for h ∈ K such that h∗ = h. Then

[R1, r2, . . . , an]h ≤ [x1, . . . , xn] ≤ [r1, R2, . . . , bn]h ,

where an = rn and bn = Rn if n is even and an = Rn and bn = rn if n is odd.

Proof. It suffices to use the induction argument based on

[R1h, x2, . . . , xn] = (R1h + [x2, . . . , xn])
∗ ≤ [x1, . . . , xn]

≤ (r1h+ [x2, . . . , xn])
∗ = [r1h, x2, . . . , xn]

for n ≥ 1.

3 Convergence results

The key technical condition used to deduce the convergence of continued fractions in K

requires that
ρh(x

∗, (x+ th)∗) ≤ t, t > 0, (3)

if h ≤ x. A weaker variant of this condition is

ρh(x
∗, (x+ th)∗) ≤ C2

Rt, t > 0, (4)

if h ≤ x ≤ Rh, where CR is a positive finite function of R ∈ [1,∞]. Substituting x = h shows
that CR ≥ C1 = 1. It is immediate that the function CR can be chosen to be non-decreasing
and right-continuous. Let C∞ be the constant in the right-hand side of (4) that ensures the
inequality for all x ≥ h. Note that ρh(x

∗, (x+ th)∗) = ρh([x], [x, t
−1h]).

Lemma 3.1. If (4) holds, then

ρh(x
∗, y∗) ≤ C2

R/rr
−2ρh(x, y)

for all x, y ∈ K such that rh ≤ x ≤ Rh and rh ≤ y ≤ Rh.

Proof. Let ρh(x, y) ≤ t. Then x ≤ y + th and y ≤ x+ th, so that

ρh(x
∗, y∗) ≤ max(ρh(x

∗, (x+ th)∗), ρh(y
∗, (y + th)∗)) .

It suffices to note that (4) and the scaling property of ρh imply that

ρh(x
∗, (x+ th)∗) ≤ C2

R/rr
−2t, t > 0,

for all x such that rh ≤ x ≤ Rh.
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Corollary 3.2. If (4) holds, then the involution operation is ρh-continuous on Kh∩K
∗
h and,

for x, y ∈ Kh,
ρh(x

∗, y∗) ≤ C2
∞max(‖x∗‖h, ‖y∗‖h)2ρh(x, y) .

The following result covers the general case of continued fractions with variable terms.

Theorem 3.3. Assume that (Kh, ρh) is complete and condition (4) holds. Assume that there
exist k ≥ 1 and 0 < a ≤ b ≤ ∞ such that Cb/a < a and

xn + [xn+1, . . . , xn+2k] ≥ ah , (5)

xn + [xn+1, . . . , xn+2k−1] ≤ bh , (6)

for all n ≥ 1. If, for some l ≥ 0,

lim sup
n→∞

ρh([xn−2k−l+1, . . . , xn], [xn−2k−l+1, . . . , xn+1]) < ∞ , (7)

then the continued fraction zn = [x1, . . . , xn] converges to z ∈ Kh.

Proof. By Lemma 2.4, for all m ≥ 1 and n ≥ 2k +m,

xm + [xm+1, . . . , xm+2k, xm+2k+1, . . . , xn] ≥ xm + [xm+1, . . . , xm+2k, e
∗, . . . , xn]

= xm + [xm+1, . . . , xm+2k] ≥ ah ,

and

xm + [xm+1, . . . , xm+2k, xm+2k+1, . . . , xn] ≤ xm + [xm+1, . . . , xm+2k−1, e
∗, . . . , xn]

= xm + [xm+1, . . . , xm+2k−1] ≤ bh .

In particular, zn ≤ a−1h and so zn ∈ Kh for sufficiently large n. By Lemma 3.1, for
n ≥ 2k +m,

ρh([xm, . . . , xn], [xm, . . . , xn+1]) = ρh((xm + [xm+1, . . . , xn])
∗, (xm + [xm+1, . . . , xn+1])

∗)

≤ C2
b/aa

−2ρh([xm+1, . . . , xn], [xm+1, . . . , xn+1]) .

By iterating this argument for m = 1, . . . , n− 2k − l, we arrive at

ρh(zn, zn+1) ≤ (a−1Cb/a)
2(n−2k−l)ρh([xn−2k−l+1, . . . , xn], [xn−2k−l+1, . . . , xn+1])

≤ (a−1Cb/a)
2(n−2k−l)c

for all sufficiently large n and some finite c that dominates the upper limit in (7). Since
the series

∑
ρh(zn, zn+1) converges, the sequence {zn} is fundamental and its convergence

follows from the completeness assumption.

Remark 3.4. In Theorem 3.3 it suffices to impose only (5) with a > C∞, which becomes
a > 1 if (3) holds.
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Corollary 3.5. Assume that (Kh, ρh) is complete and condition (4) holds. Furthermore,
assume that there exist k ≥ 1 and 0 < a ≤ b ≤ ∞ such that q = a−1Cb/a < 1, (5) and (6)
hold, and there exists r > 0 such that xn ≥ rh for all n ≥ 1. Then the continued fraction
zn = [x1, . . . , xn] converges to z ∈ Kh and

ρh(zn, z) ≤
q2(n−2k)

1− q2
r−1 . (8)

Proof. It suffices to show that the upper limit in (7) for l = 0 is bounded by r−1. Note that
[x1, . . . , xn+1] lies between [x1, . . . , xn, e] and [x1, . . . , xn, e

∗], whence

ρh([x1, . . . , xn], [x1, . . . , xn+1])

≤ max(ρh([x1, . . . , xn], [x1, . . . , xn, e]), ρh([x1, . . . , xn], [x1, . . . , xn, e
∗])

= max(ρh([x1, . . . , xn], [x1, . . . , xn−1]), ρh([x1, . . . , xn], [x1, . . . , xn])

= ρh([x1, . . . , xn], [x1, . . . , xn−1]) .

By iterating this argument, we obtain

ρh([x1, . . . , xn], [x1, . . . , xn+1]) ≤ ρh(e, [x1]) ≤ r−1 .

Therefore, ρ(zn, zn+1) ≤ q2(n−2k)r−1, whence

ρh(zn, zm) ≤
q2(n−2k)

1− q2
r−1

for all m ≥ n and it suffices to let m → ∞.

The subsequent result relies on bounding the terms of the continued fraction by rh from
below and Rh from above. In the following denote

υ(r, R) = [r, R, r, R, . . . ]−1 =
1

2
(
√

r2 + 4r/R+ r) , r, R ∈ (0,∞] , (9)

where the value of the numerical periodic continued fraction is found by solving the recursive
equation.

Theorem 3.6. Assume that (Kh, ρh) is complete and condition (4) holds. If rh ≤ xn ≤ Rh
for all n ≥ 1 and 0 < r ≤ R ≤ ∞ such that

Cυ(R,r)/υ(r,R)

υ(r, R)
< q < 1 , (10)

then the continued fraction zn = [x1, . . . , xn] converges to z ∈ Kh and (8) holds.
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Proof. By Lemma 2.9,

xn + [xn+1, . . . , xn+2k] ≥ (r + [R, r, . . . , R, r])h → υ(r, R)h as k → ∞,

and
xn + [xn+1, . . . , xn+2k−1] ≤ (R + [r, R, . . . , r])h → υ(R, r)h as k → ∞ .

Fix any ε > 0. Then (5) and (6) hold for sufficiently large k with a = υ(r, R) − ε and
b = υ(R, r)+ ε. Finally Cb/a < a follows from (10) taking into account that the function CR

is right-continuous. The convergence and the bound follow from Corollary 3.5.

Corollary 3.7. Assume that (3) holds and (Kh, ρh) is a complete metric space. Assume
that rh ≤ xn ≤ Rh for all n ≥ 1 with R ∈ [r,∞], and either (i) r > 1 or (ii) r = 1 and
R < ∞ or (iii) r < 1 and R ≤ r/(1− r). Then zn = [x1, . . . , xn] converges in the metric ρh
to z ∈ Kh and (8) holds with any q > υ(r, R).

Below we present another convergence condition that handles the case when xn ≥ rnh
with inf rn = 1.

Theorem 3.8. Assume that (4) holds and (Kh, ρh) is complete. Let {xn, n ≥ 1} be a
sequence of elements from K such that rnh ≤ xn ≤ Rnh, n ≥ 1, where Rn ∈ [rn,∞]. If

lim inf
n→∞

n log(rnrn+1C
−2

(Rn+r−1

n+1
)/rn

) > 1, (11)

then the continued fraction zn = [x1, . . . , xn] converges.

Proof. Note that
rih ≤ xi + [xi+1, . . . , xn] ≤ (Ri + r−1

i+1)h

for all i ≤ n− 1. Denote ai = C(Ri+r−1

i+1
)/ri

, i ≥ 1. By Lemma 3.1,

ρh(zn, zn+1) = ρh((x1 + [x2, . . . , xn])
∗, (x1 + [x2, . . . , xn+1])

∗)

≤ r−2
1 a21ρh([x2, . . . , xn], [x2, . . . , xn+1])

≤ r−2
1 r−2

2 a21a
2
2ρh([x3, . . . , xn], [x3, . . . , xn+1])

≤ ρh(x
∗
n, (xn + x∗

n+1)
∗)

n−1∏

i=1

(r−2
i a2i ) ≤ r−1

n+1

n∏

i=1

(r−2
i a2i ) .

In view of (11), the logarithmic convergence criterion yields that the series
∑

ρh(zn, zn+1)
converges, so that the sequence {zn} is fundamental.

Remark 3.9. If (3) holds, then (11) becomes

lim inf
n→∞

n log(rnrn+1) > 1 .
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Theorem 3.6 and Corollary 3.7 cover the important case of continued fractions

zn = [x, . . . , x
︸ ︷︷ ︸

n

] (12)

with constant terms. An alternative proof of the convergence of continued fractions with
constant terms under the same conditions can be carried over using the contraction mapping
theorem.

For continued fractions with constant terms, it may be of advantage to check directly the
conditions of Theorem 3.3 instead of bounding the term from below and from above.

Corollary 3.10. Assume that (Kh, ρh) is complete and condition (4) holds. If x ∈ K
∗
h is

such that, for some k ≥ 1,
x+ [x, . . . , x

︸ ︷︷ ︸

2k

] ≥ ah

and
x+ [x, . . . , x

︸ ︷︷ ︸

2k−1

] ≤ bh

with a > Cb/a, then the continued fraction (12) converges.

Corollary 3.11. Assume that (Kh, ρh) is complete and condition (3) holds. Let zn be the
nth approximant of the continued fraction with constant term x ∈ K

∗
h. If z2k−1 ≤ rh for

r < 1 and some k ≥ 1, then zn converges to z ∈ Kh.

Remark 3.12. The limit z of the continued fraction with constant term x satisfies the equation

z∗ = z + x , (13)

Consider now the changes that happen to the basic equation (13) if either z or x are scaled.
For each t ≥ 1, t−1z satisfies

(t−1z)∗ = t−1z + xt

for xt = (t− t−1)z∗ + t−1x. Indeed,

t−1z + xt = t−1(z + x) + (t− t−1)z∗ = tz∗ = (t−1z)∗ .

Assume that (3) holds and rh ≤ x ≤ Rh so that one of the conditions of Corollary 3.7 holds.
Then the continued fraction with the constant term tx converges for all t ≥ 1, so that there
exists unique zt ∈ K that satisfies

z∗t = zt + tx, t ≥ 1 .

Fix β ∈ [0, 1] and note that yt = tβzt satisfies the equation

y∗t = t−2βyt + t1−βx .

9



Since x ≥ rh, we have yt ≤ tβ−1rh. If β < 1, then yt = tβzt converges to e as t → ∞ by
Lemma 2.5. If β = 1, then the equation becomes y∗t = t−2yt + x. Since

t−2yt = t−1zt = t−1(zt + tx)∗ ≤ t−2x∗ ≤ t−2r−1h ,

we have (x+ t−2r−1h)∗ ≤ tzt ≤ x∗. Therefore, tzt converges to x as t → ∞.

While the following result can be proved under condition (4), we formulate its simpler
version.

Theorem 3.13. Assume that (3) holds. If the continued fractions with constant terms x′

and x′′, such that x′ ≥ rh and x′′ ≥ rh with r > 1, converge respectively to z′ and z′′, then

ρh(z
′, z′′) ≤ ρh(x

′, x′′)
1

r2 − 1
.

Proof. It follows from (13), the triangle inequality, the translation invariance of the metric
ρh, and Lemma 3.1 that

ρh(z
′, z′′) = ρh((z

′ + x′)∗, (z′′ + x′′)∗)

≤ r−2ρh(z
′ + x′, z′′ + x′′)

≤ r−2 (ρh(z
′, z′′) + ρh(x

′, x′′)) .

The statement is obtained after rearranging the terms taking into account that r > 1.

Example 3.14. The setting of Theorem 3.3 is well adjusted to confirm the convergence of
periodic continued fractions. For instance, consider the continued fraction with alternating
elements x, y ∈ K assuming that (3) holds. If x ≥ εh, y ≥ εh for some ε > 0, and

x+ (y + x∗)∗ ≥ rh, y + (x+ y∗)∗ ≥ rh

for some r > 1, then (5) holds with k = 1 and the continued fraction [x, y, x, y, . . .] converges.
If y = x∗, and (3) holds, then condition (5) for sufficiently large k amounts to υ(1, 1)x ≥ rh
and υ(1, 1)x∗ ≥ rh for some r > 1, where υ(1, 1) = 1

2
(1 +

√
5). In this case, the continued

fraction [x, x∗, x, x∗, . . .] converges and the polar y = z∗ to its limit z satisfies the equation

x+ (x⊕ y) = y .

4 Continued fractions of convex sets

Let K = C0 be the family of all convex closed sets in R
d containing the origin. We refer to

[11] for a wealth of information about convex sets. The closed Minkowski sum K +L of two
sets K,L ∈ C0 is defined as the closure of the set {x + y : x ∈ K, y ∈ L} of pairwise sums
of points from K and L. If at least one summand is compact, then the set of pairwise sums
is closed and no additional closure is required.
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The family C0 with the closed Minkowski addition is a semigroup with the neutral element
e = {0} being the origin, partially ordered by inclusion. Note that all inclusions for sets are
understood in the non-strict sense. Since the convex sets from C0 contain the origin, K ⊂ L
implies that K + M ⊂ L + M for K,L,M ∈ C0, so that the order is compatible with the
addition. The scaling by positive reals is defined conventionally as aK = {ax : x ∈ K}.

It is known that the only order reversing involution on C0 (up to a rigid motion) is the
polar transform, see [1, 5]. The polar to K ∈ C0 is defined as

K∗ = {u ∈ R
d : sK(u) ≤ 1} ,

where
sK(u) = sup{〈u, x〉 : x ∈ K}

is the support function of K and 〈u, x〉 denotes the scalar product. Note that the support
function may take infinite values if K is not bounded. Since the support function is homo-
geneous of order 1, it suffices to consider its values for u with the Euclidean norm ‖u‖ = 1,
i.e. for all u from the unit Euclidean sphere S

d−1 in R
d. The inclusion of convex sets turns

into the pointwise domination of their support functions. Let

rK(u) = sup{t : tu ∈ K}
be the radial function of K ∈ C0. Then rK∗(u) = 1/sK(u) for all unit vectors u, see [11,
Sec. 1.6].

The only convex set invariant for the polar transform is the unit Euclidean ball B. If
K = rB is the ball of radius r centred at the origin, then K∗ = r−1B is the ball of radius
r−1. Further examples can be found in [11, Sec. 1.6]. The polar to the neutral element {0}
is the whole space, i.e. e∗ = R

d.
The family Kh = K0 consists of convex bodies (i.e. convex compact sets) containing the

origin and the metric ρh from (1) is the Hausdorff distance

ρH(K,L) = inf{ε > 0 : K ⊂ L+ εB, L ⊂ K + εB}
between K and L from K0. Note that K + εB is called the ε-envelope of K, which is
alternatively defined as the set of points within distance at most ε to K. The norm of a set
defined as

‖K‖ = sup{‖x‖ : x ∈ K} = ρH(K, {0})
is the radius of the smallest centred ball that contains K. The family K

∗
h consists of all

convex closed sets that contain a neighbourhood of the origin and Kh ∩ K
∗
h = K00 is the

family of convex bodies containing a neighbourhood of the origin.
It is known that K0 with the Hausdorff metric is a complete separable metric space, see

[11, Th. 1.8.3]. We apply the same definition of the Hausdorff metric also for closed (possibly
non-compact) sets, noticing that ρH may take infinite values.

Consider the set-valued continued fraction given by

Fn = [K1, . . . , Kn], n ≥ 1 ,

for a sequence Kn ∈ C0, n ≥ 1.
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Theorem 4.1. Let Kn = K for all n ≥ 1 and K ∈ C0. Assume that K ⊃ rB, where either
(i) r > 1 or (ii) r = 1 and K is compact or (iii) 0 < r < 1 and ‖K‖ < r/(1− r). Then

Fn = [K, . . . , K
︸ ︷︷ ︸

n

] (14)

converges in the Hausdorff metric to a convex body F ∈ K0 that satisfies the equation

F ∗ = F +K . (15)

Proof. We confirm the validity of (3) that becomes

ρH(K
∗, (K + tB)∗) ≤ t (16)

for all K ∈ C0 such that B ⊂ K. Then K∗ ⊂ B and

K∗ = {u ∈ B : sK(u) ≤ 1}
= {u ∈ B : sK(u) + stB(u) ≤ 1 + t‖u‖}
⊂ {u ∈ B : sK(u) + stB(u) ≤ 1 + t}
= (1 + t){u ∈ (1 + t)−1B : sK(u) + stB(u) ≤ 1}
⊂ (1 + t){u ∈ B : sK+tB(u) ≤ 1}
= (1 + t)(K + tB)∗ .

For any convex body A and any ε > 0,

(1 + ε)A ⊂ A+ ε‖A‖B .

Indeed, taking the support functions of the both sides, it is immediately seen that

(1 + ε)sA(u) ≤ sA(u) + ε‖A‖ , u ∈ S
d−1 .

In view of this and the fact that (K + tB)∗ ⊂ B,

K∗ ⊂ (1 + t)(K + tB)∗ ⊂ (K + tB)∗ + tB ,

so that (16) holds, and Corollary 3.7 yields the result.

In view of Corollary 3.2, condition (3) verified in the proof of Theorem 4.1 yields the
following result that is of independent interest.

Theorem 4.2. For any two convex compact sets K,L containing the origin,

ρH(K
∗, L∗) ≤ max(‖K∗‖, ‖L∗‖)2ρH(K,L) .

Theorem 4.3. Let K be a convex set containing a neighbourhood of the origin. The con-
tinued fraction (14) with constant term K converges in the Hausdorff metric if and only if
F2k−1 ⊂ aB for a < 1 and at least one k ≥ 1.
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Proof. The sufficiency follows from Corollary 3.11. Assume that Fn converges to F that
necessarily satisfies (15). Let K ⊃ εB for ε > 0. Then F ⊂ ε−1B, whence F is also compact
and ‖F‖ = R is finite. Then there exists u with ‖u‖ = 1 such that sF (u) = rF (u) = R. It
follows from (15) that

sF ∗(u) ≥ sF (u) + ε .

Since sF ∗(u) = 1/rF (u) = 1/sF (u), we have

1

sF (u)
≥ sF (u) + ε ,

whence

R = sF (u) =
1

2
(
√
ε2 + 4− ε) < 1 .

Thus, Fn ⊂ aB for a ∈ (R, 1) and all sufficiently large n, in particularly, for the odd-
numbered terms.

Remark 4.4. Since the sequences F2n and F2n−1 for the set-valued continued fraction with
the constant term K are monotone and bounded, they converge without any extra condition
on the set K. But their limits may be different.

Example 4.5. a) It is easy to see that K = rB satisfies the condition of Theorem 4.1 for each
r > 0.

b) A segment K = [0, u] for a given u ∈ R
d does not satisfy the condition and the

corresponding continued fraction diverges. Indeed, Fn is a segment for even n and a half-
space for odd n.

c) Assume that K is a strip {(x1, x2) : −a ≤ x1 ≤ a} ⊂ R
2. Then K∗ is the segment

with end-points at (±a−1, 0). Thus, Fn is the segment with end-points at (±an, 0) where
an = [a, . . . , a]. Thus, Fn converges, whereas K does not satisfy the condition of Theorem 4.1
if a ≤ 1. However, F2k+1 ⊂ rB with r < 1 for sufficiently large k, and so Theorem 4.3
confirms the convergence of the continued fraction.

In relation to continued fractions generated by non-constant sequences, Theorem 3.3
taking into account Remark 3.4 applies. Furthermore, the continued fraction converges if
rB ⊂ Kn ⊂ RB for all n ≥ 1 and for r and R satisfying the conditions of Corollary 3.7. By
Theorem 3.8, the continued fraction converges if rnB ⊂ Kn and lim infn→∞ n log(rnrn+1) > 1.

Example 4.6. Let K and L be two different centred segments in the plane. Then the infinite
sum K+L+K+L+ · · · is the whole plane. However, the continued fraction [K,L,K, L, . . . ]
diverges. Indeed, K∗ is a strip, so that L + K∗ is the same strip of a different width, so
that (L + K∗)∗ if a scaled variant of K, and the successive iterations result in a sequence
that alternates between a scale of K and a polar to it. This example shows that a direct
generalisation of the Seidel–Stern theorem on continued fractions with positive terms [6,
Th. 4.28] fails in the set-valued case.

Example 4.7. Convex sets that appear as limits of periodic continued fractions might be
regarded as a generalisation of quadratic irrational numbers. Consider the continued fraction
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[K,L,K, L, . . .] with two alternating terms K,L ∈ C0. By Corollary 3.5 together with
Remark 3.4, this continued fraction converges if K+(L+K∗)∗ ⊃ aB and L+(K+L∗)∗ ⊃ aB
for a > 1, and both K and L contain a neighbourhood of the origin.

Example 4.8. In the setting of Example 4.7, the continued fraction diverges if K and L are
two segments, see also Example 4.6. In order to obtain a converging continued fraction built
of segments, consider three centred non-collinear segments Li = [−ui, ui], i = 1, 2, 3, in the
plane and the corresponding continued fraction [K1, K2, . . .], where K3n+i = [−v3n+i, v3n+i] =
Li for n ≥ 0 and i = 1, 2, 3. Condition (5) for k = 1 amounts to

Kn + (Kn+1 +K∗
n+2)

∗ ⊃ aB

with a > 1. A direct geometric calculation shows that

(Kn+1 +K∗
n+2)

∗ =
1

1 + |〈vn+1, vn+2〉|
[−vn+2, vn+2] .

Thus, (5) holds if

[−ui1 , ui1] +
1

1 + |〈ui2, ui3〉|
[−ui3 , ui3] ⊃ aB (17)

for some a > 1 and all permutations (i1, i2, i3) of (1, 2, 3). This is always possible to achieve
by increasing the lengths of the segments. Furthermore, (7) holds with l = 1 if

[Kn−2k, . . . , Kn] ⊂ RB, [Kn−2k, . . . , Kn+1] ⊂ RB, (18)

for a finite fixed R and all sufficiently large n. In case of segments, this condition holds, since
each of the approximants in (18) take only three possible values and all they are compact,
since

[Kn, Kn+1, Kn+2]
∗ = Kn + (Kn+1 +K∗

n+2)
∗

contains a neighbourhood of the origin.

Remark 4.9. The Minkowski sum in the definition of set-valued continued fractions can be
replaced by other operations with sets, e.g. the convex hull of the union, the Lp-sum or the
radial sum, see [11]. For instance, if the convex hull of the union K ∨M = conv(K ∪M)
is chosen as the semigroup operation, then K ∨ tB ⊂ K + tB, so that (3) holds in this case
and the convergence results from Section 2 apply. Furthermore, it is possible to consider a
sequence of alternating operations, e.g. the Minkowski sum and the radial sum. The latter
case is particularly easy, since its reduces to the numerical continued fraction built of the
values of the support function of the terms, so that the classical convergence criteria apply.

5 Space of non-negative convex functions

Let K = Cvx0(R
d) be the space of convex functions f : Rd 7→ [0,∞] such that f(0) = 0 with

the arithmetic addition as the semigroup operation and the pointwise partial order. The
Legendre–Fenchel transform of a function f is defined as

f ∗(x) = sup
y
(〈x, y〉 − f(y)), x ∈ R

d .
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It is well known that the Legendre–Fenchel transform is an order reversing involution on
Cvx0(R

d), see [9]. The neutral element is the function identically equal to zero, and its dual
is the convex function identically equal to infinity outside the origin. The only self-polar
function is h(x) = 1

2
‖x‖2. The family Kh is the family of convex functions that admit a

quadratic majorant, and the metric ρh is given by

ρh(f, g) = inf{ε > 0 : f(x) ≤ g(x) +
ε

2
‖x‖2, g(x) ≤ f(x) +

ε

2
‖x‖2, x ∈ R

d} .

It is easy to see that (2) holds and so ρh is indeed a metric.
The dual operation (see Remark 2.1) to the arithmetic addition is the inf-convolution

(f ⊕ g)(x) = inf
x1+x2=x

(f(x1) + g(x2)) .

Consider the continued fraction

zn = [f1, . . . , fn] ∈ Cvx0(R
d) , n ≥ 1 ,

generated by a sequence {fn, n ≥ 1} from Cvx0(R
d).

Theorem 5.1. Assume that a function f ∈ Cvx0(R
d) satisfies r

2
‖x‖2 ≤ f(x) ≤ R

2
‖x‖2 for

all x ∈ R
d, where R ∈ [r,∞], and

r2 +
4r

R
> 4 . (19)

Then the continued fraction zn = [f, . . . , f ] with the constant term f converges in the metric
ρh to z ∈ Kh satisfying z∗ = z + f .

Proof. It is easy to see that (4) holds with CR ≤ C∞ = 2. Indeed, if f ≥ h, then

〈x, x+ v〉 − f(x+ v) ≤ 〈x, x+ v〉 − 1

2
‖x+ v‖2 = 1

2
‖x‖2 − 1

2
‖v‖2 ,

whence

f ∗(x) = sup
v∈Rd

[〈x, x+ v〉 − f(x+ v)]

= sup
‖v‖≤‖x‖

[〈x, x+ v〉 − f(x+ v)]

= sup
‖v‖≤‖x‖

[〈x, x+ v〉 − f(x+ v)− 1

2
t‖x+ v‖2 + 1

2
t‖x+ v‖2]

≤ sup
v∈Rd

[〈x, x+ v〉 − f(x+ v)− 1

2
t‖x+ v‖2 + 2t‖x‖2]

= (f + th)∗(x) + 4th .

Thus, ρh(f
∗, (f + th)∗) ≤ 4t. In order to improve the inequality, start by observing that

ρh(f
∗, (f + th)∗) = inf{ε > 0 : f ∗ ≤ (f + th)∗ + εh}

= inf{ε > 0 : f ∗ ≤ (f ∗ ⊕ t−1h) + εh} .
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If h ≤ f ≤ Rh, then R−1h ≤ f ∗ ≤ h. Therefore,

f ∗(x− y) ≥ f ∗(x)− kx‖y‖ ,

where kx = ‖x‖(1 +
√
1− R−1). Indeed, kx is the steepest slope of the tangent line to the

graph of 1
2
‖u‖2, u ∈ R

d, that passes through the point (x, 1
2
R−1‖x‖2) ∈ R

d+1. Thus,

(f ∗ ⊕ t−1h)(x) = inf(f ∗(x− y) +
1

2
t−1‖y‖2)

≥ f ∗(x) + inf(−kx‖y‖+
1

2
t−1‖y‖2)

≥ f ∗(x)− 1

2
t‖x‖2(1 +

√
1− R−1)2 .

Thus, (4) holds with
CR = 1 +

√
1− R−1 . (20)

Finally, (10) holds if

1 +

√

1− υ(r, R)

υ(R, r)
< υ(r, R) ,

which is equivalent to the imposed condition (19).
It remains to show thatKh is complete in the metric ρh. If {fn} is a fundamental sequence

in ρh, then fn(x) is a fundamental sequence for each x ∈ R
d, so that fn(x) → f(x) for all x

and f ∈ Kh. Finally, fn ≤ fm + εh for any ε > 0 and all sufficiently large n and m implies
that f ≤ fm + εh and fn ≤ f + εh by letting n → ∞ and m → ∞.

Given that (4) holds with CR given by (20), all results from Section 3 can be used to obtain
further sufficient conditions for the convergence of continued fractions in Cvx0(R

d). For
instance, Corollary 3.10 implies that the continued fraction with constant term f converges
if its approximants satisfy z2k+1 ≤ a−1h and z2k ≥ b−1h for some k ≥ 1 with a > Cb/a. The
latter condition amounts to a > 2− b−1.

The other polarity transform (A-transform) on Cvx0(R
d) thoroughly analysed in [3] is

given by

f o(x) =

{

sup
{

〈x,y〉−1
f(y)

: y ∈ R
d, f(y) > 0

}

, x ∈ {f−1(0)}∗ ,
∞, otherwise .

(21)

For simplicity, assume that d = 1. In this case the family of self-polar functions includes

hp(x) =

(
(p− 1)p−1

pp

) 1

2

‖x‖p

for any p ∈ [1,∞], see [10].

16



For any finite positive outside the origin self-polar function h, condition (3) holds. Indeed,
if f ≥ h, then

f o(x) = sup
y 6=0

[〈x, y〉 − 1

f(y)
− 〈x, y〉 − 1

f(y) + th(y)
+

〈x, y〉 − 1

f(y) + th(y)

]

≤ sup
y 6=0

th(y)(〈x, y〉 − 1)

f(y)(f(y) + th(y))
+ (f + th)∗(x)

≤ t sup
y 6=0

〈x, y〉 − 1

h(y)
+ (f + th)∗(x)

= th(x) + (f + th)∗(x) .

Since Kh is complete with the ρh metric, Corollary 3.7 yields the convergence of continued
fractions with constant terms and further results from Section 3 apply in this case.
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