
ar
X

iv
:1

41
0.

25
23

v2
  [

m
at

h.
PR

] 
 3

0 
A

pr
 2

01
5

A generalisation of the fractional Brownian field based

on non-Euclidean norms

Ilya Molchanova, Kostiantyn Ralchenkob

aUniversity of Bern, Institute of Mathematical Statistics and Actuarial Science,
Sidlerstrasse 5, CH-3012 Bern, Switzerland

bTaras Shevchenko National University of Kyiv, Department of Probability Theory,
Statistics and Actuarial Mathematics, Volodymyrska 64/13, 01601 Kyiv, Ukraine

Abstract

We explore a generalisation of the Lévy fractional Brownian field on the
Euclidean space based on replacing the Euclidean norm with another norm.
A characterisation result for admissible norms yields a complete description
of all self-similar Gaussian random fields with stationary increments. Several
integral representations of the introduced random fields are derived.

In a similar vein, several non-Euclidean variants of the fractional Poisson
field are introduced and it is shown that they share the covariance structure
with the fractional Brownian field and converge to it. The shape parameters
of the Poisson and Brownian variants are related by convex geometry trans-
forms, namely the radial pth mean body and the polar projection transforms.
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1. Introduction

The multiparameter fractional Brownian motion or the Lévy fractional
Brownian field (fBf) with Hurst index H ∈ (0, 1) is a centred Gaussian
random field X(z), z ∈ R

d, with the covariance function

E[X(z1)X(z2)] =
1

2

[

‖z1‖2H + ‖z2‖2H − ‖z1 − z2‖2H
]

, (1)
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where ‖z‖ is the Euclidean norm of z. If h = 1
2
, this yields the Lévy Brownian

motion on R
d. If d = 1, one recovers the classical univariate fractional Brow-

nian motion (fBm), see [25]. This random field was introduced by A.M. Ya-
glom [35] as a model of turbulence in fluid mechanics. Various proofs showing
that (1) defines a valid covariance function are given in [11, 25, 29, 30]. Fur-
ther results including series expansions and a general functional limit theorem
can be found in [24]. The two most important integral representations of the
Lévy fBf are the moving average representation using the integral with re-
spect to the white noise and the harmonisable representation as an integral
with respect to the Fourier transform of the white noise, see [7, 15, 23, 30].

Istas [17] defined the fractional Brownian motion B on a metric space by
assuming that the square of its increment B(x)−B(y) is normally distributed
with the variance given by the 2H-power of the metric distance between x and
y. The existence of fractional Brownian motions on the Euclidean sphere and
on the hyperbolic space is verified for H ∈ (0, 1

2
]. These constructions have

been extended to stable random fields in [18]. See also the recent monograph
[7] for a number of results on general self-similar random fields.

Biermé et al. [3] considered a random field generated by a Poisson random
measure on R

d×[0,∞) and proved that it shares the same covariance function
(1) with the Lévy fBf. Such a field may be called a fractional Poisson field,
noticing that other definitions of fractional Poisson fields are available in the
literature, see e. g. [27] for the univariate case and [21] for a multivariate
generalisation.

In this paper we introduce a generalisation of the fBf based on replacing
the Euclidean norm in (1) with a non-Euclidean one. The space R

d with
such norm is called the Minkowski space [33], so that we term our generali-
sation the Minkowski fractional Brownian field (MfBf). Section 2 introduces
necessary concepts from convex geometry. In Section 3 we establish that
the norms giving rise to valid covariance functions are generated by Lp-balls
related to the isometric embeddability of the Minkowski space into Lp([0, 1])
for p = 2H . Furthermore, we derive several integral representations of the
introduced random field. In addition to conventional integral representations
based on integrating the white noise or its Fourier transform, we derive novel
representations based on sums of series of Lévy fBf’s and integrals of uni-
variate fractional Brownian motions. Furthermore, we relate the ordering
of expected supremum of MfBf with the Banach–Mazur distance between
normed spaces. The key idea is the equivalence relation on the family of
MfBf up to non-degenerate linear transformations of their arguments.
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Section 4 introduces random fields based on Poisson point processes that
share the covariance function with the MfBf for H ∈ (0, 1

2
). The construction

follows the ideas from [3] and [34], and is also related to random balls models
[6] and the studies of micropulses [26]. In difference to the previous works,
we emphasise the role of the shape parameters of the corresponding fields.
The main result provides a relationship between the shape parameters of
the Poisson random field and its Gaussian counterpart. This relationship is
given by the radial pth mean body transformation introduced in [12]. The
convergence to the Brownian field with H = 1

2
using different normalisations

of the Poisson model is considered in Section 5. These results are new even
in the case of Lévy fBf. The shape parameters are related by the polar
projection body transform known from the convex geometry [31]. Finally
Section 6 presents other constructions of the fractional Poisson fields that
share the covariance structure with the MfBf.

2. Norms and star bodies

A closed bounded set F in R
d is called a star body if for every u ∈ F the

interval {tu : 0 ≤ t < 1} is contained in the interior of F and the Minkowski
functional (or the gauge function) of F defined by

‖u‖F = inf{s ≥ 0 : u ∈ sF}

is a continuous function of u ∈ R
d. The set F can be recovered from its

Minkowski functional by

F = {u : ‖u‖F ≤ 1} ,

while the radial function ρF (u) = ‖u‖−1
F provides the polar coordinate rep-

resentation of the boundary of F for u from the unit Euclidean sphere S
d−1.

In the following we mainly consider origin-symmetric star-shaped sets and
call them centred in this case. If the star body F is centred and convex, then
‖u‖F becomes a convex norm on R

d and (Rd, ‖ · ‖F ) is called a Minkowski
space, see [33]. We also keep the same notation ‖u‖F if the norm is not con-
vex. Further ‖x‖ (without subscript) denotes the Euclidean norm of x ∈ R

d.
By Vd(K) we denote the d-dimensional Lebesgue measure of a measurable
set K.

The p-sum of two star bodies F1 and F2 is the star body F such that

‖u‖pF = ‖u‖pF1
+ ‖u‖pF2

,
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see [20].
The support function of a convex set K in R

d is defined by

h(K, u) = sup{〈x, u〉 : x ∈ K} , u ∈ R
d .

Note that the support function may take infinite values if K is not bounded.
The polar set to a convex set K containing the origin is defined by

K∗ = {u : h(K, u) ≤ 1} .

An Lp-ball for p > 0 is a star body F such that (Rd, ‖·‖F ) is isometrically
embeddable into Lp([0, 1]), see [20, Lemma 6.4]. The star body F is an Lp-
ball if and only if

‖z‖pF =

∫

Sd−1

|〈z, u〉|pσ(du) (2)

for a finite even measure σ on the unit Euclidean sphere S
d−1, see [14,

Lemma 4.8]. The Lp-balls are necessarily convex for p ∈ [1, 2].

Example 2.1. A set F is an L2-ball if and only if

‖z‖2F =

∫

Sd−1

|〈z, u〉|2σ(du) = 〈Az, z〉 ,

where the matrix A is symmetric non-negative definite with entries given by

aij =

∫

Sd−1

uiujσ(du) , i, j = 1, . . . , d .

Thus, the family of L2-balls coincides with the family of ellipsoids.

3. Minkowski fractional Brownian field

3.1. Definition and existence

Definition 3.1. A centred Gaussian random field XF (z), z ∈ R
d, with the

covariance function CF (z1, z2) = E[XF (z1)XF (z2)] given by

CF (z1, z2) =
1

2

[

‖z1‖2HF + ‖z2‖2HF − ‖z1 − z2‖2HF
]

, z1, z2 ∈ R
d , (3)

is called the Minkowski fractional Brownian field (MfBf) with the Hurst
parameter H ∈ (0, 1] and the associated star body F .
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Since in dimension d = 1 all Minkowski functionals are identical up to a
constant, a non-trivial generalisation is only possible if the dimension d is at
least 2.

The increment of the MfBf is centred Gaussian with the variance

E(XF (z1)−XF (z2))
2 = ‖z1 − z2‖2HF .

Thus, the MfBf is a Gaussian field with stationary increments. It follows
from [10] that the family of MfBf coincides with the family of all Gaussian
random fields with stationary increments.

The following well-known result is useful to establish the positive definite-
ness of the covariance (3). Note that the positive definiteness is understood
in the non-strict sense.

Lemma 3.2. Let f : Rd → R+ be an even function. The function e−cf(z),
z ∈ R

d, is positive definite for all c > 0 if and only if the function

Af (z1, z2) = f(z1) + f(z2)− f(z1 − z2)

is positive definite.

Proof. If t1, . . . , tk ∈ R and z1, . . . , zk ∈ R
d, then

k
∑

i,j=1

Af(zi, zj)titj = −
k

∑

i,j=0

f(zi − zj)titj ,

where t0 = −
∑k

i=1 ti and z0 = 0 is the origin. Thus, Af is positive definite
if and only if f is negative definite. The latter is equivalent to the positive
definiteness of e−cf for all c > 0, see [2, Th. 2.2].

Proposition 3.3. The MfBf exists if and only if H ∈ (0, 1] and F is an
Lp-ball with p = 2H.

Proof. It is known [20, Th. 6.6] that e−c‖z‖p
F is positive definite if and only if

(Rd, ‖ · ‖F ) isometrically embeds in Lp([0, 1]), meaning that F is an Lp-ball.
By considering e−c|t|p‖z‖F as a function of t ∈ R with a fixed z, it is easily
seen that p ∈ (0, 2]. The rest follows from Lemma 3.2.

Since the associated star body F is an Lp-ball, the norm ‖u‖F admits
representation (2), and the measure σ from (2) is called the spectral measure
of the corresponding MfBf XF (·).
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Example 3.4 (Lévy fBf). If σ is the rotation invariant measure on the unit
sphere with the total mass

σ(Sd−1) =
Γ(H + d

2
)

2π(d−1)/2Γ(H + 1
2
)
,

then F is the unit Euclidean ball, and we recover the Lévy fBf.

If F is an Lp-ball with p ∈ (0, 2], then F is also an Lr-ball for all r ∈ (0, p],
see [20, Cor. 6.7]. Thus, if the MfBf with the associated star body F exists
for some Hurst index H , then it exists for all Hurst indices H ′ ∈ (0, H ].

Example 3.5. Let

F = {x = (x1, . . . , xd) ∈ R
d : |x1|p + · · ·+ |xd|p ≤ 1},

be the centred ℓp-ball in R
d with d ≥ 2 for p ∈ (0, 2]. The MfBf with the

associated star body F exists if and only if H ∈ (0, 1
2
p]. For d = 2, the

MfBf exists for any convex centred star body F and H ∈ (0, 1
2
], see also [19].

Indeed, it is well known [31, Cor. 3.5.7] that all centred convex bodies in the
plane are L1-balls and so Lp-balls for p ∈ (0, 1].

Example 3.6. If H = 1, then F is an L2-ball, so F is necessarily an el-
lipsoid that corresponds to the quadratic form determined by matrix A,
see Example 2.1. In this case XF (z) = 〈z, ξ〉 for centred normally dis-
tributed random vector ξ with the covariance matrix A. If H ∈ (0, 1) and
F = {z : 〈Az, z〉 ≤ 1} is an ellipsoid with a strictly positive definite matrix
A, then XF (A

−1/2z) is the Lévy fBf with the covariance given by (1).

Example 3.7. The family of L1-balls is the family of polar bodies to zonoids,
well-known from convex geometry [31, Sec. 3.5]. Thus, the family of all
Minkowski Brownian fields (that appear forH = 1

2
) corresponds to the family

of zonoids.

Since F is an Lp-ball with p = 2H , (2) implies that ‖z‖2HF ≤ c‖z‖2H for a
constant c, i.e. the variance of the increments of the MfBf is bounded (up to
a constant) by that of the Lévy fBf. Therefore, the MfBf inherits the local
properties from the Lévy fBf with the same Hurst parameter, in particular
it is a.s. continuous.

3.2. Integral representations

Unless F is the Euclidean ball, it is not possible to use the arguments
based on the rotational invariance (like in [15, 23]) to derive integral repre-
sentations of the MfBf.
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Let m be the measure on R
d whose polar representation has the direc-

tional component σ(du) (being the spectral measure from (2)) and the radial
component (2π)−d/2rd−1dr. Consider a Gaussian measure Wσ on R

d with the
control measure m, so that, for each square integrable function f ,

E

(
∫

Rd

f(x)Wσ(dx)

)2

=

∫

Rd

f(x)m(dx)

=
1

(2π)d/2

∫

Sd−1

∫ ∞

0

f(ru)rd−1drσ(du) .

If σ is the surface area measure on the unit sphere (the (d− 1)-dimensional
Hausdorff measure), then Wσ is the conventional Brownian random measure
as considered in [7, Sec. 2.1.6.1] (also called the white noise) up to a multi-
plicative constant. The Fourier transform Ŵσ of Wσ is defined in the sense
of generalised functions as in [7, Def. 2.1.16].

Theorem 3.8. The MfBf with the spectral measure σ is given by

XF (z) = aH,d

∫

Rd

eı〈z,y〉 − 1

‖y‖H+d/2
Ŵσ(dy) , (4)

where
aH,d = 2(2π)

d−1

4 (HΓ(2H) sin(Hπ))
1

2 .

Proof. By passing to the polar coordinates and noticing that the measure σ
is even,

∫

Rd

1− eı〈z,y〉

‖y‖2H+d
m(dy) =

1

(2π)d/2

∫

Sd−1

∫ ∞

0

(

1− eıt〈z,u〉
)

t−2H−1dtσ(du)

=
1

(2π)d/2

∫

Sd−1

∫ ∞

0

(1− cos(t〈z, u〉))t−2H−1dtσ(du)

=
cH

(2π)d/2

∫

Sd−1

|〈z, u〉|2Hσ(du) ,

where

cH =

∫ ∞

0

(1− cos t)t−2H−1dt =
π

4HΓ(2H) sin(Hπ)
,

see [30, p. 329]. The rest of the proof is carried over similarly to [15,
Prop. 2]. The normalising constant aH,d is derived from the condition that
a2H,dcH(2π)

−d/2 = 1
2
.
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Corollary 3.9. The MfBf can be represented as

XF (z) = aH,dbH,d

∫

Rd

[‖z − u‖H−d/2 − ‖u‖H−d/2]Wσ(du) (5)

for

bH,d = 2−H Γ
(

1
2
(−H + d/2)

)

Γ
(

1
2
(H + d/2)

) .

Proof. It suffices to note that the integrand from (5) is the Fourier transform
of the integrand from (4) up to the constant bH,d, see [13] noticing that the
Fourier transform is defined with the factor (2π)−d/2.

Example 3.10. Let the spectral measure σ attach the masses 1
2
to the points

{±v} for a fixed v ∈ S
d−1. Then ‖z‖F = |〈z, v〉|. The corresponding covari-

ance function

Cv(z1, z2) =
1

2

[

|〈z1, v〉|2H + |〈z2, v〉|2H − |〈z1 − z2, v〉|2H
]

is positive definite for all H ∈ (0, 1] and defines the MfBf Yv. It is easy to
see that Yv(z) = BH(〈z, v〉) for the univariate fBm BH .

Proposition 3.11. Let BH(t) be the fBm on the real line and let M be an
independent of BH Gaussian white noise on S

d−1 with the control measure
σ. Then

XF (z) =

∫

Sd−1

BH(〈z, v〉)M(dv) (6)

is the MfBf with the spectral measure σ.

Proof. The covariance of XF (z) is

E[XF (z1)XF (z2)] = E[E[XF (z1)XF (z2)|BH ]]

= E

∫

Sd−1

BH(〈z1, v〉)BH(〈z2, v〉)σ(dv)

=
1

2

∫

Sd−1

[

|〈z1, v〉|2H + |〈z2, v〉|2H − |〈z1 − z2, v〉|2H
]

σ(dv)

and so coincides with (3).

In particular, if σ is the rotation invariant measure on S
d−1 from Exam-

ple 3.4, then (6) can be viewed as the analogue of the plain-wave expansion of
the norm [13, Sec. I.3.10]. Using (6), the results for the univariate fractional
Brownian motion can be extended to the multivariate setting.
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3.3. Associated star bodies

Consider here the properties of the MfBf in relation to their associated
star bodies.

Proposition 3.12. If {Fn, n ≥ 1} is a sequence of Lp-balls with p = 2H,
such that ‖u‖Fn

→ ‖u‖F for a star body F , then F is an Lp-ball and the finite-
dimensional distributions of XFn

converge to those of XF . If, additionally,
there exists ε > 0 such that Fn ⊃ εBd

2 for all sufficiently large n, then XFn

weakly converges to XF in the space of continuous functions on any compact
subset of Rd.

Proof. The convergence of finite dimensional distributions follows from the
convergence of covariance functions, and the positive definiteness of the lim-
iting covariance implies that F is an Lp-ball. Notice that

E(XFn
(z1)−XFn

(z2))
2k = c1‖z1 − z2‖2Hk

Fn
≤ c2‖z1 − z2‖2Hk.

for all z1, z2 from a compact subset of Rd, constants c1, c2, and some k ≥
1 such that 2kH > d. The weak convergence follows from the tightness
condition from [16], see also [9, Th. 2].

Proposition 3.13. For two MfBf’s XF1
and XF2

, we have

E sup
z∈D

|XF1
(z)| ≥ E sup

z∈D
|XF2

(z)| (7)

for each compact set D ⊂ R
d if and only if F1 ⊂ F2.

Proof. The sufficiency follows from the Sudakov–Fernique inequality [1, Th. 2.2.3]
noticing that

E(XF1
(z1)−XF1

(z2))
2 = ‖z1−z2‖2HF1

≥ ‖z1−z2‖2HF2
= E(XF2

(z1)−XF2
(z2))

2 .

For the reverse implication, consider D = {z}. Then E|XF1
(z)| ≥ E|XF2

(z)|
implies EXF1

(z)2 ≥ EXF2
(z)2 and it remains to notice that the increments

are stationary.

Let A ∈ GL(d) be an invertible matrix. Then XAF (z) is a version of
XF (A

−1z), z ∈ R
d. The MfBf’s obtained by such transformations may be

regarded as equivalent in a certain sense. In particular, all ellipsoids F can
be transformed to the unit ball in this way, so that all MfBf’s with elliptical
associated star bodies can be considered equivalent to the Lévy fBf.
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In view of Proposition 3.13, the infimum of t ≥ 1 such that

E sup
z∈D

|XF2
(z)| ≥ E sup

z∈D
|XF1

(Az)| ≥ 1

t
E sup

z∈D
|XF2

(z)|

for some A ∈ GL(d) and for all compact sets D in R
d equals the infimum of

t > 0 such that F2 ⊂ AF1 ⊂ tF2 for some A ∈ GL(d), which is the Banach–
Mazur distance between the normed spaces (Rd, ‖ · ‖F1

) and (Rd, ‖ · ‖F2
), see

[22, Sec. 2.1]. Since the Banach–Mazur distance between (Rd, ‖ · ‖F ) and the
Euclidean space is at most

√
d (see [22]), we deduce that for each MfBf XF

there is the Lévy fBf X such that

E sup
z∈D

|X(z)| ≥ E sup
z∈D

|XF (Az)| ≥
1√
d
E sup

z∈D
|X(z)|

for some A ∈ GL(d) and all compact sets D ⊂ R
d.

Equation (7) provides a possible ordering of Gaussian processes. Another
ordering (which is stronger than (7) for fields that vanish at the origin) is
the convex ordering of all finite-dimensional distributions meaning that

Eg(XF1
(z1), . . . , XF1

(zn)) ≥ Eg(XF2
(z1), . . . , XF2

(zn))

for all z1, . . . , zn ∈ R
d, n ≥ 1, and all convex functions g : Rn → R, see

[28]. In the case of centred Gaussian processes, this is equivalent to the fact
that the difference of covariance matrices of finite-dimensional distributions
of XF1

and XF2
is positive definite, see [28, Sec. 3.13]. By Lemma 3.2, this

holds if and only if exp{−c(‖z‖2HF1
−‖z‖2HF2

)} is positive definite for all c > 0.

Proposition 3.14. The MfBf XF1
is greater than or equal to the MfBf XF2

in the convex ordering if and only if F1 = F2 +p M for an Lp-ball M and
p = 2H, equivalently, if σ1 = σ2 + ν for a non-negative measure ν, where σi

is the spectral measure of Fi, i = 1, 2.

Proof. Note that ‖z‖2HF1
−‖z‖2HF2

is a homogenous function that can we written
as ‖z‖2HM with F1 = F2 +p M by the definition of the p-sum, and the p-
sum of two Lp-balls corresponds to the arithmetic addition of their spectral
measures.

Sums of independent MfBf’s can be interpreted as follows.
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Proposition 3.15. Let XF1
and XF2

be two independent MfBf’s with asso-
ciated star bodies F1 and F2. Then XF1

+XF2
is the MfBf with the associated

star body F = F1 +p F2 being the p-sum of F1 and F2 for p = 2H.

Corollary 3.16. Each MfBf with H ∈ [1
2
, 1] can be represented as the weak

limit (on each compact subset of Rd) of the sums of Xi(Aiz), i ≥ 1, where
{Xi, i ≥ 1} are i.i.d. Lévy fBf’s with covariance (1) and {Ai, i ≥ 1} are
positive definite matrices.

Proof. The result follows from Proposition 3.15 and [14, Th. 6.13] saying
that each Lp-ball F with p ≥ 1 can be represented as the limit (in the
Hausdorff metric) for the p-sum of ellipsoids. The MfBf with the associated
star body being an ellipsoid can be represented as X(Az), z ∈ R

d, where
X is the Lévy fBf. The finite dimensional distributions converge, since the
convergence of sets in the Hausdorff metric yields the convergence of the
corresponding norms. Finally, the representation as the sum of ellipsoids
guarantees that at least one summand contains a neighbourhood of the origin,
so that Proposition 3.12 applies.

3.4. Sub-fractional fields

Following the definition of the sub-fractional Brownian motion from [4], it
is possible to define its Minkowski analogue as the centred Gaussian random
field with the covariance

Csub
F (z1, z2) = ‖z1‖2HF + ‖z2‖2HF − 1

2
[‖z1 + z2‖2HF + ‖z1 − z2‖2HF ] . (8)

Since
Csub

F (z1, z2) = CF (z1, z2) + CF (z1,−z2) ,

(8) defines a valid covariance function if H ∈ (0, 1] and F is an Lp-ball. The
corresponding random field is given by 1

2
(XF (z)+XF (−z)) for the MfBf XF .

The random field X̃F (z) = XF (z) − XF (−z), z ∈ R
d, is a Gaussian

random field with the covariance ‖z1+ z2‖2HF −‖z1− z2‖2HF , whose univariate
version was considered in [5].

4. Fractional Poisson fields

4.1. Definition and scaling property

For H ∈ (0, 1
2
), let NH = {(xi, ri), i ≥ 1} be the Poisson point process

(identified with the corresponding counting measure) on R
d × (0,∞) with

11



the intensity measure

νH(dx, dr) = dx r−d−1+2Hdr . (9)

Let K be a convex body in R
d with non-empty interior.

Definition 4.1. The fractional Poisson field with Hurst index H and the
shape parameter K is the random field

ξ(z) =

∫

Rd×(0,∞)

(1z∈x+rK − 10∈x+rK)NH(dx, dr) . (10)

Sometimes we write ξK or ξK,H to emphasise the shape parameter of the field
and its Hurst exponent.

The random field (10) for K being the unit Euclidean ball was considered
in [3]. The factor λ in front of the intensity of νH in [3] can be incorporated
into Definition 4.1 using a rescaled variant of K.

Note that
∫

Rd

|1z∈x+rK − 10∈x+rK|dx = Vd((z + rK)△ rK)

≤ min(rdVd(K), rd−1bK(z)) ,

where △ denotes the symmetric difference, bK(z) = Vd−1(prz⊥ K) is the
(d−1)-dimensional volume of the projection of K onto the hyperplane z⊥ or-
thogonal to z. Therefore, the integrand in (10) belongs to L1(Rd×(0,∞), νH),
so that the integral (10) is well defined. Since the absolute difference of two
indicator functions takes values 0 or 1, the integrand in (10) also belongs to
L2(Rd × (0,∞), νH) and

Eξ(z)2 =

∫

Rd×(0,∞)

(1z∈rK+x − 10∈rK+x)
2 νH(dx, dr)

=

∫ ∞

0

Vd((z + rK)△ rK)r−d−1+2H dr .

Since ξ(z1)− ξ(z2) coincides in distribution with ξ(z1 − z2),

E[ξ(z1)ξ(z2)] =
1

2

[

Eξ(z1)
2 + Eξ(z2)

2 − Eξ(z1 − z2)
2
]

. (11)
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By computing the probability generating functional (see [8]) of the Pois-
son process NH , it is easy to see that the finite-dimensional distributions of
ξ have the following characteristic function

E exp

{

k
∑

j=1

ıtjξK(zj)

}

= exp

{

∫

Rd×(0,∞)

(

cos
(

k
∑

j=1

tj
(

1zj∈rK+x

− 10∈rK+x

)

)

− 1

)

r−d−1+2Hdx dr

}

(12)

Lemma 4.2. For all a > 0, the random fields ξK(az), z ∈ R
d, and ξbK(z),

z ∈ R
d, with b = a

2H
d−2H have identical finite-dimensional distributions. The

finite-dimensional distributions of ξK(az) equal the a2H-convolution power of
those of ξK(z).

Proof. The fractional Poisson field with the shape parameter bK equals the
fractional Poisson field with the shape parameter K generated by the point
process {(xi, bri) : (xi, ri) ∈ NH}. The intensity measure of this transformed
process is

E
∑

i

1xi∈D,bri≥t = νH(D × [b−1t,∞)) = a2HνH(D × [t,∞))

for all BorelD ⊂ R
d and t > 0. Thus, ξbK equals in distribution the fractional

Poisson field with the shape parameter K and the intensity measure a2HνH .
This corresponds to a superposition of independent Poisson processes and so
to the convolution power of the distribution.

4.2. Relation to the MfBf

It is shown in [3] that, if K is the unit Euclidean ball, the covariance (11)
of the fractional Poisson field ξ coincides (up to a multiplicative constant)
with the covariance function (1) of the Lévy fBf. The case of a general convex
body K cannot any longer be handled by the rotational symmetry argument
as in [3] and, for this, we need to recall some further concepts from convex
geometry. If K is a convex body in R

d, then its radial pth mean body RpK
is defined for p > −1 by

‖u‖RpK =

(

1

Vd(K)

∫

K

ρK(x, u)
pdx

)−1/p

,

13



where ρK(x, u) = max{t : x+ tu ∈ K} is the representation of the boundary
of K in the spherical coordinates with the origin located at x, see [12].

Theorem 4.3. The covariance function of the fractional Poisson field ξ given
by (10) coincides with that of MfBf X with the associated star body

F =

(

H

Vd(K)

)1/2H

R−2HK . (13)

Proof. Let u⊥ denote the linear space orthogonal to the non-trivial vector u ∈
R

d, and let ℓu,K(y) be the length of the segment obtained as the intersection
of K with the line {y + tu : t ∈ R}. Then

Vd((u+K)△K) = 2

∫

u⊥
min(‖u‖, ℓu,K(y))dy .

If ‖z‖ = 1, then

Eξ(z)2 =

∫ ∞

0

Vd((z + rK)△ rK)r−d−1+2H dr

=

∫ ∞

0

Vd((zs+K)△K)s−1−2Hds

= 2

∫ ∞

0

∫

z⊥
min(s, ℓz,K(y))s

−1−2Hdyds

=
1

H(1− 2H)

∫

z⊥
ℓz,K(y)

−2H+1dy .

(14)

It is shown in [12, Lemma 2.1] that, for p > −1,

∫

K

ρK(x, u)
pdx =

1

p+ 1

∫

u⊥
ℓu,K(y)

p+1dy .

Thus, for p = −2H , we have

Eξ(z)2 =
1

H(1− 2H)
(−2H + 1)

∫

K

ρK(x, z)
−2Hdx

=
1

H
Vd(K)‖z‖2HR−2HK .

It remains to note that Eξ(tz)2 = t2HEξ(z)2 for t > 0.

14



Corollary 4.4. The radial pth mean body RpK of any convex body K is an
Lp-ball for each p ∈ (−1, 0).

It is not known if the radial pth mean body is convex for p ∈ (−1, 0) and
if two different (up to a translation) convex bodies share the same radial pth
mean body for any single p ∈ (−1, 0), see [12]. An inverse to the transform
Rp is not yet found.

Below we present a limit theorem that yields the MfBf as a limit when the
intensity of the fractional Poisson field ξ grows and its argument is rescaled.

Proposition 4.5. The finite-dimensional distributions of a−HξK(az) con-
verge as a → ∞ to those of the MfBf XF (z), z ∈ R

d, with the associated star
body F given by (13). Furthermore, a−H

∫

L
ξK(az) dz converges in distribu-

tion as a → ∞ to
∫

L
XF (z) dz for each bounded Borel set L.

Proof. By Lemma 4.2, if a2H = m is an integer, then a−Hξ(az) is the sum
of m i. i. d. copies of ξ(z) normalised by

√
m. By the central limit theorem,

it converges to the Gaussian random field that shares the same covariance
structure with ξ, so the MfBf X . A standard argument completes the proof
of convergence in distribution along an arbitrary sequence a → ∞. The weak
convergence of integrals follows from the central limit theorem and the fact
that the variances of

∫

L
ξ(z) dz and

∫

L
XF (z) dz coincide.

5. Convergence to MfBf with H = 1

2

The results from Section 4.2 concern the case of the Hurst parameter
H ∈ (0, 1

2
). Below we explore the convergence of the Poisson fractional field

to the MfBf with H = 1
2
.

The function bK(u) = Vd−1(pru⊥ K), u ∈ S
d−1, is the support function of

the projection body ΠK to K. The corresponding polar body is denoted by
Π∗K and called the polar projection body, see [31, p. 570], so that ‖u‖Π∗K =
bK(u) for u ∈ S

d−1. It is shown in [12] that the polar projection body Π∗K
can be obtained as the limit of ((p+ 1)Vd(K))−1/pRpK as p ↓ −1.

Theorem 5.1. The finite-dimensional distributions of the random field√
1− 2H ξK,H(z), z ∈ R

d, converge as H ↑ 1
2
to the finite-dimensional dis-

tributions of the MfBf XF (z), z ∈ R
d, with the Hurst parameter H = 1

2
and

the associated star body F = 1
2
Π∗K.
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Proof. Using (14), we have for ‖z‖ = 1

(1− 2H)EξK,H(z)
2 =

1

H

∫

z⊥
ℓz,K(y)

−2H+1dy .

For H = 1
2
, the integral equals ‖z‖Π∗K , see [12]. Similarly to the proof of

Theorem 4.3, we obtain for arbitrary z ∈ R
d the convergence

(1− 2H)EξK,H(z)
2 → ‖z‖F as H ↑ 1

2
.

By (12),

E exp

{

k
∑

j=1

ıtj
√
1− 2H ξK,H(zj)

}

= exp

{
∫

Rd×(0,∞)

(cos θ − 1) r−d−1+2Hdx dr

}

= exp{I1 + I2},

where

θ =
√
1− 2H

k
∑

j=1

tj
(

1zj∈rK+x − 10∈rK+x

)

,

I1 = −1

2

∫

Rd×(0,∞)

θ2r−d−1+2Hdx dr,

I2 =

∫

Rd×(0,∞)

(

cos θ − 1 +
θ2

2

)

r−d−1+2Hdx dr.

Then

I1 = −1 − 2H

2

∫

Rd×(0,∞)

∑

j,k

tjtk
(

1zj∈rK+x − 10∈rK+x

)

× (1zk∈rK+x − 10∈rK+x) r
−d−1+2Hdx dr

= −1 − 2H

2

∑

j,k

tjtkE [ξK,H(zj)ξK,H(zk)]

→ −1

4

∑

j,k

tjtk (‖zj‖F + ‖zk‖F − ‖zj − zk‖F ) as H ↑ 1

2
.
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The elementary inequality
∣

∣

∣
cos θ − 1 + θ2

2

∣

∣

∣
≤ |θ|3

6
yields that

|I2| ≤
1

6
(1− 2H)3/2

∑

i,j,k

|titjtk|
∫

Rd×(0,∞)

∣

∣(1zi∈rK+x − 10∈rK+x)

×
(

1zj∈rK+x − 10∈rK+x

)

(1zk∈rK+x − 10∈rK+x)
∣

∣r−d−1+2Hdx dr.

The Hölder inequality implies that

|I2| ≤
√
1− 2H

6

∑

i,j,k

|titjtk| 3

√

µH(zi)µH(zj)µH(zk),

where

µH(z) = (1− 2H)

∫

Rd×(0,∞)

|1z∈rK+x − 10∈rK+x|3 r−d−1+2Hdx dr

= (1− 2H)EξK,H(z)
2 → ‖z‖F as H ↑ 1

2

for all z ∈ R
d. Thus, |I2| → 0 as H ↑ 1

2
.

The integral (10) fails to converge if H ≥ 1
2
. It is possible to truncate it

to ensure the convergence as follows. For C > 0 and p > 1
2
, define

ηC,p(z) =

∫

Rd×[0,C]

(1z∈x+rK − 10∈x+rK)Np(dx, dr) ,

where Np is the Poisson process with intensity νH from (9) for H = p. It
is easy to see that ηC,p is well defined. The following result shows that its
normalised version converges to the MfBf with H = 1

2
no matter what p is.

Theorem 5.2. For any p > 1
2
, the finite-dimensional distributions of the ran-

dom field C1/2−pηC,p(z), z ∈ R
d, converge as C → ∞ to the finite-dimensional

distributions of the MfBf with the Hurst parameter H = 1
2
and the associated

star body F =
(

p− 1
2

)

Π∗K.

Proof. First let us show that

C1−2p EηC,p(z)
2 → ‖z‖F . (15)
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Let ‖z‖ = 1. Similarly to (14),

C1−2p EηC,p(z)
2 = 2C1−2p

∫ ∞

1/C

∫

z⊥
min(s, ℓz,K(y))s

−1−2pdyds.

Further,

C1−2pEηC,p(z)
2 = 2C1−2p

∫

z⊥

∫ ∞

1/C

ℓz,K(y)s
−1−2p

1ℓz,K(y)< 1

C
dsdy

+ 2C1−2p

∫

z⊥

∫ ℓz,K(y)

1/C

s−2p
1ℓz,K(y)≥ 1

C
dsdy

+ 2C1−2p

∫

z⊥

∫ ∞

ℓz,K(y)

ℓz,K(y)s
−1−2p

1ℓz,K(y)≥ 1

C
dsdy

=
C

p

∫

z⊥
ℓz,K(y)1ℓz,K(y)< 1

C
dy +

2

2p− 1

∫

z⊥
1ℓz,K(y)≥ 1

C
dy

+
C1−2p

p(2p− 1)

∫

z⊥
ℓz,K(y)

1−2p
1ℓz,K(y)≥ 1

C
dy.

The first term in the right-hand side can be bounded as follows

C

∫

z⊥
ℓz,K(y)1ℓz,K(y)< 1

C
dy ≤

∫

z⊥
1ℓz,K(y)< 1

C
dy

= Vd−1

({

y ∈ prz⊥ K : ℓz,K(y) <
1
C

})

→ 0 as C → ∞.

The second term converges to 2
2p−1

‖z‖Π∗K = ‖z‖F . For the third term,

C1−2p

∫

z⊥
ℓz,K(y)

1−2p
1ℓz,K(y)≥ 1

C
dy

= C1−2p

∫

z⊥
ℓz,K(y)

1−2p
1 1

C
≤ℓz,K(y)< 1√

C

dy

+ C1−2p

∫

z⊥
ℓz,K(y)

1−2p
1ℓz,K(y)≥ 1√

C

dy

≤
∫

z⊥
1 1

C
≤ℓz,K(y)< 1√

C

dy + C1/2−p

∫

z⊥
1ℓz,K(y)≥ 1√

C

dy

≤
∫

z⊥
1ℓz,K(y)< 1√

C

dy + C1/2−p‖z‖Π∗K → 0

as C → ∞. Thus, (15) holds if ‖z‖ = 1. Since, for t > 0,

C1−2p EηC,p(tz)
2 = C1−2pt2p EηC/t,p(z)

2 → t‖z‖F as C → ∞,
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(15) holds for arbitrary z ∈ R
d.

The convergence of characteristic functions can be verified similarly to
the proof of Theorem 5.1.

6. Other constructions of fractional Poisson fields

The section describes other constructions of Poisson random fields that
share the same covariance structure with the MfBf.

6.1. Introducing the directional component to the Poisson process

Let F be an Lp-ball with p = 2H for H ∈ (0, 1
2
), and let σ be the

corresponding spectral measure defined by (2). Consider a Poisson point
process N ′

H on R× (0,∞)× S
d−1 with the intensity measure

ν ′
H(dx, dr, dv) = dx r−d−1+2Hdr σ(dv).

Define the random field

ζ(z) =

∫

R×(0,∞)×Sd−1

(

1〈z,v〉∈[x−r,x+r] − 10∈[x−r,x+r]

)

N ′
H(dx, dr, dv),

z ∈ R
d. Let ξ(y), y ∈ R, be the univariate fractional Poisson field with Hurst

index H and the shape parameter K = [−1, 1]. Then Eξ(y)2 = cH |y|2H,
where cH = 21−2H

H(1−2H)
, see [3]. Therefore,

Eζ(z)2 =

∫

Rd×(0,∞)×Sd−1

(

1〈z,v〉∈[x−r,x+r] − 10∈[x−r,x+r]

)2
ν ′
H(dx, dr, dv)

=

∫

Sd−1

Eξ(〈z, v〉)2 σ(dv) = cH

∫

Sd−1

|〈z, v〉|2H σ(dv) = cH‖z‖2HF .

Hence, the covariance function of ζ(z) is, up to a constant, the covariance
function of MfBf with the associated star body F .

6.2. Poisson processes on Grassmannians

The affine Grassmannian A(d, q) in R
d is the family of q-dimensional

affine subspaces of Rd, see [32, Sec. 13.2]. In particular, there is a unique
invariant normalised Haar measure µq on A(d, q), see [32, Th. 13.2.12]. Let
NH,q = {(Li, ri)} be the Poisson process on A(d, q) × (0,∞) with intensity
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being the product measure of µq and the measure with the density r−d−1+q+2H

on (0,∞). Define

ξ(z) =

∫

A(d,q)×(0,∞)

(1z∈riK+Li
− 10∈riK+Li

)NH,q(dL, dr) .

By [32, Eq. (13.9)],

∫

A(d,q)

∣

∣1z+rǨ∩L 6=∅ − 1rǨ∩L 6=∅

∣

∣µq(dL)

=

∫

G(d,q)

Vd−q((prL⊥(rK) + zL⊥)△ prL⊥(rK))νq(dL) ,

where Ǩ = {−x : x ∈ K}, νq is the Haar probability measure on the
Grassmannian G(d, q) (the family of all q-dimensional linear subspaces in
R

d), prL⊥ denotes the projection on the subspace L⊥ orthogonal to L, and
zL⊥ is the projection of z onto L⊥. The integrand is bounded by a constant
times min(rd−q, rd−1−q), so that ξ(z) is well defined for H ∈ (0, 1

2
).

The variance of ξ(z) is given by

Eξ(z)2 =

∫

G(d,q)

∫ ∞

0

Vd−q((prL⊥(K) + szL⊥)△ prL⊥(K))νq(dL)s
−1−2Hds .

Denote the right-hand side of (13) by FH(K). Arguing as in the proof of
Theorem 4.3, we obtain that

Eξ(z)2 =
1

H(1− 2H)

∫

G(d,q)

∫

z⊥∩L⊥
ℓz

L⊥ ,pr
L⊥ K(y)

−2H−1dyνq(dL)

=
1

H

∫

G(d,q)

∫

pr
L⊥ K

ρ(x, zL⊥)−2Hdxνq(dL)

=

∫

G(d,q)

‖zL⊥‖2HFH (pr
L⊥ K)νq(dL)

=

∫

G(d,q)

‖z‖FH (pr
L⊥ K)νq(dL) = ‖z‖2H

F̃
.

The penultimate equation follows from the fact that FH(prL⊥ K) is given by
the sum of L and a subset of L⊥. The associated star body F̃ is obtained as
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the limit of the p-sums (with p = 2H) of scaled radial pth mean bodies of
the projections of K. Such MfBf can be viewed as the integral

∫

G(d,q)

ηL(zL⊥)νq(dL)

of the independent MfBf’s on L⊥ indexed by L ∈ G(d, q), each having the
associated star body FH(prL⊥ K) being the scaled radial pth mean body of
prL⊥ K.
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