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Can we infer plant facilitation from remote sensing?
a test across global drylands

CHI XU,1,2,12 MILENA HOLMGREN,3 EGBERT H. VAN NES,2 FERNANDO T. MAESTRE,4 SANTIAGO SOLIVERES,5 MIGUEL
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10The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501 USA

11Centro Cambio Global UC (PUC-Global) Vicuña Mackenna 4860, Macul, Santiago, Chile

Abstract. Facilitation is a major force shaping the structure and diversity of plant
communities in terrestrial ecosystems. Detecting positive plant–plant interactions relies on the
combination of field experimentation and the demonstration of spatial association between
neighboring plants. This has often restricted the study of facilitation to particular sites, limiting
the development of systematic assessments of facilitation over regional and global scales. Here
we explore whether the frequency of plant spatial associations detected from high-resolution
remotely sensed images can be used to infer plant facilitation at the community level in
drylands around the globe. We correlated the information from remotely sensed images freely
available through Google Earth with detailed field assessments, and used a simple individual-
based model to generate patch-size distributions using different assumptions about the type and
strength of plant–plant interactions. Most of the patterns found from the remotely sensed
images were more right skewed than the patterns from the null model simulating a random
distribution. This suggests that the plants in the studied drylands show stronger spatial
clustering than expected by chance. We found that positive plant co-occurrence, as measured in
the field, was significantly related to the skewness of vegetation patch-size distribution
measured using Google Earth images. Our findings suggest that the relative frequency of
facilitation may be inferred from spatial pattern signals measured from remotely sensed images,
since facilitation often determines positive co-occurrence among neighboring plants. They pave
the road for a systematic global assessment of the role of facilitation in terrestrial ecosystems.

Key words: arid ecosystems; community structure; competition; desertification; individual-based model;
patch-size distribution; positive interactions; spatial pattern; vegetation pattern.

INTRODUCTION

The development of remote sensing tools and freely

available resources on the internet has made it

increasingly feasible to retrieve systematic information

about vegetation patterning at fine spatial resolutions in

terrestrial ecosystems worldwide (e.g., Thompson and

Katul 2011, Cramer and Barger 2013). It has been

suggested that such patterns might be used to infer

underlying mechanisms that structure ecological systems

and shape their resilience (Kéfi et al. 2007, Scanlon et al.

2007). Although this is an exciting possibility, there are

still major barriers, as similar patterns may emerge from

different ecological processes (Levin 1992, McIntire and

Fajardo 2009). So far, the clearest link between pattern

and process has been found for regular patterns such as

‘‘tiger bush,’’ where regular bands of vegetation inter-

weaved with bare soil (e.g., in drylands) or sparser plant

cover (e.g., in peatlands) resemble the stripes of a tiger

skin (Macfadyen 1950, Foster et al. 1983). These regular

patterns have been explained by the interplay between

short-range positive feedbacks and long-range negative

feedbacks on plant biomass (Tongway et al. 2001,

Rietkerk and Van de Koppel 2008).

However, vegetation is more commonly characterized

by irregular patchy structures rather than periodic

Manuscript received 8 December 2014; revised 2 April 2015;
accepted 10 April 2015. Corresponding Editor: W. J. D. van
Leeuwen.

12 E-mail: xuchi@nju.edu.cn

1456

C
om

m
u
n
ic
a
ti
on

s
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
7
2
1
9
6
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
1
3
.
3
.
2
0
1
7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bern Open Repository and Information System (BORIS)

https://core.ac.uk/display/33089247?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


spatial patterns. This is particularly true in drylands,

where patchy vegetation patterns have been intensively
studied (e.g., Macfadyen 1950, Tongway et al. 2001). An

obvious mechanism producing plant spatial clustering is
spatial variation in resources (e.g., nutrient or water

availability) or in disturbance effects (e.g., herbivore or
fire). Yet, patchy vegetation is also found in many
seemingly homogeneous landscapes with no obvious

disturbance effects. An alternative explanation for patch
formation is vegetative expansion through roots and

tillers; however one often finds individuals from
different species clumping together (e.g., Fuentes et al.

1984). Facilitative interactions between neighboring
plants are a prime potential explanation for clumped

vegetation patterns in many harsh environments such as
drylands, alpine systems, salt marshes, and boreal peat

bogs. These facilitative interactions occur when there are
overruling benefits in terms of growth or survival for

plants growing in the proximity of nurse plants that can
ameliorate abiotic conditions, improve resource acqui-

sition, or reduce herbivore damage (Holmgren et al.
1997, Callaway 2007). The effects of these facilitative

interactions on the composition and structure of plant
communities often cascade across trophic levels affect-
ing species diversity (Bruno et al. 2003), and ecosystem

functioning and resilience to environmental changes (Xu
et al. 2015). Inferring facilitation from spatial patterns,

therefore, can play a pivotal role in linking ecosystem
structure and function, to advance our understanding of

how ecosystems may respond to environmental changes.
To estimate the frequency of facilitative interactions,

ecologists combine labor-intensive field measurements of
plant co-occurrences with field experiments that assess

the mechanisms behind the correlations observed in the
field. Studies relating facilitation with spatial association

between plants in the field (e.g., Fuentes et al. 1984) or in
combination with remotely sensed images (Fuentes-

Castillo et al. 2012) have remained largely restricted to
relatively small scales and accessible sites (but see

Callaway et al. 2002, Cavieres et al. 2014, Soliveres et
al. 2014). These limitations hinder our ability to

compare the role of facilitation across large environ-
mental gradients and biomes.

Here we evaluate whether remotely sensed spatial
vegetation patterns can provide useful information to

infer the frequency of plant positive co-occurrence on
the ground, thus reflecting the potential importance of
facilitation in arid plant communities. We used high-

resolution images from 65 drylands distributed across
Africa, Australia, the Mediterranean Basin, South

America, and North America, and related the spatial
patterns to field assessments of plant positive co-

occurrence as a proxy for facilitation.

MATERIALS AND METHODS

Study sites and image analysis

We selected 65 sites from the data set of 224 global

drylands compiled by Maestre et al. (2012, Fig. 1,

Appendix A). These sites have remotely sensed images at

very high resolutions (�0.5 m), available through

Google Earth. For each study site, we took one snapshot

from the most recent Google Earth image. Each

acquired image was geometrically corrected with an

accuracy of ,0.5 pixel of root mean square error. An

area of 250 3 250 m without obvious human distur-

bances (e.g., artificial surfaces and watering points for

livestock) was selected from each previously geo-

referenced image. We used standard supervised image

classification techniques with the maximum likelihood

method (Lillesand et al. 2004) to identify vegetation

patches. Two classes (vegetated and non-vegetated) were

generated using a supervised classification, and the

achieved accuracy was over 90% for each study site

(Appendices A and B). We focused on vegetation

patches that can be clearly identified from Google Earth

images. These include woody plants (trees and shrubs)

and large tussock grasses, which represent the most

common growth forms available in this global data set.

The most direct approach to study spatial association,

such as point pattern analysis, is to analyze the distances

between individual plants (Wiegand and Moloney 2004).

From the remotely sensed images provided by Google

Earth, this is only feasible in situations where we can

distinguish each individual plant and if the occurrence of

solitary plants is confirmed by field observations. We

can then statistically determine whether the spatial

distribution is significantly over-dispersed (clumpy) or

under-dispersed (more regular than expected by chance;

Appendix C). However, vegetation patches formed by

multiple plants were common in most of the drylands

studied. These composite patches make individual plants

indistinguishable from the remotely sensed images,

hampering the application of point pattern analysis.

Therefore, we focused on patch-size distribution, which

has been repeatedly shown to be an important attribute

linked to ecological processes such as environmental

stress and biotic interactions in drylands (Kéfi et al.

2007, Scanlon et al. 2007). We plotted the non-

cumulative patch-size distribution (i.e., the number of

patches at a series of patch size classes) at each site using

the binning method, which is a robust approach when

distribution parameters do not need to be fit (White et

al. 2008). The data were processed using ENVI 4.8

(Exelis, McLean, Virginia, USA), ArcGIS 10.0 (ESRI,

Redlands, California, USA) and MATLAB R2011b

(MathWorks, Natick, Massachusetts, USA).

Patch-size distributions: remotely sensed vs. modelling

predictions

We used a very simple individual-based model to

generate patch-size distributions using different assump-

tions about the type and strength of the plant–plant

interactions, and compared these generated patch-size

distributions with those obtained from the remotely

sensed images. The purpose of this model is to find a

minimal set of assumptions necessary to describe the
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patch-size distributions in the field. The model starts by

randomly allocating individual plant sizes from a

normal distribution. These plants are initially spread

on a two-dimensional surface by drawing circles of

normally distributed sizes at random positions; subse-

quently, some of these imaginary plants are eliminated

to represent mortality. In the null model, mortality is

independent of the distance to other plants (CSR,

complete spatial randomness), but only depends on the

harshness of the environment. We use the Pearson’s

moment coefficient of skewness as a metric to compare

this null model with versions of the model where

facilitation and competition are modelled as a mortality

that depends on the distance to a neighboring plant. We

assume that mortality due to competition decreases

away from other plants. To mimic facilitation, we

increase survival rates if other plants are nearby.

Sigmoidal functions were used to model these relation-

ships between mortality and distance. We then analyzed

the resulting patch-size distributions, where patches are

obtained by fusing circles that touch or overlap into a

single patch (see Appendices D and E for model

descriptions and results).

Field assessment of plant positive co-occurrence

We sampled plant co-occurrence in the field in 37 of

the 65 study sites (Fig. 1, Appendix A). We selected

potential nurse plants among the most abundant growth

forms (i.e., trees, shrubs, and or large tussock grasses,

depending on the dominant growth forms present within

each site) and sampled 30 (0.5 3 0.5 m2) quadrats

beneath these dominant microsites and in open areas

between June 2009 and December 2011. Quadrats were

chosen to include at least three trees, five shrubs, or 10

grasses and were at least 1 m apart. Quadrats sampled in

open areas were located at least 2 m away from any of

the potential nurse plants. Within each quadrat, we

counted the number of individuals of each perennial

species. Recording the abundance of perennial species is

less sensitive to seasonal and climatic changes; thus, this

abundance is a more reliable indicator of plant–plant

interactions at the community level, and more suitable

for comparisons across sites. Although annual plants

may also be facilitated (Holzapfel et al. 2006), we did not

include them in our sampling as they grow only during

wet periods and survive dry seasons as seeds (Gutiérrez

and Meserve 2003, Caballero et al. 2008).

Using these data, we assessed the degree of co-

occurrence of each neighboring species with each nurse

by comparing the number of individuals of the

neighboring species growing beneath the nurse vs. those

growing in the open areas (sampling effort was identical

for both microsites, i.e., 30 quadrats). The significance of

each pairwise co-occurrence was estimated by using the

v2 statistic. Neighboring species with more individuals

growing beneath the nurse than expected by chance thus

represent significant positive co-occurrence, which may

reflect facilitative interaction between them. The fre-

quency of positive associations within each site was

measured as the percentage of the total pairwise target

woody-nurse interactions observed in the community

(see Soliveres et al. [2014] for more details).

RESULTS AND DISCUSSION

In the drylands studied, the frequency distribution of

patch sizes was typically hump-shaped on a log scale,

with a dominant mode representing abundant small

patches and a distinct right tail representing fewer large

FIG. 1. Distribution of the 65 study sites selected from the global dryland database by Maestre et al. (2012). Red dots indicate the
sites where plant co-occurrence was measured in situ, green dots show the sites without field measurement of plant co-occurrence.
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patches (Fig. 2). An intuitive way to explain such a

distribution would be that the mode roughly represents

the typical size of single plants (or small patches),

whereas the right tail is the result of large plant clusters.

This would imply that the heaviness of the tail, reflected

in the skewness of the distribution, could be a measure

of the tendency for plants to grow together and form

clusters. If these clusters were explained by facilitative

interactions, the more skewed to the right the patch-size

distribution is (i.e., toward bigger patches), the more

frequent the positive association between plants is, and

thus more likely facilitation would be acting.

Our model shows that facilitation typically produces a

distinct right tail as a result of plant clusters that

generate large patches. This results in a right-skewed

patch-size distribution, as compared to the null model.

By contrast, simulated competition results in distribu-

tions that are more left skewed than those from the null

model (Fig. 3, Appendix E: Fig. E1). Skewness of the

patch-size distribution is thus a simple and sensitive

indicator of the way in which the shape of the patch-size

distribution is affected by spatial association of individ-

ual plants as expected from the interplay of competition

and facilitation. Obviously, plants will also be more

likely to ‘‘touch’’ each other by chance and form clusters

as total plant cover increases. This effect can be seen in

the null model (entirely random spatial distribution,

CSR), where skewness of the patch-size distribution

increases almost linearly with total plant cover (Fig. 4,

red line), until a cover of about 70%. This is roughly the

point where the so-called spanning cluster (Kéfi et al.

2011) arises that spreads across the entire area (the

percolation point; Appendix E: Fig. E2).

Most of the patterns found in the remotely sensed

images were more right skewed than the patterns from

the null model simulating a random distribution. This

suggests that the plants in the drylands studied show

stronger spatial clustering than expected by chance,

which is consistent with a scenario where increased

survival of clusters of plants due to facilitation is the

dominant interaction among plant species (circles in Fig.

4). To check this, we related the skewness results to our

FIG. 2. Examples of vegetation patterns in the study sites with their corresponding patch-size distributions. The vegetation
patches (red color) were extracted from the high-resolution Google Earth images. Patch size was measured in square meters.
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ground observations of plant positive co-occurrence.

Indeed, the deviance of the remotely sensed patterns

from the null model (calculated as skewness of patch-

size distribution from the images subtracting that from

the null model at corresponding plant cover values) was

correlated to the indicator of plant positive co-occur-

rence measured on the ground (Fig. 5, Pearson’s r ¼
0.366, P ¼ 0.026). This correlation was even stronger

after correcting for the effect of plant cover based on

partial correlation analysis (partial Pearson’s r ¼ 0.429,

P ¼ 0.009). We also assessed these correlations for the

major vegetation types studied (i.e., grasslands, shrub-

lands, and open woodlands) separately (Appendix F),

and found significant linear relationships between the

field measurement of plant co-occurrence and the

remotely sensed skewness indicator both in woodlands

(P ¼ 0.028, P ¼ 0.039 after correcting for plant cover)

and shrublands (P ¼ 0.012, P , 0.001 after correcting

for plant cover), but found weak correlations for

grasslands (P ¼ 0.824, P ¼ 0.557 after correcting for

plant cover). A meta-analysis of the published literature

also found that grasses often have weaker facilitative

effects than shrubs and trees (Gómez-Aparicio 2009).

The plant spatial clustering measured from remotely

sensed images plausibly reflects facilitation, since such

spatial pattern signal is strongly correlated with the

plant positive co-occurrence we measured on the ground

and it is also clearly indicated by our modelling results.

Our results are consistent with the model predictions

FIG. 3. Examples of spatial patterns (upper) and patch-size distribution (lower; Pearson’s moment coefficient of skewness is
shown in the lower panels) generated by the (A) facilitation, (B) null (complete spatial randomness, CSR), and (C) competition
models at 30% plant cover. See model examples at different plant covers in Appendix E.

FIG. 4. Relationship between plant cover and the skewness
(Pearson’s moment coefficient) of patch-size distribution for the
null model (complete spatial randomness, CSR), the facilitation
model, the competition model and the remotely sensed data for
the 65 drylands studied. In the competition model, the
simulation is implemented only up to ,45% plant cover, as
the repellent effect from existent individuals increasingly forbids
the recruitment of more individuals.
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based on facilitative interactions. However, observa-

tional approaches and correlational evidence cannot rule

out alternative explanations such as the role of

underlying environmental gradients or dispersal limita-

tion. Yet positive co-occurrences in drylands have been

tightly linked to facilitative interactions demonstrated

experimentally (e.g., Tirado and Pugnaire 2005) and

commonly used as indicator of facilitation (e.g., Alados

et al. 2006).

In the collection of sites across continents that we

analyzed here, we did not observe Turing-like patterns

(Deblauwe et al. 2012). While Turing patterns are easily

recognizable, it may be that irregular patterns are in part

dependent on the scale of study and on the plant groups

addressed. Earlier work found power-law or truncated

power-law patch-size distributions in dryland vegetation

(Kéfi et al. 2007, Maestre and Escudero 2009). These

distributions have been interpreted as a result of local

facilitation generating more large patches than expected

by chance (Kéfi et al. 2011). In contrast to the power-law

patch-size distribution, we mostly found a lower

frequency of small patches forming hump-shaped

distributions, which is consistent with the idea that the

observed patches at this scale reflect a combination of

solitary plants (with a given size distribution) and multi-

plant patches (as a result of plant facilitation). A

plausible explanation of such difference is that Kéfi et

al. (2007) included small patches of grasses in their

analyses, which could not be detected by the remotely

sensed data.

CONCLUSIONS AND IMPLICATIONS

Our field ground validation indeed suggests that the

features of the plant patch-size distribution retrieved

from remotely sensed images can be used to infer the

frequency of plant positive co-occurrences measured on

the ground. Our results suggest a way to systematically

map indicators of plant co-occurrence globally. This

opens new opportunities for assessing the role of

facilitation, and the effects of environmental conditions,

such as ongoing climate change, on the balance between

facilitation and competition in plant communities.

Furthermore, by linking our approach to data on

ecosystem functioning that can be obtained from remote

sensing at global scales or by repeating our analyses

across several years, we may substantially advance our

knowledge on the role of plant interactions for

maintaining ecosystem functioning. These new tools

will never be able to replace the strength of field

experimentation, but can help us to expand the scale

of our enterprises and to identify places worth of

examining through detailed experiments.
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