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Abstract

The non-relativistic hydrogen atom enjoys an accidental SO(4) sym-
metry, that enlarges the rotational SO(3) symmetry, by extending the
angular momentum algebra with the Runge-Lenz vector. In the relativis-
tic hydrogen atom the accidental symmetry is partially lifted. Due to
the Johnson-Lippmann operator, which commutes with the Dirac Hamil-
tonian, some degeneracy remains. When the non-relativistic hydrogen
atom is put in a spherical cavity of radius R with perfectly reflecting
Robin boundary conditions, characterized by a self-adjoint extension pa-
rameter γ, in general the accidental SO(4) symmetry is lifted. However,
for R = (l+1)(l+2)a (where a is the Bohr radius and l is the orbital an-
gular momentum) some degeneracy remains when γ = ∞ or γ = 2

R
. In

the relativistic case, we consider the most general spherically and parity
invariant boundary condition, which is characterized by a self-adjoint
extension parameter. In this case, the remnant accidental symmetry
is always lifted in a finite volume. We also investigate the accidental
symmetry in the context of the Pauli equation, which sheds light on
the proper non-relativistic treatment including spin. In that case, again
some degeneracy remains for specific values of R and γ.
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1 Introduction

Already in 1873, Bertrand has shown that the 1/r and r2 potentials are the only
spherically symmetric potentials for which all bound classical orbits are closed [?
]. Accidental dynamical symmetries arise in many quantum mechanics problems
[? ], ranging from the harmonic oscillator to the hydrogen atom and to a charged
particle in a constant magnetic field. In 1935 Fock noted that the hydrogen atom
possesses a “hyper-spherical” SO(4) symmetry [? ], and Bargmann [? ] showed
that the generators of the accidental symmetry are the components of the Runge-
Lenz vector [? ]. For an isotropic harmonic oscillator in d dimensions, the spatial
rotational symmetry SO(d) is dynamically enhanced to SU(d) and for the non-
relativistic hydrogen atom it is enhanced to SO(d+ 1). For a charged particle in a
constant magnetic field, the center of the circular cyclotron motion plays the role of
the Runge-Lenz vector [? ? ? ]. In this case, translation invariance (up to gauge
transformations) disguises itself as an accidental symmetry. In all these cases, at
the classical level the accidental symmetry implies that all bound classical orbits are
closed curves, while at the quantum level it leads to enlarged degeneracies of the
energy levels of bound states. For a charged particle in a constant magnetic field,
the corresponding Landau levels are even infinitely degenerate.

In the past, we have investigated how accidental symmetries are affected when
the geometry of the problem is modified. For example, in [? ] we have studied
the harmonic oscillator and the hydrogen atom on a 2-d cone with deficit angle
δ. For general values of δ, the accidental SU(2) = SO(3) symmetry is then com-
pletely lifted. However, if δ

2π
is a rational number, some accidental degeneracies

remain. Remarkably, the degeneracies correspond to fractional (neither integer nor
half-integer) “spin” of the accidental SU(2) symmetries. This subtle effect arises
because on the cone the Runge-Lenz vector is no longer self-adjoint in the domain
of the Hamiltonian. Hence, accidental symmetry operations induced by the Runge-
Lenz vector in general lead out of the domain of the Hamiltonian, and thus no longer
represent physical symmetries. For rational deficit angles, on the other hand, re-
peated applications of the Runge-Lenz vector eventually lead back into the domain
of the Hamiltonian and thus give rise to remnant degeneracies. In [? ] we have
changed the geometry of the Landau level problem by confining the charged particle
to a 2-d spatial torus, threaded by nΦ units of quantized magnetic flux. The spatial
boundary conditions are then characterized by two self-adjoint extension parame-
ters (related to the two holonomies of the torus) which explicitly break translation
invariance to a discrete Z(nΦ) symmetry. The continuous accidental symmetry of
the problem in the infinite volume is then reduced to a finite magnetic translation
group and the infinite degeneracy of the corresponding Landau levels is reduced to
nΦ.

Spatial boundary conditions are naturally characterized by families of self-adjoint
extension parameters [? ? ]. For example, the general Robin boundary conditions
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of a non-relativistic quantum mechanical particle in a box with perfectly reflecting
walls are characterized by a real-valued self-adjoint extension parameter γ, which
interpolates continuously between Dirichlet and Neumann boundary conditions [? ?
? ]. In [? ] we have used the theory of self-adjoint extensions to derive a generalized
Heisenberg uncertainty relation for finite-volume quantum dots with general bound-
ary conditions. Perfectly reflecting boundary conditions for relativistic fermions
described by the Dirac equation have also been investigated in [? ]. They are char-
acterized by a 4-parameter family of self-adjoint extensions. The same is true for the
Pauli equation, that arises from the Dirac equation in the non-relativistic limit. In
[? ] we have investigated the supersymmetric descendants of self-adjointly extended
quantum mechanical Hamiltonians. In particular, we found that the superpartners
of Hamiltonians obeying general Robin boundary conditions characterized by the
parameter γ always obey simple Dirichlet boundary conditions, while γ determines
the value of the superpotential at the boundary.

Hydrogen atoms confined to a finite volume have been investigated to mimic the
effects of high pressure, in order to better understand, for example, white dwarf
stars. In order to model hydrogen at high pressure, a hydrogen atom at the center
of a spherical cavity has been studied by Michels, de Boer, and Bijl as early as 1937
[? ]. This work was extended by Sommerfeld and Welker in 1938 [? ] as well as in
[? ? ? ? ]. The effect of general Robin boundary conditions (characterized by the
real-valued self-adjoint extension parameter γ) on the accidental symmetry of the
non-relativistic hydrogen atom and the harmonic oscillator confined to a spherical
cavity have been investigated in [? ? ]. In both cases, in general the accidental
symmetry is lifted. Again, this is because an application of the Runge-Lenz vector
leads out of the domain of the Hamiltonian. However, as for the corresponding
systems on the cone, repeated application of the Runge-Lenz vector leads back into
the domain of the Hamiltonian, which gives rise to a finite-volume remnant of the
accidental symmetry, at least for particular radii of the spherical cavity and for
specific values of the self-adjoint extension parameter [? ? ? ? ].

In this paper, we extend this analysis to the relativistic hydrogen atom described
by the Dirac equation [? ? ? ? ? ? ? ]. The accidental SO(4) symmetry of the
non-relativistic problem is then substantially reduced, but not lifted completely.
This is due to the Johnson-Lippman operator [? ? ? ], the relativistic counter part
of the Runge-Lenz vector, which still leads to enhanced accidental degeneracies.
When the relativistic hydrogen atom is placed inside a confining spherical cavity,
the accidental symmetry is completely lifted, because an application of the Johnson-
Lippman operator again leads outside the domain of the Hamiltonian. In contrast to
the non-relativistic case, repeated applications of the Johnson-Lippman operator do
not lead back into the domain of the Hamiltonian, and thus no remnant accidental
symmetry persists in a finite volume. The non-relativistic limit of the Dirac hydrogen
atom leads to the Pauli equation (and not to the Schrödinger equation without spin).
Interestingly, the conserved current induced by the Dirac equation contains a spin
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contribution. This again gives rise to self-adjoint extensions, which in general induce
spin-orbit couplings via the spatial boundary conditions. Remarkably, in this case
again a finite-volume remnant of the accidental symmetry persists for particular
radii of the confining cavity and for particular values of the self-adjoint extension
parameter. Our study further illuminates the subtle effects of self-adjoint extension
parameters on accidental symmetries, in particular, for relativistic quantum systems
and their non-relativistic counter parts.

The rest of the paper is organized as follows. Section 2 reviews the accidental
symmetries of the hydrogen atom, both in the non-relativistic Schrödinger and in
the relativistic Dirac treatment. In Section 3 we discuss the self-adjoint extension
parameters characterizing perfectly reflecting cavity walls both in the relativistic
case and in the non-relativistic case with and without spin. In Section 4 we place
the hydrogen atom in a spherical cavity. After reviewing the results of the non-
relativistic Schrödinger treatment, we proceed to the Dirac equation and its non-
relativistic Pauli equation limit. Finally, Section 5 contains our conclusions.

2 Accidental Symmetries of the Hydrogen Atom

In order to make the paper self-contained, in this section we review the accidental
symmetries of both the relativistic and the non-relativistic hydrogen atom. In the
non-relativistic Schrödinger problem the accidental symmetry is generated by the
Runge-Lenz vector, while in the relativistic Dirac problem it is generated by the
Johnson-Lippmann operator.

2.1 Accidental Symmetry of the Non-relativistic Schrödinger
Atom

Let us consider the Schrödinger Hamiltonian for the hydrogen atom

H = − 1

2M
∆− e2

r
. (2.1)

HereM is the electron mass and e is the fundamental electric charge unit. Through-
out this paper we put ~ = 1 but leave the velocity of light c explicit in order to
facilitate considerations of the non-relativistic limit. Thanks to the isotropy of the
Coulomb potential, the Hamiltonian obviously commutes with the angular momen-
tum L⃗ = r⃗ × p⃗, i.e. [H, L⃗] = 0. It is well known, but not so obvious, that the
Hamiltonian also commutes with the Runge-Lenz vector

R⃗ =
1

2M

(
p⃗× L⃗− L⃗× p⃗

)
− e2e⃗r, e⃗r =

r⃗

r
. (2.2)
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The angular momentum L⃗ and the Runge-Lenz vector R⃗ generate an SO(4) exten-
sion of the SO(3) rotational symmetry, with the following commutation relations

[Li, Lj] = iεijkLk, [Li, Rj] = iεijkRk, [Ri, Rj] = i
2H

M
εijkLk. (2.3)

The two Casimir operators of the SO(4) algebra are

C1 = L⃗ 2 − M

2H
R⃗ 2 = −Me4

2H
, C2 = L⃗ · R⃗. (2.4)

Using the explicit form of R⃗ one can show that L⃗ · R⃗ = 0, which implies that
only particular representations of SO(4) can be realized in the hydrogen atom.
These representations are n2-fold degenerate, which indeed represents the correct
accidental degeneracy of the hydrogen atom bound states. For example, the 2s state
is degenerate with the three 2p states, and the 3s state is degenerate with the three
3p and the five 3d states. The value of the Casimir operator in the corresponding
representations is C1 = n2, such that

H = −Me4

2C1

⇒ E = −Me4

2n2
, (2.5)

which indeed is the familiar spectrum of hydrogen atom bound states.

2.2 Accidental Symmetry of the Relativistic Dirac Atom

Let us now proceed to the Dirac Hamiltonian

H = α⃗ · p⃗c+ βMc2 − e2

r
, (2.6)

using the following conventions for the Dirac matrices

α⃗ =

(
0 σ⃗
σ⃗ 0

)
, β =

(
1 0
0 −1

)
, Σ⃗ =

(
σ⃗ 0
0 σ⃗

)
, γ5 =

(
0 1

1 0

)
. (2.7)

Here 1 and 0 represent 2× 2 unit- and zero-matrices, and σ⃗ are the Pauli matrices.
The Hamiltonian commutes with the total angular momentum

J⃗ = L⃗+ S⃗ = L⃗+
Σ⃗

2
, [H, J⃗ ] = 0. (2.8)

Furthermore, it is parity invariant and thus it commutes with the operator

P = βI, [H,P ] = 0, [J⃗ , P ] = 0, (2.9)

where I performs a spatial inversion. Dirac has also discovered another symmetry
of the system generated by the operator

K = β(Σ⃗ · L⃗+ 1), [H,K] = 0, [J⃗ , K] = 0, [P,K] = 0. (2.10)
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The eigenvalues k of K follow from

σ⃗ · L⃗+ 1 = (L⃗+ S⃗)2 − L⃗ 2 − S⃗ 2 + 1 = J⃗ 2 − L⃗ 2 +
1

4
⇒

k = j(j + 1)− l(l + 1) +
1

4
= j(j + 1)−

(
j ∓ 1

2

)(
j ∓ 1

2
+ 1

)
+

1

4

= ±
(
j +

1

2

)
. (2.11)

The sign of the quantum number k indicates whether L⃗ and S⃗ couple to j = l + 1
2

(k = j + 1
2
) or to j = l− 1

2
(k = −(j + 1

2
)). Energy eigenstates are characterized by

the principal quantum number n as well as by j, j3, and k, such that

H|njj3k⟩ = Enk|njj3k⟩, J⃗ 2|njj3k⟩ = j(j + 1)|njj3k⟩, J3|njj3k⟩ = j3|njj3k⟩,
K|njj3k⟩ = k|njj3k⟩. (2.12)

Note that in some other works the eigenvalue of K is denoted as −k. The energy
eigenvalues (of positive energy states) are given by [? ? ]

Enk =Mc2
(
1 +

α2

(n− |k|+
√
k2 − α2)2

)−1/2

. (2.13)

Here α = e2/c is the fine-structure constant (in units were ~ = 1). In the non-
relativistic limit one recovers the Schrödinger result, corrected by spin-orbit fine-
structure effects

Enk =Mc2
[
1− e4

2n2c2
− e8

2n3c4

(
1

j + 1
2

− 3

4n

)
+ . . .

]
. (2.14)

The fine-structure leads to a partial lifting of the large n2-fold degeneracy related
to the accidental SO(4) symmetry of the non-relativistic problem (without spin).
In particular, the energy no longer just depends on n but also on j and, for a given
n, is slightly larger for the states with larger j. Still, a remnant of the accidental
symmetry persists even for the Dirac equation, because the energy depends only on
|k|. As a result, the states with j = l + 1

2
(k = j + 1

2
), which have orbital angular

momentum l, and the states with j = l + 1− 1
2
(k = −(j + 1

2
)), which have orbital

angular momentum l + 1, are degenerate (as long as they have the same principal
quantum number n). This gives rise to an accidental 2(2j+1)-fold degeneracy. The
states with the maximal orbital angular momentum l = n−1 and the maximum total
angular momentum j = l + 1

2
= n− 1

2
only have the usual (2j + 1)-fold degeneracy

that results from the SO(3) rotational symmetry. For example, the 4 states 2S1/2

and 2P1/2 with total angular momentum j = 1
2
(in the standard spectroscopic nlj

notation) are degenerate while the 4 states 2P3/2 with j = 3
2
have a slightly higher

energy. Similarly, the 4 states 3S1/2 and 3P1/2 are accidentally degenerate, the 8
states 3P3/2 and 3D3/2 are again accidentally degenerate, but the 6 states 3D5/2 with
the maximal j = 3− 1

2
= 5

2
are not.
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The relativistic counterpart of the Runge-Lenz vector, which again commutes
with the Hamiltonian, is the pseudo-scalar Johnson-Lippmann operator [? ? ? ]

A = iKγ5

(
H

Mc2
− β

)
− αΣ⃗ · e⃗r, [H,A] = 0, [J⃗ , A] = 0. (2.15)

The operator A anti-commutes with K, i.e. {K,A} = 0, while A2, which plays the
role of a supersymmetric “Hamiltonian” [? ? ? ? ] is directly related to H and K
via

A2 = K2

[(
H

Mc2

)2

− 1

]
+ α2. (2.16)

The eigenvalues of A2 are hence given by

a2 = k2

[(
Enk

Mc2

)2

− 1

]
+ α2 = α2 − α2k2

(n− |k|+
√
k2 − α2)2 + α2

. (2.17)

The operator A acts on energy eigenstates as

A|njj3k⟩ = a|njj3 − k⟩, (2.18)

i.e. it relates two accidentally degenerate states with quantum numbers ±k. If a
state has maximal j = n − 1

2
, it is annihilated by the operator A because then

n = j + 1
2
= k = |k| such that

a2 = α2 − α2k2

k2 − α2 + α2
= 0 ⇒ a = 0. (2.19)

As was pointed out in [? ], the Johnson-Lippman operator generates a supersymme-
try that relates the accidentally degenerate states. The unpaired state with maximal
j = n− 1

2
is the lowest state underneath a tower of paired states with the same value

of j but higher values of n. The fact that the lowest state is not paired indicates
that supersymmetry is not spontaneously broken.

3 Perfectly Reflecting Cavity Boundary Condi-

tions

Following [? ], in this section we discuss perfectly reflecting boundary conditions,
first in the context of the non-relativistic Schrödinger equation and then for the
relativistic Dirac equation. Next we take the non-relativistic limit of the Dirac
equation and arrive at the Pauli equation. The spin then enters the conserved
current, with important implications for the self-adjoint extension parameters that
characterize the spatial boundary conditions.
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3.1 Non-relativistic Robin Boundary Conditions

Let us consider the general Schrödinger Hamiltonian

H =
p⃗ 2

2M
+ V (x⃗) = − 1

2M
∆+ V (x⃗). (3.1)

The continuity equation that guarantees probability conservation then takes the
form

∂tρ(x⃗, t) + ∇⃗ · j⃗(x⃗, t) = 0, (3.2)

where the probability density and the corresponding current density are given by

ρ(x⃗, t) = |Ψ(x⃗, t)|2, j⃗(x⃗, t) =
1

2Mi

[
Ψ(x⃗, t)∗∇⃗Ψ(x⃗, t)− ∇⃗Ψ(x⃗, t)∗Ψ(x⃗, t)

]
. (3.3)

We now consider an arbitrarily shaped spatial region Ω and we demand that no
probability leaks outside this region. This is ensured when the component of the
probability current normal to the surface vanishes

n⃗(x⃗) · j⃗(x⃗) = 0, x⃗ ∈ ∂Ω. (3.4)

Here n⃗(x⃗) is the unit-vector normal to the surface ∂Ω at the point x⃗. The most
general so-called Robin boundary condition that ensures probability conservation is
given by

γ(x⃗)Ψ(x⃗) + n⃗(x⃗) · ∇⃗Ψ(x⃗) = 0, x ∈ ∂Ω, (3.5)

which indeed implies

n⃗(x⃗) · j⃗(x⃗) = 1

2Mi
[−Ψ(x⃗)∗γ(x⃗)Ψ(x⃗, t) + γ(x⃗)∗Ψ(x⃗, t)∗Ψ(x⃗, t)] = 0, x⃗ ∈ ∂Ω, (3.6)

such that γ(x⃗) ∈ R.

It is important to show that the Hamiltonian endowed with the boundary con-
dition eq.(??) is indeed self-adjoint. First, we investigate

⟨χ|H|Ψ⟩ =

∫
Ω

d3x χ(x⃗)∗
[
− 1

2M
∆+ V (x⃗)

]
Ψ(x⃗)

=

∫
Ω

d3x

[
1

2M
∇⃗χ(x⃗)∗ · ∇⃗Ψ(x⃗) + χ(x⃗)∗V (x⃗)Ψ(x⃗)

]
− 1

2M

∫
∂Ω

dn⃗ · χ(x⃗)∗∇⃗Ψ(x⃗)

=

∫
Ω

d3x

{[
− 1

2M
∆+ V (x⃗)

]
χ(x⃗)∗

}
Ψ(x⃗)

+
1

2M

∫
∂Ω

dn⃗ ·
[
∇⃗χ(x⃗)∗Ψ(x⃗)− χ(x⃗)∗∇⃗Ψ(x⃗)

]
= ⟨Ψ|H|χ⟩∗ + 1

2M

∫
∂Ω

dn⃗ ·
[
∇⃗χ(x⃗)∗Ψ(x⃗)− χ(x⃗)∗∇⃗Ψ(x⃗)

]
. (3.7)
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Consequently, the Hamiltonian is Hermitean (or symmetric in mathematical par-
lance) if ∫

∂Ω

dn⃗ ·
[
∇⃗χ(x⃗)∗Ψ(x⃗)− χ(x⃗)∗∇⃗Ψ(x⃗)

]
= 0. (3.8)

Using the boundary condition eq.(??), eq.(??) simplifies to∫
∂Ω

d2x
[
n⃗(x⃗) · ∇⃗χ(x⃗)∗ + γ(x⃗)χ(x⃗)∗

]
Ψ(x⃗) = 0. (3.9)

Ψ(x⃗) itself is not restricted at the boundary, and hence the Hermiticity of H requires

n⃗(x⃗) · ∇⃗χ(x⃗) + γ(x⃗)∗χ(x⃗) = 0. (3.10)

For γ(x⃗) ∈ R, this is again the boundary condition of eq.(??). Since χ(x⃗) must obey
the same boundary condition as Ψ(x⃗), the domain of H†, D(H†), coincides with the
domain of H, D(H). Since D(H†) = D(H), the Hamiltonian is not only Hermitean
but, in fact, self-adjoint.

3.2 Relativistic Cavity Boundary Conditions

A Dirac particle in a 1-d box has been considered in [? ? ], and general boundary
conditions have been investigated in [? ]. In [? ] we have investigated general
perfectly reflecting boundary conditions for Dirac fermions in a 3-d spatial region
Ω, thereby generalizing the standard MIT bag boundary conditions [? ? ? ].

To keep the discussion as general as possible, we investigate Dirac fermions
coupled to an external static electromagnetic field, such that the Hamiltonian is
given by

H = α⃗ ·
(
p⃗c+ eA⃗(x⃗)

)
+ βMc2 − eΦ(x⃗) = −iα⃗ · D⃗c+ βMc2 − eΦ(x⃗). (3.11)

Here Φ(x⃗) is the scalar and A⃗(x⃗) is the vector potential. The covariant derivative
then takes the form

D⃗ = ∇⃗+ i
e

c
A⃗(x⃗). (3.12)

The Hamiltonian acts on a 4-component Dirac spinor Ψ(x⃗, t). In the relativistic
case, the continuity equation is given by

∂tρ(x⃗, t) + ∇⃗ · j⃗(x⃗, t) = 0, (3.13)

where
ρ(x⃗, t) = Ψ(x⃗, t)†Ψ(x⃗, t), j⃗(x⃗, t) = cΨ(x⃗, t)†α⃗Ψ(x⃗, t). (3.14)

Under time-independent gauge transformations, the gauge and fermion fields trans-
form as

φΦ(x⃗) = Φ(x⃗), φA⃗(x⃗) = A⃗(x⃗)− ∇⃗φ(x⃗), φΨ(x⃗) = exp
(
i
e

c
φ(x⃗)

)
Ψ(x⃗). (3.15)
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Just as in the non-relativistic case, we investigate the Hermiticity of the Hamil-
tonian by considering

⟨χ|H|Ψ⟩ =

∫
Ω

d3x χ(x⃗)†
[
α⃗ ·
(
−ic∇⃗+ eA⃗(x⃗)

)
+ βMc2 − eΦ(x⃗)

]
Ψ(x⃗)

=

∫
Ω

d3x
{[
α⃗ ·
(
−ic∇⃗+ eA⃗(x⃗)

)
+ βMc2 − eΦ(x⃗)

]
χ(x⃗)

}†
Ψ(x⃗)

− ic

∫
∂Ω

dn⃗ · χ(x⃗)†α⃗Ψ(x⃗)

= ⟨Ψ|H|χ⟩∗ − ic

∫
∂Ω

dn⃗ · χ(x⃗)†α⃗Ψ(x⃗). (3.16)

This implies the Hermiticity condition

χ(x⃗)†n⃗(x⃗) · α⃗Ψ(x⃗) = 0, x⃗ ∈ ∂Ω. (3.17)

The corresponding appropriate self-adjoint extension condition is given by(
Ψ3(x⃗)
Ψ4(x⃗)

)
= λ(x⃗)

(
Ψ1(x⃗)
Ψ2(x⃗)

)
, λ(x⃗) ∈ GL(2,C), x⃗ ∈ ∂Ω, (3.18)

which reduces eq.(??) to

χ(x⃗)†
(

0 n⃗(x⃗) · σ⃗
n⃗(x⃗) · σ⃗ 0

)
Ψ(x⃗) =

[(χ1(x⃗)
∗, χ2(x⃗)

∗) n⃗(x⃗) · σ⃗λ(x⃗) + (χ3(x⃗)
∗, χ4(x⃗)

∗) n⃗(x⃗) · σ⃗]
(

Ψ1(x⃗)
Ψ2(x⃗)

)
= 0 ⇒(

χ3(x⃗)
χ4(x⃗)

)
= −n⃗(x⃗) · σ⃗λ(x⃗)†n⃗(x⃗) · σ⃗

(
χ1(x⃗)
χ2(x⃗)

)
, (3.19)

Self-adjointness of H requires that D(H) = D(H†), which demands

λ(x⃗) = −n⃗(x⃗) · σ⃗λ(x⃗)†n⃗(x⃗) · σ⃗ ⇒ n⃗(x⃗) · σ⃗λ(x⃗) = − [n⃗(x⃗) · σ⃗λ(x⃗)]† . (3.20)

Consequently, n⃗(x⃗) · σ⃗λ(x⃗) must be anti-Hermitean. This means that, in contrast
to the non-relativistic Schrödinger problem, relativistic Dirac fermions have a 4-
parameter family of self-adjoint extensions characterizing a perfectly reflecting wall.
In the standard MIT bag model [? ? ? ] the boundary condition corresponds to
λ(x⃗) = in⃗(x⃗) · σ⃗. This is a natural choice, because it maintains spatial rotation
invariance around the normal n⃗(x⃗) on the boundary, but it is not the most general
possibility. As it should be, the self-adjointness condition eq.(??) is gauge covariant
and it ensures that

n⃗(x⃗) · j⃗(x⃗)= cΨ(x⃗)†
(

0 n⃗(x⃗) · σ⃗
n⃗(x⃗) · σ⃗ 0

)
Ψ(x⃗) =

= c [(Ψ1(x⃗)
∗,Ψ2(x⃗)

∗) n⃗(x⃗) · σ⃗λ(x⃗) + (Ψ3(x⃗)
∗,Ψ4(x⃗)

∗) n⃗(x⃗) · σ⃗]
(

Ψ1(x⃗)
Ψ2(x⃗)

)
= c (Ψ1(x⃗)

∗,Ψ2(x⃗)
∗)
[
n⃗(x⃗) · σ⃗λ(x⃗) + λ(x⃗)†n⃗(x⃗) · σ⃗

]( Ψ1(x⃗)
Ψ2(x⃗)

)
= 0. (3.21)
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3.3 Non-relativistic Boundary Conditions with Spin

Following [? ], we now consider the non-relativistic limit, in which the lower com-
ponents of the Dirac spinor reduce to

(
Ψ3(x⃗)
Ψ4(x⃗)

)
=
σ⃗ ·
(
p⃗c+ eA⃗(x⃗)

)
2Mc2

(
Ψ1(x⃗)
Ψ2(x⃗)

)
=

1

2Mc i
σ⃗ · D⃗Ψ(x⃗). (3.22)

Here the 2-component Pauli spinor is given by

Ψ(x⃗) =

(
Ψ1(x⃗)
Ψ2(x⃗)

)
. (3.23)

To leading order, the Dirac Hamiltonian then reduces to the Pauli Hamiltonian

H =Mc2 +

(
p⃗c+ eA⃗(x⃗)

)2
2Mc2

− eΦ(x⃗) + µσ⃗ · B⃗(x⃗), (3.24)

with B⃗(x⃗) = ∇⃗ × A⃗(x⃗) being the magnetic field and µ = e/2Mc being the Bohr
magneton, i.e. the magnetic moment of the electron. Here we neglect higher order
contributions such as spin-orbit couplings and the Darwin term.

The self-adjoint extension parameters that characterize the most general per-
fectly reflecting boundary condition crucially depend on the form of the conserved
current. Therefore we now use eq.(??) to obtain

j⃗(x⃗) = c (Ψ1(x⃗)
∗,Ψ2(x⃗)

∗,Ψ3(x⃗)
∗,Ψ4(x⃗)

∗)

(
0 σ⃗
σ⃗ 0

)
Ψ1(x⃗)
Ψ2(x⃗)
Ψ3(x⃗)
Ψ4(x⃗)


=

1

2Mi

[
Ψ(x⃗)†D⃗Ψ(x⃗)− (D⃗Ψ(x⃗))†Ψ(x⃗)

]
− 1

2M

[
Ψ(x⃗, t)†σ⃗ × D⃗Ψ(x⃗, t)− (D⃗Ψ(x⃗, t))† × σ⃗Ψ(x⃗, t)

]
=

1

2Mi

[
Ψ(x⃗, t)†D⃗Ψ(x⃗, t)− (D⃗Ψ(x⃗, t))†Ψ(x⃗, t)

]
+

1

2M
∇⃗ ×

[
Ψ(x⃗, t)†σ⃗Ψ(x⃗, t)

]
. (3.25)

Besides the non-relativistic probability current that is familiar from the Schrödinger
equation, in the context of the Pauli equation an additional spin contribution arises
from the Dirac current. Since it is a curl, the spin contribution is automatically
divergenceless, and the continuity equation is given by

∂tρ(x⃗, t) + ∇⃗ · j⃗(x⃗, t) = 0, (3.26)
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with the probability density ρ(x⃗, t) = Ψ(x⃗, t)†Ψ(x⃗, t). Although the current would
also be conserved without the spin term, this contribution naturally belongs to the
current that emerges from the Dirac equation.

Again following [? ], we now consider the gauge covariant boundary condition

γ(x⃗)Ψ(x⃗)+n⃗(x⃗)·
[
D⃗Ψ(x⃗)− iσ⃗ × D⃗Ψ(x⃗)

]
= 0, γ(x⃗) ∈ GL(2,C), x⃗ ∈ ∂Ω, (3.27)

which implies

n⃗(x⃗) · j⃗(x⃗) =
1

2Mi

[
Ψ(x⃗)†n⃗(x⃗) · D⃗Ψ(x⃗)− (n⃗(x⃗) · D⃗Ψ(x⃗))†Ψ(x⃗)

]
− 1

2M

[
Ψ(x⃗, t)†n⃗ ·

(
σ⃗ × D⃗Ψ(x⃗, t)

)
− n⃗ ·

(
(D⃗Ψ(x⃗, t))† × σ⃗

)
Ψ(x⃗, t)

]
=

1

2Mi

[
−Ψ(x⃗)†γ(x⃗)Ψ(x⃗) + Ψ(x⃗)†γ(x⃗)†Ψ(x⃗)

]
= 0, (3.28)

such that
γ(x⃗)† = γ(x⃗). (3.29)

As in the fully relativistic Dirac problem, also in the non-relativistic Pauli prob-
lem with spin we again obtain a 4-parameter family of self-adjoint extensions, now
parametrized by the 2× 2 Hermitean matrix γ(x⃗).

As in the Schrödinger and Dirac cases, partial integration leads to the Hermiticity
condition for the Pauli Hamiltonian of eq.(??)∫

∂Ω

dn⃗ ·
[(
D⃗χ(x⃗)

)†
Ψ(x⃗)− χ(x⃗)†D⃗Ψ(x⃗)

]
= 0, (3.30)

and one obtains(
D⃗χ(x⃗)

)†
× σ⃗Ψ(x⃗)− χ(x⃗)†σ⃗ × D⃗Ψ(x⃗) = ∇⃗ ×

(
χ(x⃗)†σ⃗Ψ(x⃗)

)
. (3.31)

Applying Stoke’s theorem and using the fact that the boundary of a boundary is an
empty set (i.e. ∂(∂Ω) = ∅) we arrive at∫

∂Ω

dn⃗ ·
[(
D⃗χ(x⃗)

)†
× σ⃗Ψ(x⃗)− χ(x⃗)†σ⃗ × D⃗Ψ(x⃗)

]
=∫

∂Ω

dn⃗ · ∇⃗ ×
(
χ(x⃗)†σ⃗Ψ(x⃗)

)
=

∫
∂(∂Ω)

d⃗l · χ(x⃗)†σ⃗Ψ(x⃗) = 0. (3.32)

The Hermiticity condition eq.(??) can thus be expressed as∫
∂Ω

dn⃗ ·
[(
D⃗χ(x⃗)− iσ⃗ × D⃗χ(x⃗)

)†
Ψ(x⃗)− χ(x⃗)†

(
D⃗Ψ(x⃗)− iσ⃗ × D⃗Ψ(x⃗)

)]
= 0.

(3.33)
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Using the self-adjointness condition eq.(??), we then obtain∫
∂Ω

d2x
[
χ(x⃗)†γ(x⃗)†Ψ(x⃗)− χ(x⃗)†γ(x⃗)Ψ(x⃗)

]
= 0. (3.34)

Here we have used the fact that γ(x⃗) is Hermitean.

The matrix γ(x⃗) results from the matrix λ(x⃗) in the non-relativistic limit. Rewrit-
ing the self-adjointness condition eq.(??) as

γ(x⃗)Ψ(x⃗) + n⃗(x⃗) · σ⃗ σ⃗ · D⃗Ψ(x⃗) = γ(x⃗)Ψ(x⃗) + 2Mc in⃗(x⃗) · σ⃗λ(x⃗)Ψ(x⃗) = 0, (3.35)

one arrives at
γ(x⃗) = −2Mc i n⃗(x⃗) · σ⃗λ(x⃗). (3.36)

Using the anti-Hermiticity of n⃗(x⃗) · σ⃗λ(x⃗), one concludes that γ(x⃗) is indeed Her-
mitean.

4 The Hydrogen Atom in a Spherical Cavity

In this section we place a hydrogen atom at the center of a spherical cavity and
investigate the effect of the boundary conditions on the accidental symmetry. Again,
we first study the Schrödinger equation before we proceed to the Dirac and Pauli
equations.

4.1 The Non-relativistic Schrödinger Atom in a Spherical
Cavity

Let us consider the Schrödinger Hamiltonian for the hydrogen atom,

H = − 1

2M
∆− e2

r
= − 1

2M

(
∂2r +

2

r
∂r −

L⃗ 2

r2

)
− e2

r
. (4.1)

For the wave function we make the factorization ansatz

Ψ(x⃗) = ψnl(r)Ylm(θ, φ), (4.2)

which leads to the radial equation[
− 1

2M

(
∂2r +

2

r
∂r −

l(l + 1)

r2

)
− e2

r

]
ψnl(r) = Eψnl(r). (4.3)

When we write the energy as

E = −Me4

2n2
, (4.4)
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for the bound state spectrum in the infinite volume n is quantized in integer units.
Inside a spherical cavity, on the other hand, n can take arbitrary values, and one
obtains

ψnl(r) = A

(
2r

na

)l

L2l+1
n−l−1

(
2r

na

)
exp

(
− r

na

)
, (4.5)

where L2l+1
n−l−1(2r/na) is an associated Laguerre function. Imposing the most general

boundary condition, γ(x⃗)Ψ(x⃗) + n⃗(x⃗) · ∇⃗Ψ(x⃗) = 0, one obtains

γψnl(R) + ∂rψnl(R) = 0, (4.6)

where R is the radius of the spherical cavity. Consequently, the quantized energies
result from the equation(

γna

2
− 1

2
+
lna

2R

)
L2l+1
n−l−1

(
2R

na

)
− L2l+2

n−l−2

(
2R

na

)
= 0. (4.7)

The resulting finite volume spectra for γ = ∞ (i.e. Dirichlet boundary conditions)
and for γ = 0 (i.e. Neumann boundary conditions) are illustrated in Figs. ?? and
??, respectively.

As we discussed in Section 2.1, in the infinite volume the non-relativistic hydro-
gen atom enjoys an accidental SO(4) symmetry generated by the angular momen-

tum L⃗ together with the Runge-Lenz vector R⃗ of eq.(??), which results in an n2-fold
degeneracy of the bound state spectrum. The spectrum of hydrogen confined to a
spherical cavity, on the other hand, no longer shows the accidental degeneracy. Since
the boundary condition does not violate rotation invariance, L⃗ is still conserved, but
R⃗ is not. This is because the application of the Runge-Lenz vector leads outside
the domain of the Hamiltonian [? ], as was already pointed out in [? ? ] for
the Dirichlet boundary condition with γ = ∞. Relying on rotation invariance, we
restrict ourselves to states Ψ(r⃗) = ψnl(r)Yll(θ, φ) with the maximal m = l. On such
states the raising operator R+ = Rx + iRy acts as [? ]

R+Ψ(r⃗) =

[
l + 1

M
∂rψnl(r) +

(
e2 − l(l + 1)

Mr

)
ψnl(r)

]
Yl+1,l+1(θ, φ)

= χn,l+1(r)Yl+1,l+1(θ, φ). (4.8)

After an application of R⃗ the wave function remains in the domain of the Hamilto-
nian only if the new wave function χn,l+1(r) also obeys the boundary condition

γχn,l+1(R) + ∂rχn,l+1(R) = 0. (4.9)

Inserting eq.(??) into this relation and using the boundary condition γψnl(R) +
∂rψnl(R) = 0 as well as the radial Schrödinger equation (??) for ψnl(r), one finds

γχn,l+1(R) + ∂rχn,l+1(R) =

l + 1

M

[
−γ
(
γ − 2

R

)
+
l(l + 2)

R2
− 2Me2

R
− 2ME

]
ψnl(R). (4.10)
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Figure 1: Spectrum of the Schrödinger hydrogen atom centered in a spherical cavity
with the standard Dirichlet boundary condition (i.e. γ = ∞) as a function of a/R.
The energies of states with quantum numbers n = 1, 2, 3 are given in units of Me4.
The dotted lines represent the spectrum of the infinite system (cf. [? ]).

Since the right-hand side of eq.(??) does not vanish independent of the energy E,
the new wave function χn,l+1(r) that results from the application of R+ on ψnl(r)
does not obey the boundary condition eq.(??), and hence lies outside the domain of

the Hamiltonian. Consequently, the Runge-Lenz vector R⃗ leads out of this domain,
and thus no longer represents an accidental symmetry.

Interestingly, for γ = ∞ a remnant of the accidental symmetry persists even in
a finite volume, however, only for the special cavity radius R = (l + 1)(l + 2)a [?
? ]. Then a state with angular momentum l is degenerate with a state of angular
momentum l + 2. In particular, for R = 2a, the states 2s and 3d, 3s and 4d, 4s
and 5d, etc. form multiplets of 1 + 5 = 6 degenerate states, while for R = 6a,
the states 3p and 4f, 4p and 5f, 5p and 6f, etc. form multiplets of 3 + 7 = 10
degenerate states. These accidental degeneracies are again due to the Runge-Lenz
vector. They arise because, for the special values R = (l + 1)(l + 2)a, the operator
R2

+ maps ψnl(r) back into the domain of the Hamiltonian. Indeed, one can show
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Figure 2: Spectrum of the Schrödinger hydrogen atom centered in a spherical cavity
with Neumann boundary condition (i.e. γ = 0) as a function of a/R. The energies
of states with quantum numbers n = 1, 2, 3 are given in units of Me4. The dotted
lines represent the spectrum of the infinite system (c.f. [? ]).

that R2
+ψnl(r)Yll(θ, φ) = χn,l+2(r)Yl+2,l+2(θ, φ) with

χn,l+2(r) =
2l + 3

M

(
e2 − (l + 1)(l + 2)

Mr

)
∂rψnl(r)

+

[
(l + 1)(l + 2)

M

(
l(2l + 3)

Mr2
− 3e2

r
− 2E

)
+ e2

(
e2 − l(l + 1)

Mr

)]
ψnl(r).

(4.11)

Since for γ = ∞ the wave function obeys the Dirichlet boundary condition ψnl(R) =
0, for

e2 − (l + 1)(l + 2)

MR
= 0 ⇒ R =

(l + 1)(l + 2)

Me2
= (l + 1)(l + 2)a, (4.12)

the wave function χn,l+2(r) indeed obeys the same condition. Remarkably, the same
accidental degeneracy arises for R = (l + 1)(l + 2)a and γ = 2/R [? ]. This fol-
lows from the fact that then γψnl(R) + ∂rψnl(R) = 0 indeed implies γχn,l+2(R) +
∂rχn,l+2(R) = 0. The remnant accidental degeneracies of the non-relativistic hydro-
gen atom in a spherical cavity are illustrated in figure ??.
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4.2 The Relativistic Dirac Atom in a Spherical Cavity

Let us now consider the Dirac equation in a spherical cavity, i.e. we impose the
boundary condition (

Ψ3(x⃗)
Ψ4(x⃗)

)
= λ(x⃗)

(
Ψ1(x⃗)
Ψ2(x⃗)

)
, |x⃗| = R, (4.13)

where σ⃗ · e⃗rλ(x⃗) is an anti-Hermitean matrix. Again, we want to maintain the

spherical symmetry, [H, J⃗ ] = 0. We thus act with Ja on a general Dirac spinor Ψ(x⃗)
and demand that Ψ(x⃗)′ = JaΨ(x⃗) still obeys the boundary condition

λ(x⃗)

(
Ψ1(x⃗)

′

Ψ2(x⃗)
′

)
= λ(x⃗)Ja

(
Ψ1(x⃗)
Ψ2(x⃗)

)
=

(
Ψ3(x⃗)

′

Ψ4(x⃗)
′

)
= Ja

(
Ψ3(x⃗)
Ψ4(x⃗)

)
= Jaλ(x⃗)

(
Ψ1(x⃗)
Ψ2(x⃗)

)
. (4.14)

This hence implies that [Ja, λ(x⃗)] = 0. Similarly, the boundary condition should
also maintain the parity symmetry P , such that Ψ(x⃗)′ = PΨ(x⃗) should again obey
the boundary condition

λ(x⃗)

(
Ψ1(x⃗)

′

Ψ2(x⃗)
′

)
= λ(x⃗)

(
Ψ1(−x⃗)
Ψ2(−x⃗)

)
=

(
Ψ3(x⃗)

′

Ψ4(x⃗)
′

)
=

(
−Ψ3(−x⃗)
−Ψ4(−x⃗)

)
= −λ(−x⃗)

(
Ψ1(−x⃗)
Ψ2(−x⃗)

)
. (4.15)

This implies the restriction λ(x⃗) = −λ(−x⃗). Rotation invariance and parity limit
the anti-Hermitean matrix that characterizes the boundary condition to

λ(x⃗) = iνσ⃗ · e⃗r, (4.16)

such that σ⃗ · e⃗rλ(x⃗) = iν1 is indeed anti-Hermitean. Let us further investigate
whether K remains a symmetry in the finite volume. For this purpose we act
with K on the Dirac spinor Ψ(x⃗), and we ask once more whether the new spinor
Ψ(x⃗)′ = KΨ(x⃗) still obeys the boundary condition. This is the case only if

λ(x⃗)

(
Ψ1(x⃗)

′

Ψ2(x⃗)
′

)
= λ(x⃗)(σ⃗ · L⃗+ 1)

(
Ψ1(x⃗)
Ψ2(x⃗)

)
=

(
Ψ3(x⃗)

′

Ψ4(x⃗)
′

)
= −(σ⃗ · L⃗+ 1)λ(x⃗)

(
Ψ1(x⃗)
Ψ2(x⃗)

)
, (4.17)

which is indeed satisfied since

{λ(x⃗), σ⃗ · L⃗+ 1} = {iνσ⃗ · e⃗r, σ⃗ · L⃗+ 1} = 0. (4.18)
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Next, we want to investigate whether the Johnson-Lippmann operator also leaves
the boundary condition invariant. Hence, we now ask whether Ψ(x⃗)′ = AΨ(x⃗) also
obeys the boundary condition, which is the case only if

λ(x⃗)

(
Ψ1(x⃗)

′

Ψ2(x⃗)
′

)
=

[
λ(x⃗)

i

Mc
(σ⃗ · L⃗+ 1)σ⃗ · p⃗− λ(x⃗)ασ⃗ · e⃗r

− λ(x⃗)
iα

McR
(σ⃗ · L⃗+ 1)λ(x⃗)

](
Ψ1(x⃗)
Ψ2(x⃗)

)
=

(
Ψ3(x⃗)

′

Ψ4(x⃗)
′

)
=

[
iα

McR
(σ⃗ · L⃗+ 1)

− i

Mc
(σ⃗ · L⃗+ 1)σ⃗ · p⃗λ(x⃗)− ασ⃗ · e⃗rλ(x⃗)

](
Ψ1(x⃗)
Ψ2(x⃗)

)
.

(4.19)

Using [λ(x⃗), σ⃗ · e⃗r] = 0, this condition would indeed be satisfied if the following
identity holds

{λ(x⃗), (σ⃗ · L⃗+ 1)σ⃗ · p⃗} =
α

R

(
λ(x⃗)(σ⃗ · L⃗+ 1)λ(x⃗) + σ⃗ · L⃗+ 1

)
⇒

iν{σ⃗ · e⃗r, (σ⃗ · L⃗+ 1)σ⃗ · p⃗} =
α

R
(ν2 + 1)(σ⃗ · L⃗+ 1). (4.20)

It is straightforward to show that

i{σ⃗ · e⃗r, (σ⃗ · L⃗+ 1)σ⃗ · p⃗} = (σ⃗ · L⃗+ 1)i[σ⃗ · p⃗, σ⃗ · e⃗r] =
2

R
(σ⃗ · L⃗+ 1)2, (4.21)

which implies that A maintains the boundary condition if

α
ν2 + 1

2ν
= σ⃗ · L⃗+ 1 = k = ±

(
j +

1

2

)
. (4.22)

Obviously, this relation cannot hold as an operator identity. Still, it can be satis-
fied for states with an appropriate k-value and for specific values of ν. One might
then conclude that, like in the non-relativistic case, a remnant accidental degener-
acy arises for particular states and for specific values of the self-adjoint extension
parameter. However, the situation is more subtle. In particular, since {K,A} = 0,
an application of A changes the sign of k. This means that, for a fixed value of
ν, eq.(??) is no longer satisfied for −k, and thus another application of A will in-
evitably lead out of the domain of H. Since repeated applications of H or K, on
the other hand, leave the wave function inside the domain, eq.(??), which relates
A2 to H2 and K2 in the infinite volume, is no longer satisfied in a finite volume. In
fact, H and A no longer commute as operators restricted to the domain of H. This
implies that A no longer generates an accidental symmetry, and the corresponding
degeneracy is lifted in a finite volume.
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Let us now investigate the spectrum of relativistic hydrogen in a spherical cavity
in more detail. First we make a separation ansatz for the wave function

Ψ(x⃗) =


Ψ1(x⃗)
Ψ2(x⃗)
Ψ3(x⃗)
Ψ4(x⃗)

 =

(
ψA(r)Yjj3lA(θ, φ)
iψB(r)Yjj3lB(θ, φ)

)
. (4.23)

For k = j + 1
2
we have lA = j− 1

2
and lB = j + 1

2
, while for k = −(j + 1

2
), lA = j + 1

2

and lB = j − 1
2
. For j = l + 1

2
the spin-angular functions are given by

Yjj3l(θ, φ) =

√
l + j3 +

1
2

2l + 1
Yl,j3− 1

2
(θ, φ)

(
1
0

)
+

√
l − j3 +

1
2

2l + 1
Yl,j3+ 1

2
(θ, φ)

(
0
1

)
,

(4.24)
while for j = l − 1

2

Yjj3l(θ, φ) = −

√
l − j3 +

1
2

2l + 1
Yl,j3− 1

2
(θ, φ)

(
1
0

)
+

√
l + j3 +

1
2

2l + 1
Yl,j3+ 1

2
(θ, φ)

(
0
1

)
.

(4.25)
Here Ylm(θ, φ) are the usual spherical harmonics. The radial equations then take
the form (

Mc2 − e2

r

)
ψA(r)− c

(
∂r +

1 + k

r

)
ψB(r) = EψA(r),(

−Mc2 − e2

r

)
ψB(r) + c

(
∂r +

1− k

r

)
ψA(r) = EψB(r). (4.26)

The cavity boundary condition is given by

iνe⃗r · σ⃗ψA(R)Yjj3lA(θ, φ) = −iνψA(R)Yjj3lB(θ, φ) = iψB(R)Yjj3lB(θ, φ) ⇒
νψA(R) = −ψB(R). (4.27)

The resulting finite volume spectra for ν = ∞ (i.e. Dirichlet boundary conditions)
and for ν = 0 (i.e. Neumann boundary conditions) are illustrated in Figs. ?? and
??, respectively. In order to make the effects easily visible we have chosen very large
unphysical values of α. In both cases, we see that the states 2S1/2 and 2P1/2, which
are accidentally degenerate in the infinite volume, are split in the finite cavity. With
Dirichlet boundary conditions (ν = ∞) the energies increase with decreasing cavity
radius, while for Neumann boundary conditions (ν = 0) the energy of some states
decreases.
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4.3 The Non-relativistic Pauli Atom in a Spherical Cavity

Finally, we proceed to the non-relativistic limit of the Dirac equation, which leads
us to the Pauli equation

H =Mc2 +

(
p⃗c+ eA⃗(x⃗)

)2
2Mc2

− eΦ(x⃗) + µσ⃗ · B⃗(x⃗). (4.28)

Since we have no external magnetic field, at least to the leading order we are working
at, spin decouples and the Pauli equation reduces to two copies of the Schrödinger
equation. In particular, we have neglected the sub-leading spin-orbit couplings in
the Hamiltonian. Still, as we discussed in Subsection 3.3, the spin explicitly enters
the boundary condition

γ(x⃗)Ψ(x⃗) + n⃗(x⃗) ·
[
∇⃗Ψ(x⃗)− iσ⃗ × ∇⃗Ψ(x⃗)

]
= 0, (4.29)

which thus leads to a spin-orbit coupling induced by the cavity wall. The Her-
mitean matrix γ(x⃗), which results from the anti-Hermitean matrix λ(x⃗) in the non-
relativistic limit, is given by

γ(x⃗) = −2Mcin⃗(x⃗) · σ⃗λ(x⃗) = 2Mcν1. (4.30)

For j = l + 1
2
the boundary condition of eq.(??) reduces to

γψnl(R) + ∂rψnl(R)−
l

R
ψnl(R) = 0, (4.31)

while for j = l − 1
2

γψnl(R) + ∂rψnl(R) +
l + 1

R
ψnl(R) = 0, (4.32)

The spectrum of the Pauli equation for Neumann boundary conditions (i.e. γ = 0)
is illustrated in Fig. ??. It differs from the spectrum of Fig. ?? because now the
angular momentum enters the boundary condition.

Let us now address the question of remnant accidental degeneracies that persist
even in a finite volume. As we discussed in Subsection 4.1, for the Schrödinger
atom these exist for R = (l + 1)(l + 2)a and γ = 2/R or ∞, because, in these
cases, two applications of the Runge-Lenz vector lead back into the domain of the
Hamiltonian. For the Dirac atom in a finite volume, on the other hand, repeated
applications of the Johnson-Lippmann operator do not lead back into the domain
of the Hamiltonian, and thus the accidental degeneracy is lifted in a finite volume
(c.f. Subsection 4.2).

As we will see now, just as for the Schrödinger atom, for the Pauli atom some
accidental degeneracies persist in a finite cavity. We start again from eq.(??), take
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its derivative with respect to r, and then eliminate ∂2rψnl(r) by using the radial
Schrödinger equation (??). We then impose the boundary condition eq.(??) when
j = l + 1

2
, or eq.(??) when j = l− 1

2
. Finally, we ask under what circumstances the

wave function χn,l+2(r) of eq.(??) satisfies the corresponding boundary condition

γχn,l+2(R) + ∂rχn,l+2(R)−
l + 2

R
χn,l+2(R) = 0, (4.33)

when j′ = l + 2 + 1
2
= l + 5

2
, or

γχn,l+2(R) + ∂rχn,l+2(R) +
l + 3

R
χn,l+2(R) = 0, (4.34)

when j′ = l + 2 − 1
2
= l + 3

2
, for all values of the energy E. For j = l + 1

2
and

j′ = l + 5
2
this turns out to be the case for

R =
(l + 1)(l + 2)(2l + 5)a

2l + 3
, γ = − 1

2(l + 1)(l + 2)a
, or γ =

1

(l + 1)a
. (4.35)

For j = l+ 1
2
and j′ = l+ 3

2
, on the other hand, the conditions can be satisfied only

when e2 = 0 and γ = 0. For j = l − 1
2
and j′ = l + 5

2
one obtains

R = 2(l + 1)(l + 2)a, γ = − 1

2(l + 1)(l + 2)a
= − 1

R
, or γ =

3

2(l + 1)(l + 2)a
=

3

R
,

(4.36)
and, finally, for j = l − 1

2
and j′ = l + 3

2
one finds 1

R =
(l + 1)(l + 2)(2l + 1)a

2l + 3
, γ = − 1

2(l + 1)(l + 2)a
, or γ = − 1

(l + 2)a
. (4.37)

The remnant accidental symmetries for the Pauli hydrogen atom are illustrated in
Fig. ??.

5 Conclusions

We have investigated the accidental symmetry in the relativistic hydrogen atom
confined to a spherical cavity with perfectly reflecting boundary conditions. In the
infinite volume the Johnson-Lippman operator A, which is the relativistic analog
of the Runge-Lenz vector R⃗, commutes with the Hamiltonian, thus leading to acci-
dental degeneracies in the energy spectrum. When the system is placed in a finite
volume, the accidental symmetry is lifted. This is because a repeated application of
the Johnson-Lippman operator leads out of the domain of the Hamiltonian. In the
non-relativistic case, for specific values of the cavity radius R and the self-adjoint

1We like to thank D. Banerjee for valuable help with deriving eqs.(??), (??), and (??).
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extension parameter γ, a repeated application of R⃗ leads back into the domain of
the Hamiltonian, and thus some accidental degeneracy persists even in a finite vol-
ume. Because repeated applications of A do not lead back into the domain of the
Hamiltonian, this is not the case for the Dirac equation. Interestingly, in the Pauli
equation with spin, which results as the non-relativistic limit of the Dirac equation,
the boundary conditions induce non-trivial spin-orbit couplings. Remarkably, in
this case, for specific values of the cavity radius R and the self-adjoint extension
parameter γ, a repeated application of R⃗ again leads back into the domain of the
Hamiltonian, and thus some accidental degeneracy persists in a finite volume.

Our investigation shows that the subtle issues of Hermiticity versus self-adjoint-
ness and the domain structure of quantum mechanical Hamiltonians hold the key
to understanding in detail what happens to a hydrogen atom when it is confined in
a spherical cavity. The same is true for other accidental symmetries, for example,
for the Landau level problem [? ], for a particle on a cone [? ], or for the harmonic
oscillator [? ? ]. This underscores that the theory of self-adjoint extensions is not
just a mathematical curiosity, but of great importance for understanding the physics
of confined systems.
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Figure 3: Top: Energy of s- and d-states for the Schrödinger hydrogen atom in a
spherical cavity with γ = 1/a as a function of a/R. There is an accidental degeneracy
for R = 2a. Bottom: Energy of s- and d-states for a hydrogen atom in a spherical
cavity with radius R = 2a as a function of arctan(γR). The energies of the 3s and 4d
states are very similar for all values of γ, but are identical only for γ = 2/R = 1/a
and for γ = ±∞. The energy is given in units of Me4.
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Figure 7: Top left: Energy of P- and F-states with n = 4 and 5 for the Pauli
hydrogen atom in a spherical cavity with γ = − 1

12a
as a function of a/R. There are

accidental degeneracies (indicated by the vertical dashed lines) of the 4P3/2 with the
4F7/2 for R = 42

5
a, as well as of the 4P1/2 with the 4F7/2 and of the 5P1/2 with the
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Pauli hydrogen atom in a spherical cavity as a function of arctan(γR) at fixed cavity
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5
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The energies of the high-lying P- and F-states are very similar for all values of γ,
but are identical only for the special values indicated by the vertical dashed lines.
The energy is given in units of Me4.
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