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Abstract: Minimal surfaces in Euclidean space provide examples of possible non-compact

horizon geometries and topologies in asymptotically flat space-time. On the other hand,

the existence of limiting surfaces in the space-time provides a simple mechanism for making

these configurations compact. Limiting surfaces appear naturally in a given space-time by

making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-

times in which case minimal surfaces can be static and compact. We use the blackfold

approach in order to scan for possible black hole horizon geometries and topologies in

asymptotically flat, plane wave and de Sitter space-times. In the process we uncover

several new configurations, such as black helicoids and catenoids, some of which have

an asymptotically flat counterpart. In particular, we find that the ultraspinning regime

of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal

surface (the plane), can be obtained as a limit of a black helicoid, suggesting that these

two families of black holes are connected. We also show that minimal surfaces embedded

in spheres rather than Euclidean space can be used to construct static compact horizons

in asymptotically de Sitter space-times.
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1 Introduction

Black holes in higher-dimensions are hard to classify and to construct analytically, as Ein-

stein equations become more intricate and complex as the number of space-time dimensions

is increased. In particular, in asymptotically flat space-times in dimensions D ≥ 6 very

few black hole solutions are known analytically and only classification schemes, which do

not specify the solutions uniquely, based on the domain structure are known [1, 2]. In

space-times with more non-trivial geometry, such as plane wave and de Sitter space-times,

the problem of finding and classifying black holes only becomes aggravated.

However, recently, progress in understanding the phase structure of black holes in

D ≥ 6 has been made based on effective theories and numerical methods. One of these

effective theories, known as the blackfold approach [3, 4], describing the long wavelength

dynamics of black branes in a derivative expansion including hydrodynamic and elastic

degrees of freedom [5–9], has allowed to scan for non-trivial black hole horizon topologies

in asymptotically flat and (Anti)-de Sitter space-times [10–13]. These new black hole

topologies include black rings in higher-dimensions, black odd-spheres and black cylinders,

some of which have been constructed numerically [14–17]. However, these works have only

scratched the surface of the entire set of possible horizon topologies.

This paper has a two-fold purpose: on the one hand it aims at providing evidence

for more complicated black hole horizon geometries and topologies in different space-times

and, on the other hand, to show that plane wave space-times in vacuum allow for a very

rich phase structure of higher-dimensional black holes. The key ingredient in this work

is the use of established results in classical minimal surface theory in higher-dimensional

Euclidean and spherical spaces in order to construct new compact horizon topologies using

the blackfold approach.

Regarding the first input, plane wave space-times, we note that for vacuum plane

wave space-times no exact analytic black hole solutions are known, though attempts to

construct such solutions using the blackfold approach have been made in the past [18].1

The configurations we shall construct in this paper should be thought of as black holes

in plane wave backgrounds. However, they are not necessarily asymptotically plane wave

black holes in some strict sense, as defined e.g. in [24]. We will nevertheless occasionally

refer to them simply as asymptotically plane wave black holes in the following, and we will

come back to this issue in the concluding section 4.

Regarding the second input, it is a well known result from classical minimal surface

theory that minimal surfaces in R3 must be non-compact [25], and our aim is to show how

these can nevertheless be used to construct compact black hole horizons. To illustrate this,

note that compact minimal surfaces are found everywhere in nature, the simplest example

being that of soap films. Soap films are thin surfaces with equal pressure on each of its

sides and are characterised by a surface tension. The surface tension acts as a force that

tries to shrink the area of the surface and hence equilibrium configurations are minimal.

1In supergravity, exact black hole solutions that are asymptotically plane wave space-times have been

found. See [19–23] for work done in the context of supergravity.
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The most common example of a soap film is that which forms on a bubble wand after

dipping it in a soapy solution. Commonly, bubble wands have a circular shape at one of

their ends and hence the soap film takes the form of disc. Indeed, this is the simplest ex-

ample of a compact minimal surface: a plane R2 embedded in R3 with a circular boundary.

From this example one draws the following conclusion for surfaces in R3: in order to create

compact minimal surfaces one needs to introduce boundaries in the embedded space.

The phenomenology of soap films is rather different than that of soap bubbles. While

soap films have an equal pressure on each side of its surface and hence its equilibrium

states are minimal surfaces, soap bubbles have an internal pressure different from the

exterior pressure and hence, due to an interplay with the surface tension, its equilibrium

states are surfaces of non-vanishing constant mean extrinsic curvature.

As we will see, the phenomenology of certain black brane configurations can be similar

either to that of soap films or to that of soap bubbles. In particular, black branes share

one common feature with soap films: they are also characterised by a tension. In fact,

it was noted in [10] (and we will review this in section 2.5) that quite generally minimal

surfaces in R3 may provide non-trivial geometries for static non-compact black brane hori-

zons in asymptotically flat space-time.2 We observe here that rotation provides a simple

mechanism for making some of these geometries compact, at least in some directions.

More generally, boundaries can be created in a given embedding space-time by intro-

ducing limiting surfaces where the brane is forced to move at the speed of light. Introducing

rotation on a geometry implies the existence of a stationary background Killing vector field

and, generically, of an ergo-region in the ambient space-time. Rotation involves the exis-

tence of a U(1) family of isometries inherent to an R2 plane and hence its boundary —

defined by the limiting surface — will always be a circle on that plane. However, there are

other ways of introducing limiting surfaces. With direct analogy to the bubble wand, one

can consider embedding space-times where limiting surfaces are naturally present such as

in de Sitter space-times, where the limiting surface is located at the cosmological horizon

and its shape is always a higher-dimensional sphere, or in plane wave space-times, where

its shape is defined by a more general quadratic function.

In order to clarify what we mean by introducing limiting surfaces in the embedding

space-time we will now review a few examples from the literature where this point is made

explicit. In the examples that follow (and throughout this article) we denote by ds2 the

induced line element on the surface, and in the examples below we have embedded each

of the geometries trivially along the time-like direction t of the ambient space-time such

that t = τ , where τ is the time-like coordinate on the surface, thus accounting for the term

−dτ2 in the line element.

• The R2 plane in flat space-time.

The simplest example of a minimal surface in Euclidean space is the R2 plane. We

can trivially embed the two-dimensional spatial plane in Minkowski space-time as

in [10], giving rise to the worldvolume geometry

ds2 = −dτ2 + dρ2 + ρ2dφ2 (1.1)

2These must be subjected to regularity constraints such as no curvature divergences.
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(in spatial polar coordinates). The configuration, embedded in this way, is still

minimal. We can then set the plane to rotate with angular velocity Ω by considering

the existence of a Killing vector field ka∂a = ∂τ + Ω∂φ whose norm is given by

k2 = 1− Ω2ρ2 . (1.2)

The brane cannot rotate faster than the speed of light and hence we see that a

limiting surface appears on the circular boundary defined by ρ = Ω−1. The existence

of this boundary renders the R2 plane compact. In fact, this geometry describes

the ultraspinning limit of the singly-spinning Myers-Perry black hole [10]. We will

revisit this configuration in section 3.1 and furthermore construct a more non-trivial

geometry based on minimal surface embeddings, namely the helicoid, which captures

this disc geometry in an appropriate limit. In appendix B we construct higher-

dimensional versions of helicoid geometries.

• The R2 plane in de Sitter space-time.

We now consider embedding a plane in de Sitter space-time as done in [11].3 The

worldvolume geometry takes now the form

ds2 = −R2
0dτ

2 +R−2
0 dρ2 + ρ2dφ2 , R2

0 = 1− ρ2

L2
, (1.3)

where ρ = L is the location of the cosmological horizon. The geometry is still minimal,

even though embedded in de Sitter space-time as we will show in section 2.5. In this

case we do not need to set the plane to rotate and can instead consider a static

geometry with Killing vector field ka∂a = ∂τ whose norm is

k2 = 1− ρ2

L2
. (1.4)

Again we see that there is an inherent limiting surface at the cosmological horizon

ρ = L where the brane must move at the speed of light. This introduces a cir-

cular boundary in the R2 plane and renders it compact. This geometry describes

the intersection of the event horizon of singly spinning Kerr-de Sitter black holes

with the cosmological horizon [11]. In section 3.2 we will show that such compact

R2 planes can also arise as parts of black hole horizons in plane wave space-times.

Analogously to what happens in asymptotically flat space-time, we also construct

in 3.3 two different classes of helicoid geometries in plane wave space-times, which

also reduce to disc geometries in an appropriate limit. These results are generalised

to higher-dimensional versions of helicoid geometries in appendix B. Furthermore,

we construct other non-trivial examples using minimal embeddings such as rotating

black catenoids and Scherk surfaces in section 3.4 and higher-dimensional versions of

rotating catenoids in appendix C.

3This geometry, and higher-dimensional versions, played an important role in [26] in the understanding

of horizon intersections and merger transitions.
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As can be seen from the second example presented above, embedding space-times with

inherent limiting surfaces can be used to construct static geometries which were not possible

in asymptotically flat space-time. With this in mind, and for the purpose of explanation,

we will review and generalise two simple examples in de Sitter space-time present in the

literature:

• Static black p-spheres.

Families of static black p-spheres with radius R in de Sitter space-time were con-

structed (for p odd) in [11] where the worldvolume geometry is described by4

ds2 = −R2
0dτ

2 +R2dΩ2
(p) , R2

0 = 1− R2

L2
. (1.5)

The phenomenology of these geometries is slightly different from what we have en-

countered for minimal surfaces and can be thought of as being analogous to soap

bubbles (rather than soap films) instead. The tension of the brane tries to shrink the

p-sphere but the gravitational potential of de Sitter space-time acts as an internal

pressure. Equilibrium is attained when [11]

R2 =
p

D − 2
, R =

R

L
, (1.6)

where D is the number of space-time dimensions. We observe in this paper that this

result is actually valid for all p ≥ 1 and not only for odd p, the reason being that

since the p-sphere is not rotating, there is no obstruction to solving the equations

of motion. In appendix D, we present the analogous configurations in plane wave

space-times.

• Static black p+ 2-balls.

The existence of a limiting surface in de Sitter space-times also allows for a higher-

dimensional generalisation of the simplest minimal surface, namely, the R2 plane

described in eq. (1.3). These geometries take the simple form of a p+ 2-ball

ds2 = −R2
0dτ

2 +R−2
0 dρ2 + ρ2dΩ2

(p+1) , R2
0 = 1− ρ2

L2
, (1.7)

and are minimal surfaces in higher dimensions, as we will show in section 2.5. In the

case where p is even, they have also been considered in [11], though presented in a

different way, and they describe the intersection of Kerr-de Sitter black holes with

multiple ultraspins with the cosmological horizon [11]. However, these configurations

are valid for all p ≥ 0 and for the case in which p is odd they describe a new type of

static black holes which is not connected to the family of Kerr-de Sitter black holes.

In section 3.2 we will construct the analogous configurations in plane wave space-

times while in section 3.5 we will consider de Sitter space-times with a black hole

horizon. We will use these geometries in section 3.5 in order to show that one can

4The particular case of p = 1, describing a black ring, was treated first in [27].
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construct compact black hole horizons in de Sitter space-times from minimal surfaces

in the (p+1)-sphere of (1.7), in particular we will construct black hole horizons using

the Clifford torus and its higher-dimensional version as the starting point.

This paper is organised as follows. In section 2 we review the necessary ingredients

regarding minimal surfaces and the blackfold approach required for the purposes of this

paper. We also analyse in detail the validity of the method based on a second order

effective action and improve previous analyses in the literature. In particular, in section 2.2

we identify the intrinsic and extrinsic curvature invariants that classify each blackfold

configuration up to second order in a derivative expansion. The length scale associated

with each of these invariants is required to be much larger than the thickness of the brane.

We also introduce a condition which is necessary for dealing with intersections of multiple

worldvolume geometries. Subsequently, in sections 2.3 and 2.4 we specify our conventions

for the different ambient space-times that we will consider. In sections 2.5 and 2.6, we make

several observations about the solutions to the blackfold equations and prove a number of

statements (theorems) regarding minimal surfaces in the relevant embedding space-times.

For instance, we show that, amongst all minimal surfaces embedded in R3, the plane and

the helicoid are the only stationary minimal embeddings which solve the blackfold equations

in flat space-time.

In section 3 we construct and study several new black hole configurations in flat, plane

wave and de Sitter space-times. In particular, in section 3.1 we construct a rotating black

helicoid in asymptotically flat space-time which turns out to have a limit in which the

ultraspinning regime of Myers-Perry black holes is captured, hence showing that these two

families of black hole solutions are connected. In sections 3.2 and 3.3 we construct the

analogous configurations in plane wave space-times and show that they have valid static

limits due to the presence of inherent limiting surfaces in the space-time. In section 3.4 we

study more non-trivial examples of minimal embeddings in plane wave space-times such as

rotating catenoids and Scherk surfaces, which do not have a flat space-time counterpart.

Finally in section 3.5 we find black hole configurations using the Clifford torus and its

higher-dimensional counterpart.

In section 4 we conclude with open problems and future research directions. We also

include several appendices. In appendix A we give specific details regarding the validity

analysis of the configurations studied in this paper. In appendix B and appendix C we study

higher-dimensional versions of helicoids and catenoids. While the focus of this paper is on

minimal surfaces and their relevance for black hole horizons, in appendix D we construct

and study several classes of stationary geometries with non-zero constant mean extrinsic

curvature that generalise (1.5) to plane wave space-times.

2 The blackfold approach and minimal surfaces

In this section we first review some of the literature and required definitions for study-

ing minimal surfaces, with special focus on two-dimensional surfaces embedded in three-

dimensional Euclidean space, which we will use in subsequent parts of this paper. This is

– 6 –
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followed by a review of the necessary material for applying the blackfold approach to the

cases relevant in this paper, while improving the analysis of its regime of validity based on a

second order effective action. We then specify our conventions for the ambient space-times

that we will consider and introduce various classes of embeddings that we are interested in.

This is followed by several theorems for minimal surfaces in the relevant ambient space-

times as well as by an overview of different types of solutions of the blackfold equations

that will appear in the following.

2.1 Minimal surfaces

Minimal surfaces is a vast and rich topic in the mathematics literature with applications

that range from soap films to polymer physics (see e.g. [25] for a historical perspective of

minimal surfaces). These surfaces, within the mathematics literature, are defined as the

critical points of the induced area functional

A[Xµ(σa)] =

∫
Wp+1

dσp+1
√
|γ| . (2.1)

Here σa are coordinates on the surface, Xµ(σa) parametrises the (p+1)-dimensional surface

Wp+1 in the ambient (background, embedding) space(-time) with metric gµν , and γ is the

determinant of the induced metric

γab = ∂aX
µ∂bX

νgµν (2.2)

(and see e.g. [28] for different (but equivalent) definitions and characterisations of minimal-

ity). We should note here that the mathematical terminology is somewhat (and uncharac-

teristically) imprecise, as these surfaces are called minimal surfaces regardless of whether

or not the area is actually a minimum (and not some other extremum or critical point) of

the area functional. It might be more appropriate to refer to them as extremal surfaces,

but we will follow the standard terminology here.

Classically, most of the work done on minimal surfaces has been on two-dimensional

surfaces embedded in Euclidean three-dimensional space R3, equipped with the standard

Euclidean metric with line element

dE2
(3) = dx2

1 + dx2
2 + dx2

3 , (2.3)

and hence are codimension one surfaces. Finding the critical points of (2.1) is then equiv-

alent to finding solutions to the minimal surface equation K = 0, where K is the mean

extrinsic curvature of the surface. In higher dimensions, and for surfaces of arbitrary

codimension, the minimal surface equation takes the form

Ki = 0 , (2.4)

where the index i labels the transverse directions to the surface embedding. The mean

extrinsic curvature is defined as Ki = γabKab
i where Kab

i is the extrinsic curvature of the

embedding given by

Kab
i = niµ∂au

µ
b + niρΓ

ρ
µνu

µ
au

ν
b , (2.5)

– 7 –
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where Γρµν is the Christoffel connection associated with the ambient metric gµν whereas

niµ projects orthogonally to Wp+1 and satisfies the relations niµu
µ
a = 0 and niµnj

µ = δij ,

where uµa = ∂aX
µ projects along the surface Wp+1.

There is a vast number of two-dimensional minimal surfaces embedded into R3 (see

e.g. [28] for an overview), which can have multiple genus and self-intersections but must

always be non-compact. Two of the simplest examples of minimal surfaces in R3 are the

so called ruled surfaces consisting of the plane R2 and the helicoid. Both of these can be

described by the embedding

X1(ρ, θ) = ρ cos(aθ) , X2(ρ, θ) = ρ sin(aθ) , X3(ρ, θ) = λθ , (2.6)

into R3 with metric (2.3), where λ/a is the pitch of the helicoid. If we set λ = 0 then we

recover the embedding of the plane R2. This example will play a significant role when we

look at black hole horizon geometries in section 3.

The problem of finding minimal surfaces in R3 has been partially solved since finding

solutions to the complicated second order differential equation (2.4) has been reduced to

finding holomorphic functions of one complex variable by using the Weierstrass-Enneper

representation of minimal surfaces (see e.g. [28]). In D-dimensional Euclidean spaces R(D)

or other spaces such as D-dimensional spheres S(D), this tool is not generally available and

hence finding minimal surfaces is a more complex task. In R(D) generalisations of certain

minimal surfaces are available, such as the planes, helicoids, catenoids [29–31], Enneper’s

surface [32] and Riemann minimal surfaces [33] but very few cases are known. In S3, the

equatorial 2-sphere and the Clifford torus constitute the simplest examples of minimal

surfaces but also more non-trivial examples such as Lawson surfaces have been constructed

(see [34] for a recent overview of the results). Minimal surfaces in Lorentzian space-times

L(D) have also been considered in the mathematics literature and some examples of minimal

surfaces are known (see e.g. [35–37] for a selection of minimal surfaces). However, as we

will explain in section 4, these are not of use for the purposes of this work.

Minimal surface equation in R3. Two-dimensional minimal surfaces embedded in R3

can be described in terms of what is known as a Monge parametrisation, which takes

the form

X1(u, v) = u , X2(u, v) = v , X3(u, v) = f(u, v) . (2.7)

Therefore, these minimal surfaces are described in terms of a single function f(u, v) of two

variables u, v. Evaluating explicitly the normal vector nρ in R3 we find5

nρ =
1√

1 + f2
u + f2

v

(−fu,−fv, 1) , (2.8)

where fu = ∂f/∂u and fv = ∂f/∂v. Using this in (2.4) one finds the minimal surface

equation

fuu(1 + f2
v ) + fvv(1 + f2

u)− 2fufvfuv = 0 , (2.9)

where fuu = ∂ufu, fvv = ∂vfv and fuv = ∂ufv. Eq. (2.9) will play an important role when

we explore minimal surfaces solutions in non-trivial ambient space-times.

5We have omitted the transverse index i from niρ since the surface is of codimension one.

– 8 –
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2.2 The blackfold approach

The blackfold approach describes the effective dynamics of long-wavelength perturbations

of black branes [3, 4]. It consists of wrapping asymptotically flat black p-branes on an

arbitrary (p + 1)-dimensional submanifold Wp+1 placed in a background space-time with

metric gµν . In this work we are interested in patching Wp+1 with neutral vacuum black

p-branes endowed with the metric [4]

ds2
p =

(
γab(σ

c) +
rn0 (σc)

rn
ua(σ

c)ub(σc)

)
dσadσb +

dr2

1− rn0 (σc)
rn

+ r2dΩ2
(n+1) + . . . . (2.10)

Here σc denotes the set of coordinates on Wp+1 and the worldvolume indices a, b, c . . .

run over a = 1, . . . , p + 1. The black brane metric (2.10) is characterised by a set of

fields γab, u
a, r0 to leading order that vary slowly over Wp+1 while higher-order corrections

— represented by the ‘dots’ — involve derivatives of γab, u
a, r0. As in our discussion of

minimal surfaces above, the worldvolume tensor γab = gµν(Xα)∂aX
µ∂bX

ν is the induced

metric on Wp+1 and Xα(σc) the set of mapping functions describing the location of the

submanifold in the ambient space-time. The vector ua denotes the local boost velocity of

the brane and is normalised such that uaua = −1, while r0 is the local brane thickness, i.e.,

the horizon size of the transverse (n + 2)-dimensional part of the metric (2.10). We have

chosen to parameterise the number of space-time dimensions such that D = n+ p+ 3.

Effective dynamics. In this work we are interested in stationary configurations, embed-

ded in a stationary background with Killing vector field kµ, rotating with angular velocity

Ωa in each of the worldvolume rotational isometry directions φa. These are characterised

by a worldvolume Killing vector field of the form

ka∂a = ∂τ + Ωa∂φa , (2.11)

where τ labels the worldvolume time-like direction, and respective moduli on Wp+1 given

by −|∂t|2 = −|∂τ |2 = R2
0 and |∂φa |2 = R2

a. This worldvolume Killing vector field is required

to map to the background Killing vector field kµ and hence one must have that kµ = uµak
a

where uµa = ∂aX
µ projects onto worldvolume directions.6 We note that we have assumed

that the modulus of the time-like Killing vector field of the background space-time ∂t has

the same norm as the worldvolume time-like Killing vector field ∂τ . This will be the case

for all configurations presented in this paper, examples where this is not the case can be

found in [38, 39].

For stationary configurations, the effective dynamics of blackfolds, to second order in

derivatives, is described in terms of a free energy functional of the form [6, 7]7

F [Xi] = −
∫ √

−γdpσ
(
P + υ1k

−1∇a∇ak + υ2R+ υ3u
aubRab

+ λ1K
iKi + λ2K

abiKabi + λ3u
aubKa

ciKbci

)
.

(2.12)

6This is required in order for the local thermodynamics of the brane (2.10) to be well defined on the

worldvolume, see [4] for a discussion of this point.
7Here we have ignored backreaction corrections and also corrections due to spin in transverse directions

to the worldvolume. See [40] for a discussion of backreaction corrections and [6, 9] where spin corrections

are included into the free energy.
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Here we have introduced the indices i, j, k . . . that run over i = 1, . . . , n + 2 to label

orthogonal directions to Wp+1. Furthermore, if the worldvolume Killing vector field is

hypersurface orthogonal with respect to the spatial metric we can write
√
−γdσp = R0dV(p)

where R0 is the norm on Wp+1 of the time-like Killing vector field ∂t associated with the

time-like direction t of the ambient space-time and dV(p) is the volume form on the spatial

part of the worldvolume.

The leading order term in (2.12) is the pressure P of the effective fluid living on the

worldvolume part of (2.10) and is responsible for the modified dynamics of blackfolds when

compared with the area-minimising action (2.1) for minimal surfaces. The other second

order contributions are proportional to the gradient of k, which measures variations of the

local fluid temperature,8 the induced Ricci scalar R and the induced Ricci tensor Rab on

Wp+1, the mean extrinsic curvature Ki = γabKab
i and other contractions with the extrinsic

curvature tensor Kab
i defined in (2.5). The set of scalars P, υi, λi depend only on the local

temperature T of the brane (2.10), which is related to the global temperature T of the

configuration via a local redshift T = kT where

k =

√
−γabkakb (2.13)

is the modulus of the Killing vector field (2.11).

Equations of motion to leading order. In order to scan for possible horizon topologies

it is not necessary to consider more than the leading order term in (2.12), since all the other

terms in (2.12) are correction terms to the leading order dynamics. However, as we will

see later in this section, they are necessary for understanding the regime of validity of

this approach. Focusing on the leading order term, the equations of motion and boundary

conditions that arise from varying (2.12) take the form

∇aT ab = 0 , T abKab
i = 0 , T abηb|∂Wp+1 = 0 , (2.14)

where ηb is a unit normalised normal vector to the worldvolume boundary ∂Wp+1 and the

effective stress-energy tensor T ab takes the perfect fluid form

T ab = Pγab − P ′kuaub , ua =
ka

k
, (2.15)

where the prime denotes a derivative with respect to k and the fluid velocity ua is aligned

with the worldvolume Killing vector field ka. Because of worldvolume general covariance,

the stress tensor (2.15) automatically solves the conservation equation in (2.14). Therefore

only the extrinsic equation T abKab
i = 0 and the boundary condition are non-trivial. For

the black branes (2.10) the pressure P takes the form [4]

P = −
Ω(n+1)

16πG
rn0 , r0 =

n

4πT
k , (2.16)

8This term can be exchanged by a term proportional to the square of the fluid acceleration or the

fluid vorticity ωabω
ab, with the fluid velocity being given by ua, if no boundaries are present [6]. If the

worldvolume has boundaries ωabω
ab may be independent. However, for all configurations we consider here

ωab = 0 and hence we do not need to consider it.
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where Ω(n+1) is the volume of the unit (n + 1)-sphere and G is Newton’s gravitational

constant. In this case eqs. (2.14) reduce to

Ki = nuaubKab
i , k|∂Wp+1 = 0 . (2.17)

These equations are known as the blackfold equations [3, 4]. The first equation in (2.17)

exhibits the difference between blackfold dynamics and area-minimising actions (2.1) due

to the presence of the generically non-vanishing contraction uaubKab
i. If the brane is

rotating this contraction can be thought of as a repulsive centrifugal force, while if the

brane is static but embedded in a space-time with a limiting surface it can be thought of

as a force due to the non-trivial background gravitational potential. The second equation

in (2.17) expresses the fact that at the boundary the brane must be moving with the speed

of light and hence the brane thickness r0 must vanish there. This is the reason why limiting

surfaces can provide a mechanism for making certain geometries compact. We note that

while the first equation in (2.17) has been shown to arise as a constraint equation when

solving Einstein equations for a perturbed black brane metric (2.10) [41, 42], blackfolds

with boundaries were not considered in [41, 42] and hence recovering the second equation

in (2.17) from gravity is still an open problem.

It was shown in [42] that, for worldvolumes without boundaries, for every solution of the

blackfold equations (2.17) there always exists a perturbed near-horizon metric (2.10) which

is regular on the horizon. The blackfold method for constructing the perturbed metric for a

given worldvolume geometry relies on a matched asymptotic expansion. In this expansion,

the metric in the far region r � r0, obtained by solving the linearised Einstein equations in

a given background space-time with a given source, serves as a boundary condition for the

metric in the near-horizon region (2.10). It is unclear at present whether horizon regularity

can be reconciled with arbitrary asymptotic boundary conditions. Ref. [18] provides an

example where horizon regularity and plane wave boundary conditions in the sense defined

in [24] could not be simultaneously fulfilled. We will briefly come back to this issue in

section 4, and comment on in which way our setting differs from that considered in [18].

Thermodynamics. The thermodynamic properties of these configurations can be ob-

tained directly from the free energy functional (2.12) by noting that the free energy satisfies

the relation

F = M − TS − ΩaJa , (2.18)

where M is the total mass, S is the entropy and Ja is the angular momentum associated

with each rotational isometry direction φa. Given the free energy F we can obtain the

entropy and angular momenta simply by [9]

S = −∂F
∂T

, Ja = − ∂F
∂Ωa

, (2.19)

and hence the mass via (2.18). It is easy to show that the branes (2.10) satisfy the relation

F = TS/n and hence throughout this paper we avoid presenting expressions for S as we

always present the free energy F for all configurations. These configurations satisfy a
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Smarr-type relation of the form

(n+ p)M − (n+ p+ 1) (TS + ΩaJa) = T , (2.20)

where T is the total tension to leading order defined as

T = −
∫
dV(p)R0

(
γab + ξaξb

)
Tab , (2.21)

and ξa∂a = ∂τ is the worldvolume Killing vector field associated with time translations of

the worldvolume. Here we have assumed that ∂τ is hypersurface orthogonal with respect

to the spatial worldvolume metric. For configurations in asymptotically flat space-time

(without non-compact directions) the total tension T vanishes and we recover the usual

Smarr relation for asymptotically flat black holes.

2.2.1 Regime of validity

As mentioned at the beginning of this section, the blackfold approach is a perturbative

expansion in the fields γab, u
a, r0 and as such its regime of validity is also defined at each

step in the perturbative expansion. Generically, one must require that at each order in

the expansion, the length scales associated to each of the geometrical invariants describing

the intrinsic and extrinsic geometry of the blackfold to next order must be large when

compared to the local brane thickness r0. To be precise, it can be shown by dimensional

analysis that the transport coefficients υi, λi scale as rn+2
0 ,9 thus by (2.16) as kn+2, and

therefore by looking at the second order free energy functional (2.12) one must require that

to leading order

r0 �
(
|∇a∇

ak

k
|−

1
2 , |R|−

1
2 , |uaubRab|−

1
2 , |KiKi|−

1
2 , |KabiKabi|−

1
2 , |uaubKa

ciKbci|−
1
2

)
.

(2.22)

This ensures that locally on Wp+1 the geometry can be seen as an asymptotically flat

brane (2.10). The geometric invariants presented in (2.22) correspond to a particular

choice [6] as these are related to the background Riemann curvature via the Gauss-Codazzi

equation

Rabcd = Rabcd −Kac
iKbdi +Kbc

iKadi , (2.23)

where Rabcd is the projection of the Riemann curvature tensor of the ambient space-time

along worldvolume directions. Contracting this equation with combinations of γab and ua

one finds the two equations

R|| = R−KiKi +Kab
iKab

i

R// = uaucRac − uaucKac
iKi + uaucKab

iKb
ci ,

(2.24)

where we have defined R|| = γacγbdRabcd and R// = uaucγbdRabcd. Using this, we will

recast the free energy functional (2.12) in a way which will be more suitable for the study

9Since we know that the transport coefficients λi scale as rn+2
0 [6] the remaining scalings can be obtained

using Gauss-Codazzi equations and similar relations relating fluid data given in [6]. Alternatively, one may

use the thermodynamic identities found in [9].
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of minimal surface embeddings. We note that the second term on the r.h.s. of the second

equation in (2.24) can be exchanged, to second order, by a term proportional to KiKi

using the equations of motion (2.17) as explained in [6, 7]. Therefore we can write the free

energy functional (2.12) as

F [Xi] = −
∫ √

−γdσp
(
P + υ1k

−1∇a∇ak + (υ2 − λ2)R+ (υ3 − λ3)uaubRab

+

(
λ1 + λ2 +

λ3

n

)
KiKi + λ2R|| + λ3R//

)
.

(2.25)

The validity conditions to leading order can then be recast as

r0 �
(
|∇a∇

ak

k
|−

1
2 , |R|−

1
2 , |uaubRab|−

1
2 , |KiKi|−

1
2 , |R|||−

1
2 , |R//|−

1
2

)
. (2.26)

In order to show the usefulness of these manipulations, we apply this to the case of (Anti)-

de Sitter space-time. Using the fact that it is maximally symmetric Rµνλρ = L−2(gµλgνρ−
gµρgνλ) we compute the background curvature invariants

|R|||−
1
2 =

L√
p(p+ 1)

, |R//|−
1
2 =

L
√
p
, (2.27)

where L is the (Anti)-de Sitter radius. Therefore one obtains the requirement

r0 � L , (2.28)

which justifies the arguments used in [11, 27].

If we focus on minimal surfaces, which by definition satisfy condition (2.4) then of

the six invariants involved in (2.26) only five are non-trivial. In this case the perturbative

expansion (2.25), to second order in derivatives, can be seen as a purely hydrodynamic

expansion in a curved background.

Blackfolds with boundaries. Most configurations analysed in this paper have bound-

aries, which as mentioned above, are described by the condition k = 0. The effective free

energy (2.12) is given by a derivative expansion, and is a priori unrelated to effects due

to the presence of boundaries. In particular, as a long-wavelength effective theory, the

blackfold approach will not be able to probe distances below a certain scale that we denote

by `. If ρ+ is the location of the boundary and ε the distance away from it, then one

must require

ρ+ − ε� ` , (2.29)

for the approximation to be valid. In fact, the existence of this break down of the ap-

proximation can be seen directly from the requirement (2.26) associated with the invariant

|k−1∇a∇ak|−1/2. In general we have that

|k−1∇a∇ak| ∝ k−4 , (2.30)

and therefore the requirement (2.26) reduces to

r+ � k , r+ =
n

4πT
. (2.31)
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As k approaches 0 at the boundary, it is not possible to satisfy this condition, signalling a

possible break down of the expansion.

The effective description of blackfolds is given in terms of a hydrodynamic and elastic

expansion, however, when boundaries are present one should also consider a boundary

expansion in powers of ε, in which case the description can become increasingly better

with the addition of higher-order corrections. We note that what is considered leading

order terms or higher-order corrections in the effective free energy (2.12) in a derivative

expansion (either hydrodynamic or elastic) is not necessarily the same from the point of

view of a boundary expansion. In fact, by looking at (2.30) we see that the correction term

in (2.12), from the point of view of a derivative expansion, associated with |k−1∇a∇ak|
scales as kn−2 and hence, as one approaches the boundary k = 0, this term is not sub-

leading when compared with P ∝ kn.

Presumably, though not necessarily, for a given black hole, the blackfold description

may be the correct one in a patch of the geometry while another patch may not be locally

described by a metric of the form (2.10). Examples of situations where this behaviour may

be the case are found in the context of BIon solutions [43, 44] and M2-M5 intersections [45–

47]. If the geometry has boundaries, this could potentially signify that the geometry near

the boundary would have to be replaced by something else than (2.10) but which would

smoothly connect to (2.10). Alternatively, one can demand the existence of a smooth

limit of the blackfold description near the boundary under the assumption that, even

though the approximation is expected to break down, the existence of a smooth limit when

r0 → 0 yields the correct gravitational description. This, as we will review in section 3.1.1,

is exactly what happens for ultraspinning Myers-Perry black holes and can be seen by

analysing the exact analytic metric as in [40]. This illustrates that in certain circumstances

the blackfold approach appears to work better than one a priori has the right to expect.

While a deeper understanding of these issues is of interest, this is beyond the scope of

this paper. Instead, and in the absence of exact analytic solutions, we will construct several

blackfold geometries with boundaries assuming that a well defined boundary expansion

exists and show, in section 3.1.1, that their thermodynamic properties can be obtained

exactly, to leading order in ε, regardless of what the correct boundary description might be.

Multiple blackfolds and self-intersections. It is important to mention that the sec-

ond order corrected free energy (2.12) has not taken into account corrections due to grav-

itational backreaction or gravitational self-force. In particular, when one is considering a

configuration of multiple worldvolumes, then the blackfold approximation is expected to

break down when the distance d between two worldvolumes becomes of the order of r0.

One therefore also needs to require [10]

r0 � d . (2.32)

A fortiori this means that intersecting (or self-intersecting — see section 3.4 for an example)

worldvolume configurations lie outside the regime of validity of the blackfold approxima-

tion, but one might expect gravitational backreaction to regularise or smooth out such

intersections, much as in the case of backreacted intersecting brane geometries in string

theory, and it would certainly be of interest to investigate this further.
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2.3 Plane waves

Among the background space-times that we will consider in this work are plane waves, and

here we briefly summarise the properties of plane waves that we will make use of later on.

Plane wave space-times have metrics of the form

ds2 = 2dudv − 2A(u, xq)du2 + dE2
(D−2)(x

q) , (2.33)

where,

dE2
(D−2)(x

q) =

D−2∑
q=1

(dxq)2 (2.34)

is the (D− 2)-dimensional Euclidean metric describing the planar wave front of the gravi-

tational wave, and the function A(u, xq) describing the wave profile is a quadratic function

A(u, xq) = Aqr(u)xqxr (2.35)

of the transverse coordinates, q, r = 1, . . . , D − 2. This quadratic function encodes all the

non-vanishing components of the Riemann tensor, namely

Ruqur = 2Aqr(u) (2.36)

(the somewhat unconventional prefactor of 2 here and in the metric serves the purpose

of avoiding a proliferation of factors of 2 later on, when using standard time and space

coordinates (t, y) instead of the null(ish) coordinates (u, v)). This implies that the only

non-vanishing component of the Ricci tensor is

Ruu = 2Tr(Aqr) , (2.37)

and that the Ricci scalar is zero,

R = 0 . (2.38)

In particular, therefore, solutions of the non-linear vacuum Einstein equations correspond

to transverse traceless matrices Aqr(u) (“gravitons”).

For the blackfold approach we are interested in stationary background space-times,

and therefore we will focus on time-independent plane waves, with a u-independent profile

A(xq) = Aqrx
qxr . (2.39)

Even though this is not manifest in these coordinates, these space-times are homogeneous

(even symmetric) and, in particular, the origin xq = 0 of the transverese coordinates is not

in any way a special locus in space-time (only in these coordinates). By introducing the

coordinates

u = (y + t)/
√

2 , v = (y − t)/
√

2 , (2.40)

these metrics then take the standard stationary (but not static) form

ds2 = −(1 +A(xq))dt2 + (1−A(xq))dy2 − 2A(xq)dtdy + dE2
(D−2)(x

q) , (2.41)
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with Killing vector ∂t. In these coordinates, the components of the Riemann and Ricci

tensors are

Rµqνr = Aqr , Rµν = TrAqr , (2.42)

for µ, ν ∈ {t, y}.
In this time-independent case, constant SO(D − 2) transformations of the transverse

coordinates can be used to diagonalise the constant symmetric matrix Aqr,

Aqr = Aqδqr . (2.43)

Moreover, by a boost in the (t, y) (or (u, v)) plane, the eigenvalues can be rescaled by an

overall positive factor,

(u, v)→ (λu, λ−1v) ⇒ Aq → λ2Aq . (2.44)

Thus a priori only ratios of eigenvalues of Aqr have an invariant physical meaning. How-

ever, via the embedding of p-branes into the plane wave background, in particular via

the identification t = τ of the worldvolume and background time coordinates, this boost

invariance is broken and the magnitudes of the individual eigenvalues have physical signifi-

cance. Moreover, such an embedding will reduce the transverse SO(D− 2)-invariance, and

thus in principle off-diagonal matrix elements could be present. However, in none of the

numerous examples that we have investigated did such non-diagonal elements turn out to

be particularly useful (let alone necessary). For that reason, and in order not to unduly

burden the notation, we will concentrate on diagonal wave profiles in the following (and

only add a comment here and there on off-diagonal contributions).

2.4 Classes of embedding space-times and classes of embedded geometries

In this paper we consider three different classes of D-dimensional Lorentzian embedding

space-times L(D) into which we will embed different classes of geometries. Some of these

space-times have inherent limiting surfaces and hence provide an interesting playground

for constructing compact minimal surfaces. These are:

• Flat space-time: we write down the metric of flat space-time in the form

ds2 = −dt2 + dE2
(D−1)(x

q) , (2.45)

where dE2
(D−1)(x

q) is the metric on the (D − 1)-dimensional Euclidean space E(D−1)

parametrised in terms of the coordinates xq where the index q runs over q = 1, . . . , D−
1. We use the indices q, r, t, s to label space-time directions in E(D−1). For this class

of ambient space-times the background curvature invariants R||, R// in (2.26) vanish.

• Plane wave space-times: as discussed above, we consider time-independent plane

wave space-times equipped with the metric (2.41)

ds2 = −(1 +A(xq))dt2 + (1−A(xq))dy2 − 2A(xq)dtdy + dE2
(D−2)(x

q) , (2.46)
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and with

Aqr = Aqδqr . (2.47)

If at least one of the eigenvalues is negative, then the plane wave space-time will have

a limiting surface where the time-like Killing vector field ∂t becomes null, i.e., where

(1 +A(xq)) = 0.

We focus on the class of plane waves which are solutions of the vacuum Einstein

equations, therefore we impose TrAqr = 0. For these space-times the background

curvature invariants R||, R// in (2.26) depend on the precise form of the embedding.

For the two types of embeddings that we consider below these invariants either vanish

or are given in terms of linear combinations of the eigenvalues Aq.

• de Sitter space-times: we consider de Sitter space-times in the presence of a black

hole, where the metric is written as

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
(D−2) , f(r) = 1− rD−3

m

rD−3
− r2

L2
. (2.48)

When rm = 0 the black hole horizon is no longer there and we recover pure de Sitter

with radius L. The range of the coordinate r lies in between the two real and positive

roots of f(r) = 0. Therefore, this class of space-times inherits two limiting surfaces

located at the black hole horizon and at the cosmological horizon where the time-like

Killing vector field ∂t becomes null. When rm = 0 the only limiting surface is located

at the cosmological horizon where r = L.

It will sometimes be useful to introduce spatially conformally flat coordinates by

defining a new coordinate r̃ such that r2 = h(r̃)−1r̃2 and f(r)−1dr2 = h(r̃)−1dr̃2.

The metric (2.48) then takes the form

ds2 = −f(r̃)dt2 + h(r̃)−1dE2
(D−1)(x

q) , r̃2 =
D−1∑
q=1

x2
q , (2.49)

where the index q runs over q = 1, . . . , D−1. We will also write the spatial part of the

metric (2.49), as the metric dẼ2
(D−1)(x

q) = h(r̃)−1dE2
(D−1)(x

q), on the conformally

Euclidean space Ẽ(D−1).

In these space-times we embed three classes of worldvolume geometries which are either

minimal or are constructed using minimal surfaces in E(D−1) (in flat and de Sitter space-

times) or in E(D−2) (in plane wave space-times) as the starting point. In appendix D we

focus on a class of worldvolume geometries with constant mean curvature related to the

example presented in (1.5). These classes of embeddings, which may be static or stationary

with Killing vector field (2.11), have boundaries when k = 0 and are of the following form:

• Type I: this class of (p+1)-dimensional worldvolume geometries have induced metric

ds2 = −R2
0(Xq

M )dτ2 + dẼ2
(p)(X

q
M ) , (2.50)
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where ds2 = γabdσ
adσb is the induced volume element while dẼ2

(p)(X
q
M ) is the induced

p-dimensional spatial metric obtained by restricting the metric dẼ2
(D−1) (in the case

of flat or de Sitter space-times), or dE2
(D−2) (in the case of plane wave space-times), to

the minimal embedding xq = Xq
M with respect to E(D−1) or E(D−2). These geometries

can be obtained by choosing the embedding coordinates (t, xq) = (τ,Xq
M ) in the

space-times (2.45) and (2.49) or by choosing (t, y, xq) = (τ, 0, Xq
M ) in the space-

times (2.46). Furthermore, here and in the next two types of embeddings the mapping

functions Xq
M do not depend on τ . If embedded into plane wave space-times then

explicit evaluation of the invariants R|| and R// yields

R|| =
R0√

2
|γqrAqr|−

1
2 , R// = R0|uqurAqr|−

1
2 . (2.51)

For the purpose of analysing the regime of validity of these geometries it is useful to

compute the induced Ricci tensor of the class of metrics (2.50). This is given by

R = RẼ − 2
∆ẼR0

R0
, (2.52)

where RẼ is the Ricci scalar of the spatial p-dimensional metric and ∆Ẽ is the Laplace

operator on that p-dimensional space.

• Type II: this class of (p + 1)-dimensional worldvolume geometries have induced

metric

ds2 = −R2
0(Xq

M )dτ2+2(1−R2
0(Xq

M ))dτdz+(2−R2
0(Xq

M ))dz2+dE2
(p−1)(X

q
M ) (2.53)

and describe a wave with non-planar wave front whose geometry is described by the

induced (p − 1)-dimensional metric dE2
(p−1)(X

q
M ). This class of embeddings is ob-

tained only in plane wave space-times (2.46) by choosing the embedding coordinates

(t, y, xq) = (τ, z,Xq
M ) and are non-compact along the z-direction. In this case, ex-

plicit computation of the invariants R||, R// leads to R|| = R// = 0. The induced

Ricci scalar for the metrics (2.53) is simply

R = RE , (2.54)

where RE is the Ricci scalar of the (p− 1)-dimensional spatial metric dE2
(p−1)(X

q
M ).

• Type III: this last class of (p+1)-dimensional worldvolume geometries have induced

metric

ds2 = −R2
0(ρ,Xq

M )dτ2 +H−2
0 (ρ,Xq

M )dρ2 + ρ2dΩ2
(p−1)(X

q
M ) , (2.55)

where the minimal embedding Xq
M is defined on the unit (p− 1)-sphere S(p−1). This

class of embeddings can be obtained by choosing the mapping functions (t, r, xq) =

(τ, ρ,Xq
M ) in de Sitter space-times (2.48) where H0 = R0 but it can also be obtained

in flat space-time (2.45), by writing the metric on E(D−1) as dE2
(D−1)(x

q) = dr2 +

r2dΩ2
(D−2)(x

q), where R0 = H0 = 1, and choosing (t, r, xq) = (τ, ρ,Xq
M ) or similarly,

in plane wave space-times (2.46), where H0 = 1.
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Limiting surfaces and validity of embedded geometries. The classes of embedded

geometries presented above may be static or stationary and characterised by a worldvolume

Killing vector field of the form (2.11). Evaluating explicitly the modulus k we find

k2 = R2
0 − (Ωa)2R2

a . (2.56)

Therefore, generically these space-times, where the surfaces are embedded, are charac-

terised by limiting surfaces described by the equation R2
0 − (Ωa)2R2

a = 0. If the worldvol-

ume geometry is static Ωa = 0 (hence k2 = R2
0) then limiting surfaces can also be present

as long as R2
0 = 0 at some point on Wp+1.

It is important to study the regime of validity of the blackfold approach (2.26) for

the geometries we consider and, in particular, the behaviour near the boundary k = 0.

In general, the six invariants presented in (2.26) must be evaluated explicitly for each

configuration. However, certain universal features exist. First of all, since all the geometries

we consider turn out to be minimal (not only in E(D−1) or E(D−2) but also in Lorentzian

space-time L(D)), and hence satisfy (2.4), of the six invariants in (2.26) only five need to

be evaluated. Secondly, note that from (2.16) since r0 ∝ k, then according to (2.26) none

of the five relevant scalars divided by k should vanish over the geometry, or in other other

words, the intrinsic or extrinsic curvature scales should not diverge faster than k−1 over

Wp+1. This leads us to the following conclusions:

• Since all the embeddings presented above have boundaries then the analysis

around (2.30) holds. The fact that the invariant |k−1∇a∇ak| diverges too quickly

as k → 0 signals a break down of the approximation near the boundary. For that

reason we consider these blackfold configurations valid up to a distance ε from the

boundary.

• For static embeddings of Type I, which have the plane wave space-time (2.46) as the

ambient space-time, using (2.52), one has that |R|−
1
2 k−1 ∝ k2. Therefore, since this

invariant vanishes too quickly near the boundary then the requirements (2.26) cannot

be satisfied. If the ambient space-time was flat or de Sitter space-time this would

not constitute a problem. In particular, in the latter case, we find that |R|−
1
2 ∝

k. By contrast, embeddings of Type II, according to (2.54), do not suffer from

a divergence at the boundary and it is only required that k2R does not diverge

anywhere over Wp+1.

• If Xq
M parametrises a (p − 1)-dimensional sphere in embeddings of Type III,

then such embeddings lie within the regime of validity. However, if Xq
M does not

parametrize a (p − 1)-dimensional sphere then the spatial metric H−2
0 (ρ,Xq

M )dρ2 +

ρ2dΩ2
(p−1)(X

q
M ) will suffer from a conical singularity at ρ = 0 in the case of flat and

plane wave space-times (H0 = 1) and hence R → ∞ as ρ → 0. However, potential

singularities at r = 0 can be shielded behind a black hole horizon. Therefore we need

rm 6= 0 in (2.49). This screening effect is also present if we send L→∞, i.e. for the

asymptotically flat Schwarzschild-Tangherlini black hole.
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2.5 Theorems for minimal surfaces

In this section we prove several results for minimal surfaces embedded into ambient space-

times in the manner described in the previous section. We further analyse what conditions

these geometries need to satisfy in order to solve the blackfold equations (2.14), (2.17).

To set the stage, note that in general, in order to satisfy the blackfold equation Ki =

nuaubKab
i, it is neither necessary nor sufficient for the embedding to define a minimal

surface (Ki = 0) in the Lorentzian embedding space L(D), and our discussion below will

reflect this dichotomy. Nevertheless, all the explicit geometries that we will construct later

on will involve minimal Lorentzian surfaces.

Embeddings of Type I. We begin by reviewing a result of [10], namely,

Theorem 2.1. (from [10]) If the embedding is static and of Type I, embedded into flat

space-time, then any minimal surface in E(D−1) is a minimal surface in L(D) and, further-

more, it solves the blackfold equations (2.14).

Proof. We label the spatial indices of the worldvolume by â, b̂, . . . = 1, . . . , p. If the surface

Xq
M is minimal in E(D−1) then we have that K̃i = γâb̂Kâb̂

i = 0. Since the embedding is of

Type I, the mapping functions Xq
M do not depend on τ and since the ambient space-time

is flat we can always choose coordinates such that Γρµν = 0. Therefore, from (2.5) it follows

that Kτa
i = 0 and we obtain Ki = γabKab

i = 0. Hence, the surface is minimal in L(D).

Since Kτa
i = 0 and the embedding is static we have that uaKab

i = 0. Therefore both sides

of equation (2.14) are satisfied.

From this it follows that minimal surfaces in E(D−1), which satisfy the validity require-

ments (2.26) and (2.32), provide geometries for non-compact black hole horizons, because

flat space-time with embedded static geometries has no limiting surfaces. For more general

stationary embeddings it follows from theorem 2.1 that

Corollary 2.2. If the embedding is stationary and of Type I, embedded into flat space-

time, then any minimal surface in E(D−1) will satisfy the blackfold equations as long as

uâub̂Kâb̂
i = 0.

Proof. Stationary minimal surfaces are characterised by a Killing vector field of the

form (2.11) which maps onto a background Killing vector field in the ambient space-time

(we take this as a definition of a stationary surface in the present context). The intro-

duction of rotation does not alter the extrinsic curvature tensor of the geometry (2.5) and

therefore such configurations still satisfy Ki = 0 and Kτ â
i = 0. Thus, if uâub̂Kâb̂

i = 0 both

sides of (2.14) are separately zero.

In this case, flat space-time, with embedded stationary geometries, will inherit a lim-

iting surface and the minimal embedding must be compact, at least in some directions. As

we will see in the next section, amongst all minimal surfaces embedded in R3 we can only

achieve this for the plane R2 and the helicoid.

We now wish to establish corresponding statements that also hold in non-trivial am-

bient space-times such as plane wave and de Sitter space-times. We begin with the rather
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trivial obervation that any embedding which solves the blackfold equations in flat space-

time also solves the blackfold equations in plane wave space-times which are flat along the

transverse embedding directions:

Theorem 2.3. If Xq parametrises an embedding surface that solves the blackfold equations

in flat space-time then it also solves the blackfold equations in plane wave space-times if

Xy = 0 and Ars = 0 for r, s satisfying Xr 6= 0, Xs 6= 0.

Proof. The proof follows easily from the fact that if Xy = 0 and Ars = 0 for r, s satisfying

Xr 6= 0, Xs 6= 0 then Kτa
i = niµΓµτâ = 0 and the blackfold equations reduce to those in

flat space-time.

In fact this theorem shows that all configurations constructed in [10] are also valid

constructions in plane wave space-times. However, we note that for the space-time (2.46)

to still be a vacuum solution with a non-trivial plane wave profile, we need to require the

existence of (at least) two additional directions i, j where the brane is point-like (sitting

at xi = xj = 0) with Aii + Ajj = 0. This means that all configurations in [10] can be

embedded in plane wave space-times with D ≥ 7.10 Also, since for these configurations the

induced geometry is exactly the same as in flat space-time, the free energy functional (2.12)

to leading order is also the same and hence, according to (2.19), also their thermodynamic

properties.

The type of solutions expressed in theorem 2.3 are of interest but they do not give

rise to black hole geometries which exhibit the full non-trivial structure of plane wave

space-times. We now wish to consider more non-trivial embeddings into plane wave space-

times (along directions where the components Ars are not necessarily zero) and also into

de Sitter space-times. To that end we now first prove a more general statement regarding

minimal surfaces which establishes the intuitively obvious fact that a spatial minimal sur-

face extended geodesically (i.e. by an extremal curve) in the time direction is a Lorentzian

minimal surface:

Theorem 2.4. If Xq
M parametrises a minimal surface in Ẽ(D−1) or E(D−2) in an embedding

of Type I then Xq
M parametrises a minimal surface in L(D) if and only if the embedding

is geodesically extended along the time direction, i.e., niρ∇ẊẊ
ρ = 0, Ẋρ = ∂τX

ρ.

Proof. First note that if Xq
M parametrises a minimal surface in Ẽ(D−1) or E(D−2) in an

embedding of Type I then we have that K̃i = 0. We therefore only need to show that

γττKττ
i + γτ âKτ â

i = 0. However, for embeddings of Type I one has that γτ â = γτ â = 0.

Therefore, since that for any of the embeddings presented in the previous section one has

that ∂τX
t = 1 and that ∂τX

µ = 0 if µ 6= t, then we must have

Kττ
i = niρ

(
Ẍρ + ΓρµνẊ

µẊν
)

= niρ∇ẊẊ
ρ = 0 . (2.57)

10The five-dimensional black rings, helical rings and helical strings found in [10] can be embedded into

plane wave space-times in D ≥ 6.
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Condition (2.57) imposes no restrictions if the ambient space-time is flat since the

connection vanishes and Ẍρ = 0 for all embeddings presented in the previous section.

However, in the case of plane waves or de Sitter space-times condition (2.57) reduces to

niρΓ
ρ
tt = 0 and we obtain specific constraints:

• Plane-wave space-times: in this case direct to computation leads to

niρΓ
ρ
tt =

D−1∑
ρ=1

niρxρAρ = 0 . (2.58)

This constraints greatly the number of possible minimal surfaces in (2.46) for embed-

dings of Type I and, as we will see, also for embeddings of Type II. As we will show

in the next section, amongst the minimal surfaces in R3, only the plane R2 and the

helicoid solve this equation for specific choices of Aqr. It is important to note that in

transverse directions to the worldvolume i where the worldvolume is point-like and

located at xi = 0 then niρΓ
ρ
tt = 0.11

• de Sitter space-times: in space-times of the form (2.49) we find the constraint

niρΓ
ρ
tt =

1

2

D−1∑
ρ=1

niρh(r̃)∂ρf(r̃) = 0 . (2.59)

The number of minimal embeddings which satisfy this constraint is even more con-

strained than in plane wave space-times as there are no parameters to tune, by

contrast with the components Aqr. In this case we find that among the various

minimal surfaces in R3 only the plane is a solution. In transverse directions i to

the worldvolume where the worldvolume is point-like and located at xi = 0 we find

∂if(r̃) = (xi/r̃)∂r̃f(r̃) = 0 and hence niρΓ
ρ
tt = 0 along those directions. Theo-

rem 2.4 started with the assumption that Xq
M parametrises a minimal surface in

Ẽ(D−1). However, since we are interested in using known minimal embeddings in

E(D−1) for black hole horizons, it is important to know which of those will also be

minimal in conformally Euclidean spaces Ẽ(D−1) in case we want to find black hole

horizons in de Sitter space-times (2.49). A simple computation, similar to (2.59),

leads to the requirement

γâb̂Γiâb̂ = 0 , (2.60)

which is solved, for example, for the plane R2 embedded into R3. As in the case of

Γitt one can also easily show that Γiâb̂ = 0 for transverse directions where the brane

is point-like and located at xi = 0.

Theorem 2.4 gives the necessary condition for surfaces to be minimal in L(D). However,

we would like to know what conditions are required for such surfaces to solve the blackfold

equations (2.17). Similarly to corollary 2.2 it follows that

11If we allow for non-vanishing off-diagonal components of Aqr then formula (2.58) is modified. If this is

the case, then one can show that the off-diagonal components Aai, where a labels a longitudinal direction

along the surface and i labels a direction where the brane is point-like and located at xi = 0, must vanish

in order for (2.58) to have a solution.
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Corollary 2.5. If Xq
M is an embedding of Type I satisfying (2.57) then it will also satisfy

the blackfold equations as long as uâub̂Kâb̂
i = 0.

The proof of corollary 2.5 is essentially the same as that given for corollary 2.2. How-

ever, if Xq
M does not satisfy condition (2.57), and hence is not minimal in L(D), but is

minimal in E(D−1) or E(D−2) then we have

Corollary 2.6. If Xq
M is an embedding of Type I and is minimal in E(D−1) or E(D−2)

then it will satisfy the blackfold equations if

(k2 + nR2
0)

R2
0

Kττ
i + nΩaΩbKφaφb

i − k2γâb̂Γiâb̂ = 0 . (2.61)

Eq. (2.61) follows simply from (2.14), the induced metric (2.50) and (2.60). In partic-

ular, the last term in (2.61) vanishes in flat and plane wave space-times and for minimal

surfaces in Ẽ(D−1). This exhausts our study of embeddings of Type I.

Embeddings of Type II. We now turn our attention to embeddings of Type II. The

geometric properties of the embeddings (2.53) lead to the simple conclusion

Theorem 2.7. If the embedding is of Type II and Xq
M parametrises a minimal surface

in E(D−2) then Xq
M is also a minimal surface in L(D).

Proof. If Xq
M parametrises a minimal surface in E(D−2) then K̃i = 0 and we only need

to show that γττKττ
i + 2γτzKτz

i + γzzKzz
i = 0. Direct computation shows that Kττ

i =

Kτz
i = Kzz

i where Kττ
i is given by (2.58). Therefore we must show that (γττ + 2γτz +

γzz)Kττ
i = 0. However, for embeddings of Type II we have that γττ + 2γτz + γzz = 0.12

Therefore we obtain Ki = 0.

This shows that embeddings of Type II are always minimal embeddings. Therefore

we obtain a variant of corollary 2.5, namely,

Corollary 2.8. If the embedding is of Type II then it satisfies the blackfold equations if

uaubKab
i = 0, i.e.,

Kττ
i + ΩaΩbKφaφb

i = 0 . (2.62)

This concludes the analysis of embeddings of Type II.

Embeddings of Type III. Finally we turn our attention to embeddings of Type III.

We will now show that

Theorem 2.9. If Xq
M parametrises a static minimal surface in S(p−1) then embeddings of

Type III are minimal surfaces in L(D) and, furthermore, solve the blackfold equations.

12This is easily seen when changing to (u, v) coordinates by performing the inverse transformation

of (2.40). Then one finds that γττ + 2γτz + γzz ∝ γuu = 0.
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Proof. We begin by showing that if Xq
M parametrises a (p − 1)-dimensional sphere then

embeddings of Type III are miminal. We note that these embeddings can be obtained

by first introducing conformally spatially flat coordinates as in (2.49), setting Xq
M = 0 for

q = p + 1, . . . , D − 1, switching back to the original coordinates (2.48) and choosing the

remaining functions Xq
M for q = 1, . . . , p to parametrise the (p − 1)-dimensional sphere.

Therefore, in all transverse directions i = p+ 2, . . . , D− 1 these embeddings are point-like

and located at Xi
M = 0. Therefore, by the arguments given below (2.59) we have that

Kab
i = 0. Embeddings of Type III where Xq

M parametrises a (p− 1)-dimensional sphere

are in fact just embeddings of R(p) into R(D−1) and hence are of course minimal, as in the

case of the plane R2 into R3. The blackfold equations (2.14) are still satisfied if we introduce

rotation since for this embedding the extrinsic curvature is identically zero, Kab
i = 0.

Given this, it is now easy to show that if Xq
M parametrises a static minimal surface on

the unit (p − 1)-dimensional sphere then the embedding is still minimal and it solves the

blackfold equations. If Xq
M parametrises a minimal surface then some components of the

extrinsic curvature tensor will be non-vanishing along the directions where the geometry

is not point-like. Labelling the coordinates on the (p− 1)-dimensional sphere as â, b̂ . . . =

1, . . . , p − 1 then since Xq
M is minimal one has that γâb̂Kâb̂

i = 0. Therefore we only need

to check what happens to the components Kττ
i,Kτ â

i,Kτρ
i,Kρρ

i,Kρâ
i. By looking at the

Christoffel symbols one sees that they all vanish except for Kρâ
i = niλΓλρâ. However, due

to the form of the embedding (2.55) one has that γρâ = 0, therefore we obtain Ki = 0.

Since the geometry is static then uaubKab
i = 0 and hence the blackfold equations (2.14)

are satisfied.

We note that this theorem holds for all space-times of the form (2.48) including the

limits L → ∞ and rm → 0. However, as explained at the end of section 2.4, if rm = 0

then these solutions suffer from a conical singularity and do not fulfill the validity require-

ments (2.26). If we consider stationary embeddings instead, then corollary 2.5 holds for

embeddings of Type III.

2.6 Classes of solutions

In this section we find different classes of stationary minimal surface solutions in the am-

bient space-times described in section 2.4. In order to find stationary minimal surface

solutions it is necessary to know which minimal surfaces preserve at least one U(1) fam-

ily of isometries of the ambient space-time. This is a difficult problem in general but for

minimal surfaces embedded into R3 we will show that13

Theorem 2.10. If Xq
M parametrises a minimal surface in R3 which preserves one U(1)

family of isometries of the ambient space-time then it is either the plane, the helicoid,

the catenoid or a member of a one-parameter family of surfaces interpolating between the

helicoid and the catenoid (“Scherk’s second surface”).

13Theorem 2.10 has actually been proven e.g. in [25] in a different way. However we have decided to

present the reader with its proof, which will be useful for the next sections in this paper.
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Proof. A two-dimensional minimal surface can at most preserve one U(1) family of isome-

tries of R3. If (ρ, φ) are a set of coordinates on the surface and φ labels the coordinate

associated with the isometry of the worldvolume geometry then the induced metric can be

written as

ds2 = f(ρ)dρ2 + 2g(ρ)dρdφ+ h(ρ)dφ2 , (2.63)

for some functions f(ρ), g(ρ), h(ρ). Note that since the worldvolume preserves one family of

isometries of the background, the metric coefficients cannot depend on φ. The metric (2.63)

has a Killing vector field Ωχa∂a = Ω∂φ, where Ω is the boost velocity of the embedding.

If the embedding (2.63) preserves at least a U(1) symmetry of the background then this

Killing vector field must map to a Killing vector field of the ambient space-time, i.e.,

kµ = Ω∂aX
µχa. Coordinates on the surface can always be chosen such that the preserved

U(1) symmetry lies in the (x1, x2) plane. Therefore we must have

kµ∂µ = α (x1∂x2 − x2∂x1) + β∂x3 , (2.64)

for some constants α and β.14 Using that kµ = Ω∂aX
µχa we find that

Ω∂φX
1 = −αX2 , Ω∂φX

2 = αX1 , Ω∂φX
3 = β . (2.65)

From (2.63) we also have that

3∑
µ=1

(∂φX
µ)2 = h(ρ) . (2.66)

Introducing (2.65) into the above equation we find

(X1)2 + (X2)2 =
Ω2h(ρ)− β2

α2
. (2.67)

We see that this is the equation for a circle in X1, X2, therefore we are free to introduce

coordinates such that

X1(ρ, φ) = λ̃y(ρ) sin(aφ) +

√
1− λ̃2z(ρ) cos(aφ) ,

X2(ρ, φ) = −λ̃y(ρ) cos(aφ) +

√
1− λ̃2z(ρ) sin(aφ) ,

X3(ρ, φ) = λ̃aφ+

√
1− λ̃2k(ρ) ,

(2.68)

for some constants a, λ̃ and some functions y(ρ), z(ρ), k(ρ). From here we see that α = aΩ

and β = λ̃aΩ and that

f(ρ) = λ̃2y′(ρ)2 + (1− λ̃2)
(
z′(ρ)2 + k′(ρ)2

)
,

g(ρ) = −aλ̃
√

1− λ̃2
(
z(ρ)y′(ρ)− k′(ρ)− y(ρ)z′(ρ)

)
,

h(ρ) = a2
(
λ̃2(1 + y2(ρ)) + (1− λ̃2)z2(ρ)

)
,

(2.69)

14Note that for this to be a Killing vector field in plane wave space-times (2.46) we must have A1 = A2 and

A3 = 0 as well as Axqxr = 0 for q 6= r and q, r = 1, 2, 3. Note also that it is possible to consider additonally

translations in the x1 and x2 directions. However, these do not affect the results in any significant way

since they can always be absorbed by shifting X1 and X2 by a constant.
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where the prime denotes a derivative with respect to ρ. It is always possible to introduce

isothermal coordinates (ρ̃, φ̃) such that the induced metric is conformally flat, i.e. γρ̃ρ̃ =

γφ̃φ̃, γρ̃φ̃ = 0 (see e.g [28, 48]). In the case at hand, this can be done in a way compatible

with the manifest isometry associated with the original φ direction, i.e. in such a way

that f(ρ̃) = h(ρ̃) and g(ρ̃) = 0. Indeed, this can be accomplished by performing the

transformation ρ = w1(ρ̃) and φ → φ̃ + w2(ρ̃) for some functions w1(ρ̃) and w2(ρ̃). Then

the embedding (2.68) takes the same form but with modified functions ỹ(ρ̃), z̃(ρ̃), k̃(ρ̃).

Therefore, dropping the tildes, we can always choose functions y(ρ), z(ρ), k(ρ) such that

λ̃2
(
y′(ρ)2 − y(ρ)2 − 1

)
+ (1− λ̃2)

(
z′(ρ)2 − z(ρ)2 + k′(ρ)2

)
= 0 ,

z(ρ)y′(ρ)− y(ρ)z′(ρ)− k′(ρ) = 0 ,
(2.70)

where we have rescaled φ → φ/a for simplicity. We do not need to solve this explicitly,

instead we note that if a surface, embedded in R3, is written in isothermal coordinates then

it is minimal ifXi(ρ, φ) for i = 1, 2, 3 is harmonic [28, 48], i.e., if ∂2
ρX

i(ρ, φ)+∂2
φX

i(ρ, φ) = 0.

This means that, assuming y(ρ), z(ρ), k(ρ) to satisfy (2.70), then from (2.68) we must have

λ̃ sinφ
(
y′′(ρ)− y′(ρ)

)
+

√
1− λ̃2 cosφ

(
z′′(ρ)− z′(ρ)

)
= 0 ,

k′′(ρ) = 0 .
(2.71)

The first condition was obtained from X1(ρ, φ) and is equivalent to the one obtained form

X2(ρ, φ). The second condition was obtained from X3(ρ, φ) and is solved if k(ρ) = akρ+bk
for some constants ak, bk. Without loss of generality we can set ak = 1 and bk = 0. Since

the first condition in (2.71) must be solved for all φ then we must have that y′′(ρ)−y′(ρ) = 0

and z′′(ρ)− z′(ρ) = 0. This leads to the requirement that y(ρ), z(ρ) must be of the form

y(ρ) = aye
ρ + bye

−ρ , z(ρ) = aze
ρ + bze

−ρ , (2.72)

for some constants ay, by, az, bz. By using the freedom to translate ρ by a constant d such

that ρ → ρ+ d we can set az = bz. Introducing this into (2.70) allows to find expressions

for ay and by in terms of az, λ. There is only one solution which is valid for all λ, namely,

ay = az = bz = −by = 1/2. By rescaling ρ → ρ/c and X3(ρ, φ) → cX3(ρ, φ) we bring the

solution (2.72) to a more familiar form

y(ρ) = c sinh
(ρ
c

)
, z(ρ) = c cosh

(ρ
c

)
, (2.73)

which is unique up to reparametrizations of the coordinate ρ. In fact, this configuration is a

family of minimal surfaces that interpolates between the helicoid (λ̃ = 1) and the catenoid

(λ̃ = 0) and is known as Scherk’s second surface [49]. We shall refer to these interpolating

surfaces simply as Scherk surfaces in this paper.15 We will analyse in detail this general

solution in section 3.4. The metric (2.63), using (2.73) and after rescaling back φ→ aφ, is

diagonal and takes the form

f(ρ) =
h(ρ)

a2c2
= cosh2

(ρ
c

)
, g(ρ) = 0 , (2.74)

15This family of surfaces was also called Helicatenoids in [50].
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with extrinsic curvature components16

Kρρ = −
√

1− λ̃2

c
, Kρφ = −aλ̃ , Kφφ = a2c

√
1− λ̃2 . (2.75)

The solution (2.73) can be seen as a combination of two different cases:

• The catenoid λ̃ = 0: in this case, the minimal surface equation (2.4) yields

z′′(ρ)

1 + z′(ρ)2
− 1

z(ρ)
= 0 , (2.76)

which has a unique solution, namely (2.73). The extrinsic curvature components take

the form

Kρρ = −1

c
, Kρφ = 0 , Kφφ = a2c . (2.77)

• The helicoid λ̃ = 1: in this case, by redefining ac = λ and hence making the

embedding (2.68) into the same form as that of (2.6), the only non-vanishing extrinsic

curvature component is

Kρφ = − aλy′(ρ)√
(λ2 + a2y2(ρ))

. (2.78)

Since the metric (2.63) has no component γρφ then the minimal surface equation (2.4)

is automatically satisfied for these embeddings independently of the form of y(ρ).

Therefore we are free to choose y(ρ) = ρ as in (2.6) or as that given in (2.73). Hence

we recover the helicoid (2.6), which if λ = 0 reduces to the plane.

This completes the proof.

Solutions for flat space-time. According to corollary 2.2, stationary minimal surfaces

of Type I must satisfy uâub̂Kâb̂
i = 0. In R3, we have seen that there are only four

possibilities of stationary minimal surfaces in which case, according to (2.15), one has that

uτ = k−1 and uφ = Ωk−1. Hence we must satisfy uφuφKφφ
i = 0 which implies that we

must have Kφφ
i = 0. From (2.75) we arrive at the following conclusion

Corollary 2.11. The only two stationary minimal surfaces of Type I, where Xq
M

parametrises a minimal surface embedded in R3, that solve the blackfold equations in flat

space-time are the plane and the helicoid.

It is a difficult problem to make equivalent statements in R(D−1), however, we will

show in section 3 and in appendix B that higher-dimensional generalisations of the plane

and the helicoid, respectively, also solve the blackfold equations.

16Note that we have omitted the transverse index i from Kab
i since the surface is of codimension one.
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Solutions for plane wave space-times. In asymptotic plane wave space-times (2.46)

solutions of the blackfold equations can be of Type I or Type II. If they are of Type I and

Xq
M parametrises a minimal surface in L(D) then according to corollary 2.5, it must satisfy

uâub̂Kâb̂
i = 0, otherwise it must satisfy (2.61). In this case we can show the following

Theorem 2.12. The only two stationary minimal surfaces of Type I, where Xq
M

parametrises a minimal surface embedded in R3, that solve the blackfold equations in plane

wave space-times with diagonal Aqr are the plane and the helicoid.

Proof. First we consider the case where Xq
M also parametrises a minimal surface in L(D)

and hence must satisfy (2.58). Using the Monge parametrisation of section 2.1 we can

write (2.57) as17

Kττ =
1√

1 + f2
u + f2

v

(−A1ufu −A2vfv +A3f(u, v)) = 0 . (2.79)

We split the solutions of this equation into two sub cases:

• The plane: the simplest solution of (2.79) consists of choosing f(u, v) = 0, which

also trivially solves the minimal surface equation (2.9). This describes the R2 plane

sitting at x3 = 0, which can be seen by introducing polar coordinates (u, v) =

(r cos θ, r sin θ).18

• The helicoid: the general solution to equation (2.79) requires f(u, v) to be of

the form

f(u, v) = u
A3
A1 f(u

−A2
A1 v) . (2.80)

Introducing this into the minimal surface equation (2.9) requires to set A1 = A2,

A3 = 0 and solving the equation

2uvf ′
(v
u

)
+ (u2 + v2)f ′′

(v
u

)
= 0 , (2.81)

where the prime represents a derivative with respect to v/u. This has a unique

solution

f(u, v) = α arcsin

 v

u
√

1 + v2

u2

 , (2.82)

for some constant α, up to reparametrizations of f(u, v). By introducing polar coordi-

nates (u, v) = (r cos(aθ), r sin(aθ)) and defining λ = αa this gives the parametrisation

of the helicoid (2.6).

Since the helicoid has extrinsic curvature (2.78) (which includes the case of the plane when

λ = 0) then they satisfy corollary 2.5 and also (2.61). Hence, they are solutions of the

blackfold equations in these space-times.19

17Note that we are assuming the embedding to be point-like in all other transverse directions.
18If one considers off-diagonal components of Ars it is possible to obtain an arbitrary R2 plane embedded

into R3, and not necessarily sitting at x3 = 0. This is described by an equation of the form afu+bfv+c = 0.
19We have considered off-diagonal terms in Aqr, in which case, more solutions to Ki

ττ = 0 can be found

analytically but they do not satisfy (2.9). We have also tried to solve it for classical minimal surfaces

such as Enneper surface, Scherk first surface, Henneberg surface and Bour’s surface but these do not solve

Ki
ττ = 0.
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If Xq
M does not parametrize a minimal surface in L(D) then it must satisfy (2.61). The

plane and the helicoid trivially satisfy this equation since adding rotation does not affect the

result due to the form of the extrinsic curvature (2.78). Therefore we are only left with the

catenoid and Scherk surfaces as the last possibilities. Focusing first on the catenoid, since

we are in plane wave space-times we have that Γiâb̂ = 0. Using the parametrisation (2.68)

with λ̃ = 0, a = 1 and z(ρ) = c cosh(ρ/c), which highlights the U(1) symmetry, the equation

of motion (2.61) reduces to

c2A1 cos2
(ρ
c

) (
(n− 1)A1 + Ω2(n+ 1)

)
+
(
nΩ2 − (n+ 1)A1

)
= 0 , (2.83)

where we were forced to set A3 = 0 otherwise a term proportional to ρ tan(ρ/c) would

appear and also A2 = A1 otherwise the Killing vector field (2.64) would not be a Killing

vector field of (2.46). We have also used that k2 = R2
0 − c2Ω2 cos2(ρ/c) and that R2

0 =

1 + A1c
2 cosh2(ρ/c). From (2.83) we see that the first set of terms requires A1 < 0 and

the second set requires A1 > 0. Therefore the catenoid does not solve (2.61). For Scherk

surfaces, this result also holds since according to (2.75) the component Kφφ of the extrinsic

curvature of the embedding only changes by a multiplicative factor of
√

1− λ̃2 and the

same happens to the component Kττ .

In higher dimensions one can show that embeddings of R(p) into R(D−1) or R(D−2) and

higher-dimensional helicoids also solve (2.58). For Type II embeddings into plane wave

space-times we can show the following

Theorem 2.13. The only stationary minimal surfaces of Type II, where Xq
M parametrises

a minimal surface embedded in R3, that solve the blackfold equations in plane wave space-

times with diagonal Aqr are the plane, the helicoid, the catenoid and Scherk’s second

surface.

Proof. From the last theorem it follows that the plane and the helicoid trivially satisfy

eq. (2.62). For the catenoid, using (2.68) with λ = 0 and z(ρ) = c cosh(ρ/c), as well

as (2.77), eq. (2.62) reduces to

− cA1 cos2 θ − cA2 sin2 θ +A3ρ tanh
(ρ
c

)
+ ca2Ω2 = 0 , (2.84)

Since the Killing vector field (2.64) must be a Killing vector field of (2.46) then we must set

A2 = A1 and since we have a linear term proportional to ρ tanh(ρ/c) we must set A3 = 0.

Therefore we obtain a solution if A1 = a2Ω2 and A1 > 0. Again, Kττ and Kφφ only change

by a multiplicative factor of
√

1− λ̃2, so this result is also valid for Scherk surfaces.

In section 3 and in appendices B–C we will show that these results also hold for higher-

dimensional planes, helicoids and catenoids.
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Solutions for plane wave space-times. In asymptotically de Sitter space-times the

number of solutions of Type I is more constrained than in plane wave space-times. In this

case one can show the following:

Theorem 2.14. The only stationary minimal surface of Type I, where Xq
M parametrises a

minimal surface embedded in R3, that solve the blackfold equations in de Sitter space-times

is the plane.

Proof. If Xq
M also parametrises a minimal surface in L(D) then it must satisfy (2.59). Using

the Monge parametrisation we can write (2.59) explicitly as

Kττ =
1

2

h(r̃)∂r̃f(r̃)√
1 + f2

u + f2
v

1

r̃
(−fux1 − fvx2 + f(u, v)x3) . (2.85)

This case is very similar to (2.79), the difference being that the length scale associated

with each of the coordinates xq is the same (in the case of pure de Sitter rm = 0 these are

just equal to L). Therefore following the same analysis as for plane wave space-times, only

the plane R2, described by f(u, v) = 0, is a solution. Since f(u, v) = 0 then Γiâb̂ = 0 and

hence (2.61) is satisfied. Explicit evaluation of (2.61) for the helicoid, catenoid and Scherk

surfaces shows that (2.61) cannot be satisfied for these configurations.

It is trivial to show that configurations consisting of R(p) embedded into R(D−1) sat-

isfy (2.61), as shown in theorem 2.9. For embeddings of Type III, as shown in theorem 2.9,

all minimal surfaces on the unit sphere provide solutions to the blackfold equations.

3 Minimal surfaces and black hole horizons

In this section we explicitly construct the blackfold solutions within the classes presented

in section 2.6. We study their limiting surfaces, thermodynamic properties and their valid-

ity within the blackfold approximation. These configurations consist of planes, helicoids,

catenoids and Scherk surfaces as well as of minimal surfaces on the unit sphere such as

the Clifford torus. We deal with higher dimensional versions of helicoids and catenoids in

appendix B and appendix C.

3.1 Black discs and helicoids in flat space-time

As mentioned in section 2.1, the embedding of the helicoid (2.6) includes the R2 plane

as a special case when λ = 0. In order to understand better the case of the helicoid we

first review the case of the R2 plane first studied in [10] and we also analyse its regime of

validity according to the prescription of section 2.2, which was not done in [10].

3.1.1 Black discs

From corollary 2.11, the plane is a Type I embedding that solves the blackfold equations

in flat space-time. The mapping functions are chosen such that

t = τ , X1(ρ, φ) = ρ cosφ , X2(ρ, φ) = ρ sinφ , X i = 0 , i = 3, . . . , D − 1 , (3.1)
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Figure 1. Embedding of the rotating black disc in R3 with Ω = 1.

where ρ ≥ 0 and 0 ≤ φ ≤ 2π and hence the induced metric (2.50) takes the form of (1.1)

ds2 = −dτ2 + dρ2 + ρ2dφ2 . (3.2)

As explained in section 2.4, introducing rotation creates a limiting surface in the space-time

which can make the geometry compact. Therefore we add rotation to the plane such that

the geometry is characterised by a Killing vector field of the form (2.65),

ka∂a = ∂τ + Ω∂φ , k2 = 1− Ω2ρ2 . (3.3)

From the form of k we see that a limiting surface appears at k = 0. According to (2.17) this

satisfies the boundary condition (2.17) and hence the geometry has a circular boundary at

ρ+ = Ω−1, rendering the plane R2 compact. The geometry is thus that of a disc D of radius

Ω−1 with an (n+1)-sphere of radius r0(ρ) fibered over it due to the transverse sphere in the

metric (2.10). Therefore these black hole horizons (spatial sections) have topology S(D−2).

The size of the transverse sphere r0(ρ) is simply given by (2.16), i.e.,

r0(ρ) =
n

4πT

√
1− Ω2ρ2 . (3.4)

It is clear from this expression that r0(ρ) is maximal at the centre of the disc when ρ = 0 and

shrinks to zero at the boundary. The geometry is depicted in figure 1. This configuration

describes the ultraspinning regime of singly-spinning Myers-Perry black holes [10] and exists

in D ≥ 6.

Validity analysis. As this disc geometry, embedded into flat space-time, constitutes the

simplest example of a blackfold geometry we will apply the validity analysis of section 2.2

in order to exhibit its usefulness. For this geometry all intrinsic and extrinsic curvature

invariants vanish, since it is Ricci-flat and trivially embedded in flat space-time. Therefore,

of all the invariants described in (2.26), the only non-vanishing one is the invariant asso-

ciated with variations in the local temperature (or thickness) |k−1∇a∇ak|−
1
2 . Explicitly,

this leads to the requirement,

r0 �
1− Ω2ρ2

Ω
√

2− Ω2ρ2
. (3.5)

Since, from (2.16), we have that r0 ∝ k then this implies that near the axis of rotation

ρ = 0 we must have

r+Ω� 1 , r+ =
n

4πT
. (3.6)
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According to the identification with the thermodynamics of Myers-Perry black holes in [10],

the angular velocity is given by Ω = b−1 where b is the rotation parameter of the singly-

spinning Myers-Perry black hole. Therefore one should require r+ � b, which is the

original assumption when taking the ultraspinning limit of Myers-Perry black holes and

focusing only on the axis of rotation [51]. At any other point on the worldvolume the

requirement (3.5) reproduces the result of appendix B of [40] where the ultraspinning

limit was taken at an arbitrary point on the disc and not only at the axis of rotation.

Near the boundary k = 0 the requirement (3.5) cannot be satisfied for any finite value

of Ω. Therefore we introduce ε � 1 and consider the approximation valid in the interval

0 ≤ ρ ≤ ρ+ − ε while assuming the existence of a well defined boundary expansion.

This analysis shows that validity requirements based on the second order corrected free

energy are well based. The requirement (3.6) can also be recast as r+ � ρ+, exhibiting

the need for two widely separated horizon length scales. This provides a nice illustration

of the fact that a classification of second order invariants is required in order to assess the

validity of blackfold configurations to leading order. For most of the configurations in the

core of this paper we will simply state the results obtained from a detailed analysis of the

invariants (2.26), which is presented in appendix A.

Free energy. Despite the fact that, according to the analysis above, the approximation is

expected to break down around ρ = ρ+−ε we can determine its thermodynamic properties

exactly to leading order in ε. The leading order free energy, using (2.12), is given by

F =
Ω(n+1)

16πG
rn+

∫ 2π

0
dφ

∫ Ω−1−ε

0
dρ ρ

(
1− Ω2ρ2

)n
2

=
Ω(n+1)

8G
rn+

1 + Ωε(Ωε− 2)(Ωε(2− Ωε))
n
2

(n+ 2)Ω2
.

(3.7)

Since that εΩ� 1, the above expression for the free energy reduces to

F =
Ω(n+1)

8G
rn+

(
1

(n+ 2)Ω2
+O

(
ε
n+2
2

))
. (3.8)

From here we see that, according to the identification given in [10], the free energy for these

configurations matches, to leading order in ε, the free energy of ultraspinning Myers-Perry

black holes. We note that, the analysis of appendix B of [40] shows that, even though the

blackfold approximation is expected to break down near the boundary for ultraspinning

Myers-Perry black holes, the metric all the way to the boundary is still that of a locally

flat brane (2.10). This provides an example in which the assumption of the existence of a

smooth limit of the blackfold description when r0 → 0 gives rise to the correct description

of the gravitational object.

The fact that the free energy (3.8) gives rise to the correct thermodynamic properties

of the configuration, to leading order in ε, is generic for all configurations with boundaries

that we consider. The reason for this is due to the fact that the free energy (2.12) to

leading order approaches zero near the boundary and hence contributions of the integrand
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near the boundary are highly suppressed.20 For this reason, in all the examples that follow,

we perform integrations all the way to the boundary points but one should bear in mind

that such results are only valid to leading order in a boundary expansion.

3.1.2 Black helicoids

Helicoid geometries are embeddings of Type I in flat space-time that also solve the black-

fold equations according to corollary 2.11. Explicitly, this embedding is described by

t = τ , X1(ρ, φ) = ρ cos(aφ) , X2(ρ, φ) = ρ sin(aφ) , X3(ρ, φ) = λφ , (3.9)

and Xi = 0, i = 4, . . . , D − 1, where the coordinates lie within the range −∞ < ρ, φ <∞.

The only physically relevant parameter in this embedding is the pitch λ/a, since, if λ 6= 0,

the coordinate φ can always be rescaled such that a can be set to 1. However, since we are

interested in taking the limit λ→ 0 we keep both parameters. Without loss of generality,

we take λ ≥ 0 and a > 0. The induced metric (2.50) takes the form

ds2 = −dτ2 + dρ2 + (λ2 + a2ρ2)dφ2 . (3.10)

As in the case of the plane, we boost the helicoid along the φ direction with boost velocity

Ω such that

ka∂a = ∂τ + Ω∂φ , k2 = 1− Ω2
(
λ2 + a2ρ2

)
. (3.11)

According to (2.64) this corresponds to a Killing vector field in the ambient space-time of

the form

kµ∂µ = ∂t + aΩ (x1∂x2 − x2∂x1) + λΩ∂x3 , (3.12)

that is, the helicoid geometry is rotating in the (x1, x2) plane with angular velocity aΩ and

it is boosted along the x3 direction with boost velocity λΩ. From eq. (3.11), we see that a

limiting surface, constraining the coordinate ρ, appears at k = 0 when

ρ± = ±
√

1− Ω2λ2

aΩ
, (3.13)

which implies that we must have Ω2λ2 < 1. This limiting surface makes the helicoidal

geometry compact in the ρ direction but leaves the φ direction unconstrained. Therefore

these geometries are non-compact in the φ direction. The black hole horizons they give rise

to have topology R× S(D−3) in D ≥ 6, hence they have the topology of a black string. We

therefore refer to these geometries as helicoidal black strings, which can be thought of as the

membrane generalisation of the helical strings found in [10]). The fact that these geometries

have string topology suggests that they can be bent into a helicoidal ring, in the same way

that helical strings can be bent into helical rings [10]. In a related publication [52], we

show that this is indeed the case.21 The size of the transverse sphere r0(ρ) is given by

r0(ρ) =
n

4πT

√
1− Ω2(λ2 + a2ρ2) , (3.14)

20Higher-order contributions in a derivative expansion are also suppressed if n > 2. In the cases n = 1, 2

backreaction and self-force corrections are expected to be dominant with respect to derivative corrections [40]

and therefore the effective free energy to second order should not in general be trusted.
21We thank Roberto Emparan for suggesting this possibility to us.
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φ

Figure 2. Embedding of the rotating black helicoid in R3 with λ = a = Ω = 1, depicted in the

interval −3 ≤ φ ≤ 3.

and is again maximal at the origin ρ = 0 and vanishes at the boundaries ρ±. If Ω = 0 then

the geometry is static and becomes non-compact also in the ρ direction. This geometry is

depicted in figure 2.

The free energy and the Myers-Perry limit. The free energy of these configurations

can be obtained by evaluating (2.12) to leading order, yielding

F =
Ω(n+1)

16πG
rn+

∫
dφ

∫ ρ+

ρ−

dρ
√
λ2 + a2ρ2

(
1− Ω2(λ2 + a2ρ2)

)n
2

=
Ω(n+1)

16
√
πG

rn+
aΩ

∫
dφλΓ

(
1 +

n

2

) (
1− λ2Ω2

)n+1
2

2F̃1

(
−1

2
,

1

2
;
n+ 3

2
; 1− 1

λ2Ω2

)
.

(3.15)

The free energy is positive for all n and, since the geometry is non-compact in the φ direc-

tion, is infinite. Hence it is only physically relevant to speak about the free energy density,

i.e., the free energy (3.15) modulo the integration over φ. The remaining thermodynamic

properties can be easily obtained from eqs. (2.18)–(2.19) and we leave a more detailed

analysis of these to a later publication [52]. We note, however, that these geometries have

a non-trivial tension (2.21) as expected, since they are non-compact in the φ-direction.

As mentioned in section 2.1 the embedding of the helicoid (3.9) reduces to that of the

plane when λ→ 0, however the coordinate range of ρ lies in between ρ− < ρ < ρ+ instead

of 0 ≤ ρ ≤ ρ+. Therefore, in this limit, one is covering the disc twice. In order to avoid this

double covering, we rescale the free energy (3.15) such that F → (1/2)F when taking the

limit λ → 0. More precisely, we take the limit λ → 0 while keeping a fixed and make the

φ-coordinate periodic with period 2π/a. Integrating the free energy (3.15) in the interval

0 ≤ φ ≤ 2π/a and rescaling F → (1/2)F leads to the result for the disc (3.8) to leading

order in ε, once finally setting a = 1.

The existence of this non-trivial agreement with the geometry and thermodynamics of

the disc in the limit λ → 0 suggests that the family of singly-spinning Myers-Perry black

holes and the family of black helicoids are connected, at least in the ultraspinning limit, in

which the topology changes according to R× SD−3 → SD−2. These geometries, according

to the analysis of appendix A, are valid in the regime

r0 � λ/a , r+ � 1/(aΩ) , r+ � ρ+ . (3.16)
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Near the boundary, the requirements (2.26) are not possible to satisfy, therefore we assume

that the blackfold description is valid in the interval ρ− + ε ≤ ρ ≤ ρ+ − ε. As this config-

uration has a limit in which the disc, describing the Myers-Perry black hole is recovered,

one expects that the blackfold description of the black helicoids also has a smooth limit

when r0 → 0.

More families of helicoid geometries. The configuration presented above reduces to

that of a singly-spinning Myers-Perry black hole in the limit λ → 0 and hence one may

wonder how to construct other helicoid geometries that capture, in a certain limit, Myers-

Perry black holes with several ultraspins. There are in fact at least two ways in which this

can be done with an increasing degree of generality:

• Myers-Perry black holes with several ultraspins can be obtained from a helicoid ge-

ometry simply by splitting R(D−1) into a series of one R3 subspace, where the helicoid

with pitch λ/a is embedded, and several R2 planes. These geometries have topology

R×S(D−3) and reduce to Myers-Perry black holes with several ultraspins in the limit

λ→ 0.

• Alternatively, Myers-Perry black holes can also be obtained by splitting R(D−1) into

a series of l R3 subspaces and embedding a helicoid with pitch λa/aa in each of

those subspaces. These black holes have topology R(2l−1)×S(D−2l−1) and in the limit

λa → 0, ∀a reduce to to Myers-Perry black holes with several ultraspins. In the limit

in which we take λa → 0 but keep λ1 6= 0 this geometry reduces to the previous

example.

Both of these examples trivially solve the blackfold equations in flat space-time since prod-

ucts of Euclidean minimal surfaces are still Euclidean minimal surfaces. We note that

higher-dimensional helicoids (p-branes with helicoidal shape), which will be studied in

appendix B, do not describe these geometries, as in the limit λ→ 0 we recover a minimal

cone geometry instead of a p-ball.

3.2 Black discs and p-balls in plane wave space-times

In this section we construct the analogue black disc configuration of the previous section

in plane wave space-times and their higher-dimensional versions. This will highlight the

differences between inherent (various kinds of horizons) and non-inherent (induced by ro-

tation) limiting surfaces. Black discs and p-balls can be of Type I or Type II and we

will analyse both of them.

3.2.1 Black discs of Type I

In this case we have an embedding of the form (2.50) in the ambient space-time (2.46),

which is a solution to the blackfold equations according to theorem 2.14. Since these

solutions will be rotating then for (2.64) to be a Killing vector field of the background we

must choose A2 = A1. This geometry is obtained by choosing the mapping functions

t = τ , y = 0 , X1(ρ, φ) = ρ cosφ , X2(ρ, φ) = ρ sinφ , (3.17)
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and Xi = 0, i = 3, . . . , D − 2, leading to the induced wordvolume metric

ds2 = −R2
0dτ

2 + dρ2 + ρ2dφ2 , R2
0 = 1 +A1ρ

2 . (3.18)

We introduce worldvolume rotation by considering the Killing vector field

ka∂a = ∂τ + Ω∂φ , k2 = 1 + (A1 − Ω2)ρ2 . (3.19)

From this expression we see that a limiting surface is present in the space-time if A1−Ω2 <

0. If A1 = Ω2 then there is no limiting surface and the disc is non-compact. If A1−Ω2 < 0

then the disc is cut at ρ+ =
√

(Ω2 −A1)
−1

. Hence we must have that Ω2 > A1. It is worth

mentioning that if A1 < 0 there exists a compact static solution with Ω = 0.

The free energy for these configurations is obtained by integrating the general free

energy (2.12) to leading order such that

F =
Ω(n+1)

16πG
rn+

∫ 2π

0
dφ

∫ ρ+

0
dρR0ρ

(
1 + (A1 − Ω2)ρ2

)n
2

=
Ω(n+1)

8G
rn+

2F1

(
−1

2 , 1; n2 + 2; A1
A1−Ω2

)
(n+ 2) |Ω2 −A1|

,

(3.20)

where r+ = n/(4πT ). These configurations connect to the singly spinning Myers-Perry

black hole in flat space-time analysed in the previous section when sending A1 → 0. Clearly,

when Ω2 = A1 the free energy diverges as the disc becomes non-compact. This geometry,

valid in the regime r+ �
√
A1
−1

and r+ � ρ+ according to appendix A, has topology

S(D−2) where the size of the transverse sphere is given by

r0 = r+

√
1 + (A1 − Ω2)ρ2 , (3.21)

and hence varies from a maximum value at ρ = 0 and shrinks to zero at the boundary

ρ+. The generalisation of Myers-Perry black holes in plane wave space-times is not known

analytically. The geometries constructed here should capture the ultraspining regime of

such black holes. Note that since we want the plane wave space-time (2.46) to be a vacuum

solution we need to require the existence of at least one extra transverse direction i = 3

where the brane is point-like and located at x3 = 0 such that 2A11 + A33 = 0. Therefore

these solutions exist in vacuum for D ≥ 6.

Thermodynamics. The thermodynamic properties of these black discs can be obtained

from (3.20) using (2.19). The mass and angular momentum read

M =
Ω(n+1)r

n
+

8G

2Ω2
2F1

(
−1

2 , 2; n2 + 2; A1
A1−Ω2

)
(n+ 2) (A1 − Ω2)2

−
(n+ 1)

(
A1 − Ω2

)
2F1

(
−1

2 , 1; n+4
2 ; A1

A1−Ω2

)
(n+ 2) (A1 − Ω2)2

 ,

(3.22)

J =
Ω(n+1)

4G
rn+Ω

2F1

(
−1

2 , 2; n2 + 2; A1
A1−Ω2

)
(n+ 2) (Ω2 −A1)2 . (3.23)
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These quantities reduce to those obtained in [10] for Myers-Perry black holes when A1 = 0.

This blackfold solution does not satisfy the Smarr-relation for flat space-time and hence it

has a non-trivial tension given by

T = −
Ω(n+1)r

n
+

4G

Ω2
2F1

(
−1

2 , 2; n2 +2; A1
A1−Ω2

)
+
(
A1 − Ω2

)
2F1

(
−1

2 , 1; n+4
2 ; A1

A1−Ω2

)
(n+ 2) (A1 − Ω2)2 , (3.24)

which vanishes in the limit A1 → 0.

3.2.2 Black discs of Type II

Black discs of Type II have embeddings of the form (2.53) and are solutions of the blackfold

equations according to theorem 2.13. Again, since the geometries we are interested in can

be rotating, we need to choose A2 = A1 such that (2.64) is a Killing vector field of the

ambient space-time (2.46). The mapping functions for this geometry are given by

t = τ , y = z , X1(ρ, φ) = ρ cosφ , X2(ρ, φ) = ρ sinφ , (3.25)

and Xi = 0, i = 3, . . . , D − 2. This leads to a worldvolume geometry which is itself a

plane wave,

ds2 = −R2
0dτ

2 + 2(1−R2
0)dτdz + (2−R2

0)dz2 + dρ2 + ρ2dφ2 , R2
0 = 1 +A1ρ

2 . (3.26)

We recall that, as mentioned in section 2.4, all Type II embeddings are non-compact in

the z-direction. Rotation is introduced exactly as in (3.19) and hence the discussion of

limiting surfaces and boundaries is the same.

The free energy for these configurations takes a more simple form

F =
Ω(n+1)

16πG
rn+

∫
dz

∫ 2π

0
dφ

∫ ρ+

0
dρ ρ

(
1 + (A1 − Ω2)ρ2

)n
2

=
Ω(n+1)

8G
rn+

∫
dz

1

(n+ 2)|Ω2 −A1|
,

(3.27)

where r+ = n/(4πT ). These configurations connect to the singly spinning Myers-Perry

black hole in flat space-time, modulo the integration over z, analysed in the previous

section when sending A1 → 0. If one includes the z direction then the limit A1 → 0 gives

rise to a Myers-Perry string. We note that this free energy and also its thermodynamic

properties are exactly the same, again modulo the integration over z, as those for black discs

in (Anti)-de Sitter space-times studied in [11]. This becomes evident if we one identifies

A1 = L−2 where L is the (Anti)-de Sitter radius.

This geometry, valid in regime r+ �
√
A1
−1

and r+ � ρ+ according to appendix A,

has topology R × S(D−3) where the size of the transverse sphere is given by (3.21) and

hence behaves in the same way as for discs of Type I. These geometries provide evidence

for the existence of yet another generalisation of Myers-Perry black holes in plane wave

space-times for D ≥ 7, which is not known analytically.
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3.2.3 Black p-balls of Type II

Black p-balls are just embeddings of R(p) into R(D−1) or R(D−2) with spherical boundary

conditions and hence trivially solve the blackfold equations (see theorem 2.9). If we consider

rotation these geometries describe Myers-Perry-type of black holes with several ultraspins

where p must be an even number. If the embedding is of Type II then its thermodynamic

properties are very similar to the case of rotating black p-balls in (Anti)-de Sitter space-

times studied in [11]. We will however focus on static geometries which are valid for all p.

For simplicity, we take the configuration to be of Type II.

In this case we embed a p-ball into the (D − 2) Euclidean metric of (2.46) while

choosing Xi = 0, i = p + 1, . . . , D − 2. The induced metric on the worldvolume, of the

general form (2.53), is given by

ds2 = −R2
0dτ

2 + 2(1−R2
0)dτdz + (2−R2

0)dz2 + dρ2 + ρ2dΩ2
(p−1) , (3.28)

where R2
0 = 1 + A1ρ

2. We have chosen for simplicity Axâxâ = Ax1x1 = A1, â = 1, . . . , p.

Since we want the geometry to be compact we assume that A1 < 0 and hence a limiting

surface appears at the boundary ρ+ =
√
A1
−1

. These geometries have topology R×S(D−3).

The transverse size of the horizon varies according to (3.21).

The free energy takes the simple form

F =
Ω(n+1)

16πG
rn+

∫
dz

∫
dΩ(p−1)

∫ ρ+

0
dρ ρp−1

(
1 +A1ρ

2
)n

2

=
Ω(n+1)

16πG
Ω(p−1)r

n
+

∫
dz
A
−p/2
1 Γ

(
n
2 + 1

)
Γ
(p

2

)
2Γ
(

1
2(n+ p+ 2)

) ,

(3.29)

where r+ = n/(4πT ) and agrees with the static limit of the disc (p = 2) when setting

Ω = 0 in (3.27). These are the analogous configurations to those of (1.7) in plane wave

space-times. For even p they describe static rotating black holes in plane wave space-

times analogous to those in de Sitter space-time [11] with equal free energy, modulo the

integration over z, provided we set A1 = L2. For odd p these do not arise as a limit of

Myers-Perry-type black holes and hence hint to the existence of a new family of rotating

black holes. These geometries also have a non-vanishing tension given by

T = −
Ω(n+1)

16πG
Ω(p−1)r

n
+

∫
dz
nA
−p/2
1 Γ

(
n
2 + 1

)
Γ
(p

2

)
Γ
(n+p

2

) . (3.30)

The validity analysis follows the same footsteps as for black discs of Type II as in

appendix A. In the end we must just require that r+ �
√
A1
−1

and

r+ �
k

√
A1

√
2 +A1ρ2

, (3.31)

which leads to r+ � ρ+ near ρ = 0 and requires the introduction of a cut-off ε near the

boundary.
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3.3 Black helicoids in plane wave space-times

In this section we construct the analogous configurations of the black helicoids of section 3.1.

These configurations according to theorem 2.14 and 2.13 can be of Type I or Type II

and connect to the black disc geometries of the previous section in an appropriate limit.

They require that A2 = A1 in order to be valid solutions of the blackfold equations. We

will also show that as in the case of the discs, inherent limiting surfaces allow for static

helicoid configurations.

3.3.1 Black helicoids of Type I

Helicoids of Type I are embeddings of the general form (2.50) into plane wave space-

times (2.46). They are described by the mapping functions

t = τ , y = 0 , X1(ρ, φ) = ρ cos(aφ) , X2(ρ, φ) = ρ sin(aφ) , X3(ρ, φ) = λφ , (3.32)

and Xi = 0, i = 4, . . . , D − 1, where a is a constant which we take to be positive without

loss of generality. Similarly we take λ ≥ 0. The ratio λ/a is the pitch of the helicoid. The

induced worldvolume metric takes the form

ds2 = −R2
0dτ

2 + dρ2 + (λ2 + a2ρ2)dφ2 , R2
0 = 1 +A1ρ

2 . (3.33)

This geometry reduces to the case of the disc (3.18) when a = 1 and λ = 0. The helicoid

is boosted along the φ direction with boost velocity Ω such that

ka∂a = ∂τ + Ω∂φ , k2 = 1 +A1ρ
2 − Ω2(λ2 + a2ρ2) . (3.34)

From the expression for k we see that for the solution to be valid at ρ = 0 we need that

Ω2λ2 < 1.22 Furthermore, a limiting surface exists whenever A1ρ
2 − Ω2(λ2 + a2ρ2) < 0 in

which case the helicoid is bounded in the ρ direction and has boundaries at

ρ± = ±

√
Ω2λ2 − 1

A1 − a2Ω2
, (3.35)

where one must require that A1 − a2Ω2 < 0. Note in particular that if A1 = a2Ω2 there is

no limiting surface. The limiting surface constrains the ρ direction but not the φ direction,

therefore these geometries are non-compact along φ. As for the case of discs of Type I

a static solution Ω = 0 exists provided A1 < 0. These black hole horizons have topology

R× S(D−3) where the size of the transverse sphere r0(ρ) is given by

r0(ρ) =
n

4πT

√
1 +A1ρ2 − Ω2(λ2 + a2ρ2) , (3.36)

and attains its maximum value at the origin ρ = 0 and vanishes at the boundaries ρ±.

These geometries, according to appendix A, exist in plane wave backgrounds in vacuum

for D ≥ 6 in the regime

r0 �
√
A1 + a2/λ2

−1
, r+ �

√
A1 − a2Ω2

−1
, r+ � ρ+ . (3.37)

22In the strict limit Ωλ = 1 all thermodynamic quantities vanish so we do not consider it.
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Free energy. The free energy can be obtained from (2.12) to leading order and reads

F =
Ω(n+1)

16πG
rn+

∫
dφ

∫ ρ+

ρ−

dρ R0

√
λ2 + a2Ω2

(
1 +A1ρ

2 − Ω2(λ2 + a2ρ2)
)n

2 , (3.38)

where r+ = n/(4πT ). It is not possible to integrate this expression and obtain a closed

analytical form. However, it can be easily be done numerically. In the high pitch limit

λ� 1, for example, we can obtain an approximate expression up to order O(λ−1),

F =
Ω(n+1)

16πG
rn+

∫
dφ

√
πλΓ

(
n
2 + 1

) (
1− λ2Ω2

)n+1
2

2F̃1

(
−1

2 ,
1
2 ; n+3

2 ;
A1(λ2Ω2−1)

a2Ω2

)
aΩ

. (3.39)

In the limit λ→ 0 the free energy (3.38) reduces to the free energy of the disc by simulta-

neously rescaling F → (1/2)F due to the double covering of the coordinate ρ, integrating

φ over the interval 0 ≤ φ ≤ 2π/a and setting a = 1. Furthermore, in the limit A1 → 0 it

reduces to the free energy of the helicoid in flat space-time (3.15). The remaining thermo-

dynamic properties can be obtained using (2.19).

3.3.2 Black helicoids of Type II

We now turn our attention to black helicoid geometries of Type II. These are described

by an embedding geometry of the form (2.53). The embedding map is given by

t = τ , y = z , X1(ρ, φ) = ρ cos(aφ) , X2(ρ, φ) = ρ sin(aφ) , X3(ρ, φ) = λφ , (3.40)

and Xi = 0, i = 4, . . . , D − 2. The geometry is therefore non-compact in the z direction.

The induced metric on the worldvolume takes the form of a non-planar-fronted wave

ds2 = −R2
0dτ

2 + 2(1−R2
0)dτdz + (2−R2

0)dz2 + dρ2 + (λ2 + a2ρ2)dφ2 , (3.41)

where R2
0 = 1 + A1ρ

2. The limiting surface and its boundaries are the same as for the

helicoids of Type I studied above. These black holes have horizon topology R2 × S(D−4)

and are valid solutions in plane wave backgrounds in vacuum for D ≥ 7 in the regime

r0 � λ/a, r+ �
√
A1(1− a2Ω2)

−1
and r+ � ρ+ according to appendix A.

The free energy for these configurations is

F =
Ω(n+1)

16πG
rn+

∫
dz

∫
dφ

∫ ρ+

ρ−

dρ
√
λ2 + a2ρ2

(
1 +A1ρ

2 − Ω2(λ2 + a2ρ2)
)n

2 (3.42)

=
Ω(n+1)

16πG
rn+

∫
dz

∫
dφ

√
πλΓ

(
n
2 + 1

) (
1− λ2Ω2

)n+1
2

2F̃1

(
−1

2 ,
1
2 ; n+3

2 ;
a2(1−λ2Ω2)
λ2(A1−a2Ω2)

)
√
|a2Ω2 −A1|

,

and reduces to the free energy of the disc of Type II (3.27) when λ → 0, after rescaling

F → (1/2)F , integrating φ over the interval 0 ≤ φ ≤ 2π/a and setting a = 1. In the static

case Ω = 0 we need A1 < 0 for the geometry to be compact. In this case the free energy

reduces to

F =
Ω(n+1)

16πG
rn+

∫
dz

∫
dφ

√
πλΓ

(
n+2

2

)
2F1

(
−1

2 ,
1
2 ; n+3

2 ; a2

A1λ2

)
√
|A1|Γ

(
n+3

2

) . (3.43)
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Their thermodynamic properties can be obtained using (2.19) and lead to very cumbersome

expressions.

3.4 Black catenoids and black Scherk surfaces in plane wave space-times

In this section we construct black catenoids and black Scherk surfaces in asymptotically

plane wave space-times. These embeddings are Type II embeddings and they solve the

blackfold equations, according to theorem 2.13, for a specific equilibrium condition between

the angular velocity and the plane wave matrix Aqr components. We begin by studying

the catenoids and then move on to the slightly more complicated case of Scherk surfaces.

3.4.1 Black catenoids of Type II

The catenoid is the only non-trivial minimal surface of revolution in R3 (the trivial one

being the plane). Its embedding can be parametrised by

X1(ρ, φ) = c cosh
(ρ
c

)
sin(aφ) , X2(ρ, φ) = c cosh

(ρ
c

)
cos(aφ) , X3(ρ, φ) = ρ , (3.44)

and t = τ , y = z as well as Xi = 0, i = 4, . . . , D−2. The constants a and c can be chosen to

be positive, without loss of generality. The coordinates range between the intervals ρ ≥ 0

and 0 ≤ φ ≤ 2π/a. The induced metric, of the general form (2.53), reads

ds2 = −R2
0dτ

2 + 2(1−R2
0)dτdz + (2−R2

0)dz2 + cosh2
(ρ
c

) (
dρ2 + a2c2dφ2

)
, (3.45)

where R2
0 = 1 + c2A1 cosh2(ρ/c). Therefore these geometries are non-compact in the z

direction. We have also made the choice Ax1x1 = Ax2x2 = A1 and Ax3x3 = 0 since we

need the catenoid to rotate and hence we require that (2.64) is a Killing vector field of the

ambient space-time. The catenoid is rotating with angular velocity Ω such that

ka∂a = ∂τ + Ω∂φ , k2 = 1 + c2(A1 − a2Ω2) cosh2
(ρ
c

)
. (3.46)

This corresponds to a background Killing vector field of the form (2.64) rotating with

angular velocity aΩ in the (x1, x2) plane and not boosted in the x3 direction. In general

we see that if A1 − a2Ω2 < 0 a limiting surface appears constraining the coordinate ρ.

However the solution to the blackfold equations (2.84) requires that A1 = a2Ω2 and hence

that k = 1. Therefore we see that these catenoid geometries are rotating but are non-

compact in the ρ direction. These geometries give rise to black hole horizon topologies of

the form R3 × S(D−5) and exist in vacuum for D ≥ 7. These are depicted in figure 3.

Thermodynamics and validity analysis. The free energy of these configurations takes

the following form

F = c a
Ω(n+1)

16πG

∫
dz

∫
dρ

∫ 2π
a

0
dφ cosh2

(ρ
c

)
rn+

(
1 + c2(A1 − a2Ω2) cosh2

(ρ
c

))n
2

= c
Ω(n+1)

8G

∫
dz

∫
dρ cosh2

(ρ
c

)
rn+ ,

(3.47)
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Figure 3. Embedding of the rotating black catenoid in R3 with a = c = 1, depicted in the interval

−3 ≤ ρ ≤ 3.

where r+ = n
4πT . Since the configuration is non-compact, it is only meaningful to talk

about the free energy density, i.e., the free energy modulo the integrations over z and ρ.

Since the catenoid is rotating, it has an angular momentum given by

J = c3a2nΩ
Ω(n+1)

8G

∫
dz

∫
dρ cosh4

(ρ
c

)
rn+ . (3.48)

We now turn our attention to the validity of these configurations. Since this is a Type

II embedding we need to check the invariants R and uaubRab. Using (2.54) we find the

requirements

r0 �
c√
2

cosh2
(ρ
c

)
, r0 � k

cosh
(ρ
c

)√
A1 cosh

(
2ρ
c

)
− a2Ω2

. (3.49)

The first invariants take its minimum value when ρ = 0 while the second takes its minimum

value when ρ→∞. Therefore we only have to require r0 � c and r+ �
√
A1
−1

.

3.4.2 Black Scherk surfaces of Type II

In this section we study rotating black Scherk surfaces which unify the black catenoid, the

black helicoid and the black disc of Type II. This family of solutions has the geometry

of the associate family of the helicoid and the catenoid. The form of its embedding was

already given in (2.68), explicitly, we have that

X1(ρ, φ) = λ̃c sinh
(ρ
c

)
sin(aφ) +

√
1− λ̃2c cosh

(ρ
c

)
cos(aφ) ,

X2(ρ, φ) = −λ̃c sinh
(ρ
c

)
cos(aφ) +

√
1− λ̃2c cosh

(ρ
c

)
sin(aφ) ,

X3(ρ, φ) = λ̃acφ+

√
1− λ̃2ρ ,

(3.50)

and t = τ , y = z as well as Xi = 0, i = 4, . . . , D−2. If we set λ̃ = 0 we recover the catenoid

geometry studied in the previous section, while if we set λ̃ = 1, redefine ac = λ in X3(ρ, φ)

and introduce a new ρ̃ coordinate such that c sinh(ρ/c) = ρ̃ we recover the helicoid in the

form used in section 3.3. The induced metric on the worldvolume takes exactly the same
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(a) (b) (c)

(d) (e) (f)

Figure 4. Embedding of the rotating black Scherk surface in R3 with a = c = 1, depicted in the

interval −1 ≤ ρ ≤ 1 and −2π ≤ φ ≤ 2π. The images show the deformation of the horizon geometry

as the parameter λ̃ is changed. Image (a) corresponds to the helicoid λ̃ = 1, (b) to λ̃ = 0.7, (c) to

λ̃ = 0.5, (d) to λ̃ = 0.3, (e) to λ̃ = 0.1 and (f) to the catenoid λ̃ = 0.

form as for the catenoid (3.45) since the spatial part is λ̃-independent. However, R0 is

given instead by

R2
0 = 1 +

A1

2
c2

(
1− 2λ̃2 + cosh

(
2ρ

c

))
. (3.51)

We have made the choice Ax1x1 = Ax2x2 = A1 and Ax3x3 = 0 so that the ambient space-

time has a one-family group of isometries associated with rotations in the (x1, x2) plane.

The Scherk surface is boosted along the φ direction with boost velocity Ω such that

ka∂a = ∂τ + Ω∂φ , k2 = R2
0 − Ω2a2c2 cosh2

(ρ
c

)
, (3.52)

with corresponds to a Killing vector field of the form (2.64) with angular velocity aΩ in

the (x1, x2) plane and with boost velocity λ̃aΩ along the x3 direction. In general there is

a limiting surface in the space-time, however, as shown in theorem 2.13 the solution to the

equations of motion requires A1 = a2Ω2 and hence one finds that the limiting surface is

removed since k takes the constant value

k2 = 1− a2c2λ̃2Ω2 . (3.53)

In the case of the catenoid of the previous section (λ̃ = 0) we recover the result k = 1. We

also see that in order to have a valid configuration we need to require a2c2λ̃2Ω2 < 1. In

the case of the helicoid, where λ̃ = 1 and λ = ac, we recover the result Ω2λ2 < 1 obtained

in section 3.3. These configurations give rise to black hole horizon topologies of the form

R3 × S(D−5) for all λ̃ in D ≥ 7. However, the geometry of the horizon varies greatly with

λ̃ from that of a helicoid to that of the catenoid as depicted in figure 4.

Because the induced metric for these geometries takes the same form as for the black

catenoids (3.45), the free energy (2.12) to leading order also takes the same form and hence

all its thermodynamic properties are the same as those presented in (3.47) and (3.48).

Validity analysis. The analysis of the validity of these configurations is very similar to

the case of the catenoids. In particular because its a Type II embedding then we have
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that the worldvolume Ricci scalar is just given by the Ricci scalar of the spatial part of

the metric due to (2.54). Since the spatial part of the metric does not differ from (3.45)

we obtain again the requirement r0 � c. From the invariant uaubRab we simply get

that r+ �
√
A1
−1

while the invariant k−1∇a∇ak vanishes since k is constant along the

worldvolume.

From the point of view of the validity requirements in (2.26) these configurations are

valid blackfold solutions leading to regular horizons. However, the geometry of Scherk’s

second surface has self-intersections for any value of λ̃ which is neither the helicoid (λ̃ = 1)

nor the catenoid (λ̃ = 0) (see e.g. [53]). This is visible in the image (e) of figure 4. Therefore

in the strict mathematical sense, these geometries are not embedded submanifolds.

As explained in section 2.2, the set of requirements (2.26) were obtained assuming that

curvature corrections were dominant over backreaction and self-force effects. However, in

the case of geometries with self-intersections, self-force effects, near the location where the

horizon meets itself, are expected to dominate over curvature corrections. In particular, the

existence of self-intersections means that (2.32) is not satisfied. It is still an open question

of whether or not blackfold worldvolumes with self-intersections can give rise to regular

black hole solutions. A more in-depth analysis of these cases, perhaps using methods

similar in spirit to those of [26] or by explicitly constructing the perturbative solution as

in [41], would be required in order to assess its validity.

3.5 Black p + 2-balls and minimal surfaces in S(p+1) in de Sitter space-times

In section 2.5 we showed that minimal surfaces on S(p+1) solve the blackfold equations,

which led to theorem 2.9. The purpose of this section is to show that minimal surfaces on

S(p+1) can be useful for constructing black hole horizons in de Sitter space-time. Due to the

validity issues of embeddings of Type III, discussed in section 2.4, these geometries must

be embedded in an ambient space-time with a black hole horizon in order to avoid conical

singularities at the origin. The starting point of theorem 2.9 is the existence of a p+ 2-ball

solution in the space-times (2.48). These geometries are obtained by choosing t = τ and

embedding a p+2-ball into the conformally Euclidean part of the metric (2.49), giving rise

to a (p+ 2)-dimensional worldvolume geometry of the general form (2.55) which reads

ds2 = −R2
0dt

2 +R−2
0 dρ2 + ρ2dΩ2

(p+1) , R2
0 = 1− rn+p+2

m

ρn+p+2
− ρ2

L2
. (3.54)

This metric is not a de Sitter metric any longer and its Ricci curvature has a singularity

at r = 0. However, if the black hole is present rm 6= 0 then this singularity is shielded

behind the black hole horizon, which is located at the lowest positive real root of R0 = 0.

The space-time is defined in the coordinate range ρ− ≤ ρ ≤ ρ+ where ρ± denote the two

positive real roots of R0 = 0 describing the location of the black hole horizon and the

location of the cosmological horizon. That is, the p + 2-ball is a compact geometry. Its

topology is S1 × S(D−3) due to the existence of the inner black hole horizon. Since this

geometry is static one has that k = R0. Therefore the free energy is then

F =
Ω(n+1)

16πG
rn+

∫
dΩ(p)

∫ ρ+

ρ−

ρp+1 kn , (3.55)
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Figure 5. The Clifford torus visualised in R3 by applying a stereographic projection from S3 to

R3. These are constant τ and ρ slices of the geometry (3.58).

where r+ = n/(4πT ). This free energy cannot be integrated to a closed expression for

n + p + 2 ≥ 5 (even in the limit L → ∞) but it can easily be evaluated numerically.

These geometries are just the analogue geometries of the p-balls constructed in section 3.2.

Theorem 2.9 says that we can place any minimal surface in S(p+1) and that will be a

solution of the blackfold equations. We will now analyse the case of the Clifford torus and

then its higher-dimensional version.

3.5.1 Clifford torus

We begin with the classical example of the Clifford torus which is a minimal surface in

S3.23 In order to embed it we consider the metric on S3 written in the form

dΩ2
(3) = dθ2 + sin2 θdφ2

1 + cos2 θdφ2 . (3.56)

We embed the Clifford torus (p = 2) by choosing a constant angle sin2 θ = R2. The free

energy (3.55) becomes

F [R] =
Ω(n+1)

16πG
rn+(2π)2

∫ ρ+

ρ−

ρp

(
1− rn+p+1

m

ρn+p+1
− ρ2

L2

)n
2

R
√

1−R2 . (3.57)

Varying this free energy with respect to R leads to the unique solution defining the Clifford

torus R2 = 1/2, for which each circle has equal radius. Therefore the induced metric of

the (p+ 2)-dimensional geometry takes the form

ds2 = −R2
0dt

2 +R−2
0 dρ2 +

ρ2

2

(
dφ2

1 + dφ2
2

)
, R2

0 = 1− rn+p+1
m

ρn+p+1
− ρ2

L2
. (3.58)

These geometries give rise to black hole horizon topologies of the form S1 × T2 × S(D−5),

where T2 is the torus. This geometry is depicted in figure 5.

23The simplest example of a minimal surface in S3 is the equator of the 3-sphere which is itself a 2-sphere.

However, this configuration is already included in (3.54) when p = 1.
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3.5.2 Higher-dimensional Clifford tori

The previous configurations can be generalised to higher dimensions. We write the metric

on the (p+ 1)-sphere as

dΩ2
(p+1) = dθ2 + cos2 θdΩ2

(κ1) + sin2 θdΩ2
(κ2) , κ1 + κ2 = p , (3.59)

and choose the embedding sin2 θ = R2. The free energy (3.55) becomes

F [R] =
Ω(n+1)

16πG
rn+

∫
dT(p)

∫ ρ+

ρ−

ρp

(
1− rn+p+1

m

ρn+p+1
− ρ2

L2

)n
2

Rκ1
(
1−R2

)κ2
2 , (3.60)

where dT(p) denotes the volume form on the p-dimensional torus. Varying this free energy

with respect to R leads to a unique solution given by

R2 =
κ1

κ1 + κ2
. (3.61)

Therefore the induced metric becomes

ds2 = −R2
0dt

2 +R−2
0 dρ2 + ρ2

(
κ1

κ1 + κ2
dΩ2

(κ1) +
κ2

κ1 + κ2
dΩ2

(κ2)

)
, (3.62)

where R0 is given in (3.58). We see that in general the two spherical parts of the geometry

have unequal radii. In the case where the two radii are equal, that is, when κ1 = κ2 these

geometries are known as higher-dimensional Clifford tori. These configurations give rise to

static black hole horizon topologies of the form S1×T(p)×S(D−p−3) and are valid, according

to appendix A, in there regime r0 � L, r0 � rm and r+ � ρ±.

The on-shell free energy (3.55) becomes

F =
Ω(n+1)

16πG
rn+T(p)

∫ ρ+

ρ−

dρ ρp

(
1− rn+p+1

m

ρn+p+1
− ρ2

L2

)n
2

, (3.63)

where T(p) is the volume of the p-dimensional torus, given by

T(p) = Ω(κ1)Ω(κ2)

(
κ1

κ1 + κ2

)κ1
2
(

κ2

κ1 + κ2

)κ2
2

. (3.64)

Since we cannot find a closed form for the free energy (3.63), we integrate it numerically

for several values of p and n, the result is given in figure 6. These configurations are also

valid the limit L→∞, however, in that case they are not compact as ρ+ →∞.

4 Discussion

In this paper we have constructed a series of new blackfold configurations which can give

rise to interesting novel black hole horizon geometries and topologies in asymptotically

flat, plane wave and de Sitter space-times. These blackfold geometries are such that they

intersect limiting surfaces in the ambient space-time, which are either inherently present in

the space-time or introduced via rotation. The key ingredient in this work was the recursive

use of minimal surfaces in R(D) and in S(D). The presence of limiting surfaces allowed us to

turn several of the non-compact minimal surfaces in R(D) into compact minimal surfaces,

at least in some directions, in Lorentzian space-times.
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Figure 6. Free energy for the Clifford Tori with rm = 1
2 , L = 1 and p = 2 (blue curve), p = 3 (red

curve) and p = 4 (yellow curve).

Non-trivial minimal surfaces in L3 are also available in the literature (see e.g. [35–37]

for Lorentzian helicoids and catenoids). However, these are embedded in a non-trivial way

in the time-like direction and hence most of these surfaces do not preserve a one param-

eter family of isometries of the ambient space-time. According to the blackfold method

explained in section 2.2, these are not suitable for constructing black hole geometries.

We have highlighted the fact that there exists the potential for a fruitful interplay

between the mathematics of minimal surfaces and black hole geometries. In particular, we

were able to show that minimal surfaces such as planes, helicoids, catenoids and Clifford

tori give rise to black hole horizons. However, we have only scratched the surface since the

mathematics of minimal surfaces is a very active and productive subject of mathematics

and, in particular, few examples of higher-dimensional minimal surfaces are known.

We believe that in section 2.2 we have made an important contribution to the blackfold

method. Namely, we have given a prescription for systematically analysing the regime of

validity of a blackfold configuration based on the second order effective free energy (2.12)

obtained in [6]. This allows for a classification of all the length scales associated with the

geometric invariants that characterise each blackfold configuration, and are defined order-

by-order in a derivative expansion. Therefore at each order in the expansion, higher-order

invariants must be classified in order to assess the validity of each configuration. What our

analysis has shown is that the blackfold approach to leading order would not be complete

without the understanding of higher-order corrections up to second order in the derivative

expansion, as this is required in order to understand the regimes of validity of leading order

configurations. As a simple example, in section 3.1.1, we have applied this method to a disc

geometry in flat space-time for which all intrinsic and extrinsic curvature invariants vanish

but the length scale associated with local variations of the thickness yields the condition

r+Ω� 1 near the axis of rotation, which is required in order to capture the ultraspinning

limit of Myers-Perry black holes.

In section 2.5 and 2.6 we have proved several assertions regarding solutions to the

blackfold equations. For example, we have shown that the only two stationary minimal

surfaces embedded into R3 which solve the blackfold equations in flat space-time are the

plane and the helicoid. We believe that a systematic study of the blackfold equations using
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symmetries as a guiding principle might turn out to be a fruitful endeavour for classifying

the topologies of black hole horizons in higher-dimensions, at least those which admit

regimes with a large separation of scales.

In section 3.1 we constructed rotating black helicoids in D ≥ 6 in asymptotically flat

space-time. One interesting feature of these geometries is that, by taking an appropriate

limit, one recovers the family of singly-spinning Myers-Perry black holes, described by a

rotating black disc. Therefore, this family of rotating black helicoids seems to be con-

nect to the family of Myers-Perry black holes, at least in the ultraspinning regime. It

would be interesting to explore this using numerical methods. While this result is true in

flat space-time, we have shown that it is not the case in (Anti)-de Sitter space-times as

it was not possible to construct the corresponding helicoid geometries there. In a later

publication [52], we show how discs and helicoid geometries can be used to construct new

effective theories and other non-trivial black hole geometries such as helicoidal black rings

and helicoidal black tori.

In plane wave space-times we also constructed different families of rotating black he-

licoids and black discs. Though there are no exact analytic black holes in asymptotically

plane wave space-times in vacuum, we have given evidence for the existence of several fam-

ilies of rotating black hole solutions with spherical topology (the analogue of Myers-Perry

black holes). We have also shown that these geometries can be captured by taking an

appropriate limit of black helicoids. In addition, we showed that rotating black catenoids

also give rise to black hole horizons in plane wave space-times and in appendix D we con-

structed several p-sphere black holes. It would be interesting to construct approximate

metrics for these geometries using the machinery of [18, 41, 42].

In section 3.2 we showed that in plane wave space-times black discs and helicoid ge-

ometries can be static due to the presence of an inherent limiting surface for certain values

of the plane wave matrix components. In the case of the disc this is analogous to what

happens in de Sitter space-time, for which such geometries describe the static ultraspinning

regime of Kerr-de Sitter black holes. We also showed the existence of static black p-ball

geometries, which analogously to the de Sitter case, capture the intersection of the horizon

of higher-dimensional Kerr-de Sitter black holes with the cosmological horizon when p is

an even number. However, we have noticed that these solutions are valid for all p. For

odd p these are connected to another family of black hole solutions which do not have

spherical horizon topology. As observed in [10], it is not possible to construct odd-ball

geometries when only centrifugal force and tension need to equilibrate each other. When

inherent limiting surfaces are present in the background space-time, however, they act as

an internal pressure and its interplay with the tension allows for the existence of static

odd-ball geometries. We have observed the same phenomenon in appendix D where static

black even p-spheres are also possible configurations.

In section 3.4 we have given the first example of a non-trivial blackfold solution whose

worldvolume geometry has self-intersections. This geometry, known as Scherk’s second

surface, interpolates between the catenoid and the helicoid and hence connects these two

families (and also the disc since it can be obtained as limit of the helicoid) in plane wave

space-times. However, it is unclear at the present moment whether or not blackfold geome-
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tries with self-intersections do give rise to regular black hole solutions since they do not

satisfy (2.32). However, one might expect that gravitational backreaction might smooth

out such intersections.

We conclude this discussion with some caveats and corresponding avenues for future

research.

First of all, the perturbative construction of approximate metrics using the blackfold

approach has not been fully understood when a blackfold worldvolume intersects a limiting

surface in the space-time. It would be very interesting to understand how this works using

the methods of [41, 42] for the simplest example of Myers-Perry black holes. In fact, our

criteria of validity put forth in section 2.2.1 lead to the conclusion that for geometries with

boundaries, the blackfold approximation is expected to break down near the boundary.

This is due to the fact that the local variations in the thickness vanish too quickly as

one approaches the boundary r0 = 0. This suggests that either the geometry near the

boundary must be replaced by something else than a black brane geometry (2.10) or that

one should require the effective blackfold description to have a smooth limit as r0 → 0 and

conjecture that this requirement describes the geometry of the corresponding gravitational

object. This is indeed the case for Myers-Perry black holes and indicates that the blackfold

method is working better than expected.

We also note that the blackfold method has previously been successfully applied in

plane wave space-times in vacuum by perturbing (2.10), in particular, for perturbatively

constructing a black string geometry in D = 5 [18]. However, there also some apparent

tension between the joint desiderata of horizon regularity and plane wave asymptotics was

exhibited. The construction presented here differs in some respect from that in [18], in

particular in the way the matched asymptotic expansion can be implemented, and as a

result we do not see any obvious obstruction to constructing solutions with the desired

asymptotically plane wave boundary conditions. Specifically, because of the non-trivial

extrinsic and/or intrinisc geometry of the configurations discussed in this paper, we can

choose the perturbative parameter in the matched asymptotic expansion to be the length

scale associated with the extrinsic or intrinsic scales of the worldvolume geometry. By

contrast, in the black string construction of [18] (with its trivial extrinsic geometry) the only

other available dimensionful parameters were the inverse length scales ∼
√
Aq associated

with the plane wave profile. Thus we can treat the plane wave background exactly, while

the matched asymptotic expansion in [18] required an expansion of the plane wave metric

itself, thought of as a perturbation of Minkowski space, in inverse powers of the typical

mass scale µ (∼
√
A1, say). Such an expansion corresponds to an expansion in positive

powers of some suitably defined radial coordinate and is therefore not suitable for exploring

the asymptotics of the full solution.

In fact, a preliminary study of the perturbative construction of a black ring, embedded

as in theorem 2.3, in plane wave backgrounds in the intermediate region tells us that the

perturbations fall-off rapidly enough at infinity and do not change the asymptotics. It

would be interesting to study this for more non-trivial embeddings of the black ring as in

appendix D.1 using the methods of [27, 41] and to use numerical methods as in [14–17] in

order to construct the full solution.
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As was explained in section 2.2, the blackfold method for minimal surfaces can be seen,

up to second order, as a purely hydrodynamic expansion in a curved background. It would

be very interesting to understand how these geometries are modified when second order

corrections given in (2.12) are taken into account using the tools available in [6–9].

Finally, it would be interesting to consider charged blackfolds and construct analogous

geometries in plane wave space-times in string theory.
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A Detailed validity analysis of configurations

In this appendix we provide the specific details regarding the validity analysis of several of

the configurations studied in the core of this paper.

Black helicoids in flat space-time. Here we study the validity regime of the black

helicoids of section 3.1.2. Since the embedding (3.9) is a Type I embedding (2.50) in flat

space-time then we only need to check, according to the analysis of section 2.2 and the

requirements (2.26), the invariants |k−1∇a∇ak|−
1
2 , |R|−

1
2 and |uaubRab|−

1
2 . Since this is

flat space-time we have R0 = 1 and hence, according to (2.52) we have R = RẼ. Therefore

we need to require r0 � |RẼ|
− 1

2 , explicitly,

r0 �
(λ2 + a2ρ2)√

2aλ
. (A.1)

This has a minimum at the origin ρ = 0 and is maximal at the boundaries ρ±. Hence one

only needs to satisfy r0 � λ/(
√

2a) which is always possible by appropriately tuning the

temperature T in (2.16) and the ratio λ/a.24 Note that if we had taken the limit λ → 0

in (A.1) we would have obtained a divergent result since the plane R2 is Ricci-flat. For the

invariant |uaubRab|−
1
2 we instead obtain the requirement

r0 � k

√
λ2 + a2ρ2

Ωaλ
, (A.2)

which is minimum at the boundary where k = 0. Since r0 scales with the same power of k

(see eq. (2.16)) as the r.h.s. of (A.2) we need to require that r+ � 1/(aΩ) which is again

24Note that, as explained in the beginning of section 3.1.2, the only physical parameter in the embed-

ding (3.9) is the ratio λ/a.
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always possible by appropriately tuning the temperature T and the ratio 1/(aΩ). This is

still compatible with the requirement Ωλ < 1 obtained below (3.13). We finally check the

invariant associated with variations in the local temperature, we find that we must have

r+ � k

√
a2ρ2 + λ2

aΩ

√
λ2 + 2a2ρ2 − Ω2 (a2ρ2 + λ2)2

. (A.3)

Near ρ = 0 this implies that we must have r+ � ρ+.

Black discs of Type I in plane wave space-times. Here, the validity of regime of the

configurations of section 3.2.1 is analysed. Since we are dealing with a Type I embedding

in plane wave space-times we need to check if the invariants k−1∇a∇ak, R and uaubR as

well as (2.51) satisfy the requirements (2.26). From the intrinsic curvature invariants we

obtain the requirements

r0 �
R2

0√
2A1(2 +A1ρ2)

, r0 � k
R0√

(1 +R2
0)A1 + (R2

0 − 1)Ω2
. (A.4)

As explained in section 2.4 for static embeddings of Type I in plane wave space-times (2.52)

tells us that R diverges at the boundary where R0 = k = 0. Therefore, when Ω = 0 we

need to introduce ε and consider the configuration to be valid up to ρ = ρ± ∓ ε. In this

case, it is enough to require r0 � |k−1∇a∇ak|−
1
2 as we will see below. If Ω 6= 0 then

both requirements (A.4) take their maximum value at the boundary k = 0 and minimum

when ρ = 0. Both of them reduce to r+ �
√
A1
−1

. The invariants associated with the

curvatures of the background (2.51) yield

r0 �
R0

2
√
A1

, r0 � R0
k√
A1Ωρ

, (A.5)

and lead again to r+ �
√
A1
−1

if Ω 6= 0. Finally, the invariant associated to changes in

the local temperature leads to the condition

r+ �
k

√
A1 − Ω2

√
2 + (A1 − Ω2)ρ2

. (A.6)

Near ρ = 0 this leads to the requirement r+ � ρ+ while near the boundary it becomes im-

possible to satisfy. Therefore one needs to introduce ε and assume a well defined boundary

expansion.

Black discs of Type I in plane wave space-times. We now look the configurations

of section 3.2.2. Since these are Type II embeddings in plane wave space-times we know

from the general analysis of section 2.4 that R|| = R// = 0. Furthermore, from (2.54), we

have that R = RE = 0. Therefore we only need to check the invariants k−1∇a∇ak and

uaubRab. From the last invariant we obtain the requirement

r0 �
k√
2A1

, (A.7)

and hence we need r+ �
√
A1
−1

while from the first invariant we obtain again condi-

tion (A.6) and hence the same conclusions as in the previous case apply to this configuration.
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Black helicoids of Type I in plane wave space-times. The configurations found

in section 3.3.1 are Type I embeddings and hence we need to analyse the invariants

k−1∇a∇ak, R, uaubRab as well as R||, R//. Assuming that the solution is not static we

find the first two set of bounds

r0 �
1√
2

λ√
A1λ2 + a2

, r0 �
k√

A1 − a2Ω2
, (A.8)

which are obtained by evaluating R and uaubRab at the origin ρ = 0. These imply that

we need r0 �
√
A1 + a2/λ2−1

and r+ �
√
A1 − a2Ω2−1

. The invariant associated with

variations of the local temperature implies that r+ � ρ+ near ρ = 0 and near the boundary

it forces us to introduce the cutt-off ε. From the second set of invariants we need to

require that

r0 �
√
λ2 + a2ρ2

√
A1aρ

, r0 �
k√

A1Ωaρ
. (A.9)

This takes its minimum value at the boundaries ρ± when Ω 6= 0. If Ω = 0 then these

diverge at the boundary but this divergence has been taken care of by the introduction of

ε. We find the same type of requirements as for the invariants R and uaubRab and hence

these configurations are valid in the interval ρ− + ε ≤ ρ ≤ ρ+ − ε.

Black helicoids of Type II in plane wave space-times. For these embeddings of

section 3.3.2, we have that R|| = R// = 0, therefore we only need to check k−1∇a∇ak, R
and uaubRab. Using (2.52) we find the requirements

r0 �
λ2 + a2ρ2

√
2aλ

, r0 �
k√
A1

√
λ2 + a2ρ2√

λ2 + a2(2ρ2 − λ2Ω2)
, (A.10)

associated with the curvatures. The above requirements take their most strict value at the

origin ρ = 0. It is then only sufficient to require r0 � λ/a and r+ �
√
A1(1− a2Ω2)

−1
.

The analysis of the invariant k−1∇a∇ak as the same as for helicoids of Type I and hence

the same conclusions apply here.

Higer-dimensional Clifford tori in de Sitter space-times. Since this is a Type

III embedding found in section 3.5, we need to analyse the invariants k−1∇a∇ak, R and

uaubRab as well as R|| and R//. These last two give rise to the conditions r0 � L and

r0 � rm. Computing explicitly the worldvolume Ricci scalar we find

R =
b1 + b2R0 + b3ρR

′
0 + b4ρ

2R′′0
b5ρ2

, (A.11)

for some constants bi and where the prime denotes a derivative with respect to ρ. The

Ricci scalar only diverges when ρ = 0 since R′0 and R′′0 do not diverge anywhere except at

ρ = 0. Therefore the singularity is shielded behind the black hole horizon. Next we need

to compute the scalar uaubRab. We can check that in general one has

Rττ = b1R0

(
b2R

′
0

ρ
+ b3R

′′
0

)
, Rφâφâ = sin2(θâ)

(
b1 + b2R0 + b3ρR

′
0

)
, (A.12)
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for some constants bi and where θâ are angles which parametrize the κ1 and κ2-dimensional

spheres. Only the component Rττ diverges and that only happens when ρ = 0. From

the invariant k−1∇a∇ak we find that it is sufficient to require r+ � ρ± near the origin

ρ = 0, however near the boundaries we need to introduce the cut-off ε. Therefore, these

configurations are valid blackfold solutions in the interval ρ− − ε ≤ ρ ≤ ρ+ − ε.

B Higher-dimensional black helicoids in flat and plane-wave space-times

In this section we construct the higher-dimensional analogue of the black helicoids con-

structed in section 3.1 and section 3.3. There are two generalisations of the helicoid ge-

ometry in R(D−1) available in the literature, the Barbosa-Dajczer-Jorge helicoids [30] and,

recently, the Choe-Hoppe helicoids [31]. The latter case is not suitable for constructing

black hole horizon geometries in flat and plane wave space-times because these helicoid

geometries have a conical singularity at the origin. Therefore we focus on the Barbosa-

Dajczer-Jorge helicoids [30]. These helicoids can be of Type I or Type II and we will

analyse both cases simultaneously.

Embedding coordinates and geometry. Explicit coordinate embeddings for the

Barbosa-Dajczer-Jorge helicoids into a subset R2N+1, where N is an integer, of R(D−1)

or R(D−2) are given in [54]. These can be written in the form

Xq(ρq, φ) = ρq cos(aqφ) if q is odd and 1 ≤ q ≤ 2N ,

Xq(ρq, φ) = ρq−1 sin(aq−1φ) if q is even and 1 ≤ q ≤ 2N ,

Xq(ρq, φ) = λ φ if q = 2N + 1 ,

(B.1)

and t = τ , y = 0, , X i = 0, i = 2N + 2, . . . , D− 1 if the embedding is of Type I and t = τ ,

y = z, ,X i = 0, i = 2N + 2, . . . , D − 2 if the embedding is of Type II. Here aq, λ are

constants which without generality we assume to be aq > 0 and λ ≥ 0. Note that N and

p are related such that p = 2N . The coordinates lie within the range −∞ < ρq, φ < ∞.

For N = 1 and λ = 1 we obtain the case studied in section 3.1 and section 3.3. In general

we can rescale φ such that φ → λ−1φ and aq → λ−1aq and get rid of λ. However, we will

not do so, since we want to consider later the case λ = 0 which represents a minimal cone.

The induced metric on the worldvolume of Type I takes the form

ds2 = −R2
0dτ

2 +
N∑
â=1

dρ2
â +

(
λ2 +

N∑
â=1

a2
âρ

2
â

)
dφ2 , (B.2)

while on the worldvolume of Type II it reads

ds2 = −R2
0dτ

2 + 2(1−R2
0)dτdz + (2−R2

0)dz2 +

N∑
â=1

dρ2
â +

(
λ2 +

N∑
â=1

a2
âρ

2
â

)
dφ2 , (B.3)

where,

R2
0 = 1−

(
N∑
â=1

A2
âρ

2
â +A2

N+1λ
2φ2

)
. (B.4)
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Here we have made a slight modification of notation. For each of the N two-planes

(xâ, xâ+1) of R(2N+1) we have set Axâ,xâ+1
= Aâ and also Ax2N+1 = AN+1. These choices

will be compatible with the choice of Killing vector field as we will see below.

The helicoid can be boosted along the φ direction with boost velocity Ω such that

ka∂a = ∂τ + Ω∂φ which maps onto the vector field in the ambient space-time

kµ∂µ = ∂t + Ω
N∑
â=1

aâ
(
xâ∂xâ+1

− xâ+1∂xâ
)

+ λΩ∂x2N+1 . (B.5)

For this to be a Killing vector field of the space-time (2.46) we need to require that for

each of the N two-planes (xâ, xâ+1) of R(2N+1), Axâ,xâ+1
= Aâ and AN+1 = 0. Therefore

the helicoid is rotating with angular velocity aâΩ in each of the (xâ, xâ+1), â = 1, . . . , N

planes and it is boosted along the x2N+1 direction with boost velocity λΩ. The modulus

of the Killing vector field is

k2 = 1 +

N∑
â=1

Aâρ
2
â − Ω2

(
λ2 +

N∑
â=1

a2
âρ

2
â

)
. (B.6)

From this expression we see that a limiting surface appears in general and that for the

solution to be valid at the origin ρâ = 0 we must require that Ω2λ2 < 1. If the geometry is

static Ω = 0 then a limiting surface may also exist provided that at least one of eigenvalues

Aâ is negative. The boundaries of the geometry are given by the ellipsoidal equation

N∑
â=1

(Aâ + a2
âΩ

2)ρ2
â = Ω2λ2 − 1 . (B.7)

These higher-dimensional helicoids give rise to black hole horizon topologies R× S(D−3) in

the case of Type I and R2 × S(D−4) in the case of Type II. The size of the transverse

(n+ 1)-dimensional sphere varies from a maximum size at the origin ρâ = 0 and vanishes

at the boundaries.

Solution to the equations of motion. We have shown in theorem 2.14 that heli-

coids are solutions of the blackfold equations. We will now conclude the same for their

higher-dimensional versions. First we note that higher-dimensional helicoids are minimal

surfaces in L(D) by appropriately tuning the components Aqr. For these configurations to

be minimal surfaces in plane wave space-times they need to satisfy (2.58). Before writing it

explicitly, we need to compute the unit normal vector to the surface embedded in R(2N+1).

This has the form

nρ =
1√

λ2 +
∑N

â=1 a
2
âρ

2
â

(
0, λ sin(a1φ),−λ cos(a1φ), . . . ,

N∑
â=1

aâρâ

)
, (B.8)

where we have omitted the transverse index i from niρ since there is only one normal

direction to the surface in R(2N+1). Therefore, eq. (2.58) demands that

N∑
â=1

sin(aâφ) cos(aâφ) (Aâ −Aâ+1) +Ax2N+1λφ

N∑
â=1

aâρâ = 0 . (B.9)
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Since the last term is linear in φ we need to require Ax2N+1 = 0 and furthermore that

Aâ = Aâ+1, â = 1, . . . , N . These choices are compatible with the requirement for the

Killing vector field (B.5) to be a Killing vector field of the plane wave space-time (2.46).

According to corollary 2.5 and corollary 2.8 the vanishing of Kττ
i is enough for the

configuration to be a static solution of the blackfold equations. In order for it to be a

stationary solution then one must also require that uâub̂Kâb̂
i = 0. Explicit computation of

the extrinsic curvature tensor leads to the result

Kρâρb̂
= Kφφ = 0 , Kρb̂φ

= −
ab̂λ√

λ2 +
∑N

â=1 a
2
âρ

2
â

. (B.10)

Therefore we since we have that Kφφ = 0, the blackfold equations are trivially satisfied for

rotating higher-dimensional helicoids.

Free energies. We now present the free energies of these configurations. For Type I

helicoids the free energy is given by

F =
Ω(n+1)

16πG
rn+

∫
dφ

∫
dρ R0

√√√√λ2 +
N∑
â=1

a2
âρ

2
â kn , dρ =

N∏
â=1

dρâ , (B.11)

while for Type II helicoids we have that

F =
Ω(n+1)

16πG
rn+

∫
dz

∫
dφ

∫
dρ

√√√√λ2 +

N∑
â=1

a2
âρ

2
â kn , (B.12)

where R0 is given in (B.4) and k is given in (B.6). If we set N = 1 then these free energies

reduce to those analysed in section 3.3 and if we further set A1 = 0 then they reduce to

the helicoid of section 3.1. The flat space-time limit of these higher-dimensional helicoids

is obtained by setting Aâ = 0, â = 1, . . . , N . For general N , it is not possible to integrate

these free energies and obtain closed form expressions. However, this is not a problem

using numerics. In figure 7 we plot the free energy density (B.12) as a function of n for a

static Type II helicoid embedded in R5.

Validity analysis. The validity analysis follows the same footsteps as in the previous

cases. Here we will just look at higher-dimensional helicoids of Type II. The analysis

for higher-dimensional helicoids of Type I is very similar, though more cumbersome. For

embeddings of Type II it is only necessary to analyse the invariants k−1∇a∇ak, R and

uaubRab. Explicitly evaluating the worldvolume Ricci scalar leads to

R = − 2(
λ2 +

∑N
â=1 a

2
i ρ

2
i

)2

(
λ2

N∑
â=1

a2
â + Pâ 6=b̂

âb̂
a2
âa

2
b̂

(
ρ2
â + ρ2

b̂

))
, (B.13)

where the last term represents a sum of all the inequivalent permutations of â, b̂. Clearly,

this is a geometry that lies within the regime of validity when λ 6= 0 as it does not diverge
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∫
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32πG
rn+Ω(n+1)

n

Figure 7. Free energy density as a function of n for static (Ω = 0) black Barbosa-Dajczer-Jorge

helicoids of Type II with N = 2, a1 = a2 = 1 and A1 = A2 = −1 for λ = 1
2 (blue curve), λ = 1

(red curve) and λ = 2 (yellow curve).

anywhere. In particular it implies that

r0 �
λ√∑N
â=1 a

2
â

, (B.14)

i.e., the thickness of the blackfold must be much smaller than the pitch of the helicoid.

However, when λ = 0 the geometry is that of a higher-dimensional cone and the curvature

blows up at the origin ρâ = 0. Therefore it lies outside the validity regime of the method.

A similar expression to (B.13) can be found for uaubRab, which again does not diverge

anywhere on the worldvolume geometry. In particular, one finds that the requirement

r+ �
1√∑N

â=1

(
Aâ − Ω2a2

â

) , (B.15)

is sufficient for these configurations to be valid. From the invariant k−1∇a∇ak we find that

we need to require r+ � ρ+
â near the origin ρâ = 0 where ρ+

â =
√
Aâ − a2

âΩ
2
−1

. However,

near the boundary we need to introduce the cut-off ε as in all other cases.

C Higher-dimensional black catenoids in plane wave space-times

In theorem 2.13 we have shown that catenoids solve the blackfold equations with an ap-

propriate choice of eigenvalues Aq. We will now show that this is the case for a specific

class of higher-dimensional catenoids of Type II.

Embedding and geometry. Higher-dimensional catenoids were found in [29] (see

also [31]) and explicit embeddings are given in [55]. Generically higher-dimensional

catenoids can be embedded in R(p+1), where p ≥ 2, by choosing a coordinate ρ and a

function z(ρ) such that

ρ =

∫ z(ρ)

c

dr(
c−2(p−1)r2(p−1) − 1

) 1
2

. (C.1)
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In the case p = 2, z(ρ) is smooth and is well defined on R while for the cases p ≥ 3, z(ρ)

is defined on the interval [−S, S] where

S = S(c) =

∫ +∞

c

dr(
c−2(p−1)r2(p−1) − 1

) 1
2

<∞ . (C.2)

By defining the unit vector ω on R(p) (i.e., the unit vector on the hyperplane xp+1 = 0) the

embedding of the higher-dimensional catenoid of Type II is given by Xq(ρ, ω) = (z(ρ)ω, ρ),

q = 1, . . . , p+ 1 as well as t = τ , y = z and Xi = 0, i = p+ 2, . . . , D − 2. To see precisely

how this works we first consider the case p = 2. Integrating (C.1) we find

ρ = c log

(
z(ρ) +

√
z2(ρ)− c2

c

)
. (C.3)

Solving it explicitly for z(ρ) we obtain

z(ρ) = c cosh
(ρ
c

)
. (C.4)

By defining the unit vector on R2 as ωq = (cos(aφ), sin(aφ)) we obtain exactly the embed-

ding given in section 3.4. In general, we find for any p that

ρ =

√
πc2Γ

(
4−3p
2−2p

)
Γ
(

1+ 1
2−2p

) − z(ρ)2
(

c
z(ρ)

)p
2F1

(
1
2 ,

p−2
2(p−1) ; 4−3p

2−2p ;
(
f(ρ)
c

)2−2p
)

(p− 2)c
. (C.5)

For p ≥ 3 we cannot invert this transcendental equation and find z(ρ) explicitly. However

this can be done numerically. Similarly, we can also find S by integrating (C.2)

S =
1

(p− 2)c

√
πc2Γ

(
4−3p
2−2p

)
Γ
(

1 + 1
2−2p

) . (C.6)

The induced worldvolume metric takes the simple form

ds2 = −R2
0dτ

2 + 2(1−R2
0)dτdz + (2−R2

0)dz2 + (1 + z′(ρ)2)dρ2 + z2(ρ)dΩ2
(p−1) , (C.7)

where we have set Axqxq = A1, q = 1, . . . p and Axp+1xp+1 = 0, hence

R2
0 = 1 +A1z

2(ρ) . (C.8)

This requirement is necessary for setting the catenoid to rotate in order to solve the equa-

tions of motion. The first derivative of z(ρ) in (C.7) with respect to ρ can be determined

from (C.5), such that

z′(ρ)
(

c
z(ρ)

)p−1

√
1−

(
z(ρ)
c

)2−2p
= 1 . (C.9)
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Solution to the equations of motion. In order to solve the equations of motion we

will set the catenoid to rotate with angular velocity Ωâ on each of the Cartan angles

φâ associated with each of the [p/2] two-planes of the (p − 1)-dimensional sphere such

that ka∂a = ∂τ +
∑[p/2]

â=1 Ωâ∂φâ . For this to correspond to a background Killing vector

field (2.64) we require Axqxq = A1, q = 1, . . . p, which will be necessary for solving the

equations of motion.

For Type II embeddings, according to corollary 2.8 we need to solve (2.62). We first

need to evaluate the normal vector, which reads

nρ =
1√

1 + z′(ρ)2
(0, 0,−ωq, z(ρ)) q = 1, . . . , p− 1 . (C.10)

With this we compute the extrinsic curvature components,

Kττ = − z(ρ)√
1 + z′(ρ)2

(A1 +Ap+1ρ) , (C.11)

while for the other components we find

Kρρ = −z′′(ρ) , Kρσâ = z′(ρ)nb̂∂σâω
b̂ , Kσâσb̂

= z(ρ)nĉ∂σâ∂σb̂ω
ĉ . (C.12)

In the equation of motion only the σâ coordinates that correspond to Cartan angles φâ
play a role. It is easy to show that the mixed components Kφâφb̂

, â 6= b̂ vanish. Therefore,

eq. (2.62) reduces to

Kττ + (Ωâ)2Kφâφâ =
z(ρ)√

1 + z′(ρ)2

−A1 −Ap+1ρ−
[p/2]∑
â

(Ωâ)2ωâ∂
2
φâ
ωâ

 = 0 . (C.13)

Since the second term in the parenthesis is linear in ρ and the other terms do not depend

on ρ we need to set Ap+1 = 0. The remaining equation is solved if we set Ωâ = Ω,

â = 1, . . . , [p/2] and only take odd values of (p− 1).25 In this case we have that,

−
[p/2]∑
â

(Ωâ)2ωâ∂
2
φâ
ωâ = (p− 1)Ω2 , (C.14)

and hence we obtain a solution if A1 = (p − 1)Ω2. Note that we have assumed that all

Cartan angles have periodicity 2π. Explicit computation of k leads to the result k = 1.

Therefore, these higher-dimensional catenoids are non-compact in the z and ρ directions

and give rise to black hole horizons of the form R(p) × S(D−p−2).

Free energy and validity. The on-shell free energy of the rotating catenoids is given by

F =
Ω(n+1)

16πG
Ω(p−1)

∫
dz

∫
dρ z(ρ)2

√
1 + z′(ρ)2rn+ , (C.15)

25The same requirement of odd number of dimensions parametrising the sphere is also necessary for the

rotating black odd spheres that we construct in appendix D.
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where r+ = n/(4πT ). In the case p = 2 this reduces to the free energy of the catenoid (3.47).

This integral can be evaluated numerically. However, because the integrant is everywhere

positive then the free energy density will be a positive quantity in general.

We will now turn our attention to the validity of these configurations. Since this is a

Type II we only need to analyse the invariants k−1∇a∇ak, R and uaubRab. Evaluating

explicitly the worldvolume Ricci scalar we find

R =
(p− 2) + (p− 2)z′(ρ)− 2(p− 1)z(ρ)z′′(ρ)

z2(ρ)(1 + z′(ρ)2)2
. (C.16)

One should now look for divergences in this expression. This invariant would diverge if z(ρ)

would vanish at some point. Looking at eq. (C.5) we see that if z(ρ) → 0 then the r.h.s.

of (C.5) becomes imaginary. Therefore we conclude that the Ricci scalar cannot diverge

due to z(ρ) since it has no zeros. The Ricci scalar could however diverge due to z′(ρ) and

z′′(ρ). From (C.9) we can deduce the behaviour of z′(ρ) and z′′(ρ) and it is easy to see

that z′(ρ) and also z′′(ρ) approach ∞ only if ρ→∞. From (C.16) we deduce that R → 0

as ρ → ∞ and hence constitutes no problem. We also compute the required components

of the worldvolume Ricci tensor

Rττ = −A1
pz′(ρ)2 + pz′(ρ)4 + z(ρ)z′′(ρ)

(1 + z′(ρ)2)2
,

Rφâφâ = f(θâ)
(p− 2) + (p− 2)z′(ρ)2 − z(ρ)z′′(ρ)

(1 + z′(ρ)2)2
,

(C.17)

where f(θâ) is a function of the form (cos θâ)
α(sin θâ)

β for some constants α and β. By the

same arguments as above, the invariant uaubRab does not diverge anywhere. The invariant

k−1∇a∇ak vanishes since k is constant along the worldvolume. Therefore we conclude

that higher-dimensional catenoids are valid solutions of the blackfold equations.

D Black p-spheres in plane wave space-times

In this appendix we construct a series of black hole geometries with constant mean extrin-

sic curvature in plane wave space-times. The phenomenology of these black holes, when

constructed in space-times with a non-trivial gravitational potential, is similar to the phe-

nomenology of soap bubbles: tension must equilibrate with internal pressure. These black

holes can be stationary, in which case, there is also an interplay between internal pressure,

tension and centrifugal repulsion. These configurations constitute the analogue examples

of those found in flat [10] and (Anti)-de Sitter space-times [11]. The latter cases were

described in (1.5).

D.1 Black p-spheres

In order to embed these geometries we consider writing the (D − 2) Euclidean part of the

metric (2.46) in the form

p+1∑
q=1

dx2
q = dr2 + r2dΩ2

(p) +

D−2∑
q=p+2

dx2
q , (D.1)
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where we label the coordinates on the p-sphere by µâ, â = 1, . . . , p. We now choose the

parametrisation

t = τ , y = 0 , r = R , µâ = σâ , X i = 0 , i = p+ 2, . . . , D − 2 . (D.2)

With this choice, the induced metric on the worldvolume becomes

ds2 = −R2
0dτ

2 +R2dΩ2
(p) , R2

0 = 1 +A(R, σâ) . (D.3)

We now assume that the blackfold is rotating with equal angular velocity along each of the

[(p+ 1)/2] Cartan angles φâ of the p-sphere, such that

ka∂a = ∂τ + Ω

[(p+1)/2]∑
â=1

∂φâ , k =
√
R2

0 − Ω2R2 , (D.4)

where we have assumed that p is odd otherwise the term proportional to Ω2 in k2 would be

σâ-dependent. However, if Ω = 0, this is not required. For this Killing vector to correspond

to a Killing vector field of the metric (2.46) we need to impose the same relations between

the components Aqr as for the higher-dimensional helicoids and catenoids of appendix B

and appendix C. For simplicity we focus on the case where Axqxq = A1, q = 1, . . . , p + 1.

In this case we have that A(R, σâ) = A1R
2.

The free energy of these configurations to leading order can be obtained using (2.12)

and reads

F [R] = −Ω(p)R0R
pP , P = −

Ω(n+1)

16πG

( n

4πT
k
)n

. (D.5)

This in fact takes the same form as the free energy for black odd-spheres in (Anti)-de Sitter

space-time [11] provided we identify A1 = L2. Varying this free energy with respect to R

leads to the solution

Ω2R2 = R2
0

p+ R2(n+ p+ 1)

(n+ p) + R2(n+ p+ 1)
, R2 = A1R

2 , (D.6)

which takes the same form as in (Anti)-de Sitter space [11] under the same identification.

For p = 1 these represent black rings in asymptotically plane-wave space-times. In general

these have horizon topology S(p) × S(n+1). If A1 < 0 then static solutions exists due to the

repulsive gravitational potential as in de Sitter space-time. The balancing condition (D.6)

becomes (1.6) and p can also take even values. Since the free energy is the same as in

(Anti)-de Sitter space so are its thermodynamic properties, given in [11]. The validity of

these configurations will be studied in the next section.

D.2 Products of m-spheres

In this section we generalise the previous construction to an arbitrary product of m-spheres.

This will constitute the analogue configurations in plane wave space-times of those con-

structed in [10, 11]. We consider writing the (D−2)-dimensional Euclidean metric of (2.46)

as product of m balls where the dimension of each sphere is p(â) such that

D−2∑
q=1

dx2
q =

m∑
â=1

(
dr2
â + r2

âdΩ2
(pâ)

)
+

D−2∑
i=p+m+1

dx2
i , (D.7)
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where p =
∑m

â=1 p(â). We make a similar choice of matrix components Aqr as in the

previous section, namely, for each set of coordinates xq, q = 1, . . . , pâ associated with each

ball we set Axqxq = Aâ. We further choose the embedding map

t = τ , y = 0 , râ = Râ , µâ = σâ , X i = 0 , i = p+m+ 1, . . . , D − 2 , (D.8)

where the coordinates µâ now parametrize all the p coordinates on the m spheres. The

induced worldvolume geometry is

ds2 = −R2
0dτ

2 +
m∑
â=1

R2
âdΩ2

(pâ) , R2
0 =

(
1 +

m∑
â=1

AâR
2
â

)
. (D.9)

Therefore we can see this geometry as a product of odd-spheres being embedded in an

inhomogenous (Anti)-de Sitter space-time. We assume the geometry to be rotating with

angular velocity Ωâ in each of the Cartan angles associated with each pâ-dimensional sphere.

The Killing vector field is thus of the form

ka∂a = ∂τ +

[(p+1)/2]∑
â=1

Ωâ∂φâ , k2 = R2
0 −

m∑
â=1

Ω2
âR

2
â , (D.10)

where we have assumed each pâ to be an odd number. However, if each Ωâ vanishes, this

is not necessary and pâ must only satisfy pâ ≥ 1 for all â.

The free energy (2.12) to leading order is given by

F [Ra] = −V(p)R0P , V(p) =

m∏
â=1

Ω(pâ)R
pâ
â , (D.11)

where the pressure is given by (D.5) and V(p) is the volume of the product of m-spheres.

Varying this equation with respect to each Râ gives rise to a set of m coupled equations.

The general solution takes the same form as in (Anti)-de Sitter space-time [11]

(Ωâ)2R2
â = R2

0

pâ + R2
â (n+ p+ 1)

(n+ p) + (n+ p+ 1)R2 , R2
â = A2

âR
2
â , R2 =

m∑
â=1

R2
â . (D.12)

In particular, if we set Aâ = L2, â = 1, . . . ,m we obtain the same result as in [11].

These configurations give rise to horizon topologies of the form
∏m
â=1 S(pâ) × S(D−p−2).

Furthermore these configurations also admit a static solution Ωâ = 0 for all â provided we

take Aâ < 0 for all â. The thermodynamics also take the same form to leading order as for

their (Anti)-de Sitter counterparts.

Validity analysis. For these configurations we need to analyse all scalars present

in (2.26) except for the scalar k−1∇a∇ak as it vanishes since k is constant over the world-

volume. The scalars R and KiKi give rise to the same condition, namely, r0 � R. The

scalars uaubRab, R// and R|| give rise to the condition

r+ � Râ

(
1 +

m∑
â=1

AâR
2
â

)− 1
2

, (D.13)

where r+ = n/(4πT ). These conditions are satisfied by taking r0 � min
(
Ra,
√
Aa
−1)

.
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D.3 String and branes with a p-sphere

Here we construct boosted strings along the y-direction of the plane wave space-time (2.46)

and later also branes with a p-spheres. These have no non-trivial analogue in flat or (Anti)-

de Sitter space-times. We consider a similar embedding to (D.2) describing boosted strings

with a p-sphere, more precisely,

t = τ , y = z , r = R , µâ = σâ , X i = 0 , i = p+ 2, . . . , D − 2 . (D.14)

In this case the induced metric reads

ds2 = −R2
0dτ

2 + 2(1−R2
0)dτdz2 + (2−R2

0)dz2 +R2dΩ2
(p) , R2

0 = 1 +A1R
2 , (D.15)

where we have made the same choices for the components Aqr as in section D.1. These

geometries are non-compact along the z-direction. The Killing vector field of the boosted

string with boost velocity H is given by

ka∂a = ∂τ +H∂z + Ω

[(p+1)/2]∑
â=1

∂φâ , (D.16)

with norm,

k =

√
(1 + R2) + 2R2H − (1−R2)H2 − Ω2R2 , (D.17)

where we have assumed that the sphere is rotating with equal angular velocity in all Cartan

angles and that p is an odd number. If Ω = 0 then it is only necessary to require p ≥ 1. In

this case the free energy to leading order is

F [R] = −Ω(p)

∫
dzRpP . (D.18)

Varying this with respect to R and solving the resulting equation of motion leads to the

solution

Ω2R2 = R2(1 +H)2 +
p
(
1−H2

)
(n+ p)

. (D.19)

If we take the flat space-time limit A1 → 0 and H = 0, p = 1 this geometry describes the

uniform black cylinder constructed in [10]. Since we must have that Ω2R2 > 0 then this

implies that we must have

H >
2p

p−R2(n+ p)
− 1 . (D.20)

Furthemore we must have that k > 0 for the solution to be valid which implies that H < 1.

Therefore we obtain the bound on the boost velocity H,

2p

p−R2(n+ p)
− 1 < H < 1 . (D.21)

Note also that a static solution with Ω = 0 exists provided

R2 =
p
(
H2 − 1

)
(n+ p)(1 +H)2

. (D.22)

Since H2 < 1 we must have that A1 < 0 for this configuration to exist. These configurations

have horizon topology R × S(p) × S(D−p−3). The validity analysis of these configurations

results in the same conclusion as in the previous section, namely, one needs to require

r0 � min
(
Ra,
√
Aa
−1)

.
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Thermodynamic properties. The thermodynamics properties of these configurations

can be obtained from the free energy (D.18) using (2.19). The total mass, angular momen-

tum and entropy read

M =
Ω(n+1)V(p)

16πG

∫
dz r̃n+

H2 −
(
R2(H + 1)(n+ p)− (n+ p+ 1)

)
H2 − 1

, (D.23)

J =
Ω(n+1)V(p)

16πG

∫
dz r̃n+

(n+ p)R
√

p(1−H2)
n+p + R2(H + 1)2

H2 − 1
, (D.24)

S =
Ω(n+1)V(p)

16πG

∫
dz r̃n+

n

T
, (D.25)

where we have defined V(p) = Ω(p)R
p and

r̃n+ =
( n

4πT

)n(n(1−H2)

(n+ p)

)n
2

, (D.26)

which vanishes when H = ±1. Furthermore, the configuration also has a momentum P
associated with the boost velocity H. One can obtain it from the free energy (D.18) in a

similar manner as for the angular momentum and entropy, that is, by taking the derivative

−∂F/∂H, leading to

P =
Ω(n+1)V(p)

16πG

∫
dz r̃n+

(n+ p)
(
R2(H + 1)−H

)
H2 − 1

. (D.27)

This is the total momentum along the z-direction.

Branes of odd-spheres. It is possible to generalise the previous configurations by con-

sidering instead strings of products of m-spheres. Here, however, we will make yet another

generalisation by adding extra boosted flat directions to the brane worldvolume (D.15). We

take the embedding map (D.14) but choose some of the Xi functions such that X l̂ = z l̂,

l̂ = p+2, . . . , p+2+` and Xi = 0, i = p+3+`, . . . ,D−2. The worldvolume metric (D.15)

becomes

ds2 = −R2
0dτ

2 + 2(1−R2
0)dτdz2 + 2(1−R2

0)dz2 +R2dΩ2
(p) +

p+2+`∑
l̂=p+2

dz2
l̂
, (D.28)

while the Killing vector field, now also boosted with boost velocity H l̂ along each z l̂ direc-

tion, takes the form

ka∂a = ∂τ +H∂z + Ω

[(p+1)/2]∑
â=1

∂φâ +

p+2+`∑
l̂=p+2

Hl̂∂zl̂ ,

k =

√
(1 + R2) + 2R2H − (1−R2)H2 − H̄2 − Ω2R2 , H̄2 =

p+2+`∑
l̂=p+2

H2
l̂
.

(D.29)

By explicit evaluating the free energy and solving the resulting equation of motion we find

the general solution

Ω2R2 = R2(H + 1)2 −
p
(
H̄2 +H2 − 1

)
(n+ p)

, (D.30)

giving rise to valid blackfold solutions with horizon topologies R(`+2) × S(p) × S(n+1).
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