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Abstract

In the fermion loop formulation the contributions to the partition function naturally separate into topo-
logical equivalence classes with a definite sign. This separation forms the basis for an efficient fermion 
simulation algorithm using a fluctuating open fermion string. It guarantees sufficient tunnelling between 
the topological sectors, and hence provides a solution to the fermion sign problem affecting systems with 
broken supersymmetry. Moreover, the algorithm shows no critical slowing down even in the massless limit 
and can hence handle the massless Goldstino mode emerging in the supersymmetry broken phase. In this 
paper – the third in a series of three – we present the details of the simulation algorithm and demonstrate its 
efficiency by means of a few examples.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The reformulation of supersymmetric quantum mechanics on the lattice in terms of bosonic 
and fermionic bonds as derived in the first paper of our series [1] provides a perfect setup for 
Monte Carlo simulations. First of all, the reduction in complexity by going from continuous 
to discrete variables is enormous. More specifically though, expressing the Grassmann fields in 
terms of fermionic bonds avoids the expensive calculation of the fermion determinant and al-

* Corresponding author.
E-mail address: wenger@itp.unibe.ch (U. Wenger).
http://dx.doi.org/10.1016/j.nuclphysb.2015.07.020
0550-3213/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

https://core.ac.uk/display/33088611?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.nuclphysb.2015.07.020
http://www.elsevier.com/locate/nuclphysb
http://creativecommons.org/licenses/by/4.0/
mailto:wenger@itp.unibe.ch
http://dx.doi.org/10.1016/j.nuclphysb.2015.07.020
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nuclphysb.2015.07.020&domain=pdf


376 D. Baumgartner, U. Wenger / Nuclear Physics B 899 (2015) 375–394
lows the use of special algorithms for which critical slowing down is essentially absent [2,3] and 
simulations are possible even in the massless limit [4]. This is of particular importance for sys-
tems with broken supersymmetry, since the physics of those is driven by the massless Goldstino 
mode. In the present paper – the last in a series of three – we describe in detail such an algorithm 
and demonstrate its efficiency. Since the model can be solved exactly at finite lattice spacing by 
means of transfer matrices, as discussed in the second paper of our series [5], there is in principle 
no need for numerical simulations. Hence, the present paper rather constitutes a feasibility study 
to test the practicability and efficiency of the proposed simulation algorithm for the quantum 
mechanical system in the bond formulation. In that sense it also serves as a preparation for the 
application of the algorithm, in particular the fermionic part, in more complex situations, such as 
in supersymmetric Yang–Mills quantum mechanics [6], in the N = 1 Wess–Zumino model [7–9]
or in the supersymmetric nonlinear O(N) sigma model [10]. The advantage of the application 
of the algorithm in the quantum mechanical model presented here is of course the fact that the 
correctness of the algorithm can be crosschecked with the exact results from the transfer matrix 
approach, and that the algorithm can hence be validated in detail.

There is another rather pedagogical reason which motivates to consider a new simulation al-
gorithm for quantum mechanics in the bond formulation. Often, simple quantum mechanical 
systems such as the harmonic and anharmonic oscillator are used to introduce the path integral 
approach. Similarly, the systems also provide a pedagogical context in which various Monte 
Carlo simulation algorithms can be illustrated and discussed, see for example [11] for an early 
example. However, it turns out that the standard Metropolis algorithms and even more advanced 
algorithms such as the overrelaxation or heat bath algorithm become extremely inefficient to-
wards the continuum limit. This has to do with the usual critical slowing down of the simulations 
towards that limit, and for the anharmonic oscillator also with the suppressed tunnelling at small 
lattice spacing. The algorithms presented here do not suffer from these deficiencies, because they 
eliminate critical slowing down. In addition, in the bond formulation the Z2-symmetry φ → −φ

is exactly maintained for each bond configuration.
Last but not least, the numerical simulations presented here serve as a test of the practicability 

of the solution of the fermion sign problem proposed in [4] and discussed further in the first paper 
of our series [1]. The solution is based on two ingredients. Firstly, the lattice regulates the van-
ishing Witten index and therefore also the sign problem. Secondly, the fermion loop formulation 
provides a tool to handle the fluctuating sign, because it naturally separates the contributions to 
the partition function into topological equivalence classes, each possessing a definite sign. Nev-
ertheless, it is a priori not clear whether the lattice artefacts and the statistical fluctuations can be 
kept under sufficient control in a practical simulation. The statistical fluctuations of the sign are 
essentially determined by the amount of tunnelling between the topological sectors, i.e., between 
the fermionic and bosonic vacuum. In order for the fermion update algorithm to be a true solution 
to the sign problem, it must guarantee a sufficiently efficient tunnelling rate. The results in this 
paper demonstrate that this is indeed the case. Not surprisingly, the open fermion string algorithm 
discussed here has proven to be extremely successful in the N = 1 Wess–Zumino model [9] in 
which the fermion sign problem is prevailing.

Of course, supersymmetric quantum mechanics has already been simulated on the lattice in 
various setups using standard algorithms, cf. for example [12–20]. However, the bond formula-
tion together with the simulation algorithm presented here brings the numerical nonperturbative 
calculations to a new, unprecedented level of accuracy. In that sense, the results presented here 
and partly in [4] serve as a benchmark against which new formulations or simulation algorithms 
can be tested.
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The present paper is organised as follows. In Section 2 we construct in detail an algorithm 
designed for updating the bosonic and fermionic bond configurations. The discussion includes 
the explicit update steps and the derivation of the corresponding acceptance ratios. Their evalua-
tion requires the calculation of site weight ratios which turn out to become numerically unstable 
for large site occupation numbers. Therefore, in Section 3 we present a computational strategy 
which allows to evaluate the ratios for arbitrarily large occupation numbers. In Section 4, we 
then present the results obtained using the proposed algorithm. The simulations are for the same 
discretisation schemes and superpotentials we used in the previous two papers [1,5]. Since this 
section is merely meant as a validation of the algorithm, the discussion of the physics behind the 
results is kept short and we refer to the exact results in [5] for a more thorough discussion.

2. Simulation algorithm

We start our discussion from the partition function of supersymmetric quantum mechanics 
on the lattice written as a sum over all allowed, possibly constrained bond configurations C =
{nb

i (x), nf (x)} in the configuration space Z ,

Z =
∑
C⊂Z

WF (C) , (1)

where the fermion number F = 0, 1 is determined by the fermionic bond configuration {nf (x)}
with nf (x) = F , ∀x, and the weight WF(C) of a configuration is given by

WF (C) =
∏
x

⎛⎝∏
i

w
nb

i (x)

i

nb
i (x)!

⎞⎠∏
x

QF (N(x)) . (2)

Here, x denotes the sites of the lattice and i labels the various types of bosonic bonds bi

with i ∈ {j → k | j, k ∈ N}. The corresponding bosonic bond weights are denoted by wi and
nb

i (x) ∈ N0 is the occupation number of the bond bi connecting the sites x and x + 1. The site 
weight QF depends on the site occupation number, i.e., the total number of bosonic bonds con-
nected to site x,

N(x) =
∑
j,k

(
j · nb

j→k(x) + k · nb
j→k(x − 1)

)
(3)

and is given by

QF (N) =
∞∫

−∞
dφ φNe−V (φ)M(φ)1−F . (4)

In Section 3 we will discuss in detail the computational strategy necessary to reliably evaluate 
ratios of these integrals for arbitrary and possibly large site occupation numbers. The type of 
bonds bi , the weights wi as well as the potential V (φ) and the monomer term M(φ) in eq. (4)
depend on the specifics of the chosen discretisation and the superpotential P(φ). We refer to 
the appendix of our first paper [1] for a compilation of the discretisations and superpotentials 
considered in our series.

As mentioned above, the bond configurations C = {nb
i (x), nf (x)} are possibly constrained. In 

particular we have the local fermionic constraints

nf (x − 1) = nf (x) (5)
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while the local bosonic constraints

N(x) = 0 mod 2 (6)

may or may not be present depending on the bosonic symmetries of the system.
The challenge of updating constrained bond configurations lies precisely in the difficulty to 

maintain the constraints while moving efficiently through the configuration space Z . In [21]
Prokof’ev and Svistunov proposed to extend the constrained bosonic bond configuration space 
by introducing local sources which explicitly violate the constraints. The so-called worm algo-
rithm then probes the extended configuration space by moving the local violations around the 
lattice, thereby sampling directly the bosonic correlation function corresponding to the sources 
introduced. The contact with the original configuration space Z is established when the viola-
tions annihilate each other, e.g. when moving to the same site on the lattice, such that the bond 
configuration fulfils again all constraints.

In [2] the idea has been extended to fermionic systems expressed in terms of fermionic bonds. 
The fermionic constraint in eq. (5) allows only either an empty or a completely filled fermion 
bond configuration. The difficulty for the direct application of the worm idea to the fermionic 
system lies in the fact that the introduction of the fermionic source term ψxψx is incompatible 
with the presence of the fermion loop at site x. A simple solution is to allow the unphysical 
situation of the site x being occupied by a propagating fermion and two additional sources. Such 
a configuration violates the Pauli exclusion principle and does not contribute to any physical 
observable. In the Grassmann path integral such a configurations indeed vanishes trivially.

In order to be more explicit it is necessary to introduce the bond configuration spaces of 
bosonic and fermionic two-point correlation functions, Gb

F and Gf , respectively, following the 
notation in our first paper [1]. Bond configurations in Gb

F contribute to the non-normalised 
bosonic two-point function according to

gb
F (x1 − x2) ≡ 〈〈φx1φx2〉〉F =

∑
C⊂Gb

F

(∏
x

QF (N(x) + δx,x1 + δx,x2)

QF (N(x))

)
· WF (C) , (7)

while the configurations in Gf contribute to the non-normalised fermionic two-point function as

gf (x1 − x2) ≡ 〈〈ψx1ψx2〉〉 =
∑
C⊂Gf

[∏
x∈F

Q1(N(x))

Q0(N(x))

]
· W0(C) , (8)

where F denotes the set of lattice sites belonging to the open fermion string associated with 
the fermionic correlation function. The key point of the bosonic and fermionic updating algo-
rithm is that the bond configurations for gb

F (0), gf (0) and ZF have identical bond elements. As 
a consequence, statistics for gb,f and Z can be accumulated in the same Monte Carlo process. 
If the bosonic constraints in eq. (6) are not present, e.g. for superpotentials with broken super-
symmetry, the equivalence of bond configurations even extends to gb

F (x), i.e., ZF = Gb
F . The 

movements from one configuration space to the other are induced by introducing or removing 
bosonic or fermionic sources according to the scheme given in figure 8 of our first paper [1]. For 
convenience we reproduce it here in Fig. 1.

In the following we will now discuss in detail the various updating steps which establish 
explicitly the connection between the bond configuration spaces Gf , ZF , Gb

F and in addition 
move the system within Gf and Gb

F . The moves are generated by a Monte Carlo process with 
probabilities given by the weights of the configurations in eqs. (2), (7) and (8). In particular, we 
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Fig. 1. Schematic representation of the configuration spaces. The configuration space Gf ≡ Gf
0 = Gf

1 mediates between 
the bosonic and the fermionic sector. By the symbols ⊕ and �, we denote the addition and removal of the corresponding 
source and sink field variables, respectively.

Fig. 2. Fermionic bond configuration update algorithm. Graphical representation of the ‘shift’ update step x → x + 1
in forward direction for an open fermion string configuration. It is balanced with the shift update step x + 1 → x in 
backward direction. The bosonic background bond configuration is not drawn.

derive the transition probabilities PX(C → C′) for the transition X from bond configuration C
to C′, which is then accepted by the usual Metropolis prescription

Pacc(C → C′) = min{1,PX(C → C′)}. (9)

In order to simplify the discussion we select the update from ZF to Gb
F or Gf with equal proba-

bility which is balanced by corresponding proposal probabilities to select between moving in Gf

and Gb
F or returning to ZF .

2.1. Updating the fermionic bond configuration

Here we discuss the various update steps which moves the system within Gf and relate the 
bond configurations spaces Z0 and Z1 via Gf .

Moves within Gf are induced by shifting ψ by one lattice spacing from site x to site x + 1, and 
vice versa, while keeping the other source ψ fixed. Such an update step is graphically illustrated 
in Fig. 2 and is called ‘shift’ update step. A shift in forward direction, x → x + 1, automati-
cally involves the removal of the fermionic bond bf (x), whereas a shift in backward direction,
x + 1 → x, requires the addition of a new fermionic bond bf (x). Both directions are proposed 
with equal probability 1/2 and are hence balanced against each other as long as the new site 
does not coincide with the position of the source ψ . The formula in eq. (8) provides us with the 
acceptance ratios

Psh(x + 1 → x) = Q1(N(x))
, (10)
Q0(N(x))
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Fig. 3. Fermionic bond configuration update algorithm. Graphical representation of the ‘shift’ update step x → x − 1 or 
x − 1 → x, respectively, and the ‘put/remove’ update step ∅ → x and ∅ → x. The sources are marked with a � for ψ
and a × for ψ . The bosonic background bond configuration is not drawn.

Psh(x → x + 1) = Q0(N(x))

Q1(N(x))
. (11)

Now let us consider the case when we propose to shift the source ψ forward to the site x
where the source ψ is present, as depicted in the upper half of Fig. 3.

The forward shift update step x − 1 → x is balanced with the backward shift update step 
x → x − 1. This backward shift, however, is proposed with probability 1 instead of probability 
1/2 since the shift of ψ from x → x + 1 would involve the creation of an open fermion string 
around the entire lattice. The asymmetry in the proposition probabilities is balanced by the choice 
of the probability prm = 1/2 to remove the sources ψψ , such that we find the acceptance ratio 
for a shift in backward direction x → x − 1 to be the same as in eq. (10), namely

Psh(x → x − 1) = Q1(N(x − 1))

Q0(N(x − 1))
. (12)

The shift step is balanced with the corresponding one in forward direction with acceptance ratio 
as given in eq. (11),

Psh(x − 1 → x) = Q0(N(x − 1))

Q1(N(x − 1))
(13)

The step from Gf to Z0 and vice versa is induced by introducing or removing a pair of 
fermionic sources ψψ at site x, respectively. It is called ‘put/remove’ update step and is graphi-
cally illustrated in the lower half of Fig. 3. The removal of the fermionic sources is suggested with 
probability prm = 1/2 and is balanced on one side by the probability to add bosonic sources, and 
on the other by the probability to shift one of the sources and hence move within Cf . Because the 
‘put/remove’ update step does not alter the fermionic bond configuration, we have Z0 = Gf (0). 
On the other hand it adds or removes a fermionic monomer term M(φ) at site x. The relative 
weight of the configurations with or without this term is given by Q1/Q0 and the acceptance 
ratios on a lattice with Lt sites become

Prm(x → ∅) = 2

Lt

Q0(N(x))

Q1(N(x))
, (14)

Pput(∅ → x) = Lt

2

Q1(N(x))

Q0(N(x))
. (15)

The factor Lt compensates for the proposition probability to choose lattice site x out of Lt

possibilities when putting the sources, while the factor 2 compensates for the asymmetric shift 
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Fig. 4. Fermionic bond configuration update algorithm. Graphical representation of the hybrid ‘shift/remove’ update 
step x + 1 → x → ∅ in backward direction, balanced with the ‘put/shift’ update step, ∅ → x → x + 1. The bosonic 
background bond configuration is not drawn.

proposal probability when moving ψ from x to x − 1, since the shift of ψ from x to x + 1 is not 
allowed.

Next we consider the shift update step for the case when the source ψ at site x + 1 is shifted 
backwards to site x which is already occupied by the sink ψ . The step is graphically illustrated 
in the upper half of Fig. 4. While the resulting fermion bond configuration is a valid one (it 
belongs to Z1), the whole fermion configuration including the source and the sink represents 
an unphysical situation, and in fact does not contribute to any physical observable, as discussed 
before. Therefore, such a backward shift from Gf to Z1, essentially closing the open fermion 
string, automatically induces the removal of the fermionic source and sink pair ψψ from site x
as illustrated in the lower half of Fig. 4. Such a step is called a hybrid ‘shift/remove’ update step. 
Of course, the step is balanced with a hybrid ‘put/shift’ update step when the additional fermionic 
sink and source variables are put on a closed fermion loop at the site x. As usual, the acceptance 
ratios for the hybrid update steps can be read off from the weights of the configurations involved 
and yield

Psh/rm(x + 1 → x →∅) = 2

Lt

, (16)

Pput/sh(∅ → x → x + 1) = Lt

2
. (17)

The factor Lt compensates for the proposition probability to choose the same lattice site x when 
putting the sources ψψ back on the lattice, whereas the factor 2 compensates for the proposition 
probability to shift in forward or backward direction when the fermion string is still open. Note 
that there are no ratios of Q-weights involved, since no monomer term is added or removed by 
the hybrid shift/remove update step.

To complete our discussion of the fermionic bond update, we note that the algorithm provides 
improved estimators for the fermionic two-point function gf (x) and the partition functions ZF . 
Because the algorithm samples directly the configuration space Gf , every open fermion string 
configuration contributes unity to the stochastic Monte Carlo estimator for gf (x). To be precise 
we have

gf (x|C ∈ Gf ) = δx,x1−x2 , (18)

where x1 and x2 are the end and starting point of the open fermion string, i.e., the positions of the 
sink ψ and the source ψ , respectively. Similarly, every bond configuration in ZF is generated 
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with its proper weight and hence contributes unity to the stochastic estimator for ZF , i.e., the 
Monte Carlo estimator for ZF is simply

ZF (C ∈ZF ) = 1 . (19)

Finally we note that the factors of Lt appearing in the acceptance ratios above may become 
inconvenient in practice, especially towards the continuum limit when Lt → ∞. The factors only 
occur when contact between ZF and Gf is made, i.e., they are responsible for getting the relative 
normalisation between ZF and gf right. However, since we make use of translational invariance 
in eq. (18) the factors of Lt are in fact cancelled and can hence be omitted.

2.2. Updating the bosonic bond configuration

In this section we now discuss the update steps which relate the bond configuration spaces 
ZF and Gb

F for a fixed fermionic bond configuration with fermion number F = 0, 1.
We point out that for an arbitrary superpotential there are in general no restrictions on the 

bosonic bond configurations. This is for example the case for the superpotential Pb which we 
consider in our series of papers, cf. eq. (53). In contrast, the superpotential Pu in eq. (54) yields 
the local constraint N(x) = 0 mod 2 on the site occupation number, due to the parity symmetry 
φ → −φ. In the following discussion, we always present the generic case first, and then specify 
the modifications or simplifications due to the constraint. In analogy to the fermionic bond up-
date, the ‘put/remove’ and the ‘shift’ updates are the main steps for updating the bosonic bond 
configurations. The ‘put/remove’ step introduces or removes one or two sources φ, while the 
‘shift’ step shifts the sources by one lattice spacing. If there are no restrictions on the bond con-
figuration, we are free to decide for each Monte Carlo step whether to proceed by a ‘remove’ 
update or a ‘shift’ update. With probability prm, we propose to remove the sources from the 
lattice, while the proposition to continue the worm update with a ‘shift’ step is chosen with 
probability 1 − prm.

The step from Gb
F to ZF (and vica versa) is induced by removing (or introducing) a bosonic 

source φ at sites x1 and x2, with x1 = x2 not excluded. The step does not alter the bond config-
uration, but only the site occupation numbers at sites x1 and x2. Thus, only the ratios of the site 
weights QF are involved in the acceptance probability for e.g. the ‘remove’ step,

Prm(x1, x2 → ∅) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

prmL2
t

QF (N(x1) − 2)

QF (N(x1))
if x1 = x2,

1

prmL2
t

QF (N(x1) − 1)

QF (N(x1))

QF (N(x2) − 1)

QF (N(x2))
if x1 �= x2.

(20)

The prefactor 1/(prmL2
t ) is motivated as follows. The factor 1/L2

t balances the probability for 
the proposition of putting the bosonic sources at the sites x1 and x2 when re-entering the config-
uration space Gb

F , while the factor 1/prm balances the proposition probability for the choice of 
proceeding by the shift update instead of the remove update, as discussed above. The acceptance 
ratios for re-entering the configuration space Gb

F from ZF are given by

Pput(∅ → x1, x2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
prmL2

t

QF (N(x1) + 2)

QF (N(x1))
if x1 = x2,

prmL2
t

QF (N(x1) + 1) QF (N(x2) + 1)
if x1 �= x2.

(21)
QF (N(x1)) QF (N(x2))
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Two remarks are in order. Firstly, if there are no constraints on the bond configuration, one 
can in principle introduce just a single source φ which subsequently is shifted around. In effect, 
the algorithm then samples the one-point function which in this situation is indeed nonvanishing. 
Secondly, we note that if the constraint N = 0 mod 2 is in place, the two sources can only be 
placed or removed when x1 = x2. As a consequence, only the first of the two acceptance ratios 
in eq. (20) and eq. (21) are relevant, while the second ones are zero by definition.

Next, we discuss the bosonic ‘shift’ update. With this step we now change the bosonic bond 
configuration. Shifting the source from site x to a next neighbouring site y is always associated 
with an increase or a decrease of the bosonic bond occupation number between the sites x and y
by one. Whether or not the occupation number is increased or decreased is decided with proba-
bility 1/2. Similarly, the source can move forward or backward, and we propose both directions 
with equal probability 1/2. In addition, when there are several types of bosonic bonds bi with 
i ∈ {j → k|j, k ∈N}, we need to decide in each step which bond is updated. We do so by choos-
ing the proposition probabilities pj→k with 

∑
j,k pj→k = 1. However, because the proposals are 

completely symmetric, these probabilities do not affect the acceptance ratios. In the following, 
we will use the shorthand notation

n
j→k
xy =

{
nb

j→k(x) if y = x + 1,

nb
j→k(y) if y = x − 1,

(22)

for the occupation number of the bosonic bonds bj→k between the sites x and y. The shifts 
x → y and nj→k

xy → n
j→k
xy + 1 are balanced with shifts y → x and nj→k

xy → n
j→k
xy − 1, which 

gives the acceptance ratios

Psh(x → y,n
j→k
xy → n

j→k
xy + 1)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
wj→k

n
j→k
xy + 1

QF (N(x) + j − 1)

QF (N(x))
· QF (N(y) + k + 1)

QF (N(y))
if y = x + 1,

wj→k

n
j→k
xy + 1

QF (N(x) + k − 1)

QF (N(x))
· QF (N(y) + j + 1)

QF (N(y))
if y = x − 1,

(23)

Psh(x → y,n
j→k
xy → n

j→k
xy − 1)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
n

j→k
xy

wj→k

QF (N(x) − j − 1)

QF (N(x))
· QF (N(y) − k + 1)

QF (N(y))
if y = x + 1,

n
j→k
xy

wj→k

QF (N(x) − k − 1)

QF (N(x))
· QF (N(y) − j + 1)

QF (N(y))
if y = x − 1.

(24)

Of course, these generic ratios simplify considerably for the specific bonds bi, i ∈ {1 → 1,

1 → 2, 1 → 3} relevant for the superpotentials considered in our series of papers. For example, 
the acceptance ratios for updating the bond b1→1 read

Psh(x → y,n1→1
xy → n1→1

xy + 1) = w1→1

n1→1
xy + 1

· QF (N(y) + 2)

QF (N(y))
, (25)

Psh(x → y,n1→1
xy → n1→1

xy − 1) = n1→1
xy

w1→1
· QF (N(x) − 2)

QF (N(x))
. (26)

Because the bond is symmetric, there is no need to distinguish whether y = x + 1 or y = x − 1.
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To complete the discussion of the bosonic bond update, we point out that the algorithm again 
provides improved estimators for the bosonic two-point function gb

F (x) and the partition func-
tions ZF . As in the fermionic case, the algorithm samples directly the configuration space Gb

F

with the correct weighting when the sources are present. Therefore, every configuration con-
tributes unity to the stochastic Monte Carlo estimator for gb

F (x), and we have

gb
F (x|Gb

F ) = δx1−x2,x , (27)

where x1 and x2 are the positions of the two sources. Whenever the bosonic update decides to 
remove the sources, we have a configuration in ZF and hence a contribution of unity to the 
stochastic estimator for ZF , that is, we have

ZF (C ∈ZF ) = 1 . (28)

In complete analogy to the fermionic update we note that the factors of Lt appearing in the 
acceptance ratios of the ‘put/remove’ step can be compensated by adjusting the overall normali-
sation of the two-point function, e.g. by making use of translational invariance.

3. Calculation of the site weight ratios

In order to calculate the weight of a bond configuration, it is necessary to know the site weights

QF (n) =
∞∫

−∞
dφ φne−V (φ)M(φ)1−F , (29)

where V (φ) and M(φ) depend on the superpotential and the discretisation employed, and 
F = 0, 1 is the fermion number, for arbitrary values of the site occupation number n. The val-
ues of n required in practice are usually limited to O(103). However, it turns out that even for 
moderate values of n of order O(100) the site weights QF (n) can quickly grow larger than 10100

or more. As a consequence, the calculation of the site weights quickly becomes numerically 
unstable for growing n. In fact, even for simple potentials when the weights can be calculated 
analytically in terms of confluent hypergeometric functions, the numerical evaluation of these 
functions is difficult for large n, and even specialised libraries such as the ones available in Wol-
fram’s Mathematica [22] appear not to be accurate enough.

Fortunately, for the Monte Carlo simulations we only need ratios of the site weights, such 
as QF (n + 1)/QF (n), QF (n + 2)/QF (n) and Q1(n)/Q0(n), and these ratios usually do not 
become larger than O(10) even for large n. In addition, also the transfer matrix elements can 
be rewritten in terms of these ratios as discussed in the appendix of our second paper of the 
series [5]. Therefore, we now present a numerically stable computational strategy to calculate 
the site weight ratios reliably for arbitrary values of the site occupation numbers.

We start by defining an arbitrary polynomial superpotential

P(φ) =
p∑

i=0

piφ
i, (30)

and the corresponding bosonic self-interaction potential V (φ) as well as the monomer weight 
M(φ),

V (φ) =
2(p−1)∑

kiφ
i, M(φ) =

p−2∑
miφ

i. (31)

i=0 i=0
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Explicitly, the weights in each sector are then given by

Q1(n) =
∞∫

−∞
dφ φne−V (φ) (32)

and

Q0(n) =
p−2∑
i=0

miQ1(n + i). (33)

For convenience we also define the ratios of the site weights QF(n),

R′
F (n) = QF (n + 1)

QF (n)
, (34)

RF (n) = QF (n + 2)

QF (n)
, (35)

Rm(n) = Q0(n)

Q1(n)
(36)

which are used for the acceptance ratios in the Monte Carlo simulations. In principle, only the 
ratios R′

1(n) need to be calculated since all other ratios can be derived from those. For example, 
R1(n) can be expressed in terms of R′

1(n) as

R1(n) = R′
1(n + 1)R′

1(n) , (37)

but since in some cases Q1(n odd) = 0 the introduction of R1(2n) is nevertheless necessary. 
Rm(n) can be expressed via the ratios R1(n) and R′

1(n) and appropriate products thereof,

Rm(n) = m0 + R′
1(n) (m1 + R1(n + 2) (m3 + . . .))

+ R1(n) (m2 + R1(n + 2) (m4 + . . .)) , (38)

and the ratios R′
0(n) and R0(n) via Rm(n), R1(n) and R′

1(n) by

R0(n) = Rm(n + 2)

Rm(n)
R1(n), (39)

R′
0(n) = Rm(n + 1)

Rm(n)
R′

1(n). (40)

First, we now discuss how to gain numerical stability for the special case of an even superpo-
tential P(φ). In a second step we will then adapt the idea to treat the somewhat more subtle case 
of an arbitrary superpotential.

3.1. Even superpotential

Unbroken supersymmetric quantum mechanics requires a superpotential P(φ) with
deg(P (φ)) = 0 mod 2. In particular, in our series of papers we investigate the superpotential

P(φ) = p2φ
2 + p4φ

4 (41)

which is symmetric w.r.t. the parity transformation φ → −φ. As a consequence of the symmetry, 
QF (n odd) = 0 for both F = 0, 1 and the ratios R′

F (n) need not be considered – instead, it is 
sufficient to determine R1(2n) with n ∈N0 only.
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For the potential V (φ) we then have the form

V (φ) = k2φ
2 + k4φ

4 + k6φ
6 , (42)

consistent with both the standard discretisation and the Q-exact one. To keep the integrals numer-
ically under control, for fixed n we apply a variable transformation φ → φ/φ̃ to obtain rescaled 
weights Q̃1(2n) as

Q1(2n) = φ̃2n+1Q̃1(2n). (43)

Since we have Q1(2n) ≥ 0, we can choose the rescaling factor to be φ̃ = Q1(2n)1/(2n+1) and the 
rescaled weight becomes Q̃1(2n) = 1. Calculating the ratio of rescaled weights as

R̃1(2n) = Q̃1(2n + 2)

Q̃1(2n)
= Q̃1(2n + 2), (44)

where both integrals Q̃1(2n + 2) and Q̃1(2n) are rescaled with the same factor φ̃ =
Q1(2n)1/(2n+1), we find that

R1(2n) = φ̃2 R̃1(2n) . (45)

In addition, the rescaled weight Q̃1(2n + 2) is now of O(1) and can be evaluated reliably via 
numerical integration. So if we start by integrating directly the numerically stable site weights 
Q1(0) and Q1(2), we can recursively generate ratios R1(2n) with higher and higher n. Note that 
after each calculation of a ratio R1(2n), one needs to update the rescaling factor φ̃ → φ̃′. This 
can be achieved most easily via

φ̃′ = φ̃
2n+1
2n+3 R1(2n)

1
2n+3 . (46)

Our procedure guarantees that all involved quantities are of O(1). Once all ratios R1(2n) are 
known, one can calculate the ratios Rm(2n), noting that for the specific superpotential we con-
sider, eq. (38) simplifies to

Rm(2n) = m0 + m2R1(2n). (47)

The calculation of the ratios R0(2n) as given in eq. (39) is then straightforward.

3.2. Arbitrary superpotential

In the context of broken supersymmetric quantum mechanics, one encounters superpotentials 
with deg(P (φ)) = 1 mod 2. Therefore, we now adapt the procedure from above to superpoten-
tials of this form. For simplicity, we restrict ourselves to the odd superpotential we consider as 
the example in our series of papers,

P(φ) =
3∑

i=1

piφ
i. (48)

If at least one of the coefficients p1 and p2 is nonzero, which is always the case for the superpo-
tentials we use, V (φ) reads

V (φ) = k1φ + k2φ
2 + k3φ

3 + k4φ
4, (49)

and at least one of the coefficients k1 and k3 is nonzero either. This has a two important conse-
quences. Firstly, the moments defined in eq. (32) are nonzero for n odd, from which it follows 
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that the ratios R′
F (n) defined in eq. (36) have to be calculated as well. Secondly, the weights 

Q1(n) are no longer necessarily positive. It turns out, however, that for all practical purposes it 
does not affect the simulations. We will discuss this further in Section 4.

For the evaluation of the integrals, we apply the same variable transformation φ → φ/φ̃ as 
before, such that we have rescaled weights Q̃1(n) given by

Q1(n) = φ̃n+1 Q̃1(n). (50)

We now choose φ̃ = |Q1(n)|1/(n+1) · sgn(Q1(n)). Then, the integral becomes Q̃1(n) = 1 again 
as before. Furthermore, defining the rescaled ratios R̃′

1(n) to be

R̃′
1(n) = Q̃1(n + 1)

Q̃1(n)
= Q̃1(n + 1), (51)

where both integrals Q̃1(n +1) and Q̃1(n) are rescaled with the same factor ̃φ = |Q1(n)|1/(n+1) ·
sgn(Q1(n)), we find R′

1(n) = φ̃ R̃′
1(n). We proceed analogously to the case of the even superpo-

tential by recursive iteration, with the only exception that we generate the ratios R′
1(n) instead of 

the ratios R1(n). The update for the rescaling factor φ̃ → φ̃′ is done via

φ̃′ = |φ̃| n+1
n+2 |R′

1(n)| 1
n+2 · sgn(R′

1(n)). (52)

Once all the ratios R′
1(n) are known, one can calculate the ratios R1(n) via eq. (37), the ratios 

Rm(n) via eq. (38), and the ratios R0(n) and R′
0(n) via eq. (39) and (40), respectively.

4. Results of the Monte Carlo simulations

The results in this section are merely thought of as a proof of the feasibility of the algorithm 
and as a test of its efficiency. Comparing the Monte Carlo results with the exact solution of 
the system at finite lattice spacing provided in our second paper [5] of course also serves as 
a validation for the algorithm. We refer to that paper for a thorough discussion and physical 
interpretation of the results.

For the following Monte Carlo simulations, we consider the same superpotentials and dis-
cretisations as in the previous two papers. In particular, we simulate the system using the action 
with counterterm for both unbroken and broken supersymmetry as well as the Q-exact action for 
unbroken supersymmetry. Details for the various actions can be found in the first paper of our 
series. Here we only give the details of the superpotentials for broken and unbroken supersym-
metry, respectively,

Pb(φ) = −μ2

4λ
φ + 1

3
λφ3 , (53)

Pu(φ) = 1

2
μφ2 + 1

4
gφ4 , (54)

and we recall that the continuum limit is taken by fixing the dimensionful parameters μ, g, λ and 
L while taking the lattice spacing a → 0. In practice, the dimensionless ratios fu = g/μ2 and 
fb = λ/μ3/2 fix the couplings and μL the extent of the system in units of μ, while aμ and a/L

are subsequently sent to zero. In analogy to the number of sweeps for a standard Monte Carlo 
simulation, we count the number of times the algorithm is in either one of the two configuration 
spaces ZF , F = 0, 1. The statistics for a simulation is therefore given by Z0 + Z1 = Za .

First, we consider the standard discretisation with the superpotential Pu such that supersym-
metry is unbroken. As a first observable, we show the results for the bosonic and fermionic 
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Fig. 5. Unbroken supersymmetric quantum mechanics, standard discretisation. Bosonic correlation function for antiperi-
odic (black) and periodic b.c. (red) (lying on top of each other) and fermionic correlation function for antiperiodic (green) 
and periodic b.c. (blue) for μL = 10 at coupling fu = 1. The dashed lines are the exact results from [5]. (For interpreta-
tion of the references to colour in this figure legend, the reader is referred to the web version of this article.)

correlation functions for μL = 10, L/a = 60 and fu = 1 for Za = 107 in Fig. 5. This is essen-
tially the same plot as figure 10(b) in our second paper [5], but now with the additional data 
from the Monte Carlo simulation and plotted on a logarithmic scale. Note that we use the no-
tation x = t in accordance with [5]. The simulation indeed reproduces the exact result within 
very small statistical errors which demonstrate the efficiency of the algorithm. The exponential 
error reduction is due to the use of the improved estimators for the two-point function which are 
available in the context of the worm algorithms. The improvement is particularly impressive for 
the fermionic correlator where the error reduction allows to follow the correlator over more than 
seven orders of magnitude without loss of statistical significance. In fact the relative error for the 
lowest value of the fermionic correlator is still only 4%.

As a second example, we show the mass gaps for different μL at a coupling fu = 1 with 
statistics of Za = 106 in Fig. 6. The μL considered are in the region where thermal effects are 
negligible and essentially only Z0 contributes to the total partition function, such that Za � Z0. 
We extract the masses from the asymptotic behaviour of the correlation function at large t , i.e., we 
extract the lowest energy gap. Because of the extremely good signal-to-noise ratio the asymptotic 
behaviour can be truly reached and, in doing so, systematic errors from contributions of excited 
states are essentially excluded. Of course, we know from our exact results that the overlap of the 
simple operators we use to construct the two-point function is close to maximal. This is clearly 
visible in Fig. 5 where we observe an almost purely exponential decay for all t/L. Because the 
energy gaps are independent of μL, they are expected to fall on top of each other for all values of 
μL at fixed lattice spacing aμ. This is indeed the case within our numerical accuracy, and the ex-
tracted masses, when expressed in units of μ, indeed extrapolate to the correct zero-temperature 
continuum limit. The inset of Fig. 6 shows a detailed comparison of the simulation results with 
our exact solution from [5] represented by the dashed line and we observe a beautiful agreement 
even very close to the continuum.
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Fig. 6. Unbroken supersymmetric quantum mechanics, standard discretisation. Continuum limit of the lowest bosonic 
(circles) and fermionic (squares) mass gap for μL = 10 (black), μL = 19 (red), μL = 31 (blue) and fu = 1. The inset 
shows a detailed comparison with the exact results (dashed lines). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.)

Next, we consider the action with counterterm and the superpotential Pb for which the super-
symmetry is broken. In this case we encounter an issue concerning the potential non-positivity of 
the weights which we already mentioned in Section 3.2. This potentially dangerous sign problem 
is not of fermionic origin, but is instead related to the bond formulation of the bosonic degrees of 
freedom. As a matter of fact it occurs already in the purely bosonic system, independent of the di-
mensionality of the system. However, negative weights only occur in a region of parameter space 
which becomes irrelevant towards the continuum limit. In that sense, the sign problem is a lattice 
artefact and can be avoided straightforwardly. Nevertheless, in order to eliminate any systematic 
error we deal with this bosonic sign problem by incorporating the sign of the configuration into 
the observables, even though it has no practical consequences.

As a first observable in the broken case, we show the bosonic and fermionic two-point func-
tions, 〈φtφ0〉 and 〈ψtψ0〉, for periodic and antiperiodic b.c. for μL = 10 at fixed coupling fb = 1
in Fig. 7 for a statistics of Za = 108. The exact results from [5] are shown as dashed lines. The 
simulation yields results which agree with the exact results within the very small statistical errors 
on the level of 1�. Note that the correlators for periodic and antiperiodic b.c. are constructed a 
posteriori from the simulation results in the bosonic and fermionic sectors Z0 and Z1, respec-
tively, and it is crucial to sample the relative weight between the two sectors correctly in order 
to get the final values right. The relative sampling is solely in the responsibility of the fermion 
simulation algorithm. Our results in Fig. 7 show that the open fermion string algorithm indeed 
transits sufficiently well between the two sectors.

This statement can be made more quantitative by looking at the ratio Zp/Za which represents 
the Witten index in our field theoretic setup. From our exact results in [5] we expect a nonzero 
Witten index at finite lattice spacing which however extrapolates to zero in the continuum limit. 
So the behaviour of the algorithm towards the continuum limit is particularly interesting, be-
cause for vanishing lattice spacing the would-be Goldstino at finite lattice spacing turns into a 
true, massless Goldstino. In such a situation one usually encounters critical slowing down of 
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Fig. 7. Broken supersymmetric quantum mechanics, standard discretisation. The bosonic two-point function for antiperi-
odic (black) and periodic b.c. (red) and the fermionic one for antiperiodic (green) and periodic b.c. (blue) for L/a = 60, 
μL = 10 at coupling fb = 1. The dashed lines are the exact results from [5]. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.)

the simulation algorithms, such that the errors on the results grow large and the results become 
unreliable. The massless Goldstino is directly related to the tunnelling between the bosonic and 
the fermionic sector, and the reproduction of a Witten index W = 0 in the continuum with small 
errors is hence a true demonstration of the efficiency of the open fermion string algorithm to 
transit between the bosonic and fermionic sector. In addition, we know from [5] that the lattice 
artefacts are exponentially enhanced towards zero temperature and it is interesting to see how the 
simulation algorithm handles this situation at coarse lattice spacing.

In Fig. 8 we show the ratio Zp/Za as a function of the lattice spacing aμ for different values 
of μL at fixed coupling fb = 1. For this quantity, too, the simulation yields results which agree 
with the exact results within the small statistical errors. Moreover, the efficiency of the algorithm 
does not appear to deteriorate towards the continuum limit or for small values of μL where the 
Witten index is very close to zero. This can for example be seen from the fact that the errors 
obtained with fixed statistics essentially remain constant towards the continuum limit and are 
also independent of the system size. This nicely demonstrates the efficiency of the algorithm also 
for a system with broken supersymmetry.

The last system we investigate with the worm algorithm is unbroken supersymmetry formu-
lated with the Q-exact action.1 We first consider the ratio of partition functions Zp/Za which in 
the limit of μL → ∞ yields the Witten index. From a simulational point of view, the ratio essen-
tially calculates the fraction of configurations in sector Z0 versus the ones in Z1. For unbroken 
supersymmetry the system is almost exclusively in the bosonic sector, and hence the ratio is very 
close to one except when the size of the system becomes very small, i.e., in the high temperature 

1 For Monte Carlo simulations using the Q-exact action for broken supersymmetry, we encounter the very same prob-
lems we ran into in the transfer matrix approach. The bond occupation number grows extremely large even on small 
lattices and for coarse lattice spacings such that the generation of reliable results turns out to be impossible.
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Fig. 8. Broken supersymmetric quantum mechanics, standard discretisation. Continuum limit of the partition function 
ratio Zp/Za , i.e., the Witten index, for μL = 5 (blue), μL = 10 (red), μL = 20 (green), μL = 30 (black) at fixed 
coupling fb = 1. The dashed lines are the exact results from [5]. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.)

Fig. 9. Unbroken supersymmetric quantum mechanics, Q-exact discretisation. Zp/Za as a function of μL for L/a = 16
(red), L/a = 32 (blue), L/a = 64 (black) at fixed coupling fu = 1. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.)

limit. Moreover, from our exact results in [5] we know that the lattice artefacts in this quantity 
are very small and the continuum limit is not very interesting. For these reasons, we consider in 
Fig. 9 the dependence of the ratio Zp/Za on μL for different values of the lattice spacing a/L

with a statistics of Za = 108.
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Fig. 10. Unbroken supersymmetric quantum mechanics, Q-exact discretisation. Continuum limit of the lowest bosonic 
(black squares) and fermionic (red circles) mass gaps for μL = 17, and bosonic (blue squares) and fermionic (green 
circles) mass gaps for μL = 31 at fixed coupling fu = 1. The inset shows a detailed comparison with the exact result 
(dashed line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.)

Also for this quantity, we find that the results agree with the exact result within the very small 
statistical errors. Again, the open fermion string algorithm proves to be very efficient even close 
to μL � 0 where the tunnelling from the bosonic to the fermionic sector and vice versa becomes 
important and dominates the behaviour of the system. Thus, even in this somewhat extreme 
situation of very high temperature, the algorithm does not show any signs of critical slowing 
down despite the fact that there is a quasi-zero mode in the system.

Note that the algorithm is capable of handling negative bare masses independent of the dis-
cretisation used and Fig. 9 is simply also an illustration of this fact.

The last quantity we calculate are the lowest bosonic and fermionic mass gaps for different 
μL at fixed coupling of fu = 1 from a statistics of Za = 106. The mass gaps are extracted from 
the two-point correlation functions exactly in the same way as before for the standard action, 
and in Fig. 10 we show the results of this analysis. As expected, the masses for the boson and 
the fermion are indeed indistinguishable within statistical errors. The degeneracy of the masses 
at finite lattice spacing due to the Q-exactness of the action emerges also for the results from 
Monte Carlo simulations. Note that the chosen values for μL lie well within the region where 
thermal effects are negligible and the masses extrapolate nicely to the correct zero-temperature 
continuum limit. The inset in Fig. 10 shows a detailed comparison with our exact results from 
[5] and we again observe beautiful agreement.

5. Conclusions

In this paper we present an algorithm for simulating N = 2 supersymmetric quantum mechan-
ics on the lattice. The algorithm is based on the reformulation of the system in terms of bosonic 
and fermionic bonds, and in essence represents an efficient Monte Carlo scheme for updating 
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fermionic and bosonic bond configurations. The updating of the fermionic degrees of freedom is 
of specific interest, because this is in general the most challenging part of a simulation. This is 
particularly true for systems with broken supersymmetry, where standard simulation algorithms 
suffer from critical slowing down due to the massless Goldstino mode. In addition, these sys-
tems inevitably also suffer from a sign problem related to the Goldstino and the vanishing Witten 
index.

In contrast, the fermion simulation algorithm proposed in [2] eliminates critical slowing down 
by directly sampling the fermionic two-point correlation function. It is based on introducing a 
fluctuating open fermion string which efficiently updates the bond configurations on all length 
scales up to the correlation length associated with the fermionic correlation function. As a con-
sequence, the fermion string induces frequent tunnellings between the bosonic and fermionic 
vacuum when that correlation length becomes large. Since the two vacua contribute to the parti-
tion function with opposite signs, the frequent tunnelling guarantees sufficiently small statistical 
fluctuations for the average sign, and hence a solution to the fermion sign problem. In fact, the 
more severe the sign problem gets towards the continuum limit, the more efficiently the algorithm 
tunnels between the bosonic and fermionic sectors. This is of course due to the growing correla-
tion length associated with the vanishing Goldstino mass. The bosonic degrees of freedom can be 
expressed in terms of bonds as well. Therefore, we also give the details of an updating algorithm 
for the bosonic bond configurations. Since we consider Q-exact discretisations in addition to the 
standard one, the algorithm involves updating generic types of bonds.

The simulation algorithm requires the calculation of the site weights QF (N). Their numerical 
evaluation, however, turns out to be numerically unstable for large site occupation numbers N . 
Hence, in Section 3, we devise a computational strategy which allows to reliably evaluate the 
ratios of weights for arbitrarily large occupation numbers. Since this is a generic problem occur-
ring in the bond formulation of field theories with real scalar fields, such a computational scheme 
is useful also in other situations.

Finally, we present a selection of results obtained using the open fermion string algorithm. 
We concentrate on two specific realisations of supersymmetric quantum mechanics, one with 
broken and one with unbroken supersymmetry. In addition, we consider both the standard and 
the Q-exact discretisation. Since exact results are available at finite lattice spacing from our 
investigation in [5], we can benchmark our stochastic results and directly validate them. The 
calculation of the bosonic and fermionic correlation functions shows that they can be determined 
very accurately over several orders of magnitude. This allows for a very precise computation of 
the boson and fermion masses, the latter in many cases with a smaller error than the former. In 
general, a precision of 1� can be reached with a very modest computational effort. In systems 
with broken supersymmetry it is crucial that the simulation algorithm efficiently samples the 
relative weights between the bosonic and fermionic sectors. Our results for the partition function 
ratio Zp/Za , i.e., the Witten index, show that this is indeed the case. For fixed statistics, the 
errors do not grow towards the continuum limit. In that limit the index gets very close to zero and 
the sign problem would therefore be most severe. Similarly, the error is essentially independent 
of the system size, which shows that the sign problem is truly solved.
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