
Applicative theories for logarithmic complexity classes

Sebastian Eberhard

Institut für Informatik und angewandte Mathematik, Universität Bern, Neubrückstrasse
10, CH-3012 Bern, Switzerland.

Abstract

We present applicative theories of words corresponding to weak, and es-
pecially logarithmic, complexity classes. The theories for the logarithmic
hierarchy and alternating logarithmic time formalise function algebras with
concatenation recursion as main principle. We present two theories for log-
arithmic space where the first formalises a new two-sorted algebra which is
very similar to Cook and Bellantoni’s famous two-sorted algebra B for poly-
nomial time [4]. The second theory describes logarithmic space by formalis-
ing concatenation - and sharply bounded recursion. All theories contain the
predicates W representing words, and V representing temporary inaccessible
words. They are inspired by Cantini’s theories [6] formalising B.

1. Introduction

There are many examples of logical theories corresponding to complexity
classes given by function algebras. Research on this subject was started by
Buss in [5] where theories of bounded arithmetic are introduced for the sub-
classes of the polynomial hierarchy. Further theories of bounded arithmetic
have been introduced by Clote and Takeuti in [8] amongst others for the
logarithmic hierarchy, alternating logarithmic time, logarithmic space, and
various circuit complexity classes. Weak arithmetic second-order theories
corresponding to various complexity classes, analysed by various researchers,
are collected in [9]. Weak second order theories have also been proposed by
Buss [5], and Kraj́ıček [17].

Let us switch now to applicative theories, a formalisation of combinatory
logic, introduced by Feferman in the mid seventies [12] as base theory of his
theories of explicit mathematics. These theories employ the logic of partial
terms, which was introduced by Beeson in [1], [2]. Applicative theories corre-

Email address: eberhard@iam.unibe.ch (Sebastian Eberhard)

Preprint submitted to Elsevier November 14, 2013

s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
7
0
7
0
4

|

d
o
w
n
l
o
a
d
e
d
:

6
.
1
.
2
0
2
0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bern Open Repository and Information System (BORIS)

https://core.ac.uk/display/33088086?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

sponding to complexity classes have been introduced e.g. by Strahm [21, 22]
for linear and polynomial time - and space classes, by Cantini for polynomial
time [6], and by Kahle and Oitavem [16] for the polynomial hierarchy.

In contrast to corresponding theories of bounded arithmetic, applicative the-
ories allow to prove the totality of functions of their complexity class with-
out coding. This makes the lower bound proofs typically easier and more
transparent. For an overview of weak applicative theories, we recommend
Strahm’s [23].

We present applicative theories for various logarithmic complexity classes.
The theories are formulated over a base theory of words and contain in-
duction principles to formalise the suitable forms of recursion. As Cantini’s
mentioned system they contain two predicates W and V, however their in-
terpretation is slightly different. We have to be more restrictive about the
permitted operations on V to achieve logarithmic strength: We cannot allow
case distinction for elements of V of the following form.

case(; y1, y2, y3) :=

{
y2, if mod2(y1) = 0

y3, else

Accordingly, the intended meaning of being an element of V differs from Can-
tini’s theory, where elements of V just have a different role in the induction
scheme. For the weaker theories presented in this article, t ∈ V informally
means that t is a temporary inaccessible word, e.g. it can only be the input
of functions not requiring to read off any of its bits. This property is fulfilled
e.g. for the successor - and predecessor functions, and is designed to describe
the role intermediate values1 play during concatenation recursion. For the
stronger theory of logspace strength, we allow at least to determine, whether
a t ∈ V equals the empty word ε by the following case distinction given for
safe inputs.

case(; y1, y2, y3) :=

{
y2, if y1 = ε

y3, else

If we compare our two-sorted theories with Cantini’s, the main difference is
that we do not only forbid elements of V to control recursion, but also during
recursion restrict the way they can be used heavily.

1For f(w, ~x; ~y) defined by some recursion scheme on notation on w, the intermediate
values are f(w′, ~x; ~y) for w′ ⊂ w. Analogously for functions not involving safe arguments.

2

Let us summarize the content of this paper. In section 2, we design applica-
tive theories formalising concatenation recursion. We present three applica-
tive theories of words in detail that correspond to implicit characterisations
of complexity classes whose main principle is concatenation recursion or an
extension thereof. Their provably total functions are the elements of the
logarithmic hierarchy for LogT, alternating logarithmic time for AlogT, and
polynomial time for PT.

The theories LogT, AlogT, and PT are introduced simultaneously, since they
only differ very slightly in their induction schemes. Their induction formulas
have two free variables, as in Kahle and Oitavem’s [15, 16], which allows to
express that f(siw, ~x) is a successor of f(w, ~x) for a function f defined by
concatenation recursion.

The lower bound of the theories LogT, AlogT, and PT is established by
proving totality for all elements of corresponding word function algebras.
Because of the computational completeness of the underlying combinatory
algebra, we can directly produce terms representing these functions without
any coding. Then, we prove by an easy induction that these terms represent
total functions. In section 2.4, we prove the upper bound of the theories using
a modification of Strahm’s realisation approach [22]. This delivers an exact
characterisation of LogT, AlogT and PT in terms of provably total functions.

In section 3, we present a new two-sorted algebra LS for logarithmic space,
which is just Cook and Bellantoni’s B with a weakened case distinction and
an additional initial function yielding the length of its input. In contrast
to Bellantoni’s description of logarithmic space as safe unary algebra, LS
contains also the fast growing members of logspace. The prize one has to pay
is the addition of the initial function len having as output the length of its
input. Implicit characterisations of logspace using a safe/normal distinction
have also been developed by Neergaard [18], and Oitavem [19].

In section 4, we formalise LS and Clote’s algebra for logspace containing
sharply bounded recursion [7], and obtain new two-sorted applicative theories
of the same strength. These theories contain ordinary one-variable induction
schemes.

2. Applicative theories for concatenation recursion

We introduce the theories LogT, AlogT, and PT in detail, and execute their
proof-theoretic analysis.

3

2.1. Function algebras on words

For the logarithmic hierarchy, alternating logarithmic time, and polynomial
time there exist well-known function algebras A1, A2 and A3 on numbers.
A1 and A2 were developed by Clote in [7]. A3 was developed by Ishihara in
[14]. However, we formulate our theories for words, and therefore it will be
practical to work with function algebras on words of corresponding strengths.

Before defining these function algebras, we first explain some concepts. Words
are given as elements of {0, 1}∗, so they are finite sequences of zeros and ones.
The length |w| ∈ N of a word w is defined in the obvious way. The word w
consists of |w| bits. Its first bit is the rightmost one and is given by BIT(0, w),
the other bits are given by BIT(1, w), BIT(2, w), · · · ,BIT(|w| − 1, w). As
usual, the most significant bits are at the left -, the least significant bits at
the right side. The relation ≺ orders the words first by length, and if they
have the same length lexicographically. For words w, v and numbers n,m we
have w ≺ v exactly if

|w| < |v| ∨ (|w| = |v|∧
(∃n ≤ |w| − 1)(∀m < n ≤ |w| − 1)

(BIT(m,w) = BIT(m, v) ∧ BIT(n,w) = 0 ∧ BIT(n, v) = 1)

We write w � v for w ≺ v∨w = v. We call this order the lexicographic order
on words in the following. The existence of an order isomorphism I from
(W,�) to (N,≤) allows us to give a bit function with two words as input.

Definition 1 bit : W2 → W is given as the function fulfilling the following
specifications.

• If I(w) is smaller than the length of v, bit(w, v) equals the I(w)-th bit
of v in the sense of the BIT function.

• In all other cases, bit(w, v) is 0.

Next, we define a length function on words giving a word as output, relying
on I.

Definition 2 len : W → W is defined such that len(w) = v exactly if the
length of w is n ∈ N and I−1(n) = v.

Definition 3 The function algebras W1, W2 and W3 on words (correspond-
ing to A1, A2 and A3) contain the following initial functions.

• the constant empty word function.

4

• the word successor functions s0, s1, concatenating 0 or 1, respectively,
at the right side of their input.

• projection functions of arbitrary arity.

• the function bit.

• the function len.

• the function × where w×v is the length of the v fold concatenation of
w with itself.

• the function e where e(w) is the word w without its leading zeros, e.g.
zeros bits at the left of any one bit.

The algebras are closed under various operations.

• The function algebras W1, W2 and W3 are closed under composition.

• The function algebras W1 and W2 are closed under the following scheme
of concatenation recursion on notation CRN . The notation sbit(···)
abbreviates in the following always a case distinction on the value of
bit(· · ·).

f(ε, ~y) = g(~y)

f(s0(x), ~y) = sbit(ε,h0(x,~y))(f(x, ~y))

f(s1(x), ~y) = sbit(ε,h1(x,~y))(f(x, ~y))

• The function algebra W2 is closed under the following scheme of k-
bounded recursion k − BRN for each k ∈ W. We write w ≤ v for
w, v ∈W exactly if v is at least as long as w.

f(ε, ~y) = g(~y) | k

f(s0(x), ~y) = h0(x, ~y, f(x, ~y))) | k

f(s1(x), ~y) = h1(x, ~y, f(x, ~y))) | k

,

where

x|y =

{
x, if x ≤ y

y, else

5

• The function algebra W3 is closed under the following scheme of ex-
tended concatenation recursion on notation CRN+.

f(ε, ~y) = g(~y)

f(s0(x), ~y) = sbit(ε,h0(x,~y,f(x,~y)))(f(x, ~y))

f(s1(x), ~y) = sbit(ε,h1(x,~y,f(x,~y)))(f(x, ~y))

For concatenation recursion on notation, if h0 and h1 give only 0 or 1 as
output, we drop bit.

We have to include the eraser function because the scheme of concatenation
recursion is weaker for word algebras than for number algebras. This is
because of the different properties of the successor functions: within word
algebras, they always increase their input, whereas s0(0) = 0 holds in the
setting of numbers. This makes the usual definition of sharply bounded
quantification impossible in the setting of words. For all function algebras
on words we present in this paper, the addition of the eraser can be easily
proved to be necessary: For any function F contained in one of these algebras,
the number of lengths an output F (~x) can possibly have for inputs ~x of fixed
length can be shown to be too small to include the eraser.

Executing a similar bootstrapping process as in Clote’s [7] for the word al-
gebras (containing the eraser), it is proved that they exactly contain word
functions of their corresponding complexity class.

2.2. The systems LogT, AlogT and PT

The above mentioned theories differ only minimally, so we develop them si-
multaneously. We make use of a safe predicate V to express that for F defined
by concatenation recursion, the recursion step function must not depend on
the intermediate values of F . The systems are based on an applicative base
theory including the axioms for a combinatory algebra and basic predicates
W, V which are interpreted as the set W = {0, 1}∗ of binary words in the
standard interpretation.

2.2.1. The applicative language L

Our basic language L is a first order language for the logic of partial terms
which includes:

• variables a, b, c, x, y, z, u, v, f, g, h, . . .

• the applicative constants k, s, p, p0, p1, dW, ε, s0, s1, pW, s`, p`, c⊆, ∗,
×, len, bit, e.

6

• relation symbols = (equality), ↓ (definedness), W (binary words)

• arbitrary term application ◦

The terms (r, s, t, . . .) and formulas (A,B,C, . . .) of L are defined using the
connectives ¬,∧,∨,→ and the quantifiers ∃,∀. We assume the following
standard abbreviations and syntactical conventions:

t1t2 . . . tn := (. . . (t1 ◦ t2) ◦ · · · ◦ tn)

s(t1, . . . , tn) := st1 . . . tn

t1 ' t2 := t1↓ ∨ t2↓ → t1 = t2

t ∈ W := W(t)

t : Wk → W := (∀x1 . . . xk ∈ W)tx1 . . . xk ∈ W

s ≤ t := c⊆(1×s, 1×t) = 0

s ≤W t := s ≤ t ∧ s ∈ W

In the following we often write A[~x] in order to indicate that the variables
~x = x1, . . . , xn may occur freely in A. We write A[~s] for the substitution of
the free variables of A by ~s.

For vectors ~y of any domain, we use yi to denote the i-th component of ~y
starting with i = 1. Finally, let us write w for the canonical closed L term
denoting the binary word w ∈W.

2.2.2. Rules and axioms of LogT, AlogT and PT

We use a base theory B′ that is very similar to Strahm’s theory B introduced
in [21, 22].

The logic of B′ is the classical logic of partial terms due to Beeson [1, 2] 2.
The non-logical axioms of B′ include axioms of a partial combinatory algebra:

kxy = x, sxy↓ ∧ sxyz ' xz(yz)

We also have the usual axioms for pairing p with projections p0 and p1. Then,
we add axioms stating that the further applicative constants, representing
simple functions on words in the standard model, fulfil the expected recursion
equations on W. These axioms do not contain the predicate V and have the
following form.

2The reason for working with a partial instead of a total version of B′ is that we do
not want to exclude the very natural recursion theoretic standard model of the introduced
theories having the words as universe and interpreting application as partial recursive
function application in the sense of ordinary recursion theory. Nevertheless, all upper
bound proofs will be given for total versions of the introduced systems.

7

• defining axioms for the binary words W with ε, the successors s0, s1
which concatenate 0, 1, respectively, at the right side of a word, and
the predecessor pW which deletes the least significant bit.

• defining axioms for c⊆ which represents the initial subword relation.

• defining axioms for s`, p` which yield the lexicographic successor or -
predecessor, respectively.

• definition by cases dW on W, given as follows for variables x, y, u, v:

– x ∈ W ∧ y ∈ W ∧ x = y → dWuvxy = u

– x ∈ W ∧ y ∈ W ∧ x 6= y → dWuvxy = v

• word concatenation ∗, word multiplication ×

These axioms are fully spelled out in [21, 22]. We have the following axioms
for the new constants.

len : W→ W(len.1)

lenε = ε(len.2)

x ∈ W→ len(six) = s`(lenx)(len.2)

bit : W2 → W(bit.1)

x ∈ W→ bit(ε, x) = dW(1, 0, s1(pWx), x)(bit.2)

x ∈ W→ bit(x, ε) = 0(bit.3)

x, y ∈ W→ bit(x, y) = bit(s`x, siy)(bit.4)

e : W→ W(e.1)

eε = ε(e.2)

x ∈ W→ e(s0x) = dW(ε, s0(ex), ex, ε)(e.3)

x ∈ W→ e(s1x) = s1(ex)(e.4)

Since len yields the length of words, we often write |t| instead of len ◦ t.

To motivate the axioms and rules for V, we have to give the informal meaning
of the predicates W and V. As we mentioned already, v ∈ V is intended
to mean that v is a stored, temporary inaccessible word while W contains
fully accessible words. Let us explain these ideas in more detail. We can
sensitively apply any of our initial functions to w ∈ W, especially, we can
calculate its bits, i.e. we can fully access w. So, w ∈ W is given to us
similarly as content stored on a usual read-write tape of a Turing machine.
On the other hand, to v ∈ V we allow only the application of the successor

8

and predecessor functions. The motivation behind this is that given a word
v ∈W its successors and predecessor can be produced without knowing any
of its bits. The knowledge where the word ends is already sufficient. Content
in V is given to us similarly as content stored on a write only tape to a Turing
machine having the write head always on the rightmost bit of the word it
contains. Content in V can be bitwise extended or deleted but not accessed.

Sequents of the form s ∈ V → t ∈ V are interpreted as claiming that a
transformation of content s into content t is possible where both are tempo-
rary inaccessible. Content in V is not inaccessible forever: if it is possible to
produce temporary inaccessibly stored content without assuming anything
about other temporary inaccessible content, we can transfer it into stable
fully accessible content. This corresponds to the idea that at the end of a
computation process, we can read off the result, even if during the computa-
tion there is no time or space to do so.

To formalise concatenation recursion, we let the intermediate values f(x, ~y)
be elements of V. In this way, we express that the induction step functions do
not depend on them. Only at the end of computation, we dispose of f(x, ~y).
According to our motivation, we give the following axioms.

x ∈ W→ x ∈ V(V-intro)

x ∈ V→ six ∈ V(V-ext)

x ∈ V→ pWx ∈ V(V-del)

To define the rule which allows to replace V- by W-occurrences, we need the
concept of a positive L formula.

Definition 4 For s, t being L terms, an L formula A is positive if A is build
from formulas of the form s = t, s ' t, s↓, s ∈ W, s ∈ V, using the
connectives ∧,∨ and the quantifiers ∀,∃.

Now, let A be an arbitrary formula not containing V, and BW being the
positive formula B with all occurrences of V replaced by W.

A→ B

A→ BW
(V-elim)

This concludes the description of the axioms available for V. Note that we
cannot even check for elements in V whether they equal ε. We will allow this
later to construct systems of logspace strength.

The induction scheme formalising concatenation recursion has to be formu-
lated such that for an induction formula A[x, y] ≡ fx = y and for a function

9

f defined by concatenation recursion, y is stored but temporary inaccessible.
In contrast, the extended concatenation recursion is formalised by a scheme
that allows full access to such a y. This results in the following induction
schemes for PT and AlogT, respectively, where A[x, y] is a positive formula
without any occurrences of W or V.

(∃y ∈ W)A[ε, y]∧(PT-Ind)

(∀x, y ∈ W)
(
A[x, y]→ A[six, s0y] ∨ A[six, s1y]

)
→

(∀x ∈ W)(∃y ∈ W)A[x, y]

(∃y ∈ V)A[ε, y])∧(AlogT-Ind)

(∀x ∈ W)(∀y ∈ V)
(
A[x, y]→ A[six, s0y] ∨ A[six, s1y]

)
→

(∀x ∈ W)(∃y ∈ V)A[x, y]

The scheme for AlogT is weaker than that of PT because we have to prove
the induction step for inaccessible words y. Finally, the induction scheme for
LogT restricts the scheme of AlogT by allowing only positive induction for-
mulas A which are W,V and disjunction free, except of disjunctions occurring
within formulas of the form s ' t. In the following, we drop the V-axioms
from PT since they are unnecessary. This concludes the description of the
theories LogT, AlogT, and PT.

The standard open term model M(λη) for B can be easily generalised to
model the introduced theories: Take the universe of open λ terms and con-
sider the usual reduction of the extensional untyped lambda calculus λη,
augmented by suitable reduction rules for the constants other than k and s.
Interpret application as juxtaposition. Two terms are equal if they have a
common reduct, W and V denote the set of terms which reduce to a “stan-
dard” word w.

2.3. Lower bound

We find a lower bound for the theories LogT, AlogT and PT in the sense of
provably total functions. We use the following standard definition.

Definition 5 A function F : Wn →W is called provably total in an L theory
Th, if there exists a closed L term tF such that

(i) Th ` tF : Wn → W and, in addition,

(ii) M(λη) � tFw1 · · ·wn = F (w1, . . . , wn) for all w1, . . . , wn in W.

10

Lemma 6

• All functions of W1 are provably total in LogT.

• All functions of W2 are provably total in AlogT.

• All functions of W3 are provably total in PT.

Proof.

The initial functions are clearly provably total and the provably total func-
tions are closed under composition for all introduced theories. Now, let us
deal with the case where the function F (x, ~z) is defined by concatenation
recursion applied to G(~z) and Hi(x, ~z) being both in W1 or W2, respectively.
The induction hypothesis delivers terms tG and tHi

representing G and Hi.
We find a closed term tF such that

tF ε~z ' tG~z

tF (siw)~z ' dW(s0(tFw~z), s1(tFw~z), bit(ε, tHi
w~z), 0)

We take tFx~z = y as induction formula A[x, y] and assume that ~z ∈ W. Let us
show that the premisses of (LogT-Ind) or (AlogT-Ind), respectively, hold. The
first conjunct holds because of the induction hypothesis for G and because
W ⊆ V. To prove the second conjunct, we can assume tFx~z = y ∈ V for
x ∈ W. Because of the properties of the Hi, we have that bit(ε, tHi

x~z) equals 0
or 1. y ∈ V implies siy ∈ V, which means that all components of the definition
by cases that is partially equal to tF (six)~z are defined. If we now assume
that bit(ε, tHi

w~z) equals 0, we derive tF six~z = s0y. The other case works
analogously. The application of induction delivers (∀x ∈ W)(∃y ∈ V)tFx = y,
which yields the totality of tF using (V-elim).

For a function F defined by extended concatenation recursion, we define the
term tF similarly as before. The crucial difference is that the step functions
Hi now depend on the intermediate values of F represented by y. To be able
to sensibly apply tHi

to y we have to impose y ∈ W. Let us mention that the
lower bound proof of PT also works if the predicate V is dropped from the
theory.

Now, let us deal with the case where the function F (x, ~y) is defined by w-
bounded recursion applied to G(~y) and Hi(x, ~y) both being in W2. The
induction hypothesis delivers terms tG and tHi

representing G,Hi. We find
a closed term tF such that

tF ε~z ' tG~z | w
tF (siw)~z ' tHi

w(tFw~z)~z | w

11

We define the formula s 4 w for each w ∈ W to be a disjunction composed
of all disjuncts of the form s = v where v ≤ w (assume an arbitrary but fixed
bracketing). In the base theory B′ (see page 7) we can prove the following
by external induction for all w ∈W.

B′ ` s 4 w ↔ s ≤W w

To prove the totality of tF , we take tFx~z 4 w as induction formula and
assume ~z ∈ W. Then, the first conjunct of the antecedent holds because of
the induction hypothesis for G. To prove the second conjunct, we can assume
tFx~z 4 w for x ∈ W. This implies that tFx~z is a word, which yields together
with the induction hypothesis for the Hi the desired result. Note, that the
axiom x ∈ V→ pWx ∈ V was not needed to prove the lower bound. 2

2.4. Upper bound

For the upper bound proof, we work with total versions LogT↓, AlogT↓ and
PT↓ of the introduced theories. They are obtained from the partial theories
by the following modifications:

• We drop ↓, and replace all formulas of the form s ' t by s = t in the
axioms and rules.

• We work with the usual classical logic.

• We redefine the notion of positive formulas as follows.

Definition 7 For s, t being L terms, an L formula A is positive if A is build
from formulas of the form s = t, s ∈ W, s ∈ V, using the connectives ∧,∨
and the quantifiers ∀,∃.

It is easy to see that LogT↓, AlogT↓ and PT↓ are equivalent to the extensions
of LogT, AlogT and PT by the axiom (∀x, y)xy↓.
We formulate LogT↓, AlogT↓ and PT↓, which we just call LogT, AlogT and
PT in the following, in Gentzen’s classical sequent calculus LK. We assume
familiarity with LK as it is presented, for example, in Girard’s [13]. By
formulating induction as a rule, we obtain systems with only positive main
formulas for all theories. For the sequent style systems, we give the V-
elimination rule as follows for V-free Γ,∆, a positive B, and BW being B
with all occurrences of V replaced by W.

Γ⇒ B,∆

Γ⇒ BW,∆

12

Note that compared to Cantini’s [6], we allow more general side formulas,
and B can be a positive formula of arbitrary complexity. The reason why this
is possible is that for our realisation approach an elimination of non-positive
cuts is sufficient.

By standard techniques, see e.g. Girard’s [13], we can eliminate all cuts with
non-positive cut-formula. This implies that sequents containing only positive
formulas have proofs containing only positive formulas. The above sketched
transformation of the theories into sequent style, and the subsequent partial
cut-elimination are described in detail in Strahm’s [22] on pages 24-26 for
similar theories.

Due to the cut-elimination result, we can restrict the realisation to positive
formulas. We use two realisation relations r and R . The first trivializes
the V-predicate, the second treats V exactly like W. Correspondingly, we
deliver for provable sequents two realisation functions: F operating on r
realisers, and F� on R realisers. The interplay of F and F� allows to catch
both aspects of V: On the one hand the possibilities to derive something
from t ∈ V are very restricted, so we are not allowed to use its realiser as
freely as a realiser of t ∈ W; on the other hand because of (V-elim) under
some conditions we have to produce a full W-atom (e.g. a formula of the
form t ∈ W) realiser from a V-atom realiser.

Let us define both realisation relations. We let 〈·, ·〉 denote the word analogue
of the pairing function defined by Clote in [7] which is in the logarithmic hier-
archy and has roughly the same growth rate as concatenation. We use pairing
functions with higher arities in the analogous sense. We write ρ0, ρ1, · · · for
the components of a word ρ relative to this pairing supposing that ρ is a pair.

Definition 8 (Realisation relation r)

ρ r W(t) iff M(λη) � t = ρ,

ρ r V(t) iff ρ = ε,

ρ r (t1 = t2) iff ρ = ε and M(λη) |= t1 = t2,

ρ r (A ∧B) iff ρ = 〈ρ0, ρ1〉 and ρ0 r A and ρ1 r B

ρ r (A ∨B) iff ρ = 〈i, ρ1〉 and either i = 0 and ρ1 r A or

i = 1 and ρ1 r B,

ρ r (∀x)A(x) iff ρ r A(u) for a fresh variable u,

ρ r (∃x)A(x) iff ρ r A(t) for some term t.

13

Definition 9 (Realisation relation R) The realisation relation R is
defined as r except that the clause

ρ r V(t) iff ρ = ε

is replaced by

ρ R V(t) iff M(λη) |= t = ρ

Sequences Γ of formulas are realised as usual by tuples ~ρ of realisers where
the i-th component of ~ρ realises the i-th formula of Γ.

Note that for a formula A realised by ρ relative to r or R , we can talk
about the atoms of A that are realised by ρ in a natural way. This is so
because ρ just contains individual realisers of possibly substituted atoms of
A (with multiplicity), within a structure of pairs allowing to find for each
individual realiser the corresponding atom. Let A be e.g. the formula

(∃x)(x ∈ W ∧ (x = 0 ∨ x = 0)).

Its r -realiser 〈0, 〈0, ε〉〉 realises the first and the second atom from the left,
but does not realise the third one.

For any positive formula A, there is a function ·A (projection function) within
the logarithmic hierarchy that transfers a given R realisers of A into a r
realiser of A, just by inserting ε at the suitable positions. We can assume
the following properties for this function.

• ·A[~s] and ·A[~t] denote the same function.

• ρ and ρA realise the same atoms in the sense described above.

• ·QxA[x] is given as ·A[u] for Q = ∃,∀ and a fresh variable u.

The projection function can easily be generalised to tuples of realisers and
sequences of formulas, and is written as ·Γ in such cases. We write just ·∗ for
projection functions, if Γ is clear from the context.

Theorem 10 Let T0, T1, T2 denote LogT, AlogT, PT, respectively. Let
Γ ⇒ ∆ be a sequent of positive formulas with Γ ≡ A1, . . . , An and ∆ ≡
D1, . . . , Dm and assume Ti `? Γ[~u] ⇒ ∆[~u]. Then there exists functions
F, F� : Wn →W in Wi such that for each substitution [~s] and each ~ρ R Γ[~s]
the following conditions hold.

14

• F�(~ρ) R ∆[~s]

• F (~ρ Γ)0 = F�(~ρ)0 = k

• F (~ρ Γ)1 = F�(~ρ)Dk
1

Let us explain the three conditions. The first conditions claims that a func-
tion F� delivers an R realiser of ∆[~s], which means a realiser reflecting the
V-predicate, on input ~ρ. The second condition claims that the realisation
functions F and F� pick the same formula Dk[~s] of ∆[~s] to realise. Note,
that the input of the realisation function F is a projection of the input of
F�. Finally, the third condition connects the realisers delivered by F and
F�, stating that the first is a projection of the second.
Proof. We proof the theorem by induction on the depth of the positive proof.
Note that for PT, we only have to give a realisation function F . The logical -
and applicative axioms are realised easily. Also the logical rules do not pose
special difficulties.

Let us realise the V-elimination rule given as follows where V does not occur
in Γ, and BW is B with all occurrences of V replaced by W.

Γ⇒ B,∆

Γ⇒ BW,∆

For the premise, we have realisation functions P, P�. We construct the real-
isation function F . Let ~ρ be the given realisers for Γ relative to realisation
relation r . Since Γ does not contain V they are realisers of Γ relative to R .
An application of P� delivers an R realiser of B,∆. Because R realisers
of t ∈ V are equal to r realisers of t ∈ W, P�(~ρ) simultaneously yields an
r and R realiser of BW,∆. Therefore, we define F and F� as P�.

Let us now realise the induction scheme of AlogT with premisses

• Γ⇒ (∃y ∈ V)A[ε, y],∆

• Γ, x ∈ W, y ∈ V, A[x, y]⇒ A[s0x, s0y] ∨ A[s0x, s1y],∆

• Γ, x ∈ W, y ∈ V, A[x, y]⇒ A[s1x, s0y] ∨ A[s1x, s1y],∆

and the conclusion

• Γ, t ∈ W⇒ (∃y ∈ V)A[t, y],∆,

where the usual variable condition applies. We assume realisation functions
G,G�, H0, H

�
0 , H1, H

�
1 for the premisses and that Γ contains n formulas.

15

First, we define a function I : Wn+1 →W which produces r -realisers of the
induction formula A relative to specific substitutions. This can be done by
the following cA-bounded recursion for a cA ∈W such that for all ρ ∈W and
all terms s, t

ρ r A[s, t]⇒ ρ ≤ cA.

The existence of cA easily follows from the following lemma which can be
proved by induction on the complexity of the formula A.

Lemma 11 Let A be a positive, W-free formula. Then there exists a word
cA such that for any substitution [~s] and any word ρ

ρ r A[~s]⇒ ρ ≤ cA.

We abbreviate multiple projections of a word w as wn0,··· ,nm and define I as
follows.

I(~z, ε) = G(~z)1,1 | cA
I(~z, siw) = Hi(~z, w, ε, I(~z, w))1,1 | cA

Under the assumption ~z r Γ, for any w ∈ W, I(~z, w) delivers a realiser of
A[w, v] for some v ∈W, as long as no side formula is realised.

Let us define a second auxiliary function Q : Wn+1 → W producing an R
realisers for the first inner conjunct of (∃y ∈ V)A[t, y] given an R -realiser ~z
of Γ, presupposed that no side formula is realised.

Q(~z, ε) = G�(~z)1,0

Q(~z, siw) = sbit(ε,Hi[(~z)∗,w,ε,I((~z)∗,w)]1,0)Q(~z, w)

Note, that we have to use Hi instead of H�i to find the suitable successor
because we are not allowed to replace ε by a term containing intermediate
values of Q. Because of the induction hypothesis for the premise realisation
functions, both auxiliary functions are in W2.

To define the realisation function F , we have to decide whether a side formula
is realised. This case distinction cannot be integrated into the recursive
definition of the realisation function as usual, because of the weakness of
CRN . Therefore, we have to distinguish cases independently of earlier values
of F . Let us define the realisation function F as follows:

Case 1 G(~z)0 6= 1. We define F (~z, w) as G(~z).

16

Case 2 G(~z)0 = 1 ∧ (∃l 4 |w|)P (l, w, ~z) where

P (l, w, ~z) :⇔(∃i)(si(msp(l, w)) = msp(l, w)∧
Hi(~z,msp(l, w), ε, I(~z,msp(l, w)))0 6= 1)

msp denotes the most significant part function 3. This case applies if
in the course of recursion, we hit a side formula. We define F (~z, w)
as

Hi(~z,msp(j, w), ε, I(~z,msp(j, w))),

where j = (νy � |w|)P (y, w, ~z), with ν being the usual maximal
witness operator 4.

Case 3 Case 1 and 2 are not satisfied. We define F (~z, w) as 〈1, 〈ε, I(~z, w)〉〉.

We can define the realisation function F� very similarly as F , using the
same case distinction. The main difference is that in the third case we have
to produce a non trivial realiser of the V-occurrence of the induction formula.
We use in the following the same abbreviations as above.

Case 1 G((~z)∗)0 6= 1. We define F�(~z, w) as G�(~z).

Case 2 G((~z)∗)0 = 1 ∧ (∃l 4 |w|)P (l, w, ~z). We define F�(~z, w) as

H�i (~z,msp(j, w), Q(~z,msp(j, w)), I((~z)∗,msp(j, w))),

where j = (νy � |w|)P (y, w, ~z), with ν being again the usual maxi-
mal witness operator.

Case 3 Case 1 and 2 are not satisfied. We define F�(~z, w) as

〈1, 〈Q(~z, w), I((~z)∗, w)〉〉.

3The most significant part function msp is given in Clote’s [7] on page 20 for number
inputs. msp(n,m) outputs the leftmost n bits of m. Using the isomorphism between
(W,�) and (N,≤) this function is transfered to word inputs, analogously as bit and len on
page 4.

4All complexity classes analysed in this article are closed under the operator ν with
inputs w ∈ W and ~v ∈ Wn for any n ∈ N such that for any function f : Wn+1 → W
ν(w,~v, f) outputs the maximal w′ � |w| relative to� such that f(w′, ~v) = 0. See Clote’s [7]
for details. In our article, we insert as f a relation P on Wn+1 and write (νy � |w|)P (y,~v)
for ν(w,~v, f).

17

W1 is closed under sharply bounded quantification and the sharply bounded
minimal witness - and maximal witness operator (see Clote’s [7]), which
implies that the functions F , F� are in W2. We prove their correctness by
an easy external induction on w. We use that the case distinctions for F and
F� exactly correspond to each other.

To deal with the weaker induction scheme of LogT, we argue similarly. Since
the induction formula does not contain disjunctions this time, we can assume
that it is always realised by the same word cA. Therefore, we get correct
realisation functions from the functions F , F� above by replacing all terms
of the form I(a, b) by cA. Since I is not needed, the modified realisation
functions are in W1.

To deal with the induction scheme of PT, we define the realisation function
F by bounded recursion. We abbreviate Hi(~z, w, F (~z, w)1,0, F (~z, w)1,1) as
H̃i(~z, w) and suppress a suitable polynomial bound which can be found easily.

• F (~z, ε) = G(~z)

• F (~z, siw) =

H̃i(~z, w), if F (~z, w)0 = 1 and

H̃i(~z, w)0 6= 1

〈1, 〈sbit(ε,H̃i(~z,w)1,0)F (~z, w)1,0,

H̃i(~z, w)1,1〉〉, if F (~z, w)0 = 1 and

H̃i(~z, w)0 = 1

F (~z, w), else

The function F is in W3 because of Ishihara’s result delivering the equiva-
lence of A3 and [0, I, S0, S1,#, COMP,BRN], where BRN denotes bounded
recursion on notation. Again, an external induction on the value of w yields
the correctness of the realisation function. 2

The previous lemma implies together with the lower bound lemma the proof
theoretic characterisation of the theories:

Theorem 12

• The provably total functions of LogT are exactly the functions in the
logarithmic hierarchy.

• The provably total functions of AlogT are exactly the functions com-
putable in alternating logarithmic time.

• The provably total functions of PT are exactly the functions computable
in polynomial time.

18

3. A new safe function algebra for logspace

We define a two-sorted algebra LS of logspace strength. LS merits attention
because it allows to describe logspace from natural initial functions with
only one recursion scheme that does not contain explicit bounds. It differs
from the famous Cook-Bellantoni safe algebra for polynomial time only by
restricting case distinction, and by allowing an additional initial function len
yielding the length of its input.

Definition 13 The algebra LS is the smallest function algebra (on words)
which contains the following initial functions and is closed under the following
operations:

Initial functions

• ε, s0, s1, pW with safe input, and len with normal input.

• Case distinction for safe arguments.

case(; y1, y2, y3) :=

{
y2, if y1 = ε

y3, else

• Projections πn,mi with both normal and safe inputs.

Operations

• Safe composition.
f(~x; ~y) = h(~g(~x;);~j(~x; ~y))

• Safe recursion on notation.

f(ε, ~x; ~y) := g(~x; ~y)

f(siw, ~x; ~y) := hi(w, ~x; f(w, ~x; ~y), ~y),

Note that Cook and Bellantoni’s safe algebra B allows the following stronger
case distinction.

case(; y1, y2, y3) :=

{
y2, if mod2(y1) = 0

y3, else

In addition, one does not need to include len as an initial function of B since
it is definable. Apart from these differences, LS and B are given in exactly
the same way.

19

Let us mention other safe descriptions of logspace. Bellantoni [3] described
logspace as B without s0. His algebra only delivers the sharply bounded
functions computable in logspace.

Another two-sorted algebra was introduced in Oitavem’s [19]. Let us com-
pare LS to Oitavem’s system LogspaceCT . The main difference is that in
LS, safe recursion is stronger since successor - and predecessor functions
can be applied to safe inputs. Therefore, our algebra dispenses with further
recursion schemes as Oitavem’s log-transition recursion, and safe concatena-
tion recursion on notation. Also some initial functions as multiplication, and
iterated predecessor can be dropped. Oitavem’s algebra is not contained in
LS: We give an argument for log-transition recursion not being in LS in
the footnote on page 31.

Møller Neergaard [18] introduced a two-sorted characterisation almost ex-
actly corresponding to B using a composition - and a recursion scheme that
allows the use of safe variables only once.

Let us prove now the lower bound for LS.

Lemma 14 For each logspace function F there exists an f ∈ LS such that
F (~x) = f(~x;) for all ~x ∈W.

Proof.

Let us introduce the word algebra

[ε, I, s0, s1, len, bit,×, e, COMP,CRN, SBRN],

equivalent to Clote’s algebra for logspace [7], where SBRN denotes sharply
bounded recursion, given as follows.

F (ε, ~y) = G(~y) | |M(ε, ~y)|

F (s0(x), ~y) = H0(x, ~y, F (x, ~y))) | |M(s0(x), ~y)|

F (s1(x), ~y) = H1(x, ~y, F (x, ~y))) | |M(s1(x), ~y)|,

where

x|y =

{
x, if x � y

y, else

20

Our algebra clearly contains the functions ε, I, s0, s1, len. Word multiplication
is defined via successor, and concatenation as usual for safe function algebras.
The eraser is defined as follows using safe case distinction.

e(ε;) := ε

e(s0w;) :=

{
ε, if e(w;) = ε

s0(; e(w;)), else

e(s1w;) := s1(; e(w;))

LS is clearly closed under composition. Next, we prove that the algebra is
closed under CRN . We use the following auxiliary function b.

b(ε; y) := s0y

b(s0w; y) := s0y

b(s1w; y) := s1y

Let F be defined by concatenation recursion from G,H0, H1. Define f as

f(ε, ~x;) := g(~x;)

f(siw, ~x;) := b(hi(w, ~x;); f(w, ~x;))

Note that the definitions of b and f are given without using safe case dis-
tinction. For bit and SBRN , we have to do bootstrapping. The following
function .−(w; y), written as y .− w, is contained in LS.

y .− ε := y

y .− siw := pW(; y .− w)

Now, we can define the characteristic function of the lexicographic ordering
� for two normal arguments w, v. If one of the arguments is larger than the
other, we give the suitable output. If both inputs are of equal length, we
output h(w,w, v;) where h is defined as follows:

h(ε, w, v;) := 1

h(six,w, v;) :=

0, if b(w .− x; ε) = 1 ∧ b(v .− x; ε) = 0

1, if b(w .− x; ε) = 0 ∧ b(v .− x; ε) = 1

h(x,w, v;), else

The necessary case distinctions are justified using the case distinction implicit
in the recursion schema. We define exp as follows.

21

exp(ε, x;) := ε

exp(siw, x;) :=

{
siw, if |siw| � x

exp(w, x;), else

Again, the necessary case distinctions are justified using the case distinction
implicit in the recursion schema. The following modified bit function is
member of LS.

bit∗(x, y;) := b(y .− x; ε)

This allows to define the usual bit function.

bit(x, y;) := bit∗(exp(y, x;), y;)

Now, we show that LS is closed under sharply bounded recursion. Let F be
defined by sharply bounded recursion from G,H0, H1 with sharp bound M ,
where corresponding functions g, h0, h1,m are given by induction hypothesis.
We show f ∈ LS for a function f such that F (w, ~x) = |f(w, ~x;)| which
immediately yields the claim. The idea is to determine in each recursion step
the length of the recursion argument, which can be assumed to be normal in
a certain sense, to apply hi, and to expand the output using exp.

The function stepi(w, v, ~x; y) we will define below allows to transfer the re-
cursion step of F to f . Its intended first input w is a term bounding the
recursion. Its second input corresponds to the recursion argument of f . Its
safe argument y is intended to equal f(v, ~x;), the other arguments represent
side arguments of the recursion. stepi counts down its recursion argument
w until we arrive at a w′ with |w′| = |y|. At this point, the step function hi
representing Hi will be applied with last argument |w′|. Finally, f(siv, ~x;) is
constructed using the function exp with bound m(siv, ~x;) as first argument.

Accordingly, stepi is given as follows for i = 0, 1.

stepi(ε, v, ~x; y) := exp(m(siv, ~x;), hi(v, ~x, ε;);)

stepi(sjw, v, ~x; y) :=

{
stepi(w, v, ~x; y), if y .− w = ε

exp(m(siv, ~x;), hi(v, ~x, |sjw|;);), else

In the definition of stepi, the use of safe case distinction is essential. The
requested function f is defined as follows.

f(ε, ~x;) := exp(m(ε, ~x;), g(~x;);)

f(siv, ~x;) := stepi(m(v, ~x;), v, ~x; f(v, ~x;))

22

This implies the lower bound for LS. 2

Let us switch to the upper bound proof which we prove for an extension
LS′ of LS formulated in analogy to Bellantoni’s BC [3]. As BC, also LS′

separates not only its input but also its output into safe and normal. LS′

will be useful for the realisation of theories of logspace strength formulated
in the next section. In addition, it can be seen easily that Oitavem’s algebra
LogspaceCT can be embedded into LS′.

Definition 15 The algebra LS′ is the smallest function algebra (on words)
which contains the following initial functions and is closed under the following
operations:

Initial functions

• ε, s0, s1, pW with safe input and safe output.

• len with normal input and normal output.

• πn,mi (projections) with safe output and both normal and safe inputs.

• init(x; y) with normal output which returns the len(len(x)) most signif-
icant bits of y. Usually, we write y/x for init(x; y).

Operations

• Composition
f(~x; ~y) = h(~g(~x; ~y);~j(~x; ~y)),

where the gi have normal - and the ji safe output. f has the same sort
of outputs as h.

• Simultaneous safe recursion on notation defined as follows for 1 ≤ j ≤
m, i = 0, 1

fj(ε, ~x; ~y) := gj(~x; ~y)

fj(siw, ~x; ~y) := hj,i(w, ~x; f1(w, ~x; ~y), · · · , fm(w, ~x; ~y), ~y),

where g1, · · · , gm, h1,0, · · · , hm,0, h1,1, · · · , hm,1 have safe output. The
fj have safe output.

• Raising: from f(~x;) with safe output obtain f ν(~x;) with normal output.

23

The function algebra LS′ contains LS since it can define the function case
using the function init, and a case distinction d(x; y1, y2) with

d(x; y1, y2) :=

{
y1, if x = ε

y2, else ,

which can be defined easily using safe recursion on notation.

Note, that because of projections, functions with normal instead of safe out-
put are admissible in all schemes. LS′ and BC are formulated very similarly,
the most important difference is that in LS′ only a sharply bounded segment
of a safe input can by shifted to the normal side, whereas the function mod
in BC allows to shift a bounded segment. Note that it is important that
LS′ shifts initial segments since otherwise an embedding of Cook and Bel-
lantoni’s B is clearly possible. The main theorem, stated below, immediately
implies that LS′ is contained in logspace.

Theorem 16 Let f(~x; ~y) be an element of LS′ where ~y := y1, · · · , yn. Then
there exist logspace computable functions ch, del, const on words, and unary
(monotone) polynomials Q,M on words such that for all ~x, ~y ∈ W the fol-
lowing properties hold. We write M(~x) for M(max(~x)), and ~y/M(~x) for
y1/M(~x), · · · , yn/M(~x). The output of ch is displayed as a number.

• 0 ≤ ch(~x, ~y/M(~x), |~y|) ≤ n.

• If f has normal output, ch(~x, ~y/M(~x), |~y|) = 0.

• If ch(~x, ~y/M(~x), |~y|) = 0, we have

f(~x; ~y) = const(~x, ~y/M(~x), |~y|).

• If 0 < ch(~x, ~y/M(~x), |~y|) = k ≤ n, we have

f(~x; ~y) =
(
yk .− del(~x, ~y/M(~x), |~y|)

)
∗ const(~x, ~y/M(~x), |~y|).

• del(~x, · · ·), const(~x, · · ·) ≤ Q(~x), where · · · stands for an arbitrary in-
put of fitting size.

Let us explain now the functions ch, del, const mentioned in the theorem.
First, consider the case where 1 ≤ ch(~x, ~y/M(~x), |~y|) = i ≤ n. Then, f(~x; ~y)
is calculated by first deleting |del(~x, ~y/M(~x), |~y|)| bits from yi. (In the whole
proof only the lengths of the del-outputs matter.) Then, we concatenate

24

const(~x, ~y/M(~x), |~y|) (const stands for construct). If the value of the choice
function is zero, f(~x; ~y) is given as const(~x, ~y/M(~x), |~y|).
Note that in both cases, f(~x; ~y) fully depends only on a single safe input.
For the other safe inputs, only their length, and sharply bounded initial
segments matter. Also the chosen safe input can only be manipulated in a
very restricted way. This will allow us to simulate safe recursion essentially
by sharply bounded recursion since only a very small amount of information
about the intermediate values has to be stored.

In the theorem, we additionally claim

del(~x, · · ·), const(~x, · · ·) ≤ Q(~x).

This property is important to prove that the functions in LS′ have at most
polynomial growth. To treat recursion, it is crucial that the polynomials M
and Q do not depend on the safe arguments ~y. Let us start with the proof
of the theorem.

Proof. Let us first introduce some notations used in this section. We work
with the analogues on words of the arithmetical plus and minus operations,
given as +,− using again the isomorphism between (W,�) and (N,≤). As for
numbers, these operations can be extended within the logarithmic hierarchy
to negative words, displayed as −w, using a natural coding. Also the ordering
� is extended as expected to negative words. We work for technical reasons
with a bit function on words, which enumerates the bits in the opposite way
as before, which we call bit as well. The most significant bit of w is given as
bit(0, w) and the least significant as bit(|w|, w).

We prove the claim by induction on the complexity of f , and detail the most
interesting steps.

For initial functions, the claim clearly holds. E.g. for init(x; y), which has
normal output, const is given as y/x.

Composition

Assume that f is defined by composition as follows for ~j containing m com-
ponents.

f(~x; ~y) = g(~h(~x; ~y);~j(~x; ~y))

Let us first reflect the induction hypothesis for the components of ~j. ji(~x, ~y)
for 1 ≤ i ≤ m is given as a sum of at most three summands (always relative
to .− and ∗). If 0 < ch(~x, ~y/M(~x), |~y|) = k ≤ n, this sum is composed of
yk, delji , and constji (with suppressed inputs). The same argument for the
function g implies that f(~x; ~y) is given as a sum of at most 5 summands

25

containing at most two del - and two const summands. The strategy is first
to produce these summands as logspace functions of our initial inputs. Then,
we combine them to get delf and constf .

In the following, we define auxiliary functions for arbitrary inputs ~b,~c, ~d. We
motivate them for the case that the inputs ~b,~c, ~d are given as intended, i.e.
as ~x, ~y/Mf (~x), |~y|, where Mf (x) is given as Mg(Qh(x)), where Qh denotes a
bounding polynomial for the bounds Qhi . The following term equals hi(~x; ~y)
for intended inputs according to the induction hypothesis.

consthi(
~b,~c/Mhi(

~b), ~d) := qi

Next, we have to collect information about the ji(~x; ~y). We abbreviate

chji(
~b,~c/Mji(

~b), ~d)

as ki. We consider the case 1 ≤ ki ≤ n, and define `i as follows.

`i := max(ε, dki − |delji(~b,~c/Mji(
~b), ~d)|),

where max denotes a maximum function relying on the lexicographic order
extended to negative words, as explained at the beginning of the proof. If
1 ≤ ki ≤ n does not hold, we define `i as ε. The length of ji(~x; ~y) is given as

d̃i := `i + |constji(~b,~c/Mji(
~b), ~d)|.

We can now define a function Fi which constructs initial segments of ji(~x; ~y)
as follows.

Fi(ε,~b,~c, ~d) := ε

Fi(siz,~b,~c, ~d) :=

sbit(|siz|,cki)Fi(z,

~b,~c, ~d), if |siz| � `i

sbit(|siz|−`i,constji (~b,~c/Mji
(~b),~d)Fi(z,

~b,~c, ~d), if `i ≺ |siz| � d̃i

Fi(z,~b,~c, ~d), else

Note that an initial segment of ji(~x; ~y) is constructed by first reading bits of
the chosen safe input, and then reading the word provided by constji . For

1 ≤ i ≤ m, Fi(|Mg(~q)|,~b,~c, ~d) produces initial segments of sufficient length
for the later application of g (the qi are defined above). Now, we can calculate
the safe input the function g chooses as follows.

chg(~q, ~F (|Mg(~q)|,~b,~c, ~d), ~̃d) := chg

26

We are ready to define the searched functions chf , delf , constf . This will be
done using a case distinction on the value of chg.

First, we assume 1 ≤ chg ≤ m. Then, chf (~b,~c, ~d) is given as

ch(jchg)(~b,~c/Mjchg
(~b), ~d) := k.

This means that the safe input we use as first summand when writing f(~x; ~y)
as sum of five summands is the safe input the chosen function jchg choses for
~b,~c, ~d given as intended. delf (~b,~c, ~d) is defined as

deljk(~b,~c/Mjk(~b), ~d)∗

(delg(~q, ~F (|Mg(~q)|,~b,~c, ~d), ~̃d) .−
constjk(~b,~c/Mjk(~b), ~d)),

constf (~b,~c, ~d) as (
constjk(~b,~c/Mjk(~b), ~d) .−

delg(~q, ~F (|Mg(~q)|,~b,~c, ~d), ~̃d)
)
∗

constg(~q, ~F (|Mg(~q)|,~b,~c, ~d), ~̃d)

Assume now that 1 ≤ chg ≤ m does not hold. Then, chf (~b,~c, ~d) is given as

0. delf (~b,~c, ~d) is given as ε, and constf (~b,~c, ~d) as

constg(~q, ~F (|Mg(~q)|,~b,~c, ~d), ~̃d)

Finally, we define the function Qf as Qj(~b)∗Qg(Qh(~b)) (independent of chg),
where Qh, Qj denote bounding polynomials for the Qhi , Qji , respectively.

Recursion

First, we analyse the case of ordinary safe recursion. Then, it is easy to
generalise the argument to simultaneous safe recursion. Assume that f is
defined as follows.

f(ε, ~x; ~y) := g(~x; ~y)

f(siz, ~x; ~y) := hi(z, ~x; f(z, ~x; ~y), ~y)

Let us give the intuitive reason why this recursion goes through in logspace.
Because our induction hypothesis about g, h0, h1, we know that for any z ∈W

27

we can write f(z, ~x; ~y) ultimately as sum of at most one safe input and
several del and const terms, depending on the order of applications of h0, h1

necessary to calculate f(z, ~x; ~y). These terms only depend on the length,
and a in z and ~x sharply bounded initial segment of the intermediate values
f(z′, ~x; ~y) with z′ ⊆ z, which allows to simulate safe recursion using sharply
bounded recursion.

Let us give the calculations in more detail. First, we have to make sure
until which bit we have to know the safe inputs ~y to compute all necessary
ch, del, const terms during the recursion. It is easy to see that a bounding
polynomial Mf of Mg, Mh0 , and Mh1 is sufficient.

We define an auxiliary function H(w, a,~b,~c, ~d) such that

H(w, z, ~x, ~y/Mf (w, ~x), |~y|) := H

contains information about f(z, ~x; ~y) for z ⊆ w . We sketch the definition
of H, and explain the meaning of its output for the intended input, then
we give a precise definition of H. The output of H will always be a tuple
of five words. The first component is displayed as a number, and tells us
for z = siz

′ ⊆ w which safe argument of hi(z
′, ~x; f(z′, ~x; ~y), ~y) is used when

writing f(z, ~x; ~y) as sum of three summands using the del-const unfolding.
For z = ε, we use g instead of hi. If there is no such safe input, we stipulate
H0 = 0.

H1 is displayed as number as well, and tells us which safe input y` of ~y is
needed when we write f(z, ~x; ~y) as a totally unfolded del-const sum. This
means, for z = siz

′ ⊆ w we write f(z, ~x; ~y) first (if possible) as f(z′, ~x; ~y)
minus a del, plus an const summand, then unfold f(z′, ~x; ~y) analogously, and
so on. If there is no such safe input, we stipulate H1 = 0. For z = ε, H1 = H0.

We assume z = siz
′ and abbreviate

|delhi(z′, ~x, f(z′, ~x; ~y)/Mhi(z
′, ~x), ~y/Mhi(z

′, ~x), |f(z′, ~x; ~y)|, |~y|)|

as del. H2 is the length of (f(z′, ~x; ~y) .− del) minus the length of y`, defined
above. Note that H2 is possibly a negative word. If no y` exists H2 is ε. For
z = ε H2 is given analogously but using delg, and y` instead of f(z′, ~x; ~y).
The fourth component H3 gives the length of f(z, ~x; ~y) minus the length of
y`, or simply the length of f(z, ~x; ~y) if y` does not exist. The reason for giving
H2 and H3 as lengths relative to the length of y` is to insure that they can
be sharply bounded by a term only depending on the normal arguments of
f .

H4 contains the ||Mf (w, ~x)|| most significant bits of f(z, ~x; ~y).

28

In the following, we give a precise definition of H and argue that it is logspace
computable. We define H(w, a,~b,~c, ~d) by sharply bounded induction on a.
We suppress a bound in the following and argue in the end that it can be
found easily. We let n denote the number of components of ~c and of ~d.

The first and second component of H(w, ε,~b,~c, ~d) are defined as

chg(~b,~c/Mg(~b), ~d) := k|n

for | being the cut function defined on page 20. We suppress such bounds
for the first and second component in the following. For 1 ≤ k ≤ n the third
component is given by

max(−dk,−|delg(~b,~c/Mg(~b), ~d)|) := q2.

We abbreviate constg(~b,~c/Mg(~b), ~d) as const. The fourth component is given
as q2 + |const|.
The fifth component is constructed by glueing ck and const together, very
similarly as on page 26. If 1 ≤ k ≤ n does not hold, we output ε, |const|,
const/Mf (w,~b) as third until fifth component.

Now, we show how to calculate H(w, sia,~b,~c, ~d) := r from

w, a,~b,~c, ~d,H(w, a,~b,~c, ~d) := q

in logspace. For convenience, in the following for all words i if 1 ≤ i ≤ n
does not hold, we let di denote ε. r0 is given as

chhi(a,
~b, q4/Mhi(a,

~b),~c/Mhi(a,
~b), dq1 + q3, ~d) := k.

Note that we have inserted the values q4/Mhi(a,
~b) and dq1 +q3 corresponding

to a sharply bounded initial segment, and the length of an intermediate value
of the recursion for intended inputs. r1 is given as q1 if r0 equals 1, as r0− 1
if r0 > 1, and as 0 else. For the other components, we use the following case
distinction: We first assume that k equals 1. Then, r2 is given as

max(−dq1 , q3 − |delhi(a,~b, q4/Mhi(a,
~b),~c/Mhi(a,

~b), dq1 + q3, ~d)|),

r3 is given as

r2 + |consthi(a,~b, q4/Mhi(a,
~b),~c/Mhi(a,

~b), dq1 + q3, ~d)|.

We abbreviate the const-term above as const. r4 is defined by glueing to-
gether q4 and const, similarly as on page 26.

29

If we have 2 ≤ k ≤ n + 1, the components r2, r3, r4 are given in a very
similar way as for H(w, ε,~b,~c, ~d) since in this case we build a new del-const

sum from a safe input. In all other cases, we output ε, |const|, const/Mf (w,~b)
as r2, r3, r4.

Let us finally say a word about the sharp bound we have to deliver for
this recursion. It suffices to show that all components of H(w, a,~b,~c, ~d) are

sharply bounded by polynomials of w, a,~b since we are using a linear pairing
function. For the first, second, and fifth component this is clear. For the
third and fourth component, we use a bounding polynomial[

Qg(~b) ∗ (Qh(a,~b)× a)
]
× c,

where the constant c depends on the exact definition of the coding for nega-
tive words. This concludes the proof that the auxiliary function H is logspace
computable.

It is easy to define chf , delf , constf from H: chf (a,~b,~c, ~d) is simply given as

H(a, a,~b,~c, ~d)1 := k. delf and constf are constructed using a case distinction
on k. First, we assume 1 ≤ k ≤ n. Let us find the smallest z ⊆ a such that
z ⊂ z′ ⊆ a implies H(a, z′,~b,~c, ~d)0 = 1 5. For z ⊆ z′ ⊆ a, f(z′, ~x; ~y) is given
as a del-const sum starting at yk. Find the minimal

H(a, z′,~b,~c, ~d)2

for z ⊆ z′ ⊆ w which we abbreviate as q. delf (a,~b,~c, ~d) is given as

exp(Qf (w, ~x),max(ε,−q)),

where exp is defined on page 21.

Next, we show how constf (a,~b,~c, ~d) can be calculated in logspace, by cal-
culating its i-th bit in logspace for an arbitrary i. We abbreviate |yk .−
delf (a,~b,~c, ~d)| as `. We search the largest z ⊆ z′ ⊆ w such that

dk +H(a, z′,~b,~c, ~d)2 ≺ `+ i � dk +H(a, z′,~b,~c, ~d)3.

If no such z′ exists, i exceeds the length of constf (a,~b,~c, ~d). Assume z′ = siv.
Then, we easily find the value of the searched i-th bit by calculating

consthi(v,
~b, r4/Mhi(v, ~x), ~y/Mhi(v, ~x), dk + r3, ~d),

5Sharply bounded quantification which immediately yields subword quantification is
admissible within the logarithmic hierarchy, see Clote’s [7].

30

where r := H(a, v,~b,~c, ~d). If z′ = ε, we use constg instead.

If 1 ≤ k ≤ n does not hold, constf is defined similarly, and delf as ε. This
finishes our argument for the ordinary safe recursion.

Simultaneous safe recursion

We sketch how to produce the functions chf` , delf` , constf` ,Mf` , Qf` for 1 ≤
` ≤ m if f` is defined by simultaneous safe recursion.

• For all 1 ≤ ` ≤ m, we give the same Mf` , Qf` which we call Mf , Qf .
We define them as for ordinary safe recursion using bounds that work
for all base - and recursion step functions.

• We use again an auxiliary functionH ′. It contains the same information
as H but simultaneously for all f` with 1 ≤ ` ≤ m. So, e.g., we collect
the first ||Mf (w, ~x)|| bits for all f`. The components of H ′ can be
calculated very similarly as the ones of H.

• chf` is given analogously as before. For delf` , and constf` the complica-
tion is that it is not sufficient to know which yk occurs as first summand
in the total unfolding of f`(z, ~x; ~y) as sum of del and const terms. This
is so because it does not give us the information in which order which
base - and recursion step functions were applied. The problem is solved
by tracing back which safe input is needed to write f`(z, ~x; ~y) as a del-

const sum using H(z, a′,~b,~c, ~d)0 for a′ ⊆ z. Then, following this trace,
delf` and constf` are defined very similarly as before. The back-tracing
is possible using constantly bounded recursion.

This concludes the proof of the theorem. 2

The lower bound result implies together with the previous theorem the fol-
lowing corollary 6.

Corollary 17 The normal segments of the algebras LS and LS′ describe
exactly the logspace computable functions.

6The technique used to show that LS′ has strength logspace can also be directly applied
to LS. The dependence of ch, del, and const on sharply bounded initial segments of
safe inputs can then be dropped. This immediately implies that Oitavem’s log-transition
recursion cannot be defined in LS. Nevertheless, note that it can be defined easily in LS′.
This immediately implies that Oitavem’s algebra LogspaceCT is contained in LS′.

31

4. Two systems of strength logspace

We formalise the algebra LS and Clotes’s function algebra for logspace [7]
with concatenation and sharply bounded recursion within an applicative set-
ting. The theories again contain a predicate for normal - and a predicate for
safe words, interpreted similarly as before. In contrast to the theories pre-
sented earlier, for logspace strength we allow ordinary one-variable induction
schemes.

4.1. Formalising LS

We introduce the theory LogST, formalising LS, and prove its lower bound
in terms of provably total functions. We deliver the upper bound proof for a
stronger system LogST′ formalising LS′.

Definition 18 The theory LogST is the theory LogT with the following mod-
ifications.

• The induction axiom is replaced by V-induction, defined as follows for
x /∈ FV (r):

rε ∈ V ∧ (∀x ∈ W)(rx ∈ V→ r(six) ∈ V)→ (∀x ∈ W)(rx ∈ V)

• We drop the axioms for bit, concatenation, multiplication, and eraser.

• Let case be a closed term corresponding to the function case ∈ LS for
which the usual elementary properties are provable in LogT. Then we
have as additional axioms the following.

– x, y, z ∈ V→ case(x, y, z) ∈ V

– x, y ∈ V→ case(x, y, ε) = x

– x, y, z ∈ V→ (case(x, y, z) = y ∨ z = ε)

The following lemma is proved by straightforward induction on the complex-
ity of F .

Lemma 19 For any F (~x; ~y) ∈ LS there is an L term tF with

• LogST ` ~x ∈ W ∧ ~y ∈ V→ tF (~x, ~y) ∈ V

• M(λη) � tF (~w,~v) = F (~w;~v), where M(λη) denotes the standard open
term model.

Now, we switch to the theory LogST′ formalising LS′ which is formulated
with a more flexible induction scheme.

32

Definition 20 The theory LogST′ is the theory LogT with the following mod-
ifications.

• The induction axiom is replaced by positive W-free induction.

• We drop the axioms for bit, concatenation, multiplication, and eraser.

• Let init be a closed term corresponding to the function init ∈ LS′ for
which the usual elementary properties are provable in LogT. Then we
have as additional axiom the following.

x ∈ W ∧ y ∈ V→ init(x, y) ∈ W

A term case′ corresponding to case in LogST can be defined in LogST′ as
follows.

case′ := λx.λy.λz.dW(x, y, ε, init(1, z))

The upper bound proof for LogST′ is technically involved. The main prob-
lem is, that a pairing function p for safe inputs is not available. This is a
consequence of theorem 16 as we will argue in the following. Assume that p
is such a pairing function. Independently of whether we can write p(; y1, y2)
according to the theorem as const term, or as sum of three summands, it can
be bounded by one of its safe inputs concatenated with a fixed polynomial in
the length of both safe inputs. This condition cannot be fulfilled for arbitrary
y1, y2.

Let us now point out, why it is a problem not to have a pairing function for
safe inputs: Complex formulas without occurrences of W have to be realised
by a safe input of the realisation function to allow induction. Nevertheless,
without pairing - and projection functions, we are unable to access the realis-
ers of the components of the formula which makes the realisation approach
impossible.

Cantini presented in [6] a realisation approach that also handles the problem
of the missing pairing function for safe inputs. Nevertheless, we present an
alternative realisation approach, which deals with all V-atoms separately, and
uses a set of realisation functions such that each yields only the realiser of
a single V-atom. In contrast to Cantini’s approach, vector-valued functions
are not necessary, and also proofs containing formulas with both, W and
V-occurrences, can be treated. This allows the realisation of a more general
V-elimination rule in comparison to Cantini’s [6]. The presented approach
also solves a technical problem Cantini’s approach faces for the realisation of
disjunctions whose realisers may have different types.

33

Let us give the details of the realisation approach. We number the V-atoms
of a formula D from the left to the right and call the k-th such atom Dk. If
ρ r D or ρ R D holds, for the realisation relations r and R defined on
page 13, we can speak of the set of realised atoms as on page 14. We write
ρ r? Dk or ρ R? Dk, respectively, if Dk belongs to the set of realised atoms.
If ρ R D holds, we also use the expression ”ρ R? Dk by w” for a word w if
w is the component of ρ realising the atom Dk.

We define a realisation relation S for sequents which realises the V-atoms
separately. We let < ·, · > denote a standard set theoretic pairing function.

Definition 21 Let Γ be given as A1, · · · , An (with V-atoms given as
Ai,1, · · · , Ai,ki). ρ S Γ holds exactly if

• ρ is of the form

<< v1, · · · , vn >,< w1,1, · · · , w1,k1 , · · · , wn,kn >>

where ki equals the number of V-atoms of Ai for each 1 ≤ i ≤ n. (ki
might equal zero.)

• < v1, · · · , vn > r Γ.

• For any 1 ≤ i ≤ n there is a (unique) ℘ with vi = ℘Ai and ℘ R Ai
such that

(vi r
? Ai,j ⇔)℘ R? Ai,j ⇔ ℘ R? Ai,j by wi,j.

Note that the use of two realisation relations r and R and their interplay
using the projection function was already used in section 2 for the realisation
of the weaker theories. Here, the new idea is the individual realisation of
V-atoms.

Note that for formulas Ai without occurrence of V the third property is
fulfilled for ℘ = vi since the biconditionals hold trivially in this case as no
Ai,j exist. For the realisation relation S the usual properties with respect to
quantification and equality of terms hold as a consequence of these properties
for R , r .

Lemma 22 For the realisation relation S the following properties hold.
We use ~s = ~t as an abbreviation of s0 = t0 ∧ · · · ∧ sn = tn.

• ρ S (∃x)A[x]⇔ ρ S A[t] for some term t

• ρ S (∀x)A[x]⇔ ρ S A[u]

34

• ρ S A[~s]⇔ ρ S A[~t]

Proof. Assume ρ S (∃x)A[x]. The realisation property 3 implies the existence
of a ℘ such that ℘ R (∃x)A[x] and ℘(∃x)A[x] = ρ0,0. This implies ℘ R A[t] for
some term t. The properties of the projection function imply ℘A[t] = ρ0,0 and
ρ0,0 r A[t]. Therefore, realisation properties 2 and 3 hold relative to t. Also
property 1 clearly holds. This implies the direction from left to right for the
first claim. The other direction and the other claims clearly hold because
of the analogous properties for R , r and the properties of the projection
function. 2

Note that the lemma above also holds with side formulas present.

We are ready to state the main theorem for a total sequent-style formalisation
of LogST, called LogST as well, which is constructed as for the theories pre-
sented in section 2. An S -realiser ρ :=< ρ0, ρ1 > is inserted into realisation
functions of LS as

(ρ0,0, ρ0,1, · · · ; ρ1,0, ρ1,1, · · ·)

which we abbreviate as (ρ0; ρ1).

Theorem 23 Assume that Γ and ∆ ≡ D1, · · · , Dm (with V-atoms given as
Di,1, · · · , Di,ki) are positive sequences of formulas. Assume LogST ` Γ⇒ ∆
with a proof containing only positive formulas. Then there are LS-functions
F with normal output and f<1,1>, · · · , f<1,k1>, · · · , f<m,km> with safe outputs
such that for all substitutions [~s] and for all ρ S Γ[~s] the following properties
hold.

• 1 ≤ F (ρ0; ρ1)0 := i ≤ m

• << F (ρ0; ρ1)1 >,< fi,1(ρ0; ρ1), · · · , fi,ki(ρ0; ρ1) >> S Di

Proof. We use an induction on the length of the positive proof. The axioms
are realised easily.

Let us realise V-elimination given as follows where Γ,∆ does not contain V,
and BW is B with all V replaced by W.

Γ⇒ B,∆

Γ⇒ BW,∆

We assume realisation functions G, g1,1, · · · for the premise. Let us define F
by the following algorithm for a given input (ρ0;). Let G(ρ0;)0 = 1. For
each 1 ≤ i ≤ k1, replace the ε in G(ρ0;)1 responsible for the i-th V-atom
by g1,i(ρ0;) if there is such an ε. (The relevant ε’s can be found by only

35

considering the structure of G(ρ0;)1.) The resulting word α is clearly an
r realiser of BW. Therefore, we define F (ρ0;) as 〈1, α〉 in this case. If
G(ρ0;)0 6= 1 we define F (ρ0;) just as G(ρ0;).

Let us argue that the function F is in LS which follows from α being pro-
ducible from ρ0 within LS: G(ρ0;)1 delivers normal output, and the g1,i(ρ0;)
can be assumed to deliver normal output as well because of the raising rule.
Therefore, the lower bound lemma for LS implies that their outputs can be
freely used as input for logarithmic space functions. For each 1 ≤ i ≤ k1, we
can find the ε responsible for the corresponding atom, if it exists, within the
logarithmic hierarchy, since this only involves keeping track of the structure
of G(ρ0;)1 relative to the pairing function. Once the positions of the ε’s
are found, the replacements can be clearly executed within the logarithmic
hierarchy. Finally, the fi,j are found easily 7.

Induction is realised using the scheme of simultaneous recursion. Assume
that the rule has the following form, where we have premise realisation func-
tions G, g1,1, · · · , Hi, hi,1,1, · · · .

Γ⇒ A[0],∆ Γ, x ∈ W, A[x]⇒ A[six],∆

Γ, t ∈ W⇒ A[t],∆

Remember, that we use the standard linear pairing operation 〈, 〉 which is
in the logarithmic hierarchy. To determine, whether the first element of a
certain pair is 1, we have to know only finitely many initial bits. Therefore,
case distinctions with this property are permitted for safe inputs.

By lemma 11, we find a word c such that for all substitutions [~s]

ρ r A[~s]⇒ 〈1, ρ〉 ≤ |c|.

We define an auxiliary function F ′, motivated as follows. We keep its output
small such that we can transform it into a normal output as demanded for F .
This works without a problem as long as main formulas is realised. If in turn
a side formula is realised, the produced realiser does not have to be sharply
bounded. Therefore, in this case, F ′ only stores the information in which
induction step for the first time a side formula is realised. Now, we define
F ′, and the functions fi,j by simultaneous safe recursion. We abbreviate

Hi(~x, w, init(c, F
′(~x, w; ~y))1; ~y, ~f1(~x, w; ~y))

7Note that the realisation of V-elimination is not entirely trivial, because of the asym-
metric treatment of the W and V-atoms in our approach. It would be possible to modify
it such that single W-atoms are realised by functions with normal instead of safe outputs
which would yield a trivial realisation of V-elimination.

36

as Qi(~x, w; ~y).

F ′(~x, ε; ~y) :=

{
G(~x; ~y), if G(~x; ~y)0 = 1

〈2, ε〉, else

F ′(~x, siw; ~y) :=

Qi(~x, w; ~y), if F ′(~x, w; ~y)0 = 1 ∧Qi(~x, w; ~y)0 = 1

〈3, |w|〉, if F ′(~x, w; ~y)0 = 1 ∧Qi(~x, w; ~y)0 6= 1

F ′(~x, w; ~y), else

We abbreviate

hi,j,`(~x, w, init(c, F
′(~x, w; ~y))1; ~y, ~f1(~x, w; ~y))

as qi,j,`(~x, w; ~y).

fj,`(~x, ε; ~y) := gj,`(~x, ε; ~y)

fj,`(~x, siw; ~y) :=

{
qi,j,`(~x, w; ~y), if F ′(~x, w; ~y)0 = 1

fj,`(~x, w; ~y), else

Finally, let us define the realisation function F with normal output. Let p
be a polynomial such that 〈2, |w|〉 ≤ |p(w)|. We define

r(~x, w; ~y) := exp(w, init(p(w);F ′(~x, w; ~y))1;).

We let F (~x, siw; ~y) be given by the following case distinction.
init(c, F ′(~x, siw; ~y)), if F ′(~x, siw; ~y)0 = 1

G(~x; ~y), if F ′(~x, siw; ~y)0 = 2

Hi(~x, r(~x, siw; ~y), init(c, F ′(~x, r(~x, siw; ~y); ~y)); ~y), if F ′(~x, siw; ~y)0 = 3

The correctness of the realisation functions is proved by an easy induction
on the value of t in the standard model.

The other rules can be realised easily. 2

From 19 and the previous theorem we derive the following lemma.

Lemma 24 The theories LogST and LogST′ prove totality exactly for the
logarithmic space computable functions.

37

4.2. Formalising Clote’s algebra for logspace

In the last section, we have defined a theory of strength logspace that for-
malises the algebra LS. Another possibility to produce a theory of this
strength is to formalise the already mentioned algebra

[0, I, s0, s1, len, bit, e,×, COMP,CRN, SBRN],

where SBRN denotes sharply bounded recursion. We give an induction
principle capturing both, CRN and SBRN .

Definition 25 For any positive formula A, we denote the formula A with
each subformula of the form t ∈ W replaced by t ≤W u by Au.

This notation has been introduced by Probst in [20].

Definition 26 The theory LogSB is the theory LogT with the following mod-
ifications.

• The induction axiom is replaced by sharply bounded induction (SB-Ind)
defined as follows, for A a positive formula and u a fresh variable 8.

u ∈ W→
(
A|u|[ε] ∧ (∀x ∈ W)(A|u|[x]→ A|u|[s0x] ∧ A|u|[s1x])→

(∀x ∈ W)(A|u|[x])
)

• We drop the axioms for bit, concatenation, multiplication, and eraser.

Lemma 27 The theory LogSB proves totality exactly for the logspace com-
putable functions.

Proof. The theory LogST′ can simulate induction over formulas of the form
y ≤W |x|, since it proves

x ∈ W→ (y ≤W |x| ↔ y ∈ V ∧ init(x, y) = y)

because of the elementary properties and the axiom for init. This immediately
implies the upper bound using theorem 16.

For the lower bound, we show that the logspace functions are provably total
by induction on their complexity using the earlier mentioned function algebra

[ε, I, s0, s1, len, bit,×, e, COMP,CRN, SBRN].

8Similar bounded induction schemes have been used by Kahle and Oitavem e.g. in [16],
and Strahm and the author e.g. in [10, 11, 22].

38

The totality of ε, I, s0, s1, len are clear. The totality of word multiplication
follows as for LogST. For the definition of the eraser, we use the following
auxiliary function h.

h(w) :=

{
1, if w contains a 1

ε, else

The totality of h is proved by (SB− Ind). Then the eraser function is given
by a term e fulfilling the following recursion equations.

e(ε;) := ε

e(s0w;) :=

{
s0e(w), if h(s0w) = 1

e(w), else

e(s1w;) := s1e(w)

Its totality is proved by V-induction.

Next, we show how the totality of the bit function is proved. We prove
consecutively the totality of the functions .−, h, exp, bit∗ defined in the lower
bound proof of LS on page 20. The totality of all of these functions is proved
by V-induction in LogSB because only case distinction over elements of W
are necessary. Then, we define bit using bit∗, and exp.

We sketch in the following how to deal with the recursion schemes. As-
sume that tF represents a function defined by concatenation recursion. The
totality of tF is proved using (SB-Ind) with induction variable x for the for-
mula tFx~z ∈ V and the V-elimination rule, where we assume ~z ∈ W. To
prove totality of a function F represented by tF defined by sharply bounded
recursion with bound B represented by tB, we use induction over initial
segments {w ∈ W|w ⊆ a} of W with induction variable x for the formula
tFx~z ≤W |tBa~z| 9. This concludes the proof of the lower bound. 2

5. Summary

We have shown that the introduction of two distinct word predicates W and
V, first presented by Cantini [6], can be used nicely to reflect the different
roles inputs play in weak recursion schemes. We propose a new reading of
t ∈ V as ”t is inaccessible” which is reflected by restricting the application of
initial functions to elements of V.

9We can assume that the bound B is monotone

39

We presented a restricted case distinction for safe inputs and have shown
that it allows a simple two-sorted characterisation of logspace. Interestingly,
the restriction of case distinction has a similar effect on the safe recursion
scheme as affinity restrictions (see Neergaard’s [18]).

6. Acknowledgements

The author would like to thank the anonymous referees for helpful comments
and suggestions that led to significant improvements of this paper. The
author would also like to thank Prof. Thomas Strahm for his support.

References

[1] Beeson, M. J. Foundations of Constructive Mathematics: Metamath-
ematical Studies. Springer, Berlin, 1985.

[2] Beeson, M. J. Proving programs and programming proofs. In Logic,
Methodology and Philosophy of Science VII, Barcan Marcus et. al., Ed.
North Holland, Amsterdam, 1986, pp. 51–82.

[3] Bellantoni, S. Predicative Recursion and Computational Complexity.
PhD thesis, University of Toronto, 1992.

[4] Bellantoni, S., and Cook, S. A new recursion-theoretic character-
ization of the poly-time functions. Computational Complexity 2 (1992),
97–110.

[5] Buss, S. R. Bounded Arithmetic. Bibliopolis, Napoli, 1986.

[6] Cantini, A. Polytime, combinatory logic and positive safe induction.
Archive for Mathematical Logic 41, 2 (2002), 169–189.

[7] Clote, P. Computation models and function algebras. In Handbook
of Computability Theory, E. Griffor, Ed. Elsevier, 1999, pp. 589–681.

[8] Clote, P., and Remmel, J., Eds. Feasible Mathematics II, vol. 13
of Progress in Computer Science and Applied Logic. Birkhäuser, Basel,
1995.

[9] Cook, S. A., and Nguyen, P. Logical Foundations of Proof Com-
plexity. ASL Prespectives in Logic. Cambridge University Press, 2010.

[10] Eberhard, S. A feasible theory of truth over combinatory logic. Sub-
mitted, Oct. 2012.

40

[11] Eberhard, S., and Strahm, T. Unfolding feasible arithmetic and
weak truth. In Axiomatic Theories of Truth (2012), T. Achourioti,
H. Galinon, K. Fujimoto, and J. Mart́ınez-Fernández, Eds., Logic, Epis-
temology and the Unity of Science, Springer. Being published.

[12] Feferman, S. A language and axioms for explicit mathematics. In
Algebra and Logic, J. Crossley, Ed., vol. 450 of Lecture Notes in Mathe-
matics. Springer, Berlin, 1975, pp. 87–139.

[13] Girard, J.-Y. Proof Theory and Logical Complexitiy. Bibliopolis,
Napoli, 1987.

[14] Ishihara, H. Function algebraic characterizations of the polytime func-
tions. Computational Complexity 8 (1999), 346–356.

[15] Kahle, R., and Oitavem, I. An applicative theory for FPH. In
Proceedings Third International Workshop on Classical Logic and Com-
putation CL&C (2010), S. van Bakel, S. Berardi, and U. Berger, Eds.,
vol. 47 of EPTCS.

[16] Kahle, R., and Oitavem, I. Applicative theories for the polynomial
hierarchy of time and its levels. Accepted for publication in Annals of
Pure and Applied Logic, 2012.

[17] Kraj́ıček, J. Bounded Arithmetic, Propositional Logic, and Complex-
ity Theory, vol. 60 of Encyclopedia of Mathematics and its Applications.
Cambridge University Press, 1995.

[18] Møller Neergaard, P. A functional language for logarithmic space.
In Asian Symposium on Programming Languages and Systems. 2004,
pp. 311–326.

[19] Oitavem, I. Logspace without Bounds. In Ways of proof theory,
R. Schindler, Ed. Ontos Verlag, 2010, pp. 349–356.

[20] Probst, D. The provably terminating operations of the subsystem
PETJ of explicit mathematics. Annals of Pure and Applied Logic 162,
11 (2011), 934–947.

[21] Strahm, T. Proof-theoretic Contributions to Explicit Mathematics.
Habilitationsschrift, University of Bern, 2001.

[22] Strahm, T. Theories with self-application and computational com-
plexity. Information and Computation 185 (2003), 263–297.

41

[23] Strahm, T. Weak theories of operations and types. In Ways of Proof
Theory, R. Schindler, Ed. Ontos Verlag, 2010, pp. 441–468.

42

