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Summary

The plasticity and self-regenerative properties of stem cells
have opened new avenues in regenerative medicine. Great-
er understanding of the biology of stem cells is followed
by growing expectations of a rapid translation into alternat-
ive therapeutic options. Recent preclinical studies and clin-
ical trials employing stem and progenitor cells from dif-
ferent sources have shown encouraging results. However,
their underlying mechanisms are still poorly understood,
the potential adverse effects and the discrepancy in efficacy
remain to be further investigated.

Their essential role in vessel regeneration has made en-
dothelial progenitor cells (EPC) a suitable candidate for
therapeutic applications aiming at tissue revascularisation.
Recent evidence suggests that EPC contribute to neovascu-
larisation not only by direct participation in tissue homeo-
stasis but mainly via paracrine mechanisms. In future, nov-
el therapeutic strategies could be based on EPC paracrine
factors or synthetic factors, and replace cell transplantation.
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Introduction

Atherosclerotic cardiovascular diseases are increasing in
prevalence and a leading cause of mortality and morbidity
in the industrialised world [1]. Peripheral arterial disease
(PAD) is one of the major manifestations of systemic ather-

osclerosis affecting the lower extremities and often culmin-
ating in critical limb ischaemia (CLI). CLI is characterised
by a more than 50% risk of major amputation within one
year without revascularisation [2] and a particularly poor
prognosis with regard to survival [3, 4]. A substantial num-
ber of patients with CLI are negatively affected as they re-
main refractory to pharmacological therapies [5] and are
unsuitable candidates for endovascular or surgical revascu-
larisation [6].

The development of novel therapies to stimulate
neovascularisation, a strategy known as therapeutic an-
giogenesis based on the use of angiogenic factors or stem
cells, may represent an option to promote revascularisation
and remodelling of collaterals, with the aim of ameliorating
symptoms, promoting the regeneration of damaged tissues
and preventing amputation [7, 8]. Tissue repair pro-cesses
are in fact intimately associated with effective vascular net-
work formation. In a number of cell therapy approaches
it has been observed that vascularisation of the ischaemic
areas after myocardial infarction or stroke usually anticip-
ates functional improvement of the damaged tissue [9, 10].

This review will briefly outline current clinical devel-
opments and discuss the use of stem cell therapy for tissue
revascularisation.

Stem and progenitor cell therapy

Endothelial stem and progenitor cells for therapeutic
neovascularisation: sources and populations
Preclinical studies have documented the fact that stem and
progenitor cells possess the capability of self-renewal and
differentiation into organ-specific cell types [11]. When
placed in vivo, these cells are provided with the proper mi-
lieu in which to help reconstitute organ systems. Interest-
ingly, there appears to be no clear dose response in the
augmentation of neovascularisation, indicating that the ap-
parent promotion of new blood vessels and tissue function
does not solely rely on homing and engraftment of the ad-
ministered cells, but is related to paracrine effects with loc-
al secretion of cytokines and growth factors which may in-
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hibit apoptosis and support migration and proliferation of
resident differentiated endothelial cells (EC) [12].

For autologous cell transplantation in humans, bone
marrow (BM) currently represents the most frequent source
of cells used in clinical trials [13]. One reason is that BM
is easy to obtain and no complex purification steps are re-
quired. Another advantage is that it contains a variety of
stem and progenitor cells, including haematopoietic stem
cells (HSC), side population (SP) cells [14], mesenchymal
stem cells (MSC) [15] and multipotent adult progenitor
cells (MAPC) [16]. This mixture of differentiated and less
differentiated cells suggests superiority over one selected
type of progenitor cell. The clinical advances with BM
transplantation appear not to be better than culture expan-
ded precursors of the EC (termed endothelial progenitor
cells, EPC) isolated from peripheral blood, confirming the
importance of using cell lines committed to endothelial lin-
eage for new blood vessel formation [17]. However, a ma-
jor limitation of primary cell transplantation is the funda-
mental scarcity of progenitor cells in peripheral blood.

With the many different cell types that can be used for
stem cell therapy, it is not yet clear which are the most
promising. Experimental data suggest that more undiffer-
entiated progenitor cells carrying the CD34 antigen possess
a higher potential for regeneration of ischaemic cardiac
tissue after acute myocardial infarction than non-selected
mononuclear cells [18]. However, no experimental system-
atic comparison evaluating the different potential of stem
or progenitor cell populations has been published. Also, the
question remains whether cells need to be extracted from
the body and later reinjected, or whether mobilisation of
stem cells, including resident stem cells in the different tar-
get organs, will be sufficient.

Among various stem and progenitor cells investigated,
EPC have received particular attention as candidates for
cell-based therapeutic options for enhancement of revascu-
larisation in ischaemic tissues. The role of EPC in vessel
growth and repair is documented in an increasing number
of preclinical studies and clinical trial studies [19–21].
However, the mechanisms of action underlying the regen-
erative potential of EPC are not completely understood.

Current knowledge on EPC: characterisation,
trafficking and mechanisms of action
The phenotypic characterisation of the different types of
EPC is currently an open issue and a matter of scientific
debate [22]. At present there is no general consensus on
the definition of an EPC. Rather, the term EPC encom-
passes a heterogeneous group of cells that exist in a variety
of stages ranging from haemangioblast to fully differenti-
ated EC with distinct function, separate origin, and differ-
ent protein expression profiles [21]. The generally accep-
ted definition of circulating EPC is based on the expression
of surface markers including CD34, CD133 and KDR [23].
Later studies have suggested that the actual cell popula-
tion enriched in the CD34+, CD133+, KDR+ fraction is of
haematopoietic lineage and does not form endothelium in
vivo [24, 25], although the methodology and implication
of such studies were soon questioned [26]. However, fur-
ther studies attempting to purify and define “genuine” EPC
have been difficult due to the lack of cell surface antigens
or markers that distinguish these cells from mature EC and
from subsets of haematopoietic cells [27, 28]. Four types
of EPC have been generated under different ex vivo cul-
ture conditions: (1) colony-forming unit endothelial cells
(CFU-EC) are derived from CD133+ EPC [29]; (2) colony-
forming unit-Hill cells (CFU-Hill) are generated from non-
adhesive peripheral blood mononuclear cells (PB-MNC)
after two days’ culture [30]; (3) circulating angiogenic cells
(CAC) or early EPC appear early in PB-MNC cultures
and have limited proliferation and colony-forming capacity
[11]; and, (4) clonogenic expansion of endothelial colony-
forming cells (ECFC) or late outgrowth endothelial cells
(OEC) appearing at late stages of in vitro culture and dis-
play potent 31].

In order to exert their vascular regenerative actions,
EPC are mobilised from the bone marrow into the blood-
stream and are recruited to the sites of nascent vessels. Tis-
sue ischaemia is one of the strongest signals initiating a co-
ordinated sequence of adhesive and signalling events lead-
ing to recruitment and incorporation of EPC [32]. The ini-
tial step of homing of EPC to ischaemic tissue involves ad-
hesion, and transmigration occurs in response to a variety
of cytokines and integrins activated by hypoxia [33–36].

List of abbreviations
Bone marrow BM

Bone marrow mononuclear cells BM-MNC

Circulating angiogenic cells CAC

Circulating progenitor cells CPC

Colony-forming unit endothelial cells CFU-EC

Critical limb ischaemia CLI

Endothelial cells EC

Endothelial colony-forming cells ECFC

Endothelial progenitor cells EPC

Haematopoietic stem cells HSC

Late outgrowth endothelial cells OEC

Mesenchymal stem cells MSC

Multipotent adult progenitor cells MAPC

Peripheral artery disease PAD

Peripheral blood mononuclear cells PB-MNC

Pain-free walking distance PFWD

Side population cells SP

Transcutaneous tissue oxygen tension TcPO2
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VEGF and SDF-1, whose level is elevated in ischaemic
tissue, are the strong chemo-attractive factors to EPC
[37–39]. The involve-ment of SDF1/CXCR4 and selectin/
selectin-ligand in EPC recruitment processes has been em-
phasized in various studies [40–42]. Other ligand/receptor
pairs such as ICAM-1/CD18, fibronectin-1, or VCAM-1/
integrin α4 also play a role in modulating EPC recruitment
and engraftment [43]. Finally, cytokines, chemokines, and
proteases such as MCP-1, interleukins, and MMPs in the
ischaemic tissue may be involved in modulation of EPC
trafficking in ischaemic tissue as well [44].

To date, two main mechanisms are postulated as con-
tributing to the functional activity of EPC, (1) physical in-
corporation and differentiation into matured EC, and (2) se-
cretion of paracrine angiogenesis enhancing factors. First
reports addressed mainly the capacity of EPC to differen-
tiate into mature EC and to physically integrate into newly
formed vascular structures [11]. However, there is currently
a lack of consensus concerning the incorporation rate of
BM-derived cells, with a wide range from 0 to 90% incor-
poration of the transplanted cells [32]. Indeed, in a num-
ber of animal studies BM-derived EPC were found only
adjacent to but not incorporated into the vessels [45, 46].
It has therefore been suggested that the angiogenic activ-
ity of EPC does not rely solely on their homing and en-
graftment, but is related to their capacity to secrete growth
factors similar to the role of monocytes/macrophages [47].
This hypothesis is corroborated by the fact that EPC are
able to elaborate relevant growth factor and cytokines like
VEGF, SDF-1, and GM-CSF [47]. Furthermore, recent re-
search has added new evidence of the central importance of
the paracrine actions of EPC in the modulation of several
vascular functions [48, 49]. However, despite recognition
of the tissue-regenerative capacity driven by EPC-soluble
factors [50, 51], the spectrum of paracrine effectors and
their mechanism of action are only explored in recent stud-
ies. Proteomics analysis [52], large scale cytokine array
[53] and multiplex assay [54] are chief approaches to re-
vealing the composition and identifying key angiogenic
factors. In contrast to early EPC, which contribute to
neovascularisation mainly by paracrine secretion of trophic
factors that support the viability and functions of the resid-
ent vascular cells, late EPC participate in angiogenesis by
virtue of their proliferative and transdifferenti-ating prop-
erties [55, 56].

Clinical experience with cell therapy
for therapeutic neovascularisation

Randomised, controlled clinical trials using BM- or
peripheral blood-derived progenitor cells
The Therapeutic Angiogenesis by Cell Transplantation
(TACT) study investigators performed a randomised con-
trolled trial in patients with CLI [57]. Following a pilot
study in 25 patients, 22 patients with bilateral CLI were
randomised to receive intramuscular injections of bone
marrow mononuclear cells (BM-MNC) as active treatment
in one leg and PB-MNC as placebo in the other leg. A
significant increase in TcPO2 (13 [9–17]; p <0.0001), rest
pain (–0.85 [–1.6 to –0.12]; p = 0.025), and pain-free walk-

ing distance (PFWD) at 4 weeks after the injection was
observed in the active treatment group (1.2 [0.7–1.7]; p
= 0.0001). These results were sustained to the 24-week
follow-up. Notably, freshly isolated PB-MNC exerted no
effect [57]. Recently the authors assessed the 3-year safety
and clinical outcomes of this angiogenic cell therapy by in-
vestigating the mortality and leg amputation-free interval
as primary end points [58]. It was shown that cell therapy
leads to an extension of amputation-free interval and im-
provement in the ischaemic pain, ulcer size, and PFWD.
The severity of ischaemic pain and the need for repeated
bypass surgery were depicted as major determinants negat-
ively affecting the amputation-free interval.

Higashi and colleagues demonstrated that BM-MNC
therapy improves endothelial function in patients with PAD
(n = 7) [59]. At 4 and 24 weeks after BM-MNC implanta-
tion the beneficial effect on vascular function was selective
in endothelium-dependent vasodilation (induced by acet-
ylcholine) but not in endothelium-independent vasodilation
(induced by sodium nitroprusside) [59]. Since endothelial
dysfunction is the initial step in the pathogenesis of ather-
osclerosis [60], regeneration of the endothelial monolayer
by progenitor cells within the fraction of the BM and con-
secutive improvement of endothelial function may prevent
or at least delay the progression of atherosclerosis.

Lenk et al. investigated the safety and potentially bene-
ficial effects of an intra-arterial application of autologous
circulating progenitor cells (CPC) in patients with infra-
popliteal PAD and CLI. Seven patients with CLI were
treated with an intra-arterial infusion of autologous CPCs
isolated after granulocyte colony-stimulating factor (G-
CSF) stimulation from peripheral blood. At 3 months’
follow-up an increase in the PFWD, a significant increase
in the ankle-brachial index and TcPO2 was observed, as
well as improvements in endothelial function [61].

Bartsch et al. reported in 2007 (The TAM-PAD study)
that combined intramuscular and intra-arterial injection of
autologous BM-MNC in PAD patients with chronic
ischaemia (Fontaine stage IIb; n = 13) achieved significant
improvements in PFWD, ankle-brachial index, capillary-
venous oxygen saturation and venous occlusion plethysmo-
graphy after 2 and 13 months’ follow-up [62]. Since BM-
MNC rarely build new vessels by themselves, but operate
effectively as a kind of conductor for monocyte cells by se-
creting cytokines and chemo-kines [63], the authors con-
cluded that the main reason for the improvement is in-
creased angiogenesis [62].

In a prospective, controlled clinical trial Huang et al. re-
ported that intramuscular transplantation of autologous G-
CSF-mobilised PB-MNC for CLI improved the outcome of
lower limb pain, PFWD, foot ulcers, arterial-brachial in-
dex, and angiographic scores in diabetic patients [64]. Fur-
thermore, in a randomised study conducted in 2007, Huang
et al. investigated the advantage of intramuscular autolog-
ous transplantation of BM-MNC over G-CSF-mobilised
PB-MNC for patients with limb ischaemia (n = 150) [65].
There was no significant difference between two groups
for PFWD, TcPO2, ulcers, and rate of lower limb ampu-
tation. Comparative analysis indicated that mobilised PB-
MNC should be more practical in comparison with BM-
MNC in the treatment of limb ischaemia.
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To date, results from larger, randomised controlled
studies using selected stem cells or subfractions are still
lacking. At present, around 10 clinical trials are recruiting
patients with intermittent claudication or CLI in the USA,
Germany and Japan for clinical trials investigating the
safety and efficacy of autologous BM cells [66, 67] or
CD34 positive cells after G-CSF stimulation isolated via
leukapheresis [68–70].

Adverse effects of cell therapy
The current enthusiasm should not preclude careful con-
sideration of predominantly experimental studies implic-
ating adverse effects of progenitor cell therapy. For ex-
ample, in animal models for transplantation atherosclero-
sis, BM-derived progenitor cells have been shown to con-
tribute to enhanced blood vessel formation in atheroscler-
otic plaque with potential to facilitate plaque instability and
rupture [71]. Experimental observations in atherosclerosis
research indicate that incorporation of BM-derived progen-
itors in plaque vessel depends on the concomitant presen-
ce of ischaemia [72]. Other pre-clinical studies suggest that
the contribution of smooth muscle progenitors to the pro-
gression of atherosclerosis may temper the positive impact
of EPC therapy [73]. At present there exist no human stud-
ies indicating a negative influence on atherosclerotic lesion
size or plaque instability after cell therapy. To the contrary,
major human clinical trials have clearly demonstrated that
high EPC levels are associated with reduced cardiovascular
event rates underlining the vasculoprotective effect of EPC
[74–78].

However, further results are awaited on the long-term
effects of progenitor cell therapy. In addition, it remains to
be investigated whether crude, non-selected BM may in-
duce muscle calcification as shown in animal models after
intramuscular transplantation [79].

“Cell-free” strategy based on
paracrine secretome of endothelial
progenitor cells

Despite the encouraging results of recent trials, technical
and practical limitations such as the invasive methods of
harvesting and low abundance are major hurdles for the

adoption of direct stem/progenitor cell transplantation into
clinical applications. In the meantime, extensive research
is currently under way to unravel how the paracrine func-
tions of stem and progenitor cells integrate modulation of
angiogenesis [47, 52–54]. Several lines of evidence sug-
gest that the collective array of EPC soluble factors may
find a clinical application for the treatment of ischaemic
diseases [80]. Use of “cell-free” products may indeed rep-
resent an alternative to therapies based on cell transplanta-
tion. In our study we exploited the remarkable capacity of
EPC to secrete growth factors (EPC secretome) in devel-
oping a novel cell-free strategy for therapeutic angiogen-
esis [54]. Conditioned media harvested from peripheral
blood-derived EPC (EPC-CM) supported the survival of
mature EC and enhanced the formation of capillary struc-
tures in vitro. Using an experimental model of hindlimb
ischaemia [81] serial injections of EPC-CM into ischaemic
muscles of rats ameliorated the limb ischaemia by pro-
moting neovascularisation and vascular maturation (fig. 1).
Moreover, EPC-CM restored muscle functionality. The an-
giogenic and tissue-regenerative capacity of EPC-CM was
preceded by a systemic effect documented by a transient in-
crease in progenitor cell number (CD34+ cells) in the BM
and in peripheral blood, as well as augmented recruitment
of stem cells within the ischaemic muscle. Remarkably, the
therapeutic capacity of EPC-CM was in general compar-
able to EPC transplantation. It is of note, however, that the
number of cells necessary to generate an equivalent thera-
peutic dose was much lower for EPC-CM production com-
pared to the quantity of cells employed for EPC transplant-
ation.

A number of recent reports suggest that the therapeutic
properties of paracrine factors are a common feature of
stem cells [82]. Conditioned media obtained from BM
stromal cells has been shown to be beneficial in treating
oxygen-induced lung injury through a cyto-protective ef-
fect on alveoli and vascular cells [83]. Moreover, reports
have described how soluble factors secreted by CD133
cells isolated from BM are neuroprotective in a murine
model of brain ischaemia [84]. Similarly to our observa-
tions, the therapeutic potential of conditioned medium of
BM-derived CD133 cells against stroke is equal or superi-
or to cell transplantation. Also, factors secreted by adipose

Figure 1

EPC-CM and EPC transplantation improve blood
perfusion in the rat ischaemic hindlimb with
increased capillary density. Using a chronic
hindlimb ischaemia model in athymic nude rats
[81], serial intramuscular injections of EPC
secretome (EPC-CM) triggered substantial
revascularisation of the ischaemic muscles
accompanied by the recovery of blood perfusion
[54]. (A) Representative images of hindlimb blood
flow measured by laser Doppler before and 35
days after intramuscular injection of EPC-CM,
EPC or placebo (control medium). The increase
in blood flow in the ischaemic area was

equivalent in both groups. (B) Representative immunofluorescent images of healthy (non-operated) and ischaemic hindlimb muscle treated
with EPC-CM, EPC or placebo. Thirty-five days after treatment, the improvement of blood flow was accompanied by an augmented number of
capillaries in both, the EPC and EPC-CM group indicative of increased neovascularisation. Images adapted from Di Santo S, et al., PLoS ONE,

2009. 4(5): p. e5643, under the terms of the Creative Commons Attribution License.
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tissue and BM-derived MSC exhibited the capacity to pro-
mote vascularisation [85–87], exert anti-apoptotic effects
and promote tissue regeneration on heart and brain (for re-
views see Bai, X. et al. [88] and Salgado, A. J. et al. [89]).

Thus there is strong evidence that in interventions
based solely on stem cells and progenitor cells secretome
may replace cell transplantation to enhance therapeutic
neovascularisation and tissue regeneration. This cell-free
strategy seems to be free from the limitations and problems
observed with transplantation of fresh or in vitro cultured
cells. In particular, the relative scarcity of circulating EPC
and their limited proliferative potential preclude the pos-
sibility of expanding these cells in sufficient numbers for
effective therapeutic applications. Moreover, there is com-
pelling evidence that the presence of cardiovascular risk
factors impairs some fundamental functional properties of
EPC such as mobilisation, survival and capacity to differ-
entiate or secrete paracrine factors [90–93].

Thus the use of heterologous cells appears to be a
more promising option to circumvent the disadvantages
of homologous EPC in patients with cardiovascular dis-
ease. However, this type of treatment is hampered by im-
munotolerance concerns and technical as well as practical
difficulties. In contrast, a cell-free medium containing the
paracrine secretome from EPC may reduce the risk of ad-
verse immunological reactions and simplify the process of
production (fig. 2).

Conclusion

The stimulation of therapeutic neovascularisation mediated
by stem cell administration in patients with peripheral ar-
terial disease remains an attractive goal in regenerative
medicine [94]. Although efficacy has been demonstrated
in animal models and safety in phase I human studies, un-
equivocal evidence of efficacy has not been demonstrated
in placebo-controlled trials. Given the findings that progen-
itor function and mobilisation are impaired in certain dis-
ease states [76], it is reasonable to consider strategies that
may include genetic modification of EPC to overexpress
angiogenic growth factors, enhance signalling activity of
the angiogenic response and rejuvenate the bioactivity and/
or extend the life span of progenitor cells aiming to alle-
viate the potential dysfunction of stem cell populations in

ischaemic disorders with ageing, diabetes or hypercholes-
terolaemia.

Recent studies have proposed a different therapeutic
concept based on paracrine factors secreted by progenitor
and stem cells [81, 95]. Therapeutic strategies utilising sol-
uble factors secreted by EPC either as physiological or as
synthetic forms might be used as adjuvant of conventional
medical therapies or even replace cell transplantation. The
advantage of this approach is compelling due to its poten-
tial freedom from the limitations and problems observed
with cell transplantation. A cell-free medium such as EPC-
CM significantly reduces the risk of adverse immunologic-
al reactions and simplifies the process of production. It is,
therefore, reasonable to imagine that EPC secretome or an
equivalent synthetic preparation which mimics physiolo-
gical EPC secretome will in future find application in re-
generative medicine.
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