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a  b  s  t  r  a  c  t

International  air  travel  has already  spread  Ebola  virus  disease  (EVD)  to  major  cities  as  part  of the  unprece-
dented  epidemic  that  started  in  Guinea  in  December  2013.  An  infected  airline  passenger  arrived  in  Nigeria
on July  20,  2014  and  caused  an  outbreak  in Lagos  and  then  Port Harcourt.  After  a total  of  20  reported
cases, including  8  deaths,  Nigeria  was  declared  EVD  free  on  October  20,  2014.  We quantified  the  impact
of early  control  measures  in  preventing  further  spread  of EVD  in  Nigeria  and  calculated  the  risk  that  a
eywords:
bola virus disease
utbreak
asic reproduction number
athematical model
igeria

single  undetected  case  will cause  a new  outbreak.  We fitted  an  EVD  transmission  model  to  data  from
the  outbreak  in  Nigeria  and estimated  the  reproduction  number  of  the  index  case  at  9.0  (95%  confidence
interval  [CI]:  5.2–15.6).  We  also  found  that  the  net  reproduction  number  fell  below  unity  15  days  (95%  CI:
11–21 days)  after  the  arrival  of the  index  case.  Hence,  our  study  illustrates  the  time  window  for  successful
containment  of  EVD  outbreaks  caused  by  infected  air travelers.

©  2015  The  Authors.  Published  by  Elsevier  B.V. This  is  an  open  access  article  under  the  CC  BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
. Introduction

Air travel allows Ebola virus disease (EVD) to spread internation-
lly (Gomes et al., 2014; Bogoch et al., 2015). Nigeria experienced
n outbreak of EVD with the arrival of an infected air traveler at the
nternational airport in Lagos on July 20, 2014 (Shuaib et al., 2014;
asina et al., 2014). The traveler had been exposed to EVD in Liberia,
ad symptoms during his journey, and died on July 25, 2014, after
eing admitted to a private hospital in Lagos. Although authorities
esponded to the outbreak rapidly, there were an additional 19 EVD
ases in Lagos and a large city in the south of Nigeria, Port Harcourt.
he World Health Organization (WHO) declared Nigeria EVD free
n October 20, 2014, after no new cases had been detected for 42
ays (World Health Organization, 2014).

Analyses of data from the EVD outbreak in Nigeria can provide
mportant information about the impact of the sudden introduction
f EVD in large cities and on the control measures needed to stop

uch outbreaks. The basic reproduction number R0 is defined as
he average number of secondary infections generated by an infec-
ious index case at the beginning of an outbreak (Heffernan et al.,

∗ Corresponding author. Tel.: +41 316315640.
E-mail address: christian.althaus@alumni.ethz.ch (C.L. Althaus).
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2005). The aim of control interventions is to reduce the net repro-
duction number Rt during an outbreak (also called the effective or
instantaneous reproduction number) below unity so that the out-
break eventually ends. Studying the change in Rt during the course
of an outbreak provides useful information on the effectiveness of
the control measures that were implemented (Chowell et al., 2004;
Althaus, 2014; Camacho et al., 2014).

In this study, we  fitted an EVD transmission model to the
reported daily numbers of incident cases and deaths during the out-
break in Nigeria. This allowed us to estimate the basic reproduction
number R0, and to describe how the net reproduction number Rt

changed after control interventions were implemented. We  then
compare the risks of an outbreak from a single undetected case
in Nigeria and the other West African countries with ongoing EVD
transmission.

2. Methods

2.1. Model
We  applied an EVD transmission model that we used to
estimate the reproduction number of EVD in Guinea, Sierra
Leone and Liberia (Althaus, 2014). EVD transmission follows SEIR
(susceptible-exposed-infectious-recovered) dynamics (Fig. 1) and

der the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Schematic illustration of the EVD transmission model. Susceptible individ-
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als  S become infected by infectious individuals I at rate ˇ. They then move through
n incubation period (E) at rate � before they become infectious individuals I. Infec-
ious individuals I recover or die at rate � . The case fatality rate is given by f.

an be described by the following set of ordinary differential equa-
ions (ODEs):

dS

dt
= −ˇ(t)SI, (1)

dE

dt
= ˇ(t)SI − �E, (2)

dI

dt
= �E − �I, (3)

dR

dt
= (1 − f )�I, (4)

dD

dt
= f�I. (5)

After infection, susceptible individuals S enter the exposed class
 before they become infectious individuals I and either recover
R) or die (D). The average durations of incubation and infectious-
ess are given by 1/�  and 1/� ,  respectively. f is the case fatality
ate. The transmission rate before the introduction of control inter-
entions was assumed to be constant, i.e., ˇ(t) = ˇ0. Upon the
mplementation of control measures at time �, the transmission
ate was assumed to decay exponentially: ˇ(t) = ˇ0e−k(t−�) (Lekone
nd Finkenstädt, 2006). The basic and net reproduction numbers
re given by R0 = ˇ0S(0)/� and Rt = ˇ(t)S(t)/� , respectively.

We  assumed the outbreak started with a single infected case
n a large susceptible population (I(0) = 1 and S(0) = 106). As long
s the number of cases is small compared to the total population
ize, the exact number of susceptible individuals does not need
o be known to estimate the model parameters. The ODEs were
olved numerically in the R software environment for statistical
omputing (Development Core Team, 2014) using the function ode
rom the package deSolve.

We  assumed the observed daily numbers of incident cases and
eaths to be Poisson distributed (Nishiura and Chowell, 2014;
amacho et al., 2014; Ebola Response Team, 2014) to derive
aximum likelihood estimates (MLEs) of the following model

arameters (Bolker, 2008): the baseline transmission rate ˇ0, the
ate k at which control measures reduce transmission, and the case
atality rate f. The average durations of incubation (1/�) and infec-
iousness (1/�) were fixed to values obtained from other data sets
2.2). We  also set � = 3 days as the implementation of control meas-
res began on July 23, 2014 (Shuaib et al., 2014). We used the
ptimization algorithm by Nelder & Mead, which is implemented
n the function optim.

We  derived simulation based 95% confidence intervals (CIs) for
he model curve making use of the asymptotic normality of MLEs
Mandel, 2013). We  also constructed 95% prediction intervals (PIs)
or the cumulative number of cases and deaths. The algorithm was

s follows:

 Simulate n = 10, 000 values, �1, ..., �n∼N(�̂, �),  where �̂ is
the MLE  of the unknown model parameters with associated
ics 11 (2015) 80–84 81

variance–covariance matrix �, using the function rmvnorm from
the package mvtnorm.

2 For each �i, solve the system of ODEs to obtain the model curves
for the cumulative number of infected cases and deaths. For each
time-point t, use the 2.5% and 97.5% quantiles from these boot-
strap samples to construct the point-wise CIs for the model.

3 For each epidemic trajectory, simulate a vector of daily inci-
dent cases from the sampling model, assuming they are Poisson
distributed. For each time-point t, use the resulting bootstrap
sample of the cumulative number of cases to construct the 95%
PI. Proceed similarly for the number of deaths.

2.2. Data

Daily incidence of symptom onset and death were derived from
the published reports about confirmed (n = 19) and probable (n = 1)
EVD cases (Shuaib et al., 2014; Fasina et al., 2014). We  extended the
data set from the time of death of the last case to the date that WHO
declared Nigeria EVD free (October 20, 2014) with zero counts for
the number of incident cases and deaths.

The mean incubation period of EVD was based on the reported
cases from the EVD outbreak in Zaire in 1976 (Breman et al., 1978;
Breman and Johnson, 2014). We only used the time of symptom
onset after person-to-person contact (n = 109, range: 2–21 days).
Fitting a gamma  distribution to the data resulted in a mean incu-
bation period of 9.31 days (shape: 3.04; rate: 0.33).

The mean duration of the infectious period of EVD was calcu-
lated from the reported cases in the early transmission chain of the
outbreak in Guinea. Baize et al. (2014) described the dates of onset
of symptoms and death in 17 patients. We  assumed that the infec-
tious period was  the difference between these two dates (range:
4–17 days). Fitting a gamma  distribution to the data resulted in an
average infectious period of 7.41 days (shape: 5.29; rate: 0.71).

3. Results

Fitting the transmission model to the data illustrates the varia-
tion around the expected number of cases and deaths for a small
EVD outbreak, as observed in Nigeria (Fig. 2). The model provides
a good description of the cumulative number of deaths. However,
the model shows an earlier and slower increase in the cumula-
tive number of cases, compared to the rapid rise in cases that was
observed between 8 and 13 days after the arrival of the index case
in Lagos. This discrepancy could be a result of stochastic effects
or our assumptions about the transmissibility of EVD (see Section
4). The maximum likelihood estimate (MLE) of the baseline trans-
mission rate ˇ0 was  1.22 × 10−6 per individual per day (95% CI:
0.70 × 10−6–2.10 × 10−6 per individual per day). This corresponds
to a basic reproduction number R0 = 9.01 (95% CI: 5.22–15.55). The
rate at which control measures reduce transmission was estimated
at k = 0.19 per day (95% CI: 0.10–0.38 per day), and the case fatality
rate at f = 0.39 (95% CI: 0.14–0.71).

The Nigerian Federal Ministry of Health, the Lagos State gov-
ernment and international partners activated an Ebola Incident
Management Center on July 23, 2014 (Shuaib et al., 2014). Based
on our estimates of the baseline transmission rate ˇ0 and the rate
k at which control interventions reduce transmission, we  calcu-
lated the decrease in the net reproduction number Rt following the
introduction of control measures that included case isolation, con-
tact tracing and surveillance (Fig. 3). We estimated that Rt dropped
below unity 15 days (95% CI: 11–21 days) after the arrival of the
index case, that is, 12 days after control measures were imple-

mented. This is about one serial interval after the index case arrived
at the airport in Lagos (Ebola Response Team, 2014) and explains
the small number of secondary and tertiary cases that was observed
in this outbreak (Shuaib et al., 2014; Fasina et al., 2014).
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Fig. 2. Dynamics of Ebola virus disease (EVD) outbreak in Nigeria. Daily incidence (top panels) and cumulative numbers (bottom panels) of cases and deaths. Symbols
represent reported cases (red) and deaths (black). The best-fit model (solid lines) is given together with the 95% confidence intervals (dashed lines). The shaded areas
correspond to the 95% prediction intervals. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Net reproduction number Rt during the Ebola virus disease (EVD) outbreak
in  Nigeria. The maximum likelihood estimates of the net reproduction number Rt
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Fig. 4. Risk of an Ebola virus disease (EVD) outbreak from a single undetected case.
The  curve depicts the relation between the basic reproduction number R0 and the
solid line) are shown together with the 95% confidence intervals (dashed lines).
he  black dot denotes the time at which Rt dropped below unity (15 days after the
rrival of the index case).

Fig. 4 shows the relation between the basic reproduction num-
er R0 and the probability P = 1 −1/R0 that a single infected case
hat remains undetected causes a subsequent outbreak (Antia et al.,
003). Using the estimated value of R0 in Nigeria, we calculated that
he risk of an outbreak from a single undetected case was  89% (95%
I: 81–94%). Our previous estimates of R0 for Guinea, Sierra Leone
nd Liberia are lower than for Nigeria and range between 1.51 and

.53 (Althaus, 2014). These population-based estimates correspond
o outbreak probabilities between 34% and 60%, which are substan-
ially lower than the risk that we calculated from the reproduction
umber in Nigeria.
probability of an outbreak. The dots correspond to the reproduction number esti-
mated in this study and previously (Althaus, 2014). The shaded area corresponds to
the  95% confidence intervals for Nigeria.

4. Discussion

We  fitted a dynamic transmission model to data about reported
cases and deaths of EVD during a small urban outbreak in Nigeria.
We estimated that the basic reproduction number, which can be

viewed as an individual reproduction number of the index case, was
unusually high (R0 = 9.01, 95% CI: 5.22–15.55). The rapid implemen-
tation of control measures reduced the net reproduction number
Rt below unity 15 days (95% CI: 11–21 days) after the arrival of the
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ndex case. Using the estimated value of R0, we calculated that the
isk of an outbreak from a single undetected case was 89% (95% CI:
1%–94%).

This study adds to the epidemiological descriptions of the EVD
utbreak in Nigeria and benefited from the detailed published data
bout the reported dates of onset of symptoms and death (Shuaib
t al., 2014; Fasina et al., 2014). We  estimated R0 from the data by
xtending the modeling approach that provided the first estimates
f R0 for the 2014 EVD epidemics in Guinea, Sierra Leone and Liberia
Althaus, 2014). Our estimate of the average incubation period (9.3
ays), which was based on historical data from the 1976 outbreak in
aire (Breman et al., 1978), is in good agreement with the observed
stimate for single-day day exposures (9.4 days) during the EVD
utbreak in West Africa (Ebola Response Team, 2014) and other
stimates (Eichner et al., 2011; Chowell and Nishiura, 2014). Simi-
arly, the estimated generation time, the sum of the incubation and
nfectious periods (16.7 days), is consistent with the serial interval
15.3 days) reported by the Ebola Response Team (2014).

There are several limitations related to the model structure.
irst, we fitted a deterministic model to a small outbreak of only
0 cases. Stochastic effects could have played an important role

n determining the outcome of the outbreak. Fitting a stochas-
ic model, e.g. Gillespie simulations (Gillespie, 1977), to the data
ould allow us investigate whether the high number of initial

ransmissions was simply due to chance. Second, we assumed that
VD cases are equally infectious throughout their infectious period.
owever, transmissibility could increase with disease progression
ue to higher viral loads (Yamin et al., 2015). This could explain
he sudden increase in cases during the second week as most of
hese were probably infected shortly before the index case died.
hird, we did not distinguish between transmission in health-care
ettings and in the community so we could not examine their sep-
rate contributions, as in some other studies (Legrand et al., 2007;
asina et al., 2014). Fourth, we did not distinguish between different
nterventions such as case isolation, personal protective equipment
or healthcare workers and contact tracing. We  considered all con-
rol measures together and assumed that their implementation led
o an exponential reduction in the transmission rate. Lastly, we
reated the two transmission clusters in Lagos and Port Harcourt as

 single outbreak and assumed that control measures had the same
ffect in both places.

Interpreting the estimated R0 as an individual reproduc-
ion number is consistent with the epidemiological contact data
escribing 12 (Fasina et al., 2014) or 13 (Shuaib et al., 2014) sec-
ndary cases directly linked to the index case and the 95% CI
5.22–15.55) includes the observed values. Hence, our modeling
pproach could be used to quantify the transmission potential of
ndex cases if the number of secondary cases were unknown. The
igh number of infections during the early phase of the outbreak
ould be attributed to the setting where they took place: a health
acility where people had direct exposure to highly infectious body
uids such as blood. The observed challenges around patient com-
liance could also have contributed to the high level of transmission
een. In this context, it is worth noting that the decision by the index
ase to obtain medical care in a private instead of a public health
acility might have limited further spread. Socio-economic status
n Nigeria is an important determinant of health seeking behavior
nd prompt access to high quality health services. Thus, it is not
urprising that the index case, who was a diplomat, attended a pri-
ate health facility. Even though there was a strike in government
ospitals during the outbreak, it is likely that the index case would
till have chosen a private health facility.
Despite the large number of secondary cases, no transmis-
ions occurred while the index case traveled from Liberia to Lagos.
ecause he provided support to his sister who subsequently died

rom EVD, it is possible that the index case was  aware of his
ics 11 (2015) 80–84 83

infection and took precautions to minimize contact with other pas-
sengers. Deliberate avoidance of contact may also explain why an
already sick secondary contact of the index case who  evaded con-
tact tracers and traveled by air from Lagos to Port Harcourt, was able
to initiate another EVD cluster in Port Harcourt without infecting
other airline passengers.

The R0 for the outbreak in Nigeria should not be confused with
the lower values of around 1.5–2.5 estimated for the countries first
affected in 2013/2014 (Althaus, 2014; Fisman et al., 2014; Nishiura
and Chowell, 2014; Towers et al., 2014; Ebola Response Team, 2014;
Stadler et al., 2014). Those estimates are based on a larger number
of cases and represent the average number of secondary cases for
a particular country as whole. In contrast, the early phase of the
EVD outbreak in Nigeria can be considered a superspreading event
(Lloyd-Smith et al., 2005), similar to the funerals that are suspected
to have contributed to the early spread of EVD in Sierra Leone (Gire
et al., 2014; Stadler et al., 2014; Volz and Pond, 2014). Assuming the
number of secondary infections caused by each case is described by
a geometric distribution with a mean of 2.0, the probability that a
single individual generates 9 or more secondary cases would be
2.6%. This suggests that the individual reproduction number of the
index case in Nigeria is either a rare event, or that the number of
secondary infections must be overdispersed. A preliminary analy-
sis of the EVD transmission tree by Faye et al. (2015) indicates that
the number of secondary cases follows a negative binomial distri-
bution (unpublished results). In that case, superspreading events
such as the one observed for the index case during the EVD out-
break in Nigeria are an expected feature of the individual variation
in infectiousness.

The R0 in this outbreak in Nigeria shows the transmission
potential of an index patient arriving in a major urban area
with symptomatic EVD. EVD has also spread in September and
October 2014 through international air travel to the USA (World
Health Organization, 2014), where two  healthcare workers became
infected. Patients with EVD also traveled by road to Senegal (World
Health Organization, 2014) and Mali (World Health Organization,
2014). In Senegal there were no secondary cases but further cases
have occurred in Mali. For the outbreak in Nigeria, we found that the
net reproduction number Rt dropped below unity 15 days after the
arrival of the index case at the international airport in Lagos. This
suggests that the number of additional infections will be limited if
transmission can be stopped within one serial interval of the infec-
tion, and illustrates the time window for successful containment of
new EVD outbreaks caused through international travel.
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