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Abstract

We partially solve a long-standing problem in the proof theory of explicit mathematics or the proof theory
in general. Namely, we give a lower bound of Feferman’s system T0 of explicit mathematics (but only when
formulated on classical logic) with a concrete interpretation of the subsystem Σ1

2-AC+ (BI) of second order
arithmetic inside T0. Whereas a lower bound proof in the sense of proof-theoretic reducibility or of ordinal
analysis was already given in 80s, the lower bound in the sense of interpretability we give here is new.

We apply the new interpretation method developed by the author and Zumbrunnen (2015), which can be
seen as the third kind of model construction method for classical theories, after Cohen’s forcing and Krivine’s
classical realizability. It gives us an interpretation between classical theories, by composing interpretations
between intuitionistic theories.
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1. Introduction

The present author and Zumbrunnen [37] have developed a new method to construct an interpretation
between classical theories (i.e., theories based on classical logic) by composing interpretations between intu-
itionistic theories (theories based on intuitionistic logic, which of course include classical theories). In the
(modified) sense of Visser’s miniature model theory, this can be seen as the third kind of model construc-
tion method for classical theories, after Cohen’s forcing method and Krivine’s classical realizability method.
Whereas the present author and Zumbrunnen [37] have applied this method in order to give lower bounds to
a new family of theories introduced there, here in the present paper we apply the method to solve, partially,
a long-standing problem in the proof theory of explicit mathematics or the proof theory in general.

Proof theory originally aimed to obtain, on a finitistic ground, consistency proofs of mathematical frame-
works, i.e., axiomatic systems in which (a significant part of) mathematical practice can be formalized. Since
Gödel’s second incompleteness theorem had shown that this is impossible (with the suitable meaning of “fini-
tistic ground”), the aim has become reducing the consistency of a mathematical framework to another. This
type of proof theory is sometimes called reductive proof theory. For this purpose, ordinal analysis has been
playing a major role, since Gentzen reduced the consistency of Peano arithmetic to the transfinite induction
up to ε0 (the scheme consisting of the transfinite induction for any primitive recursive predicate along any
ordinal below ε0) and therefore to any theory which proves the transfinite induction up to ε0. Rathjen [33,
Subsection 3.2], a leading figure of current proof theory, listed those results in reductive proof theory that are
obtained by ordinal analysis, among which is the proof-theoretic equivalence between ∆1

2-CA+(BI), KPi and
Feferman’s system T0 of explicit mathematics. Unlike the other results listed there, he explicitly mentions
that “no proof of the above result has been found that doesn’t use ordinal representation”.
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Showing the proof-theoretic equivalence between these three theories without ordinal analysis has been
a long-standing problem (as Rathjen’s remark above; see also [12, p.12]), especially in explicit mathematics
community. Since Feferman [8, Part V] gave a relative interpretation of T0 in ∆1

2-CA+(BI) in 70s soon after
he introduced T0 and Jäger [17, Section 8] in 80s showed the equivalence between ∆1

2-CA+ (BI) and KPi by
giving concrete mutual relative interpretations, what remains is to give, without ordinal analysis, a reduction
of ∆1

2-CA+ (BI) to T0. In this paper, we solve this long-standing problem partially. By ‘partially’, we mean
the reduction to T0 formulated on classical logic, while Feferman originally formulated it on intuitionistic
logic and Rathjen [33] apparently meant the intuitionistic version by T0. Nonetheless, nowadays systems
of explicit mathematics are formulated more often on classical logic and, moreover, recently Feferman [11]
himself states that explicit mathematics formulated on classical logic can play the role which he originally
intended explicit mathematics to play. Thus we could claim that the problem remains significant only for
the classical version of T0, at least in the context of present-day explicit mathematics.

1.1. Explicit mathematics

Explicit mathematics was introduced in 70s by Feferman [6, 7, 8] to provide a uniform framework for
many kinds of mathematics, e.g., Bishop-style constructive analysis, Russian recursive constructive math-

ematics, Weyl-style predicative mathematics, Borelian mathematics. Indeed, Feferman gave the ways how
mathematical arguments formalized in explicit mathematics can be interpreted within any of these kinds
of mathematics. Since Bishop-style constructive analysis has been considered to be weakest among them,
explicit mathematics has sometimes been considered also as a formal framework for Bishop-style constructive
analysis.

Although he [8, Part I. Section 6] mentioned another important kind of mathematics, Brouwer-style

intuitionistic mathematics, he seemed to exclude this from his scope, saying

Brouwer’s analysis based on f.c.s. [free choice sequence] has been studied in various logical
formalisms by Kleene, Vesley, Kreisel, Troelstra, van Dalen and others (cf. Troelstra 1977a 1977b
[[42] and [43]] for references). Various parts of this have taken settled and coherent form (and
have, incidentally, been shown consistent). But efforts to treat the most general concept of f.c.s.
have not yet had a convincing outcome. For mathematicians, Brouwer’s theory has remained a
curiosity; it has largely been of interest to logicians. Moreover, the concepts are rather special to
analysis and topology and seem to have little to do with other parts of mathematics. Historically,
the actual development of intuitionistic mathematics got hung up around analysis because of the
need to clarify Brouwer’s ideas there. ([8, pp.168-169])

Indeed, he did not give a way how arguments in explicit mathematics can be interpreted in this kind of
mathematics.

Since its born in 70s, explicit mathematics has been among such families of mathematical frameworks that
are of interest in proof-theoretic researches, along with subsystems of second order arithmetic, subsystems
and supersystems of Kripke-Platek set theory KP, of Martin-Löf type theories, and of constructive Zermelo-

Fraenkel set theory CZF.
The main features of explicit mathematics are as follows. First, it has the applicative nature, which allows

us to treat operations directly (unlike in set theory where we have to encode A[f(x)] by ∃y(“y = f(x)”∧A[y])
with quantifiers). This is given by the structure of non-total combinatory algebra on individuals, which
is incorporated in the formulation of explicit mathematics based on the so-called applicative theory, and
which entails that any individual is a code of some partial operation on individuals. As this yields the
machinery of untyped λ-calculus, we can treat all the “computable” partial operations, with a suitable sense
of “computability”. Second, it has the named type structure, namely any type, a formal entity intended
to denote a collection of individuals, is named by an (but not necessarily unique) individual. Through this
naming machinery, we can treat operations on types. For both the features, intensionality and non-totality

are essential: different individuals might code or name an identical (in the extensional sense) operation or
type; and there always exist some individuals coding non-total operations and those naming no type.

Feferman introduced various systems of explicit mathematics, among which are AETJ+ (T-IN), AETJ+
(L-IN), T0↾, T0↾ + (L-IN) and T0 (although he employed different notations for these systems, except T0),
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and he [8, Part V] identified the proof-theoretic strengths of all these systems except T0, by giving proof-
theoretic equivalence results with subsystems of second order arithmetic. He only made a conjecture on the
proof-theoretic strength of T0, which was proven to be true later by Jäger [16] by ordinal analysis. Among
these five systems, only for T0 no proof of the proof-theoretic equivalence has previously been known that is
not based on ordinal analysis2, while it seems almost obvious from Feferman’s notation that he considered
T0 as the most important among the systems of explicit mathematics.

As mentioned before, nowadays these systems are more often defined on classical logic. On this line, some
extensions by small large cardinal notions have been introduced and investigated in Marzetta [28], Strahm
[39, 40], Jäger, Kahle and Studer [19], Jäger and Studer [24], Jäger and Strahm [21, 23] and Jäger [18], as
similar extensions of Kripke-Platek set theory, of constructive Zermelo-Fraenkel set theory and of Martin-
Löf type theory have been considered in the right direction to strengthen these mathematical frameworks
and also to develop further proof-theoretic investigations. Also for the extensions by monotone inductive
definition, another direction of development, Takahashi [41], Rathjen [30, 31, 32, 35] and Glaß, Rathjen and
Schlüter [14] all formulated the systems on classical logic, though Rathjen [32] mentioned extending the
result for the intuitionistic version as a further problem which was treated by Tupailo [46]. Thus we could
say that explicit mathematics in the present-day context is formulated almost always on classical logic.

1.2. Foundational issue on the logic on which explicit mathematics should be formulated

As mentioned above, explicit mathematics was originally designed as a uniform framework of many kinds
of mathematics including constructive ones, and especially as a formal framework for Bishop-style construc-
tive analysis. Thus many people consider that explicit mathematics must be formulated on intuitionistic
logic for this original purpose, and this seems to be the reason why Feferman introduced and considered the
systems on intuitionistic logic in the early ages of explicit mathematics.

However, even for this original purpose, Feferman himself states that explicit mathematics formulated
on classical logic can play the intended role. Actually he explicitly says as follows.

From this reading of Bishop style constructive analysis, I was led to introduce an axiomatic
system T0 based on classical logic in which all his work could be directly formalized. ([11, p.3])

... there is no need to restrict to intuitionistic logic in the development of Bishop’s approach and
in any case we want to have classical logic as our basic system of reasoning throughout in order
to deal in a common way with constructive, predicative and descriptive mathematics. ([11, p.5])

As a reason for this conclusion (or as the content of “this reading of Bishop style constructive analysis”),
he mentions as follows.

Though Bishop agreed with the Brouwerians that one should restrict oneself to reasoning in
intuitionistic logic, I came to the conclusion that that was not the real reason why one could give
a systematic recursive interpretation to his results. Rather, its success in that respect depends
essentially on two features, one general and the other more specific. The general point is that
all of Bishop’s basic notions are considered without assumption of extensionality, and in that
sense are intensional, although in an abstract sense. (It is that which the ‘Explicit’, in ‘Explicit
Mathematics’, is intended to suggest.) In particular, operations can be interpreted directly as
computational programs, or indices of partial recursive functions. But they can also be considered
extensionally, thus making the basic notions a part of classical mathematics. The second, more
specific, feature of Bishop’s methodology that, in my view, accounted for the success of his
approach, was the way he modified classical notions to incorporate certain “witnessing data”

2For T0↾ and T0↾+(L-IN), Feferman [8, Part V] used the proof-theoretic equivalence between ID<ν and ID
i
<ν(O) for ν = ω, ε0,

which is also in the list of results obtained by ordinal analysis from Rathjen [33]. As footnoted by Rathjen himself, however, Sieg
obtained the result without use of ordinal analysis, although “his approach is still proof-theoretic as it employs cut-elimination
for infinitary derivations”. Moreover, if the systems of explicit mathematics are formulated on classical logic as nowadays more
often done, the equivalence between ID<ν and ID

i
<ν(O) is no longer needed.
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that is implicitly carried along in proofs. Together, his notions and results may be considered
to be a refinement of classical mathematics that at the same time admits of a constructive
interpretation in recursive form. Since Bishop’s redevelopment of analysis is simply a part of
classical mathematics, that is another way in which it diverges significantly from Brouwerian
intuitionism. Brouwer treated real numbers as “choice sequences” of rational numbers, of which
one would only have a finite amount of information at any time, and functions of real numbers
would thus be recast in terms of functions of choice sequences. From this, Brouwer was led to the
theorem that every function on a closed interval is continuous, patently contradicting classical
analysis. Bishop’s approach, by contrast, admits dealing with discontinuous (partial) functions
on the real numbers in his theory of measure. ([11, pp.2-3])

Although the present author is not ready to take a stand in support of or against Feferman’s interpretation
of Bishop-style constructive analysis, what is important is that the founder of explicit mathematics, Feferman,
himself claims so. Therefore there seems to be no foundational motivation to consider explicit mathematics
formulated on intuitionistic logic.

Of course, there are some technical reasons to do that (even though almost all the recent technical
results on explicit mathematics are for the classical versions as seen above): for example, the proof theoretic
strengths of some intuitionistic systems have been established by interpreting intuitionistic T0 (e.g., Griffor
and Rathjen [15]). For this reason, there seems to be no consensus among experts with which logic the
long-standing problem should be solved, or rather this paper sheds light on the lack of consensus.

1.3. Reduction vs. interpretation

As mentioned before, the proof-theoretic equivalence between ∆1
2-CA+(BI), KPi and T0 has already been

obtained by ordinal analysis. This result actually states more than the reducibility of the consistencies of
them to one another: they prove the same arithmetical sentences (if T0 is formulated on classical logic).

In general, a theory T1 is said to be proof-theoretically reducible to another T2 for a class Φ of formulae if
there is a primitive recursive function f on finite strings (in the sense of a fixed Gödel numbering) such that

(Φ-Red) for any formula F ∈ Φ, if x is a T1-proof ending in F , then f(x) is a T2-proof ending in F .

Of course, here we have to assume that Φ is contained in both the languages of T1 and of T2. Generally this
implies the Φ-conservation of T1 over T2 (i.e., if T1 ⊢ F then T2 ⊢ F for F ∈ Φ), and as far as Φ contains
⊥ it implies the reduction of consistency. T1 and T2 are said to be proof-theoretically equivalent if T1 is
proof-theoretically reducible to T2 and vice versa.

If we accept the distinction between “real” and “ideal” notions in mathematics, taking Φ as the set of
those formulae concerning only “real” objects (sometimes identified with arithmetical formulae) or observable
in the “real” world (with Π0

1 or Π0
2), we can consider that Φ-conservation of T1 over T2 states that T1 is not

stronger than T2, as a fictional tool to talk about the “real” objects or “real” world, or, in other words, the
“ideal” objects or world described in T2 have at least the same power as those in T1. From this viewpoint,
it is not unnatural that T1-theorems outside Φ have no meanings in T2, but only those in Φ.

On the other hand, the notion of interpretation does not concern the distinction between “real” and
“ideal” objects. Although we do not define the general notion of interpretation, an interpretation of T1 in
T2 at least provides us a primitive recursive transformation f of T1-proofs to T2-proofs satisfying:

(Preservation of proof structure) if x is a subproof of y, then f(x) is a subproof of f(y).

If this f satisfies additionally the condition (Φ-Red) up to the provable equivalence, the interpretation is called
Φ-preserving. Since the second condition requires the transformation to preserve the structure of proofs, and
since we do not need any restriction on the conclusions of proofs, T2 can simulate any mathematical practice
formulated in T1 as a whole. In this sense, interpretability is stronger than proof-theoretic reducibility,
and the interpretability strength could be said a strength defined from the viewpoint that how large part of
mathematical practice can be formulated, whereas the proof-theoretic strength is the power of the fiction as
an investigating tool on the “real” fragment.
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It is true that interpretability and reducibility coincide, if all the extensions (within the same language) of
the theory are reflexive (i.e., the consistency of any finite fragment is provable in the theory), as has been well
known (see, e.g., Lindström [27, Theorem 8.8]), with the narrow sense of interpretation (i.e., in these results
we can require the interpretations to preserve the logical connectives, as opposed to the interpretations we
will consider in the present paper). However, this fact does not hold in non-reflexive cases, and even in the
reflexive case the obtained interpretation satisfies only (Π0

1-Red), but not necessarily (Φ-Red) for relevant Φ.
From the perspective based on the difference between reducibility and interpretability, we will obtain

new results even for those subsystems of T0 whose proof-theoretic strengths have previously been established
without use of ordinal analysis, namely AETJ+(T-IN), AETJ+(L-IN), T0↾ and T0↾+(T-IN) in our notation.
Especially, the reducibility of Σ1

1-AC0 to AETJ+(T-IN) was already given by Feferman from the beginning of
explicit mathematics, but it was via the reducibility of Σ1

1-AC0 to ACA0 which does not tell how to simulate
the axiom of choice (especially those inside cut-non-free proofs) within ACA0 or AETJ + (T-IN). With the
method developed by the present author and Zumbrunnen [37], we will give interpretations of subsystems of
second order arithmetic in the systems of explicit mathematics, and this automatically tells how to simulate
the axiom of choice in explicit mathematics. As expected, for this simulation, the join operator j of explicit
mathematics will play the crucial role.

1.4. Making a detour via intuitionistic theories

The method developed by the present author and Zumbrunnen [37] is to interpret classical theories in
classical theories but via non-classical intuitionistic theories. Quite interestingly, in spite of this intuitionistic
nature, this method does not work for intuitionistic theories so well, as explained in [37, Subsection A.4]
(and this is why we have devoted one subsection for the argument on the logic on which explicit mathematics
should be formulated). As mentioned there the resulting interpretation can be seen as a composition of

• Gödel-Gentzen’s negative interpretation,

• intuitionistic forcing interpretation (a straightforward formalization of Kripke semantics of intuitionistic
logic) and

• realizability interpretation (a straightforward formalization of Brouwer-Heyting-Kolmogorov semantics
of intuitionistic logic).

As explained also there, if seen as a model construction, this is the only way of constructing models of
classical theories, only besides

• the logically-trivial ones (those in which the interpretations of logical connectives are defined trivially),

• Cohen’s classical forcing method (which can be seen as the composition of a negative interpretation
and intuitionistic forcing interpretation) and

• Krivine’s classical realizability method (which can be seen as the composition of a negative interpre-
tation and realizability interpretation).

Though we refer to Sato and Zumbrunnen [37, Subsections 1.4 and 1.5] for the details of the significance and
the novelty of this method, the author would like to repeat that this demonstrates the utility of extending

the scope to intuitionistic theories even for the investigation of classical theories.
Sato and Zumbrunnen [37] applied this method to interpret Kripke-Platek set theories in variants of

operational set theory, especially to interpret the collection scheme with the replacement operator R. The
basic idea is that first we interpret the intuitionistic collection scheme with the operator R via realizability
interpretation at the cost of classical logic and then we interpret the classical collection scheme with the
intuitionistic one via negative and forcing interpretations. The second part was a modification of the method
developed by Avigad [3] in order to interpret classical theories in the corresponding intuitionistic theories.

Similarly we can interpret the intuitionistic Σ1
1 axiom of choice scheme with the join operator j via

realizability interpretation and then the classical Σ1
1 axiom of choice scheme with the intuitionistic one, as

Avigad [3] applied his method also to obtain the interpretability of classical Σ1
1-AC in intuitionistic Σ1

1-AC.
However, Avigad’s method (and hence the modified method by Sato and Zumbrunnen [37]) does not work
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well for Σ1
2 axiom of choice. In order to reduce the complexity from Σ2 to Σ1 (more precisely, Σ1

2 axiom
of choice to Σ1 collection), we first interpret a family of set theories in systems of explicit mathematics in
Section 4 and then apply the method developed by Sato and Zumbrunnen [37] in Sections 5 and 6. As is
well known, in the presence of foundation or regularity axiom, Σ1 in set theory corresponds to Σ1

2 in second
order arithmetic. The family of set theories designed for this purpose is called weak explicit set theory with

non-set operators, which will be explained in the next subsection.

1.5. Weak explicit set theory with non-set operators

We will introduce a family of set theories, called weak explicit set theory with non-set operators, for the
aforementioned purpose. These are variants of weak explicit set theory, introduced in Sato and Zumbrunnen
[37], for which the method developed there works well. Weak explicit set theory is defined from operational
set theory by replacing the axioms of truth functions on ∆0 formulae and of separation operator with the
axioms of Gödel operations. Our weak explicit set theory with non-set operators is defined further by allowing
some operators not to be sets with a new predicate for set-hood and the equality as operators (the same as
the absolute equality =) to differ from the equality as sets (which will be denoted by ≈).

The first connection to explicit mathematics is that these theories are interpreted in systems of explicit
mathematics via tree representation of sets, as we will show in Section 4. This representation naturally
allows non-set objects to exist which of course code some operations and the absolute equality to differ from
the equality as sets, which is interpreted as the extensional equality between trees.

The second is the inheritance of the features of explicit mathematics. As previously mentioned, the
important features of explicit mathematics are intensionality and non-totality both for the operational and
typing machineries. While both operational set theory, introduced by Feferman [9, 10], and weak explicit set
theory, introduced in Sato and Zumbrunnen [37], inherit these two features for the operational machinery,
they do not inherit them for the typing one, for they contain the axiom of extensionality for sets and they
assume that all formal objects are sets (where sets substitute types). Moreover, because of the axiom of
extensionality, the distinction between operations and set-theoretic functions is dissolved, as proved, e.g.,
in [37, Proposition 13]. Our weak explicit set theory with non-set operators, on the other hand, inherits
all of these features of explicit mathematics, since it does not contain the axiom of extensionality for sets
(even in the sense of the weaker equality ≈) nor assume that all objects are sets. Because of the absence
of the axiom of extensionality, the distinction between operations and set-theoretic functions makes sense
in this framework. Indeed, many ontological differences between explicit mathematics and operational set
theory investigated in Jäger and Zumbrunnen [25] do not apply to our weak explicit set theory with non-set
operators.

For these reasons, we could claim that weak explicit set theory with non-set operators is a proper set-

theoretic counterpart of explicit mathematics, whereas in the literature operational set theory is sometimes
considered to be so. Nonetheless, in the present paper, we use the systems of this new family just as auxiliary
systems and the significance of the lower bounds of them, for our purpose, is that they give us the lower
bounds of systems of explicit mathematics.

1.6. Extensional realizability

Since we modify the weak explicit set theory, the results obtained in Sato and Zumbrunnen [37] do not
apply directly. The part we have to modify is the realizability interpretation of variants of intuitionistic
Kripke-Platek set theory in weak explicit set theory. For we have to interpret the equality = of the set
theory as ≈, which differs from the absolute equality = of weak explicit set theory with non-set operators.

Let us see the need of modification more closely. To obtain the realizability of the collection scheme,
we have to construct an operation which assigns both a set b and a realizer of (∀x ∈ a)(∃y ∈ b)A[x, y] to
a realizer of the premise (∀x ∈ a)∃yA[x, y]. Although any realizer of (∀x ∈ a)∃yA[x, y], in the sense of
the usual realization relation, yields an operator c such that A[x, cx] is realizable for all x ∈ a, nothing
guarantees that this operator c is extensional, i.e., cx1 ≈ cx2 whenever x1 ≈ x2. Since the replacement
operator R applies only to extensional operations, we have to modify the realization relation so that any
realizer of (∀x ∈ a)∃yA[x, y] yields an extensional operator c such that A[x, cx] is realizable for all x ∈ a.
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The basic idea of the modification we will make is to introduce, for each formula A of the realized theory,
a relation ∼A which is intended to be the equality among the realizers of A, and to require all the relevant
operations to be extensional with respect to these ∼A’s. Particularly, the equality ∼∃xA[x] for the realizers
of ∃xA[x] is defined as the conjunction of ≈ between the witnesses and ∼A[x] between the realizers of A[x]
with the witness substituted to x; and the realization relation for ∀xB[x] requires realizers to be extensional
with respect to ≈ and ∼B[x]. With this, we can guarantee that the realizers of (∀x ∈ a)∃yA[x, y] yield
extensional operations. Moreover, this does not affect the expected properties of realizability interpretation,
for example, the closure under intuitionistic inferences. Similar “extensional” realization relations appeared
in, e.g., Troelstra [44], Griffor and Rathjen [15], and Oosten [29] (where it is called e-realizability).

From the viewpoint that the realizability machinery is a “miniature” of Martin-Löf type theory, the use
of ∼A can be seen as a use of identity type. For the details of this point and for the comparison with the
realizability in Tupailo [45], see the comments at the end of Subsection 5.2.

1.7. Well-foundedness as a predicate vs. well-foundedness as an operation

As a byproduct of our investigation, we can easily design a system AETJ+(L-TI) of explicit mathematics
whose strength is the same as ID1, the strength of so-called generalized predicativity. Our method can also
establish the mutual interpretability of this system with Kripke-Platek set theory, the most popular among
systems of this strength. The basic idea is to replace the so-called inductive generation operator ig from
T0 by transfinite induction scheme along those relations designated by a predicate ℑ which is intended to
represent the “real” well-foundedness. Since the operator ig assigns the well-founded (accessible) parts, ℑ
can be characterized as the image of the operator. Thus, we could say that AETJ + (L-TI) is defined with
the notion of well-foundedness as a predicate whereas T0 is with that as an operation. The final result on
the strengths of these systems clarifies the difference between these two approaches: well-foundedness as an
operation claims one level higher in the projective hierarchy than well-foundedness as a predicate.

This point might become even clearer if we apply our technique to the applicative theories, which do not
have the type structure but the so-called type-2 functionals instead. As will be discussed briefly in Subsection
4.5, our technique yields also lower bounds of the following theories: BON(µ), from Feferman and Jäger [13],
which has the so-called non-constructive µ-operator µ; and BON(µ,S), from Jäger and Strahm [22], which
has both µ and Suslin operator S. Since Suslin operator tells us whether the input encodes a well-founded
relation or not, this is a more direct operational analogue of the well-foundedness predicate. We could
obtain the same contrast between BON(µ) with transfinite induction along those relations designated by the
well-foundedness predicate and BON(µ,S).

This may explain why it is in general harder in the framework of explicit mathematics to design a
subsystem of the strength of generalized predicativity: explicit mathematics is a framework in which new
notions are added as operations rather than as predicates. Nonetheless, it is not impossible, as another
system of the same strength was introduced by Kahle and Studer [26].

1.8. Outline of the paper

In the next section, Section 2, we recall the formal definitions of some systems of explicit mathematics.
Our formulation is somehow different from the standard ones, but the equivalence of these formulations can
be seen easily. Since the readers are assumed to be familiar with subsystems of second order arithmetic and
with variants of Kripke-Platek set theory, we do not give the detailed definitions of them (except Definitions
50 and 51). The readers not familiar with these topics can refer to Simpson [38] for the former and both
Barwise [4, Chapter I] and Sato and Zumbrunnen [37, Section 2] for the latter. Nonetheless, we recall that
Σ1

2-CA0 has been known to be identical (i.e., not only proof-theoretically but also logically equivalent) to
∆1

2-CA0 as shown, e.g., in Simpson [38, Theorem VII.6.9], and accordingly that both Σ1
2-CA and Σ1

2-CA+(BI)
are identical with ∆1

2-CA and ∆1
2-CA+ (BI) respectively.

In Section 3, we give formal definitions of systems of weak explicit set theory with non-set operators, and
in the following section, Section 4, we interpret them in systems of explicit mathematics with interpretations
♮ and ♯, both of which are based on the tree-representation of sets. While both the language L of explicit
mathematics and that L∈ of set theory can be seen as extensions of the language L2 of second order
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Figure 1: The relation between interpretations and theories

arithmetic, we will see that these interpretations preserve L2-formulae. It will also be mentioned in Subsection
4.5 that, for these interpretations, the non-constructive µ-operator µ can play the role of the type structure
of explicit mathematics.

In Section 5, we introduce the extensional realizability interpretation er, which interprets, in weak explicit
set theory with non-set operators, intuitionistic Kripke-Platek set theory with the ∆0 separation scheme
restricted to negative formulae. We will see that this interpretation preserves negative formulae.

In Section 6, we summarize Avigad’s method but modified in Sato and Zumbrunnen [37, Sections 5 and 6]
for intuitionistic Kripke-Platek set theory with the ∆0 separation scheme restricted to negative formulae, and
apply it to interpret intensional variants of Kripke-Platek set theory, i.e., Kripke-Platek set theory without
the axiom of extensionality. This is a combination of a forcing interpretation 
 and Gödel-Gentzen’s negative
interpretation N . We can check that, according to this interpretation, any Π1-formula is interpreted as a
classically equivalent negative Π1-formula.

In Section 7, we check that some results known for Kripke-Platek set theory survive in the absence of
extensionality, and obtain the results that the relevant subsystems of second order arithmetic are contained
in the corresponding variants of intensional Kripke-Platek set theory.

In Section 8, we summarize these interpretability results to obtain the final results.
Figure 1 shows which interpretation interprets which theory in which theory, where the dotted arrow

means a proof-theoretic reducibility. Referring to this figure in each section the readers could have some
idea on which part of the whole process is executed.
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2. Explicit Mathematics

2.1. The language L of explicit mathematics

Definition 1 (Language L). The language L of explicit mathematics is a two-sorted language, whose
sorts are called individual and type. Lower case Latin letters a, b, c, f, g, h, u, v, w, x, y, z etc. possibly with
subscripts denote individual variables and capital ones X,Y, Z, U, V,W etc. possibly with subscripts denote
type variables.

L has a binary function symbol ◦ for individual (application of individual to individual), unary relation
symbols ↓ (definedness), N (being a natural number) all for the individual sort and ℑ (well-foundedness) for
the type sort; and binary relation symbols = (equality) for the individual sort, ∈ (membership) between the
individual and type sorts and ℜ (naming representation) between the individual and type sorts.

Furthermore L has the following individual constants: k and s (K and S combinators); p, p0 and p1

(pairing and projections); 0 (zero), sN (successor), pN (predecessor), dN (definition by numerical cases) and
rN (recursor); and nat (name of the type of natural numbers), id (name of the type of diagonal pairs), co
(name of the complements), un (name of binary unions), dom (name of domains), inv (name of inverse
images), j (name of joins), and ig (name of inductive generations).

For readability, ◦(s, t) is often denoted by s ◦ t or simply st, and both st1...tn and s(t1, ..., tn) denote
(...(st1)...)tn. Furthermore, 〈s, t〉 denotes p(s, t) and 1 denotes sN(0). Also we introduce the following
abbreviations:

s ≃ t :≡ s↓ ∨ t↓→ s = t s ∈ N :≡ N(s)

X = Y :≡ ∀x(x ∈ X ↔ x ∈ Y ) X ⊆ Y :≡ ∀x(x ∈ X → x ∈ Y )

s ∈̇ t :≡ ∃X(ℜ(t,X) ∧ s ∈ X) s ⊆̇ t :≡ ∃X,Y (ℜ(s,X) ∧ ℜ(t, Y ) ∧X ⊆ Y )

ℜ(s) :≡ ∃Xℜ(s,X) ℑ(s) :≡ ∃X(ℜ(s,X) ∧ ℑ(X))

ℜ(~s, ~X) :≡ ℜ(s1, X1) ∧ ... ∧ ℜ(sn, Xn)

where ~s and ~X are the sequences s1, ..., sn and X1, ..., Xn respectively. Also, we use the usual set-theoretic
notations for types, e.g., A[{x ∈ U : B[x]}] abbreviates ∃X(A[X]∧∀x(x ∈ X ↔ x ∈ U∧B[x])), X∩Y denotes
{x : x ∈ X ∧ x ∈ Y }, and X × Y denotes {〈x, y〉 : x ∈ X ∧ y ∈ Y }. The abbreviation A[{x ∈ U : B[x]}]
might cause a confusion if there is no type X such that ∀x(x ∈ X ↔ x ∈ U ∧ B[x]). However, if B[x] is
elementary, Lemma 6 tells us that there is no such danger.

Definition 2 (elementary L-formula). An L-formula is called elementary if it contains no occurrences of ℑ,
ℜ nor type quantifiers.

Note that elementary formulae might contain the definedness predicate ↓ and type variables as parameters.

Remark 3. The language L2 of second order arithmetic can be embedded into L in an obvious manner,
namely the first order quantifiers are interpreted as quantifiers over N and the second order quantifiers are
interpreted as type quantifiers. Fixing this embedding, we will consider L2 (and hence the language L1 of
first order arithmetic) as a sublanguage of L.

2.2. Applicative theory AET of elementary typing

The most basic system of explicit mathematics is the applicative theory AET of elementary typing. We
basically follow the formulation given by Jäger and Zumbrunnen [25], but with some revisions convenient
for our purpose.

Definition 4 (Theory AET). The theory AET (applicative theory of elementary typing) is an L-theory
whose underlying logic is a classical logic of partial terms (due to Beeson [5]; which treats ↓ as a logical
symbol) with equality for individuals, and whose non-logical axioms are the following.

The so-called applicative axioms are standard axioms about the combinators and operations on natural
numbers:
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(I.1) kab = a ∧ sab ↓ ∧ sabc ≃ (ac)(bc),

(I.2) 〈a, b〉 ↓ ∧ p0〈a, b〉 = a ∧ p1〈a, b〉 = b,

(I.3) 0 ∈ N ∧ (a ∈ N → sN(a) ∈ N ∧ sN(a) 6= 0 ∧ pN(sN(a)) = a),

(I.4) pN(0) = 0 ∧ (a ∈ N ∧ a 6= 0 → pN(a) ∈ N ∧ sN(pN(a)) = a),

(I.5) a ∈ N ∧ b ∈ N → (a = b → dN(u, v, a, b) = u) ∧ (a 6= b → dN(u, v, a, b) = v),

(I.6) (∀x0, ..., xn ∈ N)(g(x0, ..., xn) ∈ N) ∧ (∀x0, ..., xn, xn+1, xn+2 ∈ N)(f(x0, ..., xn, xn+1, xn+2) ∈ N)

→ (∀x0, ..., xn, xn+1 ∈ N)

(

rN(f, g)(x0, ..., xn, xn+1) ∈ N ∧ rN(f, g)(x0, ..., xn, 0) = g(x0, ..., xn)
∧rN(f, g)(x0, ..., xn, sN(xn+1)) = f(x0, ..., xn, xn+1, rN(f, g)(x0, ..., xn, xn+1))

)

.

The axioms of the second group, the so-called explicit representation axioms, assert the basic rule of naming
machinery:

(II.1) Every type has a name ∃xℜ(x,X),

(II.2) Naming is unique ℜ(a, U) ∧ ℜ(a, V ) → U = V .

The axioms of the third group are called uniform naming axioms :

(III.1) natural number ℜ(nat) ∧ (a ∈̇nat ↔ a ∈ N),

(III.2) identity ℜ(id) ∧ (a ∈̇ id ↔ ∃b(a = 〈b, b〉)),

(III.3) complement ℜ(u) → ℜ(co(u)) ∧ (a ∈̇ co(u) ↔ ¬(a ∈̇u)),

(III.4) union ℜ(u) ∧ ℜ(v) → ℜ(un(u, v)) ∧ (a ∈̇un(u, v) ↔ a ∈̇u ∨ b ∈̇ v),

(III.5) domain ℜ(u) → ℜ(dom(u)) ∧ (a ∈̇dom(u) ↔ ∃y(〈a, y〉 ∈̇u)),

(III.6) inverse image ℜ(u) → ℜ(inv(u, f)) ∧ (a ∈̇ inv(u, f) ↔ fa ∈̇u).

The fourth group of axioms governs the additional relation symbol ℑ:

(IV.1) type transfinite induction ℑ(W ) ∧ ∀x(∀y(〈y, x〉 ∈ W → y ∈ X) → x ∈ X) → ∀x(x ∈ X),

(IV.2) operational transition ℑ(W ) ∧ (∃f)(∀x, y)(〈x, y〉 ∈ R → 〈fx, fy〉 ∈ W ) → ℑ(R);

(IV.3) progression (∀x(〈x, a〉∈W → ℑ(W ↾x))) → ℑ(W ↾a), where W ↾x is W restricted to elements
hereditarily below x, i.e., {〈y, z〉 ∈ W : ∃a(∃n ∈ N)(a0 = x ∧ (∀k < n)(〈a(sN(k)), ak〉 ∈ W ) ∧ an = z)}.

Note that some of the constants are not mentioned in the axioms of AET. These are needed in the
definitions of extensions of AET, and play no role in AET.

Axiom (IV.2) guarantees that if W = R, i.e., (∀w)(w ∈ W ↔ w ∈ R), then ℑ(W ) ↔ ℑ(R).
In any previous formulation of explicit mathematics, the fourth group did not occur. This is added for

our convenience and these axioms do not affect the strength of AET, since we can interpret our version of
AET in AET without these axioms by interpreting ℑ(W ) as

(∀X)( (∀x)((∀y)(〈y, x〉 ∈ W → y ∈ X) → x ∈ X) → (∀x)(x ∈ X) ).

The following are basic well known facts about AET.

Lemma 5. (i) For any L-term t[~x], there is an L-term, denoted by λ~x.t[~x], such that AET proves

(λ~x.t[~x])↓ ∧ (λ~x.t[~x])~y ≃ t[~y].

(ii) There is an L-term fix such that AET proves

fix(f)↓ ∧ fix(f)(x) ≃ f(fix(f), x).
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This is a standard fact for combinatory algebra, and can be proved only by the first axiom.
Also, because of the presence of the recursor rN, any primitive recursive function can be represented by

a closed L-term as an operation. In particular, we write x ≤ y for −̇(x, y) = 0 where −̇ is the term for the
modified subtraction.

Lemma 6 (uniform elementary comprehension). For any elementary formula B[x, ~y, ~U ] with at most the
indicated free variables there is a closed L-term tB such that AET proves

ℜ(~u, ~U) → ℜ(tB(~y, ~u)) ∧ ∀x(x ∈̇ tB(~y, ~u) ↔ B[x, ~y, ~U ]).

This gives us an operation which returns the name of the type {x : B[x, ~y, ~U ])} uniformly in the parame-

ters. However, since the operator cannot apply to the type parameters ~U , it applies to their names ~u instead
as well as the individual parameters ~y.

2.3. Join, induction, inductive generation

We consider several extensions of AET.

Definition 7 (Join). AETJ is the extension of AET augmented by the axiom for join:

(III.7) join ℜ(u) ∧ (∀x∈̇u)ℜ(fx) → ℜ(j(u, f)) ∧ (a ∈̇ j(u, f) ↔ (∃y, z)(a = 〈y, z〉 ∧ y ∈̇u ∧ z ∈̇ fy)).

Definition 8 (induction schemata in explicit mathematics). Type induction (T-IN) on natural numbers and
full induction (L-IN) on natural numbers are the following axiom schemata:

(T-IN) ℑ({w : (∃x, y ∈ N)(w = 〈x, y〉 ∧ x < y)}),

(L-IN) A[0] ∧ (∀x ∈ N)(A[x] → A[sN(x)]) → (∀x ∈ N)A[x] for arbitrary L-formula A[x].

Full transfinite induction (L-TI) is the following axiom scheme:

(L-TI) ℑ(W ) ∧ (∀x)(((∀y)(〈y, x〉 ∈ W → A[y])) → A[x]) → (∀x)A[x] for arbitrary L-formula A[x].

The formulation of transfinite induction might seem strange, because the field of the well-founded relation
is not mentioned. However, if a relation W is well-founded on the field Y , then W ∩ (Y ×Y ) is well-founded
on the field {x : x = x} and the transfinite induction for X along W on x ∈ Y is equivalent to that for
X ∪ {x : x /∈ Y } along W ∩ (Y × Y ).

Definition 9 (Feferman’s theories T0 ↾ and T0). T0 ↾ is the extension of AETJ augmented by (T-IN) and

(III.8) inductive generation ℑ(R) ↔ (∃a, r)(ℜ(a) ∧ ℜ(r) ∧ R = {〈x, y〉 ∈ r : y ∈̇ ig(a, r)}).

T0 is the extension of T0 ↾ augmented by (L-TI).

T0 was introduced in 1970s by Feferman [6, 7, 8] as the most important theory among the various systems
of explicit mathematics. At the beginning it was defined on intuitionistic logic and later it is more often
considered on classical logic, as mentioned in Introduction.

2.4. Feferman’s ∆-index interpretation

In this subsection we recall upper bound proofs for AETJ+ (T-IN), AETJ+ (L-IN), AETJ+ (L-TI), T0 ↾,
T0 ↾ +(L-IN) and T0, by so-called ∆-index interpretation, introduced by Feferman [8, V]. More precisely,
we can interpret the first three AETJ + (T-IN), AETJ + (L-IN) and AETJ + (L-TI) in Σ1

1-AC0, Σ
1
1-AC and

Σ1
1-AC+ (BI) respectively by interpreting the types as ∆1

1 indices, and the last three T0 ↾, T0 ↾ +(L-IN) and
T0 in Σ1

2-AC0, Σ
1
2-AC and Σ1

2-AC + (BI) respectively by interpreting the types as ∆1
2 indices. In both the

interpretations, ℑ is interpreted as well-foundedness.

Definition 10 (∆1
n-index interpretation). First we fix a natural number ĉ for each individual constant c.

For an L-term t and a variable x not free in t, a Σ0
1 formula [[t]](x) is defined as follows, where {-} is the

so-called Kleene bracket, namely {e} denotes the partial recursive function with recursive index e:
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1. for an individual constant c, [[c]](x) :≡ x = ĉ,
2. for an individual variable y, [[y]](x) :≡ x = y,
3. [[t1t2]](x) :≡ ∃y, z([[t1]](y) ∧ [[t2]](z) ∧ {y}(z) = x).

For n ≥ 1, let S1
n and P 1

n be universal Σ1
n and Π1

n formulae respectively (thus, for any Σ1
n formula B[x]

without free variables other than x, there is a natural number e such that ∀x(B[x] ↔ S1
n[e, x])). For an

L-formula A, an L2 formula A∆1
n
-idx the ∆1

n-index interpretation of A is defined as in Figure 2.

(t↓)∆
1
n
-idx :≡ ∃x([[t]](x)); (x ∈ N)∆

1
n
-idx :≡ ⊤;

(t1 = t2)
∆1

n
-idx : ≡ ∃x([[t1]](x) ∧ [[t2]](x)); (t ∈ Y )∆

1
n
-idx :≡ ∃x([[t]](x) ∧ x ∈ Y );

(ℜ(t, Y ))∆
1
n
-idx :≡ ∃x([[t]](x) ∧ Y = {u : S1

n[(x)0, u]} = {u : P 1
n [(x)1, u]});

(ℑ(W ))∆
1
n
-idx :≡ ∀X(∀x(∀y(〈y, x〉 ∈ W → y ∈ X) → x ∈ X) → ∀x(x ∈ X));

⊥∆1
n
-idx :≡⊥; (A → B)∆

1
n
-idx :≡ (A∆1

n
-idx) → (B∆1

n
-idx); (∀xA[x])∆

1
n
-idx :≡ ∀x(A[x]∆

1
n
-idx);

(A ∧B)∆
1
n
-idx :≡A∆1

n
-idx ∧B∆1

n
-idx; (A ∨B)∆

1
n
-idx :≡ A∆1

n
-idx ∨B∆1

n
-idx; (∃xA[x])∆

1
n
-idx :≡ ∃x(A[x]∆

1
n
-idx);

(∃XA[X])∆
1
n
-idx :≡ ∃y, z,X(X = {u : S1

n[y, u]} = {u : P 1
n [z, u]} ∧A[X]∆

1
n
-idx);

(∀XA[X])∆
1
n
-idx :≡ ∀y, z,X(X = {u : S1

n[y, u]} = {u : P 1
n [z, u]} → A[X]∆

1
n
-idx).

Figure 2: Definition of ∆-index interpretation ∆1
n-idx

The following is a well-known result in explicit mathematics, proved by Feferman [8, V], where he used
so-called A-K-S Substitution Theorem to show the results concerning ∆1

2-idx.

Theorem 11. We can chose ĉ for each individual constant c, so that ∆1
1-idx interprets

(i) AETJ+ (T-IN) in Σ1
1-AC0;

(ii) AETJ+ (L-IN) in Σ1
1-AC; and

(iii) AETJ+ (L-TI) in Σ1
1-AC+ (BI),

and that ∆1
2-idx interprets

(iv) T0 ↾ in Σ1
2-AC0;

(v) T0 ↾ +(L-IN) in Σ1
2-AC; and

(vi) T0 in Σ1
2-AC+ (BI),

both in an L1-preserving way, where as proclaimed in Remark 3, we consider L1 as a sublanguage of L.

Feferman [8, V] posed a question: if these (i)-(vi) are optimal. Many of them were shown by Feferman
himself to be optimal, but (vi) was later shown by Jäger [16] to be optimal in the proof-theoretic sense.
These results do not guarantee that there are converse interpretations, which we are giving.

In some cases, variants of Kripke-Platek set theory are better qualified for reference systems than sub-
systems of second order arithmetic. Actually, Σ1

1-AC + (BI) is less popular than KP, as a reference system
of the strength of generalized predicativity. Since the language L2 of second order arithmetic is considered
to be a sublanguage of the language L∈ of set theory, we can define the interpretations ∆1

n-idx’ of explicit
mathematics in variants of Kripke-Platek set theory, by the same definition as ∆1

n-idx but

(ℑ(W ))∆
1
n
-idx’ :≡ (∃f)(Fun[f ] ∧ Dom[f,W ] ∧ (∀x, y)(〈x, y〉 ∈ W → f ′x ∈ f ′y)),

where Fun[f ] ∧ Dom[f,W ] means that f is a function defined on W and f ′x is the value of f at x (see the
abbreviations defined in the next section; where ≈ should be replaced with =).

Theorem 12. ∆1
n-idx’ interprets AETJ+ (L-TI) in KP in an L1-preserving way.
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3. Weak Explicit Set Theory with Non-Set Operators

Weak explicit set theory was introduced by Sato and Zumbrunnen [37], by replacing truth functions and
the separation operator with Gödel operations from operational set theory without choice operator. Since
the type generators in explicit mathematics play more or less the same role as Gödel operations on sets,
weak explicit set theory seems easier to be interpreted in explicit mathematics than operational set theory.

However, weak explicit set theory is not handy enough. In weak explicit set theory, as well as in opera-
tional set theory, all the objects are sets, and so all the operators are sets. This seems to be a non-problematic
assumption when we are working in the set theories. However, when we try to interpret (or to construct mod-
els of) these set theories, this assumption makes the construction quite tedious and complicated. Moreover,
even when we are working in the set theories, this assumption plays only a few roles. For this motivation,
we here introduce a version of weak explicit set theory, in which there might be non-set objects and hence
non-set operators. To make it possible, we need to add a predicate for set-hood to the language of weak
explicit set theory.

The relation between sets and non-sets in our situation is much simpler than in the set theory with
urelements: in our situation, a non-set cannot be an element of any set, and so elements of a set are all sets.

We need two kinds of equality: one is the absolute equality which makes sense for all the objects including
non-sets while the other is a weaker equality which makes sense only for sets. Also, we remove the axiom of
extensionality for both the equalities, because it also make the interpretation of these theories more complex,
and because it is not necessary for the interpretation of second order arithmetic in these theories.

As discussed in Subsection 1.5, these modifications make the theory inherit more features from explicit
mathematics.

3.1. Languages of weak explicit set theory with non-set operators

Definition 13. The language L∈ of set theory is a one-sorted language with one constant symbol ω and
binary relation symbols = and ∈.

Because we will also work with intuitionistic theories, we consider ⊥ as a logical symbol, and negation is
defined as ¬A := A → ⊥.

The bounded quantifiers (∀x ∈ a) and (∃x ∈ a) are abbreviations and are defined as usual.

Definition 14. The language Lnso

∈ is the result of extending L∈ (which includes ω and =) by the constants
k, s, p, p0, p1, R, K, T, D, U, B, G1, G2, G3, G4, G5, G≈ and G∈, two unary relation symbols ↓ (called the
definedness predicate) and S (called set-hood predicate), a binary relation symbol ≈ (called weak intensional

equality), and a binary function symbol ◦ (called application).

We use the abbreviation concerning ◦ as before: ◦(s, t) is often denoted by s ◦ t or simply st, and both
st1...tn and s(t1, ..., tn) denote (...(st1)...)tn. However, 〈s, t〉 does not denote p(s, t), but the Kuratowski pair
D(D(s, s),D(s, t)), which is intended to denote {{s}, {s, t}}. s ≃ t stands for s↓ ∨ t↓→ s = t.

(∀x ∈ S)A[x] and (∃x ∈ S)B[x] stand for (∀x)(S(x) → A[x]) and (∃x)(S(x) ∧B[x]) respectively.

Definition 15. For an L∈ formula A, A≈ is the result of replacing all the occurrences of = by ≈ and of
quantifiers ∀y and ∃y by ∀y ∈ S and ∃y ∈ S respectively. A formula of Lnso

∈ is called ∆0 formula if it
is A≈[~x] for some ∆0 formula A[~x] in L∈. The classes of ∆, Π, Σ, Πn and Σn formulae (for each natural
number n) are defined similarly.

Notice the contrast with the elementarity in explicit mathematics: while the definedness predicate ↓ and
the application ◦ can occur in elementary formulae in explicit mathematics, they cannot in ∆0 formulae in
weak explicit set theory. Nonetheless, by any axiom scheme defined for ∆0 formulae we always mean the
universal closures of the instances of the scheme and hence we can substitute any term t to the parameters
in the ∆0 formulae, as far as t↓. Thus, loosely speaking, ◦ can occur but cannot apply to bounded variables.

Remark 16. A 7→ A≈ is an embedding of L∈ into Lnso

∈ . By combining the standard embedding of the
language L2 of second order arithmetic into L∈, we will consider L2 as a sublanguage of Lnso

∈ .
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Furthermore we also use standard set-theoretic notations, but with = replaced by ≈, as follows:

a ⊆ b :≡ S(a) ∧ S(b) ∧ (∀x ∈ a)(x ∈ b)

Trans[a] :≡ S(a) ∧ (∀x ∈ a)(x ⊆ a)

Rel[f ] :≡ S(f) ∧ (∀z ∈ f)(∃x, y)(z ≈ 〈x, y〉)

Fun[f ] :≡ Rel[f ] ∧ (∀x, y, z)(〈x, y〉 ∈ f ∧ 〈x, z〉 ∈ f → y ≈ z)

Dom[f, a] :≡ Rel[f ] ∧ (∀x ∈ a)(∃y)(〈x, y〉 ∈ f) ∧ (∀x, y)(〈x, y〉 ∈ f → x ∈ a)

Ran[f, b] :≡ Rel[f ] ∧ (∀x, y)(〈x, y〉 ∈ f → y ∈ b).

Here, Trans[a] expresses that a is transitive, Rel[f ] and Fun[f ] express that f is a set-theoretic relation
and function, respectively, Dom[f, a] expresses that the domain of f is a, and Ran[f, b] expresses that the
range of f is a subset of b. By the usual proofs, we can show that these formulae are equivalent (over a very
basic base theory) to some ∆0 formulae, under the assumptions S(a),S(b) and S(f).

Furthermore, we also introduce the following function-like abbreviations:

f ′x ≈ y :≡ Fun[f ] ∧ 〈x, y〉 ∈ f

a ≈ {b0, ..., bn} :≡ S(a) ∧ b0 ∈ a ∧ ... ∧ bn ∈ a ∧ (∀x ∈ a)(x ≈ b0 ∨ ... ∨ x ≈ bn)

a ≈
⋃

b :≡ S(a) ∧ (∀x ∈ b)(x ⊆ a) ∧ (∀x ∈ a)(∃y ∈ b)(x ∈ y)

a ≈ b ∪ c :≡ S(a) ∧ (∀x ∈ a)(x ∈ b ∨ x ∈ c) ∧ b ⊆ a ∧ c ⊆ a

a ≈ b \ c :≡ S(a) ∧ (∀x ∈ a)(x ∈ b ∧ ¬x ∈ c) ∧ (∀x ∈ b)(¬x ∈ c → x ∈ a)

a ≈ {x : ϕ(x)} :≡ S(a) ∧ (∀x ∈ S)(x ∈ a ↔ ϕ(x)).

Note that, in the absence of extensionality, a in these abbreviations might not be unique even in the sense
of the weaker equality ≈. Namely, x ≈ {y, z} and x ≈

⋃

y mean “x is some set containing exactly y and z”
and “x is some set corresponding to the union of y”, respectively.

3.2. Weak explicit set theory with non-set operators

Definition 17. The theory WESTnso is an Lnso

∈ -theory whose underlying logic is a classical logic of partial
terms (due to Beeson [5]) with the equality axiom for =, and whose non-logical axioms are the following.

The axioms of Group A, the so-called applicative axioms, which are shared with explicit mathematics,
are the standard axioms about the combinators and operations:

(A.1) kab = a ∧ sab↓ ∧ sabc ≃ (ac)(bc);

(A.2) p0(p(x, y)) = x ∧ p1(p(x, y)) = y.

The axioms of Group B are called ontological axioms, which govern the relation between non-sets and
sets and the fundamental relation symbols S, ≈ and ∈:

(B.1) Set-hood a ∈ b ∨ a ≈ b → S(a) ∧ S(b);

(B.2) Equivalence Relation a ≈ a ∧ (a ≈ b → b ≈ a) ∧ (a ≈ b ∧ b ≈ c → a ≈ c);

(B.3) Set Equality on Predicate a ≈ b → ∀x((x ∈ a ↔ x ∈ b) ∧ (a ∈ x ↔ b ∈ x));

(B.4) Set Equality on Unary Operation a ≈ b → c(a) ≈ c(b), for c = K,T,U,G1,G2;

(B.5) Set Equality on Binary Operation a1 ≈ b1 ∧ a2 ≈ b2 → c(a1, a2) ≈ c(b1, b2), for c = D,G3,G4,G5,G≈,G∈;

(B.6) Set Equality on Replacement Operator a ≈ b ∧ (∀x ∈ a)(fx ≈ gx) → R(a, f) ≈ R(b, g);

(B.7) Foundation (∀x ∈ S)((∀y ∈ x)A[y] → A[x]) → (∀x ∈ S)A[x], for arbitrary Lnso

∈ -formula A[x].
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The axioms of Group C, the so-called operational-set-theoretic axioms, determine the roles of the symbols
for the basic set-theoretic operations:

(C.1) Infinity S(ω) ∧ Ind[ω] ∧ (∀x ⊆ ω)(Ind[x] → ω ⊆ x),
where Ind[x] stands for ∅ ∈ x ∧ (∀y ∈ x)(∃z ∈ x)(z ≈ y ∪ {y}) and ∅ stands for G3(ω, ω);

(C.2) Kleene star S(a) →
K(a)↓ ∧ (∃u ∈ K(a))(u ≈ ∅)∧

(∀u ∈ K(a))(∃n ∈ ω)

(

Fun[u] ∧Dom[u, n] ∧ Ran[u, a]∧
(∀x ∈ a)(∃v ∈ K(a))(v ≈ u ∪ {〈n, x〉})

)

;

(C.3) Transitive closure S(a) → T(a)↓ ∧ a ⊆ T(a) ∧ Trans[T(a)] ∧ (∀y)(x ⊆ y ∧ Trans[y] → T(a) ⊆ y);

(C.4) Doubleton (or unordered pair) S(a) ∧ S(b) → D(a, b)↓ ∧D(a, b) ≈ {a, b};

(C.5) Union S(a) → U(a)↓ ∧U(a) ≈
⋃

a;

(C.6) Replacement
S(a) ∧ (∀x ∈ a)S(fx) ∧ (∀x, y ∈ a)(x ≈ y → fx ≈ fy)
→ (R(a, f)↓ ∧∀x(x ∈ R(a, f) ↔ (∃y ∈ a)(x ≈ fy)));

(C.7) Domain S(a) → G1(a)↓ ∧G1(a) ≈ {v : (∃w)(〈v, w〉 ∈ a)};

(C.8) Range S(a) → G2(a)↓ ∧G2(a) ≈ {w : (∃v)(〈v, w〉 ∈ a)};

(C.9) Difference S(a) ∧ S(b) → G3(a, b)↓ ∧G3(a, b) ≈ a \ b;

(C.10) Product S(a) ∧ S(b) → G4(a, b)↓ ∧G4(a, b) ≈ {〈u, v〉 : u ∈ a ∧ v ∈ b};

(C.11) Permutation S(a) ∧ S(b) → G5(a, b)↓ ∧G5(a, b) ≈ {〈u, 〈w, v〉〉 : 〈u, v〉 ∈ a ∧ w ∈ b};

(C.12) Diagonalization S(a) ∧ S(b) → G≈(a, b)↓ ∧G≈(a, b) ≈ {〈v, w〉 ∈ a× b : v ≈ w}.

(C.13) Membership S(a) ∧ S(b) → G∈(a, b)↓ ∧G∈(a, b) ≈ {〈v, w〉 ∈ a× b : v ∈ w}.

WESTnso

0 is the subsystem of WESTnso with Foundation (B.7) removed completely; WESTnso

ω is the
subsystem WESTnso with Foundation relativized to ω (namely ∀x ∈ S replaced by ∀x ∈ ω); WESTnso

r is the
subsystem WESTnso with Foundation restricted to ∆0 formulae; WESTnso

w is WESTnso

r +WESTnso

ω .

Note that the axiom of extensionality, even restricted to S, is not included. All the operations mentioned
in Group C assign sets to sets (except the first argument of R). Nothing is assumed about the application
of these operations to non-sets.

WESTint introduced in Sato and Zumbrunnen [37, AppendixB] is essentially the same as WESTnso +
∀xS(x) + ∀x, y(x = y ↔ x ≈ y) + ∀x(∀y(y ∈ x ↔ y ≈ a) → U(x) ≈ a).

3.3. Basic properties

As in explicit mathematics, which shares the applicative axioms with weak explicit set theory, it is
immediate to see the following.

Lemma 18. (i) For any Lnso

∈ -term t[~x], there is an Lnso

∈ -term, denoted by λ~x.t[~x], such that

WESTnso

0 ⊢ (λ~x.t[~x])↓ ∧ (λ~x.t[~x])~y ≃ t[~y].

(ii) There is an Lnso

∈ -term fix such that

WESTnso

0 ⊢ fix(f)↓ ∧ fix(f)(x) ≃ f(fix(f), x).

Following the standard argument on Gödel operations, we have the following.
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Lemma 19. For any ∆0 formula A[y, ~x] whose free variables are among y, ~x, there is an Lnso

∈ -term sA such
that

WESTnso

0 ⊢ sA(a,~b) ≈ {y ∈ a : A[y,~b]}.

We have two notions of function: set-theoretic functions represented by graphs and operations represented
by operators which form a non-total combinatory algebra with the application ◦. By the basically same proof
as in Sato and Zumbrunnen [37], we can show the relation between these two notions as follows.

Proposition 20. There is a closed Lnso

∈ term F such that WESTnso

0 proves

S(a)∧(∀x ∈ a)S(fx)∧(∀x, y ∈ a)(x ≈ y → fx ≈ fy) → Fun[F(f, a)]∧Dom[F(f, a), a]∧(∀x ∈ a)(F(f, a)′x ≈ fx).

Proof. It is easy to see that F = λf, a.R(λx.〈x, fx〉, a) satisfies the stated property.

Thus, loosely speaking, any extensional operation on a set is also a set-theoretic function. Sato and
Zumbrunnen [37, Proposition 13] showed that the converse holds in WEST0, namely there is a closed term
op such that WEST0 proves

op(f)↓ ∧ ((Fun[f ] ∧ x ∈ G1(f)) → f ′x = op(f, x)).

However, as pointed out there, we need the axiom of extensionality to prove this.

3.4. Axiom Beta

In the usual set-theoretic context, Axiom Beta asserts that any well-founded relation has a transitive
(Mostowski) collapse. The operational version of this axiom was introduced in Sato and Zumbrunnen [37].
We modify it for the present context with ≈.

Definition 21. WESTnso(B) is the extension of WESTnso augmented by

(C.14) Mostowski collapse
(a1 ≈ a2 ∧ Rel[r1] ∧ Rel[r2] ∧ r1 ≈ r2 → B(a1, r1) ≈ B(a2, r2))∧

(

S(a) ∧ Rel[r] →
Fun[B(a, r)] ∧ DwCl[G1(B(a, r)), a, r]∧

Prog[G1(B(a, r)), a, r] ∧ Clp[B(a, r),G1(B(a, r)), r]

)

,

where DwCl[b, a, r], Prog[b, a, r] and Clp[f, b, r] are the following formulae:

DwCl[b, a, r] :≡ (∀x ∈ b)(∀y ∈ a)(〈y, x〉 ∈ r → y ∈ b)

Prog[b, a, r] :≡ (∀x ∈ a)((∀y ∈ a)(〈y, x〉 ∈ r → y ∈ b) → x ∈ b)

Clp[f, b, r] :≡ (∀x ∈ b)(f ′x ≈ {f ′y : y ∈ b ∧ 〈y, x〉 ∈ r}).

WESTnso

0 (B), WESTnso

ω (B), WESTnso

r (B) and WESTnso

w (B) are defined similarly.

Intuitively, in the presence of ∆0-foundation, B returns both the well-founded part of the given ordered
structure (a, r) and the collapsing function of that part. However, the former is coded in the latter, as the
former is the domain of the latter. Thus we design the operator to assign only the collapsing function of the
well-founded part of the given ordered structure.

It was shown in Sato and Zumbrunnen [37, Lemma 31] that

Rel[r] → ∃f, b(Fun[f ] ∧DwCl[b, a, r] ∧ Prog[b, a, r] ∧ Clp[f, b, r])

is equivalent, in the presence of ∆0-foundation, to Axiom Beta in the usual formulation:

(∀b ⊆ a)(Prog[b, a, r] → a ⊆ b) → ∃f(Fun[f ] ∧ Clp[f, a, r]).

In this sense, (C.14) could be called the operational version of Axiom Beta. (See also the notion of operational
Skolemization from Sato and Zumbrunnen [37, Subsection 7.4].)
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4. Tree Interpretation of WEST
nso in Explicit Mathematics

In this section, we give an interpretation of weak explicit set theory with non-set operators in explicit
mathematics. The basic idea is to represent the sets by trees formulated in explicit mathematics.

4.1. Tree of finite sequences of individuals

To realize the basic idea, we first prepare the notion of trees consisting of finite sequences of individuals
within explicit mathematics, as in Figure 3 where ⇂ is a closed L-term and s⇂σ denote ⇂(s, σ).

FSI := {σ : (∃f, n)(n ∈ N ∧ σ = 〈f, n〉 ∧ (∀k ∈ N)(fk↓))};

lh :=p1; σ[k] := p0(σ, k); σ↾n := 〈p0(σ),min(n,p1(σ))〉;

shift(σ) := 〈λx.p0(σ, sN(x)),pN(p1(σ))〉;

σ ∗ τ := 〈λx.dN(p0(σ, x),p0(τ, x−̇lh(σ)), sN(x)−̇lh(σ), 0), lh(σ) + lh(τ)〉;

〈u〉 := 〈λx.u, 1〉; 〈u0, ..., ui〉 ∗ σ := 〈u0〉 ∗ (... ∗ (〈ui〉 ∗ σ)...);

σ ∼ τ :≡ lh(σ) = lh(τ) ∧ (∀k < lh(σ))(σ[k] = τ [k]);

Tree[T ] :≡T ⊆ FSI ∧ (∃σ)(σ ∈ T ) ∧ (∀σ ∈ T )(∀k < lh(σ))(σ↾k ∈ T )

∧ (∀σ, τ ∈ FSI)(σ ∼ τ → (σ ∈ T ↔ τ ∈ T ));

S ≈ T :≡ (∀σ ∈ FSI)(σ ∈ S ↔ σ ∈ T ); s ≈ t :≡ (∃S, T )(ℜ(s, S) ∧ ℜ(t, T ) ∧ S ≈ T );

ℜ(s⇂σ, {υ ∈ FSI : σ ∗ υ ∈̇ s}).

Figure 3: Notions for sequence and tree

Figure 3 introduces the notion of finite sequence of individuals and the notion of tree of such sequences,
with some basic operations. FSI is the type of finite sequences of individuals; a sequence of individuals is
a pair of an operation defined on all the natural numbers and a natural number called the length, where
the values of the operation at numbers beyond the length have no meaning; lh(σ) denotes the length of the
sequence σ; σ[k] the k-th component of σ; σ↾n the result of truncating σ at n; the operator shift drops the
first component from a sequence; ∗ is the concatenation operator (in the definition of which, p0(σ, x) must
be defined for x ≥ lh(σ) because of the strictness axiom of logic of partial terms); 〈x0, ..., xk〉 is the length k
sequence whose i-th component is xi (though this notation conflicts the previously introduced abbreviation
〈s, t〉 = p(s, t), we employ the convention that, if the arguments are two, 〈s, t〉 always means p(s, t) and
the other is denoted by 〈s〉 ∗ 〈t〉); and σ ∼ τ means the two sequences σ and τ have the same length and
exactly the same components. Furthermore, Tree[T ] means that T is a tree on finite sequences of individuals,
namely a non-empty type of finite sequences closed under truncations, where the identity on sequences are
∼ defined above. S ≈ T means that they contain exactly the same sequences. Though this is extensional
from the viewpoint of the interpreting side, it is intensional from the interpreted side in the sense that, if
S ≈ T , there is no need to distinguish them. For this reason, we call such S and T isomorphic. Finally
s⇂σ ≈ t⇂τ means that the tree named by s truncated at σ is isomorphic to that by t at τ .

4.2. Tree representation of sets

Using the notions of finite sequence of individuals and of tree, Figure 4 defines the tree interpretations
of important concepts of weak explicit set theory with non-set operators. In what follows, by A♮[~t] we mean
(A[~x])♮[~t/~x]. The so-called applicative part of weak explicit set theory is interpreted in the straightforward
way, and therefore Group A of the axioms of WESTnso are trivially interpreted in AET with this translation
♮. The sets are those trees, in the sense defined above, which are well-founded, in the sense of the special
predicate ℑ. The weaker equality ≈ is interpreted by the isomorphism defined previously, and therefore it
is much stronger than the extensional equality or, equivalently, than the so-called bisimilarity, while it is
weaker than the absolute equality =. The interpretation of the membership relation is natural from the

17



k♮ := k; s♮ := s; p♮ := p; (p0)
♮ := p0; (p1)

♮ := p1; x♮ := x for any variable x;

(t ◦ s)♮ : = t♮ ◦ s♮; (t↓)♮ :≡ t♮ ↓; (s = t)♮ :≡ s♮ = t♮;

(S(t))♮ : ≡ (∃T )(ℜ(t♮, T ) ∧ Tree[T ] ∧ ℑ({w : (∃σ ∈ T )(w = 〈σ, σ↾(lh(σ)− 1)〉 ∧ 0 < lh(σ))}));

(s ≈ t)♮ : ≡ (S(s))♮ ∧ (S(t))♮ ∧ {τ ∈ FSI : τ ∈̇ s♮} ≈ {τ ∈ FSI : τ ∈̇ t♮}

(s ∈ t)♮ : ≡ (S(s))♮ ∧ (S(t))♮ ∧ (∃x)({τ ∈ FSI : τ ∈̇ s♮} ≈ {τ ∈ FSI : 〈x〉 ∗ τ ∈̇ t♮});

⊥♮ :≡ ⊥; (A ∧B)♮ :≡ A♮ ∧B♮; (A ∨B)♮ :≡ A♮ ∨B♮; (A → B)♮ :≡ A♮ → B♮;

(∀xA[x])♮ :≡ ∀x(A[x]♮); (∃xA[x])♮ :≡ ∃x(A[x]♮).

Figure 4: Tree interpretations of basic notions of weak explicit set theory

standard tree representation of sets. Now it is easy to see that the first two (B.1) and (B.2) of Group B of
the axioms of WESTnso are interpreted in AET by ♮.

Also we can see that Foundation (B.7) is interpreted by ♮ in AET + (L-TI) as follows. First we have to
notice that x ≈ y implies S(x)♮ ∧ A[x]♮ ↔ S(y)♮ ∧ A[y]♮. By definition, if (S(a))♮ then ℑ(R) holds where
R = {w : (∃σ ∈̇ a)(w = 〈σ, σ↾(lh(σ) − 1)〉 ∧ 0 < lh(σ))}. To see that (B.7) is interpreted by ♮, assume
((∀x ∈ S)((∀y ∈ x)A[y] → A[x]))♮, i.e., ∀x(S(x)♮ ∧ (∀y)(y ∈ x → A[y])♮ → A[x]♮). This implies

∀σ ∈̇ a(∀u(σ ∗ 〈u〉 ∈̇ a → A♮[a⇂(σ ∗ 〈u〉)]) → A♮[a⇂σ]),

namely ∀σ(∀τ(〈τ, σ〉 ∈ R → (τ ∈̇ a → A♮[a⇂τ ])) → (σ ∈̇ a → A♮[a⇂σ])). By transfinite induction along R, we
have ∀σ(σ ∈̇ a → A♮[a⇂σ]) and, in particular, A[a]♮.

In order to turn to the other axioms, we first need to specify the interpretations of the constants for
set generating operations. With the basic idea of tree representation in their minds, the readers can easily
imagine how the interpretations should be like and convince themselves that it is possible. Figure 5 gives
the explicit definitions of these interpretations for worried readers, but the author recommends the readers
to try to define them in their favorite ways rather than to read the details of Figure 5. Note that, since
{x⇂〈u〉 : 〈u〉 ∈̇x} covers {y : (y ∈ x)♮} only up to ≈, the extensionality precondition for R is necessary.

The point of the figure is that, under the assumptions ℜ(x,X) and ℜ(y, Y ), the defining formulae of the
types occurring in ℜ as the second arguments are all elementary in X and Y , except that for R. Thus uniform
elementary comprehension (Lemma 6) gives the required interpretations as closed terms. For the definition
of R, however, we need the axiom for the join operator j, as well as uniform elementary comprehension. It
is obvious that these operations respect the isomorphism, namely the operations applied to isomorphic trees
return isomorphic trees, and so we can see that the remaining axioms of Group B are interpreted by ♮, if we
show that the values of these operations are in S, which also implies the interpretability of Group C.

For ω, since f = λσ.σ[lh(σ)−̇1] := λσ.p0(σ,p1(σ)−̇1) satisfies fσ < f(σ↾lh(σ)−̇1) for σ ∈̇ω♮ with 1 <
lh(σ), the axioms (IV.2) and (T-IN) i.e., ℑ(<), imply ℑ({〈σ, σ↾(lh(σ)−̇1)〉 : σ ∈̇ω♮, 0 < lh(σ)}) and so S(ω)♮.

For K, if S(x)♮, either K
♮(x)⇂(σ↾5) ≈ ω♮⇂(p0(σ[1])) or K

♮(x)⇂(σ↾5) ≈ x⇂(p1(σ[1])) for any σ ∈̇K
♮(x)

with lh(σ) ≥ 5, and so the axiom (IV.2) implies S♮(K(x)♮⇂(σ↾5)). By applying (VI.3) step-by-step, we have
S(K(x)♮⇂(σ↾4)), S♮(K♮(x)⇂(σ↾3)), S♮(K♮(x)⇂(σ↾2)), S♮(K♮(x)⇂(σ↾1)) and then finally S(K(x))♮.

We can treat the other set generators similarly.
Moreover, for any name a ⊆̇ nat, the corresponding subset {σ ∈̇ω♮ : lh(σ) > 0 → σ[0] ∈̇ a} can be

constructed uniformly, and conversely if (a ⊆ ω)♮ then {n ∈ N : 〈n〉 ∈̇ a} forms a type. Thus the interpretation
preserves all the formulae from L2 up to the equivalence.

Theorem 22. WESTnso is interpreted by ♮ in AETJ+ (T-IN) + (L-TI) in an L2-preserving way.

Moreover, under the assumptions (S(s))♮, (S(t))♮, ℜ(s♮, S) and ℜ(t♮, T ), the formula (s ∈ t)♮ is equivalent
to an elementary formula in S and T . Therefore in order to interpret foundation restricted to ∆0 we need
only a type transfinite induction, which is included in AETJ, as seen below.
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ℜ(ω♮, {σ ∈ FSI : (∀k ∈ N)(k < lh(σ) → σ[k] ∈ N) ∧ (∀k, l ∈ N)(k < l < lh(σ) → σ[k] > σ[l])});

ℜ













K
♮(x),























σ ∈ FSI :

(lh(σ) > 0 → (∃n ∈ N)(∃f)(σ[0] = 〈n, f〉 ∧ (∀k < n)(〈fk〉 ∈̇x)))
(lh(σ) > 1 → (∃k ∈ N)(k < p0(σ[0]) ∧ σ[1] = 〈k,p1(σ[0])(k)〉))

∧(lh(σ) > 2 → σ[2] = 0 ∨ σ[2] = 1) ∧ (lh(σ) > 3 → σ[3] = 0 ∨ σ[3] = 1)

∧ (lh(σ) > 4 ∧ (σ[2] = 0 ∨ σ[3] = 0) → σ[4] = p0(σ[1]) ∧ shift4(σ) ∈̇ω♮)

∧ (lh(σ) > 4 ∧ (σ[2] = 1 ∧ σ[3] = 1) → σ[4] = p1(σ[1]) ∧ shift4(σ) ∈̇x)



































;

ℜ(T♮(x), {σ ∈ FSI : lh(σ) > 0 → σ[0] ∈ FSI ∧ σ[0] ∗ shift(σ) ∈̇x});

ℜ(D♮(x, y), {σ ∈ FSI : lh(σ) > 0 → (σ[0] = 0 ∧ shift(σ) ∈̇x) ∨ (σ[0] = 1 ∧ shift(σ) ∈̇ y)});

ℜ(U♮(x), {σ ∈ FSI : lh(σ) > 0 → 〈p0(σ[0])〉 ∗ 〈p1(σ[0])〉 ∗ shift(σ) ∈̇x)});

ℜ(R♮(f, x), {σ ∈ FSI : lh(σ) > 0 → 〈σ[0], shift(σ)〉 ∈̇ j({u ∈̇x : lh(u) = 1}, λu.f(x⇂u))});

ℜ

(

(G1)
♮(x),

{

σ ∈ FSI : lh(σ) > 0 →

(

〈σ[0], 0, 0〉 ∗ shift(σ) ∈̇x ∧ 〈σ[0], 1, 1〉 ∈̇ x
∧(x⇂〈σ[0], 0, 0〉 ≈ x⇂〈σ[0], 0, 1〉 ≈ x⇂〈σ[0], 1, 0〉)

)})

;

ℜ

(

(G2)
♮(x),

{

σ ∈ FSI : lh(σ) > 0 →

(

〈σ[0], 1, 1〉 ∗ shift(σ) ∈̇x ∧ 〈σ[0], 0, 0〉 ∈̇ x
∧(x⇂〈σ[0], 0, 0〉 ≈ x⇂〈σ[0], 0, 1〉 ≈ x⇂〈σ[0], 1, 0〉)

)})

;

ℜ((G3)
♮(x, y), {σ ∈ FSI : lh(σ) > 0 → σ ∈̇x ∧ ¬(∃u)(x⇂〈σ[0]〉 ≈ y⇂〈u〉)});

ℜ









(G4)
♮(x, y),















σ ∈ FSI :

(lh(σ) > 0 → (∃u, v)(σ[0] = 〈u, v〉 ∧ 〈u〉 ∈̇x ∧ 〈v〉 ∈̇ y))
∧(lh(σ) > 1 → σ[1] = 0 ∨ σ[1] = 1) ∧ (lh(σ) > 2 → σ[2] = 0 ∨ σ[2] = 1)

∧(lh(σ) > 2 ∧ (σ[2] = 0 ∨ σ[1] = 0) → 〈p0(σ[0])〉 ∗ shift
3(σ) ∈̇x)

∧(lh(σ) > 2 ∧ (σ[2] = 1 ∧ σ[1] = 1) → 〈p1(σ[0])〉 ∗ shift
3(σ) ∈̇ y)























;

ℜ

































(G5)
♮(x, y),































































σ ∈ FSI :

(lh(σ) > 0 →

(

〈p0(σ[0]), 0, 0〉 ∈̇ x ∧ 〈p0(σ[0]), 1, 1〉 ∈̇ x ∧ 〈p1(σ[0])〉 ∈̇ y
(x⇂〈〈p0(σ[0]), 0, 0〉 ≈ x⇂〈p0(σ[0]), 1, 0〉 ≈ x⇂〈p0(σ[0]), 0, 1〉))

)

∧(lh(σ) > 1 → σ[1] = 0 ∨ σ[1] = 1) ∧ (lh(σ) > 2 → σ[2] = 0 ∨ σ[2] = 1)
∧
(

lh(σ) > 3 ∧ (σ[1] = 0 ∨ σ[1] = 0) → 〈p0(σ[0]), 0, 0〉 ∗ shift
3(σ) ∈̇x

)

∧(lh(σ) > 3 ∧ (σ[1] = σ[2] = 1) → σ[3] = 0 ∨ σ[3] = 1)
∧(lh(σ) > 4 ∧ (σ[1] = σ[2] = 1) → σ[4] = 0 ∨ σ[4] = 1)

∧

(

lh(σ) > 5 ∧ (σ[1] = σ[2] = 1) ∧ (σ[3] = 0 ∨ σ[4] = 0)

→ 〈p1(σ[0])〉 ∗ shift
5(σ) ∈̇ y

)

∧

(

lh(σ) > 5 ∧ (σ[1] = σ[2] = σ[3] = σ[4] = 1)

→ 〈p0(σ[0]), 1, 1〉 ∗ shift
5(σ) ∈̇x

)































































































;

ℜ
(

(G≈)
♮(x, y),

{

σ ∈̇ (G4)
♮(x, y) : lh(σ) > 0 → x⇂〈p0(σ[0])〉 ≈ y⇂〈p1(σ[0])〉

})

;

ℜ

(

(G∈)
♮(x, y),

{

σ ∈̇ (G4)
♮(x, y) : lh(σ) > 0 → (∃z)

(

〈p1(σ[0])〉 ∗ 〈z〉 ∈̇ y ∧
x⇂〈p0(σ[0])〉 ≈ y⇂(〈p1(σ[0])〉 ∗ 〈z〉)

)})

.

Figure 5: Definitions of tree interpretations of set generators

Theorem 23. WESTnso

r and WESTnso

w are interpreted by ♮ in AETJ+(T-IN) and AETJ+(L-IN) respectively,
in an L2-preserving way.

Proof. Let A[x] be a ∆0 formula. Assume ((∀x ∈ S)((∀y ∈ x)A[y] → A[x]))♮. To show ((∀x ∈ S)A[x])♮, fix a
with S(a)♮. It suffices to show A[a]♮. We can take b such that (a ∈ b)♮ and Trans[b]♮. Let sA be the Lnso

∈ -term
from Lemma 19, which means (sA(b) ≈ {y ∈ b : A[y]})♮. Then (∀x ∈ b)((∀y ∈ x)(y ∈ sA(b)) → x ∈ sA(b))

♮.
As mentioned above, under the assumptions (S(s))♮, (S(t))♮, ℜ(s♮, S) and ℜ(t♮, T ), the formula (s ∈ t)♮ is
equivalent to an elementary formula in S and T and hence the proof previously given for full foundation
scheme now works with type induction.
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4.3. Interpreting Axiom Beta

With the inductive generation operator ig, we can interpret (C.14) by defining B
♮ as follows, where we

use auxiliary terms a and r: a(x) names the type of all such u that the u-th immediate subtree of x is
non-empty (i.e., the position u codes an element); and r(x, y) names the type of all the pairs 〈u, v〉 such
that the u-th immediate subtree and v-th one are related by y. Therefore ig(a(x), r(x, y)) names the type
of all such u’s that the u-th immediate subtree represents the set in the domain of the collapsing function
represented by B

♮(x, y), and hence we have ℜ((G1)
♮(B♮(x, y)), {σ ∈̇x : lh(σ) > 0 → σ[0] ∈̇ ig(a(x), r(x, y))}).

ℜ(a(x), {u : 〈u〉 ∈̇x});

ℜ(r(x, y), {w : 〈w〉 ∈̇G4(x, x) ∧ (∃σ ∈̇ y)(lh(σ) = 1 ∧ G4(x, x)⇂〈w〉 ≈ y⇂σ)};

ℜ

















B
♮(x, y),































σ ∈ FSI :

(lh(σ) > 0 → σ[0] ∈̇ ig(a(x), r(x, y)))
∧(lh(σ) > 1 → σ[1] = 0 ∨ σ[1] = 1) ∧ (lh(σ) > 2 → σ[2] = 0 ∨ σ[2] = 1)

∧(lh(σ) > 3 ∧ (σ[1] = 0 ∨ σ[2] = 0) → 〈σ[0]〉 ∗ shift3(σ) ∈̇x)

∧





(

lh(σ) > 3∧
(σ[1] = σ[2] = 1

)

→





〈σ[3], σ[0]〉 ∈̇ r(x, y)∧
(∀k ∈ N)(2 < k < lh(σ) → σ[k] ∈̇ a(x))∧

(∀k ∈ N)(k + 4 < lh(σ) → 〈σ[k + 4], σ[k + 3]〉 ∈̇ r(x, y))























































.

We need to show S(x)♮ ∧ S(y)♮ → S(B(x, y))♮. We write S♮(x) for ℑ({〈σ, σ↾(lh(σ)−̇1)〉 : σ ∈̇x, 0 <
lh(σ)}). Assume S(x)♮ and S(y)♮. For σ ∈̇B

♮(x, y), if lh(σ) > 2 and σ[1] = 0∨σ[2] = 0 then B
♮(x, y)⇂(σ↾3) ≈

x⇂〈σ[0]〉 and so S♮(B♮(x, y)⇂(σ↾3)). By the axiom (III.8), ℑ({〈u, v〉 ∈̇ r(x, y) : v ∈̇ ig(a(x), r(x, y))}) and so
λσ.σ[lh(σ)−̇1], with (II.2), witnesses S♮(B♮(x, y)⇂(σ↾3)) for σ ∈̇B

♮(x, y) with lh(σ) > 2 and σ[1] = σ[2] = 1.
By applying (VI.3) step-by-step, we have S(B♮(x, y)⇂(σ↾2)), S♮(B♮(x, y)⇂(σ↾1)) and then finally S♮(B♮(x, y)),
i.e., S(B(x, y))♮.

Theorem 24. WESTnso(B) is interpreted by ♮ in T0 in an L2-preserving way. Similarly WESTnso

r (B) and
WESTnso

w (B) are interpreted by ♮ in T0↾ and T0↾+ (L-IN) respectively, in an L2-preserving way.

4.4. Dropping foundation

The reason why we define S(t)♮ with the predicate ℑ in Figure 4 is that we want to have foundation
scheme interpreted by ♮. If we do not want it, we can drop this clause, namely, we can define ♯ in the same
way as ♮ except:

• S(t)♯ :≡ ∃T (ℜ(t♯, T ) ∧ Tree[T ]);

• in the definition of B♯, the first line is lh(σ) > 0 → σ[0] ∈̇ a(x).

With this modification, still we have S♯(ω♮) and so the induction schemata on natural numbers are
interpreted by ♯ in AET + (T-IN) or AET + (L-IN). The other axioms, except foundation schemata, are
interpreted by ♯, as we can show in the same way as in the case of ♮. Thus we have the following results:

Theorem 25. WESTnso

0 (B) and WESTnso

ω (B) are interpreted by ♯ in AETJ + (T-IN) and AETJ + (L-IN)
respectively, in such a way that all L2-formulae are preserved.

Remark 26. Actually, in the theorem, the axiom for B can be strengthened as follows:

(C.15) Anti-regularity
(a1 ≈ a2 ∧ Rel[r1] ∧ Rel[r2] ∧ r1 ≈ r2 → B(a1, r1) ≈ B(a2, r2))

∧ (S(a) ∧ Rel[r] → Fun[B(a, r)] ∧ Clp[B(a, r), a, r])
.

This can be seen as an operational version of AFA1 from Aczel [2], the statement that any relation has
a transitive collapse. Aczel’s famous anti-foundation axiom is the conjunction of AFA1 and AFA2, the
latter of which states the uniqueness of the transitive collapse. The tree representation shows that, in the
absence of foundation, AFA1 is rather weak and AFA2 is generally strong. Recall that, without the axiom
of extensionality, we cannot prove the uniqueness of the transitive collapses of even well-founded relations.
The uniqueness of the collapses of non-well-founded relations is a strong version of extensionality. Actually,
in the context of Kripke-Platek set theory, Rathjen [34] shows that KPω with anti-foundation axiom has the
same proof-theoretic strength as Σ1

2-AC, and is much stronger than KPω which has the same as Σ1
1-AC.
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4.5. Interpretability in applicative theories with type-2 functionals but without types

Actually, the typing machinery is not essential for the interpretations ♮ and ♯. BON(µ), the basic theory
of operations and numbers with non-constructive µ-operator µ, from Feferman and Jäger [13], has the
applicative axioms and the axiom for non-constructive µ-operator

(∀x ∈ N)(fx ∈ N) → (µ(f) ∈ N ∧ (∀x ∈ N)(fx = 0 → f(µ(f)) = 0)).

BON(µ) with basic or full induction can interpret ACA0 or ACA respectively, by interpreting sets as operators
on N with values 0 and 1 only (i.e., (∀x ∈ N)(fx = 0∨fx = 1)). Via this interpretation, BON(µ) can encode
the basic notions for trees on natural numbers. Thus, by setting the interpretation of the predicate S
as being a tree in this sense, we can define an interpretation similar to ♯ so that the codes of operations
corresponding to our set generators K, T, ... are definable by operators. Particularly, the definability of the
replacement operator R is by the applicative nature (that is, not by any additional operation like join j in
explicit mathematics) as follows: if f is an operator which assigns (codes of) sets to (codes of) sets,

R(f, a)(σ) :=

{

1 if lh(σ) = 0

f(a⇂〈σ[0]〉)(shift(σ)) if lh(σ) ≥ 1

can be defined by the applicative structure, where a⇂τ = λσ.a(τ ∗ σ) codes the tree a truncated by τ . Here
the case distinction is possible because it is by a primitive recursive predicate. Thus we can interpret

• WESTnso

0 in BON(µ) plus basic induction on numbers;

• WESTnso

ω in BON(µ) plus full induction on numbers.

Moreover, if we add a new predicate Wf and relevant axioms (like (IV.1-3) for ℑ), and if we restrict the
interpretation of S to those trees which are well-founded in the sense of Wf, we can, similarly to ♮, interpret

• WESTnso

r in BON(µ) plus basic transfinite induction along Wf-well-founded trees;

• WESTnso

w in BON(µ) plus full induction on numbers and basic transfinite induction along Wf-well-
founded trees;

• WESTnso in BON(µ) plus full transfinite induction along Wf-well-founded trees.

Similarly to ℑ in explicit mathematics, in the first two cases, Wf can be taken as the defined well-foundedness
from second order arithmetic, whereas in the last case it is intended to denote the “real” well-foundedness
stronger than the defined well-foundedness.

In Jäger and Strahm [22] and Jäger and Probst [20], the theory is extended further by the so-called
Suslin operator S, which checks whether the codes of trees encode well-founded ones or not by returning 0
or 1. With this operation, the two notions of well-foundedness, one in the sense of the predicate Wf and the
defined one, are equivalent as in explicit mathematics, and so there is no need to add the predicate. With
S we can define the well-founded part of a given relation, and therefore we can interpret

• WESTnso

r (B) in BON(µ,S) plus basic induction on numbers;

• WESTnso

w (B) in BON(µ,S) plus full induction on numbers;

• WESTnso(B) in BON(µ,S) plus full bar induction.

Thus, our lower bound results that we will establish also yield the lower bounds for these applicative
theories with type-2 functionals. While the lower bounds for those without bar induction were already given
in the previous works (Feferman and Jäger [13], Jäger and Strahm [22] and Jäger and Probst [20]), the lower
bounds for those with bar induction might be new, even in the sense of proof-theoretic strengths. Namely,

1. KP is interpretable in BON(µ) plus full transfinite induction along Wf-well-founded trees;

2. Both Σ1
2-AC+ (BI) and KPβ are interpretable in BON(µ,S) plus full bar induction.

The upper bounds of these variants of BON(µ) and BON(µ,S) can be established by the so-called
inductive model construction, within KP (as Feferman and Jäger [13]) and KPi (as Jäger and Strahm [22])
respectively, where the interpretation of KPi in Σ1

2-AC+ (BI) was given in Jäger [17, Section 8].
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5. Realizability Interpretation

Sato and Zumbrunnen [37] embedded a version of intuitionistic Kripke-Platek set theory IKP− into the
weak explicit set theory WEST by a realizability interpretation. This interpretation can work for our weaker
WESTnso as well, with some appropriate modifications, as we will see in this section.

5.1. The intuitionistic theory IKP
−

Definition 27 (Negative and strongly negative formulae). An L∈ formula is called negative if it is built up
from atomic formulae by means of the connectives ∧ and → and the quantifier ∀.

The strongly negative formulae are inductively defined as follows:

1. ⊥ is a strongly negative formula;
2. if A is atomic and B strongly negative, then also A → B is strongly negative;
3. if both A and B are strongly negative, then so are A → B, A ∧B as well as ∀xA.

Definition 28 (Gödel-Gentzen negative interpretation). The negative interpretation AN of each L∈ formula
A is inductively defined as follows:

AN :≡¬¬A if A is atomic (B ∧ C)N : ≡ BN ∧ CN (B → C)N : ≡ BN → CN (∀xB)N : ≡ ∀x(BN )

(B ∨ C)N : ≡ ¬(¬BN ∧ ¬CN ) (∃xB)N : ≡ ¬∀x¬(BN ).

By definition, AN is strongly negative and is classically equivalent to A. It is well known that if A is
classically valid then AN is intuitionistically valid.

Definition 29. The system IKP−, formulated in the language L∈, is based on intuitionistic logic with
equality axioms and consists of the following non-logical axioms:

(IKP−.1) transitive superset ∃x(a ⊆ x ∧ Trans[x]);

(IKP−.2) (weak) pairing ∃x(a ∈ x ∧ b ∈ x);

(IKP−.3) (weak) union ∃x(∀y ∈ a)(∀z ∈ y)(z ∈ x);

(IKP−.4) ∆−
0 separation ∃x((∀y ∈ x)(y ∈ a ∧A[y]) ∧ (∀y ∈ a)(A[y] → y ∈ x))

for all negative ∆0 formulae A[y] in which x does not occur;

(IKP−.5) ∆0 collection (∀x ∈ a)∃yA[x, y] → ∃z(∀x ∈ a)(∃y ∈ z)A[x, y]
for all ∆0 formulae A[x, y] in which z does not occur;

(IKP−.6) ∈-induction for all L∈ formulae ∀x((∀y ∈ x)A[y] → A[x]) → ∀xA[x] for all formulae A[x]

(IKP−.7) Ind[ω]N ∧ (∀x ⊆ ω)(Ind[x] → ω ⊆ x)N (N -infinity),
where Ind[x] ≡ ((∃y ∈ x)zero[y] ∧ (∀y ∈ x)(∃z ∈ x)isucc[y, z]), zero[y] is the formula (∀z ∈ y)⊥,
isucc[y, z] is the conjunction of the three formulae y ∈ z, (∀u ∈ y)(u ∈ z) and (∀u ∈ z)(u ∈ y ∨ u = y);

(IKP−.8) (∃z)famfun[ω, y, z]N (N -Kleene star)
where famfun[ω, y, z] is the conjunction of “z is a set of functions from some natural numbers to y”
(∀u ∈ z)(∃n ∈ ω)(Fun[u]∧Dom[u, n]∧Ran[u, y]), of “z contains an empty sequence” (∃u ∈ z)(∀x ∈ u)⊥,
and of “any sequence in z can be extended by putting any element of y at the end” (∀u ∈ z)(∀n ∈
ω)(Dom[u, n] → (∀x ∈ y)(∃v ∈ z)(Dom[v, n+ 1] ∧ u ⊆ v ∧ 〈n, x〉 ∈ v)).

IKP−
0 is IKP− minus ∈-induction; IKP−

ω is IKP−
0 plus ∈-induction on ω for all L∈ formulae; IKP−

r is IKP−
0

plus ∈-induction for all negative ∆0 formulae; and IKP−
w is IKP−

ω + IKP−
r .

In order to derive non-weak pairing and union (i.e., those in the usual formulations) from weak ones (as
above), it seems necessary to use the separation for non-negative ∆0 formulae (cf. [37, p.147, the last three
lines]).

These theories are in a sense constructive, because they are subsystems of constructive Zermelo-Fraenkel
set theory CZF (for the constructive justification of CZF, see Aczel [1]). Also, the theories are intensional in
the sense that they do not include the axiom of extensionality.
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5.2. Extensional realizability notion

As opposed toWESTint from [37, AppendixB],WESTnso has the distinction between the absolute equality
= and the set-theoretic (but still intensional) equality ≈, and the replacement operator R applies only to
those operations on sets which respect the latter equality ≈. This restriction of R requires a more complex
realizability notion than in WESTint , since, in order to realize collection scheme, we need to require a realizer
of (∀u ∈ x)(∃v)A[u, v] always respect ≈, as discussed in Subsection 1.6.

Definition 30 (Realizing relation er). For each L∈ formula A in which neither f nor g occurs, the Lnso

∈

formulae f erA, read as “f realizes A” or “f is a realizer of A”, and f ∼A g, read as “f and g are equivalent
realizers of A”, are defined by simultaneous induction on A as follows:

f er (x = y) :≡ (f = f) ∧ (x ≈ y); f ∼x=y g :≡ f = g;

f er (x ∈ y) :≡ (f = f) ∧ (x ∈ y); f ∼x∈y g :≡ f = g;

f er⊥ :≡ ⊥ f ∼⊥ g :≡ f = f ∧ g = g;

f er (B ∧ C) :≡ (p0(f) erB) ∧ (p1(f) erC); f ∼B∧C g :≡ (p0(f) ∼B p0(g)) ∧ (p1(f) ∼C p1(g));

f er (B → C) :≡ f = f ∧ (∀u, v erB)(f(u)↓ ∧ f(u) erC ∧ (u ∼B v → f(u) ∼C f(v)));

f ∼B→C g :≡ (f = f ∧ g = g) ∧ (∀u erB)(f(u) ∼C g(u)));

f er (∀xB[x]) :≡ (∀u, v ∈ S)(f(u)↓ ∧ f(u) erB[u] ∧ (u ≈ v → f(u) ∼B[u] f(v)));

f ∼∀xB[x] g :≡ (f = f ∧ g = g) ∧ (∀u ∈ S)(f(u) ∼B[u] g(u));

f er (B ∨ C) :≡ (p0(f) = 0 ∧ p1(f) erB) ∨ (p0(f) = 1 ∧ p1(f) erC);

f ∼B∨C g :≡ (p0(f) = p0(g) = 0 ∧ p1(f) ∼B p1(g))

∨ (p0(f) = p0(g) = 1 ∧ p1(f) ∼C p1(g));

f er (∃xB[x]) :≡ S(p0(f)) ∧ (p1(f) erB[p0(f)]); f ∼∃xB[x] g :≡ (p0(f) ≈ p0(g)) ∧ (p1(f) ∼B[p0(f)]
p1(g)).

We say that an L∈ formula A[~x] with at most the free variables ~x is realizable in a theory, if the formula
∃f(f er ∀xA[~x]) is provable in the theory. We just say that a formula is realizable if it is realizable inWESTnso

0 .
For Lnso

∈ terms ~t, we write f erA[~t] for (f erA[~u])[~t/~u].

It is easy to see by induction on a formula A[~x] that ~u ≈ ~v implies the equivalences between f erA[~u] and
f erA[~v], and between f ∼A[~u] g and f ∼A[~v] g, as stated in the next lemma. Therefore, in the definition
of f er (∀xB[x]), f(u) ∼B[u] f(v) is equivalent to f(u) ∼B[v] f(v), and in the definition of f ∼∃xB[x] g,
p1(f) ∼B[p0(f)]

p1(g) is equivalent to p1(f) ∼B[p0(g)]
p1(g).

Also, the free variables of f erA are the variable f and the free variables of A.
This realizability is called extensional realizability, because it is based on the equation in the sense of

functional extensionality. Notice however that the set-theoretic axiom of extensionality is not realized.

Lemma 31. WESTnso

0 proves (i) (t erA) → t↓; (ii) (s ∼A t) → t↓ ∧ s↓; (iii) f ∼A f ; (iv) s ∼A t → t ∼A s;
(v) t1 ∼A t2 ∧ t2 ∼A t3 → t1 ∼A t3; (vi) t ≈ s ∧ f erA[t] → f erA[s]; and (vii) t ∼A s ∧ (t erA) → (s erA).

Proof. By induction on A. Especially (i) and (ii) are from the seemingly redundant clauses f = f and
g = g.

From the viewpoint that the realizability machinery is a “miniature” of Martin-Löf type theory, the
use of ∼A can be seen as a use of identity type. In the usual realizability interpretation, the “miniatures”
of identity types can be taken as the trivial ones. For our purpose, however, we have to take non-trivial
ones, and, accordingly, we have to define the type structure (in the sense of Martin-Löf type theory, not
that of explicit mathematics) in a more complex way, e.g., the realizers of A → B (corresponding to the
inhabitants of type A → B) are those operators which assign a realizer of B to any realizer of A respecting
the “miniatures” of identity types. However, identity types are trivialized in another sense: according to the
analogy, any object is an inhabitant of the identity type f ∼A g whenever f ∼A g holds, and no inhabitants
exist otherwise, and the inhabitant of the type (f ∼A g) → (hf ∼B hg) induced by h : A → B is identity.
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Actually we could enhance this realizability to an interpretation of a kind of Martin-Löf type theory with
identity type, by enhancing the realizability of →-type formulae to the Π-type and by choosing appropriate
base types. Based on a similar idea, Griffor and Rathjen [15] defined an interpretation of a family of Martin-
Löf type theories in variants of KP. However, the interpretation of a type (in the sense of type theory) or
the class of realizers of a fixed formula does not necessarily form a set, the heir of a type in the sense of
explicit mathematics. Because of this difference, the base type associated with S cannot be the V-type.

By requiring the witness of membership ∈ (namely, r realizes a ∈ b if 〈r, a〉 ∈ b), the realizability of
Tupailo [45] allows the class of realizers of a ∆0 formulae to form a type in explicit mathematics, and hence
it realizes the separation scheme for non-negative ∆0 formulae, while ours realizes only that for negative ∆0.
On the other hand, Tupailo’s realizability prevents us from having canonical realizers, which we will need
later (especially in Lemma 40 where the realizability of N -Beta, rather than that of Beta itself, is important;
see [37, Subsection A.4]).

5.3. Canonical realizer for negative formulae

Definition 32 (Canonical realizer). We assign to each finite sequence ~x = x0, ..., xn of variables and negative
L formula A[~x], in which at most the variables ~x occur freely, a closed Lnso

∈ term cA,~x inductively:

cA,~x := λ~x.∅ if A is atomic; cB∧C,~x := 〈cB,~x, cC,~x〉;

cB→C,~x := λ~x, g.cC,~x(~x); where g is fresh c∀yB,~x := λ~x, y.cB,~x,y(~x, y),

It is easy to see that cA,~x defined above is a closed term, and cA,~x(~s) = cA,~x(~t).

Lemma 33. For a negative L∈ formula A, WESTnso

0 proves the following, where A≈ is as in Definition 15:

(i) A≈[~y] ↔ cA,~x(~y) erA[~y], and

(ii) f erA[~x] → A≈[~x],

Proof. We prove the two statements by induction on the negative formula A.

1. If A is atomic, the statements are obvious.
2. Let us consider the case of A ≡ B ∧ C.

(i) By definition cB∧C,~x(~y) er (B[~y] ∧ C[~y]) is equivalent to the conjunction of cB,~x(~y) erB[~y] and
cC,~x(~y) erC[~y], and hence, by induction hypothesis, to B≈[~y] ∧ C≈[~y].

(ii) f erB[~y] ∧ C[~y] is, by definition, the conjunction of p0(f) erB[~y] and p1(f) erC[~y], which with
induction hypothesis imply B≈[~y] and C≈[~y], that is A≈[~y].

3. Let A ≡ B → C.

(i) By definition, cB→C,~x(~y) er (B[~y] → C[~y]) means that, for any g, g erB[~y] implies cC,~x(~y) erC[~y],
since cB→C,~x(~y) is a constant operation and therefore preserves the equality ∼ trivially.

If B≈[~y] → C≈[~y] holds, then for any g, g erB[~y], with induction hypothesis, implies B≈[~y] and by
assumption C≈[~y], which implies cB→C,~x(~y)(g) = cC,~x(~y) erC[~y] again by induction hypothesis.

The converse is a special case of (ii) proved below.

(ii) Assume f er (B[~y] → C[~y]), particularly, for any g, g erB[~y] implies f(g) erC[~y]. To show that
B≈[~y] → C≈[~y] holds, assume B≈[~y]. Then by induction hypothesis cB,~x(~y) erB[~y] and so
f(cB,~x(~y)) erC[~y], which with induction hypothesis implies C≈[~y].

4. Let A[~x] ≡ ∀zB[~y, z].

(i) By definition, c∀zB,~x(~y) er ∀zB[~y, z] means that cB,~x,z(~y, z) erB[~y, z] for any z ∈ S, since cB,~x,z

is a constant operation. Thus, by induction hypothesis, c∀zB,~x(~y) er ∀zB[~y, z] is equivalent to
(∀z ∈ S)B≈[~y, z], i.e., A≈[~y].

(ii) Assume f er ∀zB[~y, z]. Then, for any z ∈ S, f(z) erB[~y, z] holds and hence by induction hypothesis
(∀z ∈ S)(B≈[~y, z]).

Corollary 34. For any negative L∈ formula A[~x], WESTnso

0 proves A≈[~x] ↔ ∃f(f erA[~x]).
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5.4. Realizing IKP
−

Lemma 35. If A[~x] follows intuitionistically from B0[~x], ..., Bn[~x], then WESTnso

0 proves ∃f(f er ∀~x(B0[~x] →
... → Bn[~x] → A[~x])). Thus, realizability in WESTnso

0 is closed under inferences of intuitionistic logic.

Proof. By induction on a proof of A[~x] from B0[~x], ..., Bn[~x] in Hilbert system of intuitionistic logic.
It is almost trivial that all the logical axioms of intuitionistic logic are realizable, including equality axioms

which are all negative. We check this only in the cases of C[~x, z] → ∃zC[~x, z] and ∀zC[~x, z] → C[~x, z].

t1 := λ~x, z, f.〈z, f〉 and t2 := λ~x, z, g.g(z)

satisfy t1 er ∀~x, z(C[~x, z] → ∃zC[~x, z]) and t2 er ∀~x, z(∀zC[~x, z] → C[~x, z]), since ~x ≈ ~y, z1 ≈ z2, f1 ∼C[~x,z1] f2
and g1 ∼∀zC[~x,z] g2 imply 〈z1, f1〉 ∼∃zC[~x,z] 〈z2, f2〉 and g1(z1) ∼C[~x,z1] g2(z2).

Let us turn to the rules. Assume first that A[~x] is the conclusion of Modus Ponens whose premises are
C[~x] and C[~x] → A[~x]. The induction hypotheses give us f and g such that

f er ∀~x(B0[~x] → ... → Bn[~x] → C[~x]) and g er ∀~x(B0[~x] → ... → Bn[~x] → C[~x] → A[~x]).

Then t := λ~x, h0, ..., hn.g(~x, h0, ..., hn, f(~x, h0, ..., hn)) satisfies t er ∀~x(B0[~x] → ... → Bn[~x] → A[~x]), since
~x ≈ ~y and h0 ∼B0[~x] j0, ..., hn ∼Bn[~x] jn imply both f(~x, h0, ..., hn) ∼C[~x] f(~y, j0, ..., jn) and g(~x, h0, ..., hn) ∼C[~x]→A[~x]

g(~y, j0, ..., jn), from which follows g(~x, h0, ..., hn, f(~x, h0, ..., hn)) ∼A[~x] g(~y, j0, ..., jn, f(~y, j0, ..., jn)).
Next assume that A[~x] ≡ C1[~x] → ∀zC2[~x, z] is the conclusion of ∀-rule whose only premise is C1[~x] →

C2[~x, z]. By the eigenvariable condition z does not occur in C1[~x], and we may assume that z does not occur
in B0[~x], ...., Bn[~x] either. The induction hypothesis gives us f such that

f er ∀~x, z(B0[~x] → ... → Bn[~x] → C1[~x] → C2[~x, z]).

Then t := λ~x, h0, ..., hn, hn+1, z.f(~x, z, h0, ..., hn, hn+1) satisfies t er ∀~x(B0[~x] → ... → Bn[~x] → C1[~x] →
∀zC2[~x, z])), since if all of ~x ≈ ~y, h0 ∼B0[~x] j0, ..., hn ∼Bn[~x] jn, hn+1 ∼C1[~x] jn+1 and z1 ≈ z2 hold then
f(~x, z1, h0, ..., hn, hn+1) ∼C2[~x,z1] f(~y, z2, j0, ..., jn, jn+1).

Finally assume that A[~x] ≡ ∃zC1[~x, z] → C2[~x] is the conclusion of ∃-rule whose only premise is
C1[~x, z] → C2[~x]. By the eigenvariable condition z does not occur in C2[~x], and we may assume that z
does not occur in B0[~x], ...., Bn[~x] either. The induction hypothesis gives us f such that

f er ∀~x, z(B0[~x] → ... → Bn[~x] → C1[~x, z] → C2[~x]).

Then t := λ~x, h0, ..., hn, hn+1.f(~x,p0(hn+1), h0, ..., hn,p1(hn+1)) satisfies t er ∀~x(B0[~x] → ... → Bn[~x] →
∃zC1[~x, z] → C2[~x])), since if all of ~x ≈ ~y, h0 ∼B0[~x] j0, ..., hn ∼Bn[~x] jn, and hn+1 ∼∃zC1[~x,z] jn+1 hold then
p0(hn+1) ≈ p0(jn+1) and p1(hn+1) ∼C1[~x,p0(hn+1)] p1(jn+1), and so f(~x,p0(hn+1), h0, ..., hn,p1(hn+1)) ∼C2[~x]

f(~x,p0(jn+1), j0, ..., jn,p1(jn+1)).

Theorem 36. All the axioms (and so theorems) of IKP−
0 and full collection scheme are realizable inWESTnso

0 .

Proof. All the axioms of IKP−
0 , except ∆0 collection, are of the from ∃yA[~x, y] (or A[ω], which is included in

the former case) with A being negative. Since there is a closed Lnso

∈ term t such that WESTnso

0 proves

(∀~x, ~y ∈ S)(t(~x) ∈ S ∧A≈[~x, t(~x)] ∧ (~x ≈ ~y → t(~x) ≈ t(~y))),

where A≈ is as in Lemma 33, thus λ~x.〈t(~x), cA,~x,y(~x, t(~x))〉 realizes ∃yA[~x, y].
For collection scheme, assume g er (∀u ∈ x)∃vA[u, v, ~z]. Then, since ∅ eru ∈ x for u ∈ x,

(∀u ∈ x)(g(u, ∅)↓ ∧p0(g(u, ∅)) ∈ S ∧ p1(g(u, ∅)) erA[u,p0(g(u, ∅)), ~z])

∧ (∀u1, u2 ∈ x)(u1 ≈ u2 → p0(g(u1, ∅)) ≈ p0(g(u2, ∅)) ∧ p1(g(u1, ∅)) ∼A[u1,p0(g(u1,∅)),~z] p1(g(u2, ∅))).

Let f := λg, u.p0(g(u, ∅)). Then f(g) satisfies the hypothesis of the axiom for R, i.e.,

(∀u ∈ x)(f(g, u)↓ ∧ f(g, u) ∈ S) and (∀u1, u2 ∈ x)(u1 ≈ u2 → f(g, u1) ≈ f(g, u2)).
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Then we have (∀u ∈ x)(f(g, u) ∈ R(x, f(g))) and t[g, u] er (∃v ∈ R(x, f(g)))A[u, v, ~z]) for any x ∈ u, where

t[g, u] := 〈f(g, u), 〈∅,p1(g(u, ∅))〉〉 = 〈p0(g(u, ∅)), 〈∅,p1(g(u, ∅))〉〉.

Now λh.t[g, u] realizes (x ∈ u → (∃v ∈ R(x, f(g)))A[u, v, ~z]) because it is a constant operation. More-
over, u1 ≈ u2 implies f(g, u1) ≈ f(g, u2) as shown before and so λh.t[g, u1] ∼(u1∈x→ (∃v∈R(a,f(g)))A[u1,v,~z])

λh.t[g, u2]. Thus λu, h.t[g, u] er (∀u ∈ x)(∃v ∈ R(x, f(g)))A[u, v, ~z] and so

〈R(x, f(g)), λu, h.t[g, u]〉 er (∃y)(∀u ∈ x)(∃v ∈ y)A[u, v, ~z].

Now, it remains to show that the conjunction of x1 ≈ x2, ~z1 ≈ ~z2 and g1 ∼(∀u∈x1)∃vA[u,v,~z1] g2 implies
〈R(x1, f(g1)), λu, h.t[g1, u]〉 ∼(∃y)(∀u∈x1)(∃v∈y)A[u,v,~z1] 〈R(x2, f(g2)), λu, h.t[g2, u]〉, i.e.,

R(x1, f(g1)) ≈ R(x2, f(g2)) and t[g1, u] ∼(∃v∈R(x1,f(g)))A[u,v,~z1] t[g2, u] for all u ∈ x1.

For the former, by axiom (B.6), it suffices to show f(g1, u) ≈ f(g2, u), i.e., p0(g1(u, ∅)) ≈ p0(g2(u, ∅)) for
any u ∈ x1, which follows from g1 ∼(∀u∈x1)∃vA[u,v,~z1] g2. For the latter, we need to show, for any u ∈ x1,
f(g1, u) ≈ f(g2, u), which we have just shown; and p1(g1(u, ∅)) ∼A[u,f(g1,u)] p1(g2(u, ∅)) which follows from
g1 ∼(∀u∈x1)∃vA[u,v,~z1] g2, the assumption.

What we have shown is that λ~z, x, g.〈R(x, f(g)), λu, h.t[g, x, u]〉 realizes the instance of collection scheme
(∀~z, x)((∀u ∈ x)∃vA[u, v, ~z] → (∃y)(∀u ∈ x)(∃v ∈ y)A[u, v, ~z]).

Lemma 37. All the axioms (and so theorems) of IKP−
r are realizable in WESTnso

r .

Proof. For negative formula A[x], the instance (∀x)((∀y ∈ x)A[x] → A[x]) → ∀xA[x] of foundation scheme
is itself negative and therefore it is realizable whenever it holds, by Corollary 34.

Lemma 38. All the instances of foundation scheme are realizable in WESTnso; and all the instances of
foundation scheme on ω are realizable in WESTnso

ω .

Proof. First we are working in WESTnso. Let us use the following abbreviation:

ExtOpA[f, x] :≡ (∀z)(x ≈ z ∧ (f(x)↓ ∨f(z)↓) → f(x) ∼A[x] f(z)).

Assume g er (∀x)((∀y ∈ x)A[y] → A[x]). By the definition of er, x1 ≈ x2 → g(x1) ∼(∀y∈x1)A[y]→A[x1] g(x2)
holds for any x1 and x2, and (∀h)((h er (∀y ∈ x)A[y]) → g(x, h) erA[x]) for any x.

Assume also (∀y ∈ x)ExtOpA[f, y] and (∀y ∈ x)(f(y) erA[y]). Then (∀y)(λu.f(y) er (y ∈ x → A[y]))
and, by (∀y ∈ x)ExtOpA[f, y], also λy, u.f(y) er (∀y ∈ x)A[y] hold. Thus we have g(x, λy, u.f(y)) erA[x].
Moreover, if x ≈ z, then g(x) ∼(∀y∈x)A[y]→A[x] g(z) and so g(x, λy, u.f(y)) ∼A[x] g(z, λy, u.f(y)). What we
have seen is that, for any f ,

(∀y ∈ x)(ExtOpA[f, y] ∧ f(y) erA[y]) → ExtOpA[λz.g(z, λy, u.f(y)), x] ∧ g(x, λy, u.f(y)) erA[x].

Therefore, by setting t[g] = fix(λf, x.g(x, λy, u.f(y))) we have (∀x)(t[g](x) ≃ g(x, λy, u.t[g](y))), and hence

(∀y ∈ x)(ExtOpA[t[g], y] ∧ t[g](y) erA[y]) → ExtOpA[t[g], x] ∧ t[g](x) erA[x].

By foundation, (∀x)(ExtOpA[t[g], x] ∧ t[g](x) erA[x]), which implies (∀x)(t[g](x) ↓). The argument at the
beginning of this paragraph shows λy, u.t[g](y) er (∀y ∈ x)A[y].

To conclude t[g] er (∀x)A[x], we need to show that x1 ≈ x2 implies t[g](x1) ∼A[x1] t[g](x2). The latter is
equivalent to g(x1, λy, u.t[g](y)) ∼A[x1] g(x2, λy, u.t[g](y)), which is implied by x1 ≈ x2, by the assumption
g er (∀x)((∀y ∈ x)A[y] → A[x]) and by λy, u.t[g](y) er (∀y ∈ x)A[y].

Finally, to conclude λg.t[g] er ((∀x)((∀y ∈ x)A[y] → A[x]) → ∀xA[x]), it remains to show that t[g1] ∼∀xA[x]

t[g2] is implied by g1 ∼(∀x)((∀y∈x)A[y]→A[x]) g2. Assume the latter. It suffices to prove t[g1](x) ∼A[x] t[g2](x)
by foundation on x. The induction hypothesis means (∀y ∈ x)(t[g1](y) ∼A[y] t[g2](y)) which implies
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(∀y)(λu.t[g1](y) ∼y∈x→A[y] λu.t[g2](y)) since ∼y∈x→A[y] is trivial if y /∈ x, and hence λy, u.t[g1](y) ∼(∀y∈x)A[y]

λy, u.t[g2](y). The assumption implies g1(x) ∼(∀y∈x)A[y]→A[x] g2(x) for any x and hence

t[g1](x) = g1(x, λy, u.t[g1](y)) ∼A[x] g2(x, λy, u.t[g2](y)) = t[g2](x).

Similarly we can show that the foundation on ω can be realized in WESTnso

ω .

Corollary 39. All the axioms (and so theorems) of IKP−, of IKP−
w and of IKP−

ω are realizable in WESTnso,
in WESTnso

w and in WESTnso

ω , respectively.

The following lemma is for the extension by Axiom Beta. Notice that Clp[f, b, r] (as well as DwCl[b, a, r]
and Prog[b, a, r]) is an L∈ formula, since it does not contain any occurrences of ≈ (the definition contains ≈
only for abbreviation).

Lemma 40. The following is realizable in WESTnso

0 plus Axiom Beta (C.14):

(IKP−.9) N -Beta (∀a, r)(∃f, b)(DwCl[b, a, r] ∧ Prog[b, a, r] ∧ Fun[f ] ∧ Dom[f, b] ∧ Clp[f, b, r])N .

Proof. By the same argument as the first part of the proof of Theorem 36 and by the fact that WESTnso

0 is
on classical logic, we can prove this.

6. Forcing and Negative Interpretations

The interpretation of intensional variants of KP in those of IKP− was already given in Sato and Zum-
brunnen [37, Sections 5 and 6], which is a modification of Avigad’s [3] interpretation of KP in IKP, the
intuitionistic version of KP. Here we only briefly summarize the results proved there.

6.1. Semi-constructive set theory IKP
♯ + (∆s−

0 -MP)

We need one more family of systems, generally weaker than the corresponding variants of IKP−.

Definition 41 (IKP♯ and (∆s−
0 -MP)). The L∈-theory IKP♯ is based on intuitionistic first-order logic with

equality axioms and consists of the following non-logical axioms.

(IKP♯.1) ∃x((∀y ∈ a)¬¬(y ∈ x) ∧ (∀y ∈ x)(∀z ∈ y)¬¬(z ∈ x)) (N -transitive superset).

(IKP♯.2) ∃x(¬¬a ∈ x ∧ ¬¬b ∈ x) (N -pairing).

(IKP♯.3) ∃x(∀y ∈ a)(∀z ∈ y)¬¬(z ∈ x) (N -union).

(IKP♯.4) ∃x((∀y ∈ x)(¬¬y ∈ a∧A[y])∧(∀y ∈ a)(A[y] → ¬¬y ∈ x)) for all strongly negative ∆0 formulae
A[y] in which x does not occur (∆s−

0 N -separation).

(IKP♯.5) (∀x ∈ a)∃yA[x, y] → ∃z(∀x ∈ a)¬(∀y ∈ z)¬A[x, y] for all strongly negative ∆0 formulae A[x, y]
in which z does not occur (∆s−

0 collection♯).

(IKP♯.6) ∀x((∀y ∈ x)A[y] → A[x]) → ∀xA[x] for all strongly negative formulae A[x] (Ls−
∈ -Ind).

(IKP♯.7) Ind[ω]N ∧ (∀x ⊆ ω)(Ind[x] → ω ⊆ x)N ∧ (∀y)(∃z)famfun[ω, y, z]N (N -infinity),
where Ind[x] and famfun[x, y, z] are defined as in the definition of IKP− in Definition 29.

IKP
♯
0 is IKP♯ minus (Ls−

∈ -Ind); IKP♯
ω is IKP

♯
0 plus ∈-induction on ω for all strongly negative L∈ formulae;

IKP♯
r is IKP♯

0 plus ∈-induction for all strongly negative ∆0 formulae; and IKP♯
w is IKP♯

ω plus IKP♯
r.

These theories will be augmented by:

(∆s−
0 -MP) ¬∀xA[x] → ∃y¬(∀x ∈ y)A[x], for all strongly negative ∆0 formulae A[x] of L∈.

We use variants of IKP♯ only with (∆s−
0 -MP), a set-theoretic version of Markov’s principle which is often

called semi-constructive. The resulting theories (e.g., IKP♯ + (∆s−
0 -MP)) are also called semi-constructive.
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6.2. Avigad forcing

Definition 42 (TrS). Let S be a finite sequence D0[z, ~y], ..., Dn−1[z, ~y] of strongly negative ∆0 formulae
with at most the variables z, ~y = y0, ..., ym free. TrS[p, u] is a strongly negative ∆0 formula equivalent to

∧n−1

i=0
∀~y(〈i, y0, ..., ym〉 ∈ p → (∀z ∈ u)Di[z, ~y]) ∧

∧2n−1

i=n
∀z∀~y(〈i, z, y0, ..., ym〉 ∈ p → Di−n[z, ~y]).

Definition 43 (
S). Let S be a finite sequence of strongly negative ∆0 formulae with at most the variables
z, ~y free. For an arbitrary L∈ formula A, the L∈ formula p 
S A is defined inductively as follows:

p 
S A :≡ ∃u(TrS[p, u] → ¬¬A) if A is atomic; p 
S B ∧ C :≡ (p 
 B) ∧ (p 
 C);

p 
S B ∨ C :≡ (p 
 B) ∨ (p 
 C); p 
S B → C :≡ (∀q ⊇ p)((q 
 B) → (q 
 C));

p 
S ∀xB[x] :≡ ∀v(p 
S B[v]); p 
S ∃xB[x] :≡ ∃v(p 
S B[v]),

where u is different from z, ~y and not occurring in A and where v does not appear in TrS[p, u] nor in B[x].
By 
S A we mean ∅ 
S A, and if it holds A is said to be forcible with S.

The definition of the forcing relation for connectives (except ⊥) and quantifiers is a straightforward
formalization of Kripke semantics with relation ⊆ and constant domains. Thus we can easily see the following.

Lemma 44. If A[~x] follows intuitionistically from B0[~x], ..., Bn[~x], then IKP−
0 proves (p 
S B0[~x]) → ... →

(p 
S Bn[~x]) → (p 
S A[~x]). Thus, forcibility in WESTnso

0 is closed under inferences of intuitionistic logic.

The following is the main result of Section 6 in Sato and Zumbrunnen [37].

Theorem 45. Any axiom (and hence any theorem) of IKP♯
0 as well as (∆s−

0 -MP) is forcible in IKP−
0 with

large enough S. The axiom N -Beta is forcible in IKP−
0 plus N -Beta with large enough S.

The same statements hold, if we replace the subscript 0 by ω, r or w or even delete it.

More precisely, the forcibility in IKP−
0 follows from Lemmata 65, 66 and 69 of [37], and that in IKP−

ω

and IKP− follows additionally from Lemma 66 of [37]. The forcibility of ∆s−
0 foundation and of the axiom

N -Beta follows from the next lemma (the same statement as Lemma 72 in [37]), since ∆s−
0 foundation is

equivalent to ∀u, a(x ∈ u → Trans[u]N → (∀y ∈ u)((∀z ∈ y)¬¬(z ∈ a) → ¬¬ y ∈ a) → ¬¬x ∈ a) which is in
Dres .

Definition 46 (Dres). The class Dres of L∈ formulae is the smallest class which contains all strongly negative
∆0 formulae and which is closed under conjunctions, disjunctions and (universal and existential) quantifiers.

Lemma 47. If A is in Dres then, for large enough S, IKP−
0 ⊢ A ↔ (
S A).

Corollary 48. Let A be in Dres . If IKP♯
0 + (∆s−

0 -MP) proves A then IKP−
0 proves A. If IKP♯

0 + (∆s−
0 -MP)

plus the axiom N -Beta proves A then IKP−
0 plus N -Beta proves A.

The same statements hold, if we replace the subscript 0 by ω, r or w or even delete it.

Remark 49. Strictly speaking, this is not an interpretability but only a local interpretability, for in Lemma
47 
S depends on S which must depend on A. Nonetheless, as described in Remarks 23, 46 and 74 of [37],

we can make it a non-local interpretability result, by modifying the intermediate system IKP
♯
0 + (∆s−

0 -MP)
but without affecting the result of the combination with Theorem 52 below, i.e., between IKP−

0 and KPint .
However, the combined non-local interpretation is not Π1-preserving, as mentioned in [37, Remark 76].

6.3. Negative interpretation

The reason why we introduced the semi-constructive set theory is that in the theory we can interpret
the axioms of Kripke-Platek set theory with N , except the axiom of extensionality. Actually, we do not
need to interpret the axiom of extensionality, since our final goal is to interpret subsystems of second order
arithmetic and since the extensionality has no role for this purpose.
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Definition 50 (KPint). The L∈-theories KP
int , KPint

0 , KPint

ω , KPint

r and KPint

w are formulated by the same
axioms as IKP−, IKP−

0 , IKP
−
ω , IKP

−
r and IKP−

w respectively, but on classical logic with equality.

Since any (∆0) formula is equivalent to negative (∆0) one over classical logic, the restriction to negative
formulae in the formulation of IKP− does not make sense for KPint .

Definition 51 (KPβint). The L∈-theories KPβ
int , KPβint

0 , KPβint

ω , KPβint

r and KPβint

w are extensions of KPint ,
KPint

0 , KPint

ω , KPint

r and KPint

w respectively, with Axiom Beta, formulated as follows:

Rel[r] → ∃f, b(Fun[f ] ∧DwCl[b, a, r] ∧ Prog[b, a, r] ∧ Clp[f, b, r]),

where the abbreviations are as in Section 3.

The following is the main result of Section 5 in Sato and Zumbrunnen [37].

Theorem 52. The Gödel-Gentzen negative interpretation N interprets all the axioms (and hence theorems)

of KPint

0 in IKP
♯
0 + (∆s−

0 -MP) and all the axioms (and hence theorems) of KPβint

0 in IKP
♯
0 + (∆s−

0 -MP) plus
the axiom N -Beta.

The same statements hold, if we replace the subscript 0 by ω, r or w or even delete it.

Definition 53 (Cres). An L∈-formula is called weak Σ1 if it is of the form ∃y¬(∀x ∈ y)A[x] where A[x] is a
strongly negative ∆0 formula without any occurrence of the variable y.

The class Cres of L∈ formulae is the smallest class which contains all weak Σ1 formulae and which is
closed under conjunctions, implications and universal quantifiers.

Lemma 54. If A is in Cres , then there is a strongly negative formula B which is classically equivalent to A
such that IKP♯

0 + (∆s−
0 -MP) ⊢ A ↔ B.

Corollary 55. Let A be in Cres . If KPint

0 proves A then IKP
♯
0 + (∆s−

0 -MP) proves A. If KPβint

0 proves A

then IKP
♯
0 + (∆s−

0 -MP) plus the axiom N -Beta proves A.
The same statements hold, if we replace the subscript 0 by ω, r or w or even delete it.

7. Second order arithmetic in intensional set theory

Recall that we consider the language L2 as a sublanguage of that L∈ of set theory. The lack of the axiom
of extensionality does not affect this. Based on this identification, the following is trivial:

Lemma 56. We have the following containment, via the standard embedding of second order arithmetic
into set theory:

(i) Σ1
1-AC0 is contained in KPint

0 ;

(ii) Σ1
1-AC is contained in KPint

ω .

As for Axiom Beta, we have to check that the absence of extensionality does not affect the well-known
containment of Σ1

2-AC0 in KPβ.

Lemma 57. Both KPβint

r and WESTnso
r (B) prove that WF[a, r] ↔ (∃f)Clp[f, a, r].

Proof. We are working in KPβint

r . The proof in WESTnso
r (B) is almost same.

First assume WF[a, r]. Then there is f and b ⊆ a such that Prog[b, a, r] and Clp[f, b, r]. Since Prog[b, a, r]
and WF[a, r], we have a ⊆ b and hence Clp[f, a, r].

For the converse, let Clp[f, a, r] and Prog[b, a, r]. We have to show a ⊆ b. We prove

(∀x ∈ a)(f ′x = u → x ∈ b)

by ∈-induction on u. The induction hypothesis is (∀y ∈ a)(f ′y = v → y ∈ b) for any v ∈ u. Take x ∈ a with
f ′x = u. To show x ∈ b, because of Prog[b, a, r], it suffices to show that y ∈ b for any y ∈ a with 〈y, x〉 ∈ r.
However, such y satisfies f ′y ∈ f ′x = u and hence y ∈ b by induction hypothesis. Thus, for any x ∈ a, since
there is u with f ′x = u, what we have shown implies x ∈ b. This means a ⊆ b.
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Since WF is Π1
1-complete in second order arithmetic, the Σ1-ness of this property and Σ1 collection imply

the Π1
1 axiom of choice in second order arithmetic, which is equivalent to Σ1

2 axiom of choice.

Corollary 58. We have the following containment, via the standard embedding as in Corollary 56:

(i) Σ1
2-AC0 is contained in KPβint

r ;

(ii) Σ1
2-AC is contained in KPβint

w ;

(iii) Σ1
2-AC+ (BI) is contained in KPβint .

The relation between Σ1
1-AC + (BI) and KPint is more delicate. First of all, it is known that Σ1

1 axiom
of choice is provable in ACA0 + (BI) (see, e.g., [38, Theorem V.8.3, Corollary VII.2.19] or [36, Corollary
2.6]). Second, the existence of a β-model, which is automatically an ω-model of ACA0 + (BI) and hence of
Σ1

1-AC+ (BI), is provable in ACA0 + (Π1−
1 -CA) (see [38, Lemma VII.2.9]), and thus, by relativizing formulae

to such a model, we can construct an interpretation of Σ1
1-AC+ (BI) in ACA0 + (Π1−

1 -CA), where (Π1−
1 -CA)

is the comprehension axiom for Π1
1 formulae without set parameters. Third, ACA0 + (Π1−

1 -CA) is reducible,
for example by the standard cut-elimination technique, to ID1. Finally, we can interpret ID1 in KPint , by
interpreting, for a positive operator form A[x, Z], the associated fixed-point predicate PA[x] as

(∃α ∈ Ord)(∃f : α+ 1 → V )
(

(∀ξ ≤ α)
(

f(ξ) =
{

y ∈ ω : A
[

y,
⋃

η<ξ
f(η)

]})

∧ x ∈ f(α)
)

.

Thus we can conclude that Σ1
1-AC0 + (BI) is reducible to KPint and to the system AET+ (L-TI) of explicit

mathematics for arithmetical sentences. However, in this reduction process, cut-elimination is involved and
therefore this does not imply the interpretability of Σ1

1-AC0 + (BI) in AET+ (L-TI).
Though we do not know if this reduction can be enhanced to an interpretability, we would like to establish

the mutual interpretability between AET+ (L-TI) and KP, because we think that KP is better qualified for
a reference system of the strength of generalized predicativity, than Σ1

1-AC + (BI). Because of Theorem
12, what remains to do is to construct an interpretation of KP in KPint . This is by so-called bisimulation
interpretation ∗ (see e.g., [37, AppendixA.1]).

8. Final Result

Combining the results we have obtained, we reach at the following final result.

Theorem 59. In each pair of the following, (1) the former theory is conservative over the latter for Π1
1

sentences and (2) the two theories prove the same arithmetical sentences:

(i) Σ1
1-AC0 and AETJ+ (T-IN);

(ii) Σ1
1-AC and AETJ+ (L-IN);

(iii) Σ1
2-AC0 and T0↾;

(iv) Σ1
2-AC and T0↾+ (L-IN);

(v) Σ1
2-AC+ (BI) and T0.

The same results hold between the following pairs:

(ii’) KP and AET+ (L-TI);

(v’) KPβ and T0.

Proof. (1) Let us consider only the case of T0, since the other cases can be proved similarly. Let A[X]
be an arithmetical formula from L2. Assume Σ1

2-AC + (BI) ⊢ ∀XA[X]. Then, by Lemma 58, KPβint ⊢
∀XA[X], with ∀XA[X] being considered as a Π1 formula ∀x(x ⊆ ω → A[x]) of L∈. Since A and AN are
classically equivalent, KPβint ⊢ (∀x ⊆ ω)AN [x]. Now, by (∀x ⊆ ω)AN [x] ∈ Cres , Corollary 55 implies that
IKP♯ + (∆s−

0 -MP) plus the axiom N -Beta proves (∀x ⊆ ω)AN [x]. Since (∀x ⊆ ω)AN [x] ∈ Dres , Corollary 48
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implies that IKP−
0 plus N -Beta proves (∀x ⊆ ω)AN [x]. Because of Lemma 35, Corollary 39 together with

Lemma 40 implies that WESTnso(B) proves the realizability of (∀x ⊆ ω)AN [x]. Since (∀x ⊆ ω)AN [x] is
negative, Corollary 34 shows that (∀x ⊆ ω)AN [x] is provable in WESTnso(B). Obviously so is (∀x ⊆ ω)A[x],
which is identified with ∀XA[X]. Finally, Theorem 24 implies T0 ⊢ ∀XA[X]. (2) is from Theorem 11.

Remark 60. As remarked in Remark 49 these are not interpretability results but only local interpretability
results, if we require the preservation for the described classes. However, they are for any subclass Φ that
has a universal formula commonly in the senses of Σ1

1-AC0 (or KP) and of AETJ + (T-IN), because we can
take a uniform S in Lemma 47. Thus, particularly, we have the Π0

2-preserving interpretability.

Remark 61. In the cases of (iii)-(v) and (v’), the conservation can actually be enhanced to Π1
2-sentences:

by the Π1
1-completeness of well-foundedness and by Lemma 57, any Π1

2 sentence of L2 has a Π1 sentence
equivalent over both KPβint

r and WESTnso
r (B); and so the same proof as above shows the Π1

2 conservation.

Remark 62. As shown in Simpson [38, Exercises VII.3.39], Σ1
2-AC0 and KPβr are mutually interpretable,

and hence so are Σ1
2-AC and KPβw (as well as Σ1

2-AC + (BI) and KPβ). Thus the same results hold also
between KPβr and T0↾ and between KPβw and T0↾+ (L-IN).

Remark 63. As discussed in Subsection 4.5, we can also have interpretations (i) of Σ1
1-AC0 in BON(µ)

plus basic induction on numbers; (ii) of Σ1
1-AC in BON(µ) plus full induction on numbers; and establish the

mutual interpretability between (iii) KP and BON(µ) plus transfinite induction along a new predicate Wf;
(iv) Σ1

2-AC0, KPβr and BON(µ,S) plus basic induction on numbers; (v) Σ1
2-AC, KPβw and BON(µ,S) plus

full induction on numbers; and (vi) Σ1
2-AC+ (BI), KPβ and BON(µ,S) plus full bar induction.
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Tim Rosebrock for their valuable comments, and the two referees for careful reading.

References

[1] Aczel, P., 1978. The type theoretic interpretation of constructive set theory. In: MacIntyre, A., Pacholski, L.,
Paris, J. (Eds.), Logic Colloquium ’77, Amsterdam. Vol. 96 of Stud. Logic Foundations Math. North-Holland,
Amsterdam, pp. 55–66.

[2] Aczel, P., 1988. Non-well-founded Sets. Vol. 14 of CSLI Lecture Notes. Stanford University, Center for the Study
of Language and Information, Stanford, CA.

[3] Avigad, J., 2000. Interpreting classical theories in constructive ones. J. Symbolic Logic 65 (4), 1785–1812.
URL http://www.andrew.cmu.edu/user/avigad/Papers/interp.pdf

[4] Barwise, J., 1975. Admissible sets and structures: An approach to definability theory. Perspectives in Mathe-
matical Logic. Springer-Verlag, Berlin.
URL http://projecteuclid.org/euclid.pl/1235418470

[5] Beeson, M. J., 1985. Foundations of constructive mathematics. Vol. 6 of Ergebnisse der Mathematik und ihrer
Grenzgebiete (3). Springer-Verlag, Berlin, metamathematical studies.

[6] Feferman, S., 1975. A language and axioms for explicit mathematics. In: Algebra and logic (Fourteenth Summer
Res. Inst., Austral. Math. Soc., Monash Univ., Clayton, 1974). Springer, Berlin, pp. 87–139. Lecture Notes in
Math., Vol. 450.
URL http://math.stanford.edu/~feferman/papers/LangAxsExplMaths.pdf

[7] Feferman, S., 1978. Recursion theory and set theory: a marriage of convenience. In: Fenstad, J. E., Gandy,
R. O., Sacks, G. E. (Eds.), Generalized recursion theory, II (Proc. Second Sympos., Univ. Oslo, Oslo, 1977).
Vol. 94 of Stud. Logic Foundations Math. North-Holland, Amsterdam, pp. 55–90.
URL http://math.stanford.edu/~feferman/papers/RecSetThMarriage.pdf

31



[8] Feferman, S., 1979. Constructive theories of functions and classes. In: Logic Colloquium ’78 (Mons, 1978). Vol. 97
of Stud. Logic Foundations Math. North-Holland, Amsterdam, pp. 159–224.
URL http://math.stanford.edu/~feferman/papers/ConstrFns&Classes.pdf

[9] Feferman, S., 2001. Notes on operational set theory, I. generalization of “small” large cardinals in classical and
admissible set theory, technical notes.
URL http://math.stanford.edu/~feferman/papers/OperationalST-I.pdf

[10] Feferman, S., 2009. Operational set theory and small large cardinals. Inform. and Comput. 207 (10), 971–979.
URL http://math.stanford.edu/~feferman/papers/OST-Final.pdf

[11] Feferman, S., viewed in 2014. Introduction [to foundations of explicit mathematics (in progress), by Solomon
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[17] Jäger, G., 1986. Theories for admissible sets: a unifying approach to proof theory. Vol. 2 of Studies in Proof
Theory. Lecture Notes. Bibliopolis, Naples.
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