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Abstract. In this work we devise two novel algorithms for blind decon-
volution based on a family of logarithmic image priors. In contrast to
recent approaches, we consider a minimalistic formulation of the blind
deconvolution problem where there are only two energy terms: a least-
squares term for the data fidelity and an image prior based on a lower-
bounded logarithm of the norm of the image gradients. We show that
this energy formulation is sufficient to achieve the state of the art in
blind deconvolution with a good margin over previous methods. Much
of the performance is due to the chosen prior. On the one hand, this
prior is very effective in favoring sparsity of the image gradients. On
the other hand, this prior is non convex. Therefore, solutions that can
deal effectively with local minima of the energy become necessary. We
devise two iterative minimization algorithms that at each iteration solve
convex problems: one obtained via the primal-dual approach and one
via majorization-minimization. While the former is computationally effi-
cient, the latter achieves state-of-the-art performance on a public dataset.

Keywords: blind deconvolution, majorization-minimization, primal-dual,
image prior

1 Introduction

In the past decade, several high-performing blind deconvolution schemes using
Bayesian principles have been proposed [1, 5, 6, 8, 9, 11, 17, 21–23]. The first step
in the Bayesian framework is to devise a statistical distribution for both the gra-
dients of the sharp image and the measurement noise or the model error. This
joint distribution is used to pose a maximum a posteriori (MAP) problem, which
yields point estimates for both the sharp image and the blur kernel. Also, one can
marginalize the joint distribution with respect to one of the unknown random
variables (typically, the sharp image) and then solve maximum a posteriori of the
marginalized distribution. However, marginalization is typically computationally
intractable. Thus, a variational Bayes upper bound is used together with sev-
eral approximations such as independence of the random variables and explicit
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simplified models of their distributions [21]. Whether one chooses one approach
or another, the final algorithm is always an alternating minimization scheme.
One iteratively improves the estimates of sharp image, blur kernel and some
additional auxiliary variables [9]. The main differences among these schemes lie
in how the coefficients weighing each term in the energy being minimized are
updated at each iteration. Currently, the general wisdom is probably that the
variational Bayes approach yields a better performance than the more classical
MAP approach on the joint distribution. This belief is also reinforced by ar-
guments showing how classical MAP approaches, such as total variation blind
deconvolution [4], have fundamental shortcomings that would prevent them from
achieving the desired solution [10, 21]. In contrast to those findings, in this paper
we introduce two novel alternating minimization algorithms that can be cast as
classical MAP approaches and that yield state of the art performance. Albeit
only experimentally, one can then conclude that there is no inherent advantage
in using a MAP or a variational Bayes approach. Moreover, other critical limi-
tations of MAP [10] are overcome by using an alternating minimization with a
delayed scaling [14].

As in the vast majority of blind deconvolution algorithms, our approach uses
an image prior that strongly encourages sparsity in the image gradients of the
reconstructed sharp image. We propose to use the logarithm of the norm of the
gradients. While this prior was already introduced in [1] in a variational Bayes
framework, here we use it in a MAP approach. Furthermore, to avoid the trivial
solution (a constant), we introduce a lower-bound in the norm. This bound is es-
sential to the correct functioning of the prior and needs to be carefully balanced
with the data-fidelity term to yield a sparse gradient solution. The other chal-
lenges that we address are the non convexity of the image prior even when blur
is given and the limited computational efficiency of the alternating minimization
scheme. We do so by using two techniques: majorization-minimization [7] and
the primal-dual method [3]. In the first case a tight upper bound of the image
prior is obtained and iteratively updated. This algorithm achieves high accuracy.
In the second case the Legendre-Fenchel transform and the proximal operator
are used to produce iterations that mostly work on independent 1D updates,
and that can therefore be executed in parallel. This algorithm is instead highly
computationally-efficient.

2 Blind Deconvolution

Consider the following model for a blurry image f

f = k ∗ u+ n (1)

where k is the camera blur (or point spread function), u is the sharp image and
n is the sensor noise. In this model, blur does not change across the image. This
assumption does not hold in real scenes with depth variation and/or with general
camera motions. Given both the blurry image f and the blur k, the estimation of
the sharp image u is a deblurring problem. When instead only the blurry image
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f is given, the problem of estimating both the sharp image u and the blur k is
called blind deconvolution.

A widely used framework for solving deblurring or denoising (when k is the
Dirac delta) is to look for a solution to the following minimization problem

u = arg min
u
‖u‖TV + λ‖k ∗ u− f‖22 (2)

where the first term corresponds to the ubiquitous Total Variation (TV) of u
[16], λ > 0 is a regularization constant and the second term corresponds to the
data fitting error. This problem is convex and therefore the global minimum can
be achieved very efficiently. Often, however, one does not know the blur k and is
therefore faced with the more challenging blind deconvolution problem, which is
non convex. Currently, several approaches can successfully obtain high-quality
results [1, 5, 6, 8, 9, 11, 17, 21–23]. A formulation of blind deconvolution inspired
by eq. (2) is

u, k = arg min
u,k
‖u‖TV + λ‖k ∗ u− f‖22

s.t. k < 0, ‖k‖1 = 1, (3)

which has already been proposed in the past [4, 24]. This formulation, however,
suffers from several limitations. Firstly, the global minima of this problem are
the no-blur solutions, where u = f and k = δ, up to translation [14, 10, 21]. Sec-
ondly, this is a non convex problem in both u and k. Thus, the solution obtained
via an iterative method depends on the initialization of the unknowns. Despite
the limitations outlined above, early alternating minimization implementations
[4] for eq. (3) converged to desirable solutions. While many of current algorithms
are derived via variational Bayes arguments or based on edge enhancements and
noise suppression, they eventually result in alternating minimization schemes
each resembling that used to solve eq. (3) [9]. The key differences are the intro-
duction of additional auxiliary variables and the dynamic update of regulariza-
tion parameters. As demonstrated experimentally, any such variation leads to a
quite different performance. Moreover, most recent approaches choose to solve
this problem by working on gradients of the images, or, more in general, filtered
images rather than directly on the intensities of the images. Then, once the blur
k has been estimated, a final deblurring step is performed to obtain the sharp
image u.

In this paper we show that two minimalistic optimization schemes work-
ing directly on the image intensities are sufficient to achieve state of the art
performance. This allows us to conclude that any additional modification to the
alternating minimization scheme, including working on filtered images, is not es-
sential to converge to the desired solution. Before doing so, however, we briefly
review relevant work and clarify differences when compared to our solutions.

3 Prior Work

As mentioned in the Introduction, most approaches in blind deconvolution can
be described as maximum a posteriori (MAP) approaches. The MAP approach
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relies on an explicit definition of the joint probability

p(u, k|f) ∝ p(f |u, k)p(u)p(k), (4)

where p(f |u, k) is a generative model of the noise, p(u) is a prior of the sharp
image and p(k) is a prior of the blur. Commonly used sharp image priors ap-
proximate the heavy-tail distribution of natural image gradients [18] via sparsity-
inducing norm of the gradients of u. The `2 norm of the gradients (isotropic to-
tal variation), or the `1 norm of the derivatives (anisotropic total variation) are
classical choices [4]. In contrast to other sparsity-inducing norms, total variation
(TV)[16] has the desirable property of being convex. However, it also introduces
a loss of contrast in the recovered sharp image [14, 19]. Other methods use heuris-
tics to encourage sharp gradients [5, 22, 17], or some reweighing strategy of the
norm of the gradients [8, 9]. The latter methods aim at approximating the l0
“norm” of the gradients, as proposed also by Xu et al. [23]. In this paper we also
encourage sparsity in the gradients. However, we use the logarithm of TV, which
yields a simple energy term while providing a good approximation to the num-
ber of nonzero gradients. Indeed, this prior has already demonstrated promising
results in blind deconvolution [1, 21] and denoising [13].

Despite the widespread use of the above MAP formulation, finding the mode
of the posterior probability of u and k has received many criticisms. Levin et
al. [10] and Perrone and Favaro [14] have shown that a large class of commonly
used image priors favors the blurry image instead of the sharp one. Because of
such limitation, Levin et al. [11] suggested to marginalize over all possible sharp
images u and thus to solve the reduced problem

max
k

p(k|f) = min
k
− log p(k|f) = min

k
− log

∫
u

p(u, f |k)p(k)du. (5)

In general, the integral in problem (5) is intractable. Therefore, typically one
looks for an approximate solution. A common approach is to minimize an upper
bound of − log p(k|f) using a variational Bayes strategy [1, 6, 11, 21]. So far,
this class of methods has shown better performance compared to methods that
directly solve the MAP problem (4).

Despite their apparent superior performance, Wipf and Zhang [21] have
shown that methods that solve (5) using a variational Bayes strategy are equiv-
alent to a MAP strategy as in (4). They experimentally show that with an `p
norm with p � 1, MAP approaches are able to favor the right sharp solution.
They also argue that a variational Bayes approach should be preferred because it
is more robust when minimizing a highly non-convex function. The conclusions
given by Wipf and Zhang [21] suggest that minimizing a cost functional as in (4)
is not limited per se, as long as one finds a minimization strategy that carefully
avoids its local minima. In this paper, we propose two non-variational Bayes
strategies to minimize a functional based on a logarithmic non-convex prior and
show that they can achieve state-of-the-art results.
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4 A Logarithmic Image Prior

In this section we introduce our image prior. From a Bayesian perspective, natu-
ral images can be described as having a sparse collection of gradients [18]. Hence,
one could employ sparsity-inducing priors of the image gradients. However, an-
other point of view is that blurring results in the average of shifted and scaled
replicas of the same image gradients. The likelihood that such replicas combine to
cancel each other is statistically insignificant. Vice versa, this averaging is more
likely to multiply the number of gradients by the number of nonzero elements in
the blur. Thus, a different perspective is that, in the context of deblurring, the
role of an image prior is to favor solutions that have as few gradients as possible
regardless of their magnitude. Both points of view lead to the same principle,
i.e., one should choose as prior

Number of non zero elements of (|∇u|) .
= ‖∇u‖0 (6)

where ‖·‖0 denotes the l0 “norm” (the Hamming distance to zero) and ∇u is the
2-D gradient of u. Unfortunately, optimization with this prior is very challenging
and, typically, smoother alternatives such as `p norms ‖∇u‖pp, with 0 < p < 1,
are used. In this work we also consider a prior with a similar behavior and simple
form.

Let us consider the discrete setting. In the 2D discrete case, we have images
with N ×M pixels. The (i, j)-th entry of the blurry image u will be denoted
by ui,j . The first order (discrete) derivatives of u will be denoted by ∇u .

=
[ui+1,j − ui,j ui,j+1 − ui,j ]

T . As image prior we propose using the following
logarithmic prior1

log ‖∇u‖p2,ε
.
=

N∑
i=1

M∑
j=1

log ‖∇ui,j‖p2,ε =
p

2

N,M∑
i=1,j=1

log ‖∇ui,j‖22,ε (7)

with p > 0 and where

‖∇ui,j‖22,ε
.
= (ui+1,j − ui,j)2 + (ui,j+1 − ui,j)2 + ε2 (8)

for ε > 0 so that the argument of the logarithm is never 0. The parameter ε
leads to a lower bound for this prior equal to MNp log ε. We can then formulate
our blind deconvolution problem as

u, k = arg min
u,k

λ‖k ∗ u− f‖22 + log ‖∇u‖p2,ε

s.t. k < 0, ‖k‖1 = 1. (9)

Notice how the role of ε is fundamental. If ε = 0 then the optimal solution will
always be u = 0 for any λ. To understand how ε, λ and p relate, consider the

1 Although we choose an `2 norm, any `q norm could be used. However, we have found
experimentally that for a wide set of values in q this makes little difference in the
final performance.
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following limit

lim
ε→0

p

2
+

1

log(1/ε2)
log ‖∇u‖p2,ε =

p

2
‖∇u‖0 (10)

which shows how the log prior approximates the desired l0 “norm”. Now, assume
that 0 < ε ≤ 1 and we substitute λ in problem (9) with −λp log ε. Then, in the
limit for ε→ 0 we are solving

u, k = arg min
u,k

λ‖k ∗ u− f‖22 + ‖∇u‖0

s.t. k < 0, ‖k‖1 = 1. (11)

Finally, to avoid the degenerate constant solution we can compare two cases: one
when u = constant and one when u = f and k = δ. The idea is to make sure
that the cost function favors the no-blur solution over the constant one. We can
therefore plug the two cases in the cost of problem (9) and obtain the following
inequality

log ‖∇f‖p2,ε < λ‖f̄ − f‖22 +
p

2
MN log ε2 (12)

or, alternatively,

log

∥∥∥∥1

ε
∇f
∥∥∥∥p

2,1

< λ‖f̄ − f‖22. (13)

Then, we use Jensen’s inequality and the fact that the logarithm is a concave
function to obtain an upper bound of the left hand side of eq. (13)

p

2

N,M∑
i=1,j=1

log

[∥∥∥∥1

ε
∇fi,j

∥∥∥∥2

2,1

]
≤ pMN

2
log

 1

MN

N,M∑
i=1,j=1

∥∥∥∥1

ε
∇fi,j

∥∥∥∥2

2,1

 . (14)

Then, if we choose ε such that

ε >

√√√√ 1
MN

∑N,M
i=1,j=1 ‖∇fi,j‖

2
2

e
2λ
pMN ‖f−f̄‖

2
2 − 1

(15)

where f̄ is the average value of f , the degenerate constant solution will be
avoided. Also, notice that 2λ

pMN ‖f − f̄‖
2
2 > 0 and 1

MN

∑N,M
i=1,j=1 ‖∇fi,j‖

2
2 > 0

unless f is constant (in this case u constant is a plausible solution and it should
not be avoided). This means that an ε that satisfies eq. (15) always exists.
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Finally, to solve problem (9) we use the alternating minimization scheme

initialize

k1 = k1

iterate t ∈ [1, . . . , T ]

ut+1 = arg min
u
λ‖kt ∗ u− g‖22 + log ‖∇u‖p2,ε

kt+1 = arg min
k
‖k ∗ ut+1 − f‖22

s.t. k < 0, ‖k‖1 = 1.

(16)

While the iteration in the blur k entails solving a convex problem, and we solve
it as in [4], the minimization in the update of the sharp image u is non convex
and requires more attention. To this purpose we introduce two solvers: one based
on a primal-dual approach and another on majorization-minimization.

4.1 A Primal-Dual Solver

Recall the deblurring problem (given the blur kt) in Algorithm (16); here we
rewrite it as

u = arg min
u

N,M∑
i=1,j=1

(
(kt ∗ u)i,j − fi,j

)2
+

1

µ
log ‖∇ui,j‖22,ε (17)

where µ = 2λ/p. By using the primal-dual approach of Chambolle and Pock [3]
we obtain the following minimax problem

u = arg min
u

max
z1,z2

〈kt ∗ u, z1〉 − F ∗1 (z1) + 〈∇u, z2〉 − F ∗2 (z2) (18)

where F ∗1 and F ∗2 are conjugate functions of F1 and F2 respectively, and we have
defined

F1(x)
.
=

N,M∑
i=1,j=1

(xi,j − fi,j)2
, F2(ξ)

.
=

1

µ

N,M∑
i=1,j=1

log ‖ξi,j‖22,ε. (19)

The conjugate functions can be computed via the Legendre-Fenchel (LF) trans-
form [15] and are convex by construction. Thus problem (18) is a convex approx-
imation in all variables z1, z2 and u of the original problem (17). Notice that the
convex approximation provided by the primal-dual formulation may not lead to
the minima of the original non convex cost.

Our general primal-dual algorithm to solve problem (18) is

zn+1
1 = proxσF∗

1
(zn1 + σkt ∗ ūn)

zn+1
2 = proxσF∗

2
(zn2 + σ∇ūn)

un+1 = un − τ
(
kt− ∗ zn+1

1 +∇ · zn+1
2

)
ūn+1 = un+1 + θ(un+1 − un)

(20)
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where kt− denotes the mirrored blur kernel kt (along both axes), n is the iteration
index, θ ∈ (0, 1] and τσ‖K‖2 < 1, with τ, σ > 0, where K is the matrix operator
implementing both the blur k and the finite difference operator ∇. Two of the 4
iterations in the above algorithm are defined based on the proximity operator.
The proximity operator proxσF∗

1
is computed via

proxσF∗
1

(z) = z − σproxF1/σ(z/σ)

= z − σ arg min
x

1

2

∥∥∥ z
σ
− x
∥∥∥2

2
+ σF1(x) (21)

=
1

σ + 1
(z − σf) .

The proximity operator proxσF∗
2

is instead computed via

proxσF∗
2

(z) = z − σ arg min
x

1

2

∥∥∥ z
σ
− x
∥∥∥2

2
+ σF2(x). (22)

Since the minimization problem is separable, let us consider the solution obtained
for only one element xi,j and zi,j of the variables x and z respectively. With an
abuse of notation, instead of the element-wise cumbersome notation xi,j and
zi,j we simply refer to x and z in the next equations. We use the representation
x
.
= ρw, where ρ ≥ 0 and ‖w‖2 = ‖z‖2/σ. Then, let ξ = z/σ and we have

arg min
x

1

2
‖ξ − x‖22 + σF2(x) = arg min

ρ,w

ρ2

2

∥∥∥∥ ξρ − w
∥∥∥∥2

2

+
σ

µ
log

(
ρ2 ‖z‖22

σ2
+ ε2

)
.

(23)

Notice that the logarithmic term now depends only on ρ. Hence, we can first solve
the minimization problem with respect to w. By simplifying the least squares
term we obtain

arg min
w,‖w‖=‖z‖/σ

ρ2

2

∥∥∥∥ ξρ − w
∥∥∥∥2

2

= arg min
w,‖w‖=‖z‖/σ

‖ξ‖22 /ρ
2 + ‖w‖22 − 2〈ξ/ρ, w〉

= arg min
w,‖w‖=‖z‖/σ

‖ξ‖22 /ρ
2 + ‖z‖22 /σ

2 − 2〈ξ/ρ, w〉

= arg max
w,‖w‖=‖z‖/σ

〈ξ, w〉 (24)

which immediately yields w = ‖z‖2
σ‖ξ‖2 ξ = z/σ. By substituting the expression of

w back into eq. (23) we finally have

arg min
x

1

2
‖ξ − x‖22 + σF2(x) = ξ · arg min

ρ

1

2
‖ξ − ρz/σ‖22 +

σ

µ
log

(
ρ2 ‖z‖22

σ2
+ ε2

)
= ξ · arg min

ρ

µ

2σ
(1− ρ)

2 ‖ξ‖22 + log
(
ρ2‖ξ‖22 + ε2

)
.

(25)
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Table 1. The primal-dual algorithm.

initialize

h1 = h1

iterate t ∈ [1, . . . , T ]

iterate n ∈ [1, . . . , N0]

zn+1
1 =

1

σ + 1

(
zn1 + σ(kt ∗ ūn − f)

)
zn+1
2 =

(
1−H

(
zn2 + σ∇ūn

σ
, µ, ε, σ

))
(zn2 + σ∇ūn)

ũn+1 = ũn − τ
(
kt− ∗ zn+1

1 +∇ · zn+1
2

)
ūn+1 = ũn+1 + θ(ũn+1 − ũn)

end iterate n

ut+1 = ũN0+1

ht+1 = arg min
k
‖k ∗ ut+1 − f‖22

s.t. k < 0, ‖k‖1 = 1

end iterate t

We can define H as the solution of the 1D problem

H(ξ, µ, ε, σ) = arg min
ρ

µ

2σ
(ρ− 1)2‖ξ‖22 + log(ρ2‖ξ‖22 + ε2) (26)

and build it into a lookup table.2 The proximity operator proxσF∗
2

can then be
written as

proxσF∗
2

(z) =
(

1−H
( z
σ
, µ, ε, σ

))
z. (27)

The final algorithm is summarized in Table 1. Notice how several operations are
parallelizable, thus leading to a very efficient implementation.

4.2 A Majorization-Minimization Approach

As a more accurate alternative to the primal-dual algorithm, one could use a
majorization-minimization (MM) approach [7], in a similar manner as proposed
by Candes et al. [2]. In the MM approach one defines an upper bound functional
ψ(u|ut) given the current estimate ut at time t. This upper bound must satisfy
the following properties

ψ(u|ut) ≥
N∑
i=1

M∑
j=1

log ‖∇ui,j‖p2,ε ψ(ut|ut) =

N∑
i=1

M∑
j=1

log ‖∇uti,j‖
p
2,ε. (28)

2 Notice that the 1D problem leads to a third order polynomial equation for which
closed-form solutions are known.
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Table 2. The majorization-minimization algorithm.

initialize

h1 = h1

iterate t ∈ [1, . . . , T ]

ut+1 = arg min
u

N,M∑
i=1,j=1

λ
(
(kt ∗ u)i,j − fi,j

)2
+
‖∇ui,j‖p2
‖∇ut

i,j‖
p
2

ht+1 = arg min
k
‖k ∗ ut+1 − f‖22

s.t. k < 0, ‖k‖1 = 1

end iterate t

Then, one can apply the following iterative scheme and provably reach a local
minimum of the original function

ut+1 = arg min
u

N,M∑
i=1,j=1

λ ((k ∗ u)i,j − fi,j)2
+ ψ(u|ut). (29)

As upper bound we consider using the Taylor expansion of the logarithm around
the t-th estimate of ‖∇u‖p2,ε up to the first term

ψ(u|ut) =

N,M∑
i=1,j=1

log ‖∇uti,j‖
p
2,ε +

‖∇ui,j‖p2,ε − ‖∇uti,j‖
p
2,ε

‖∇uti,j‖
p
2,ε

. (30)

The properties (28) hold because of the concavity of the logarithm function.
Finally, by plugging ψ in eq. (29) we obtain the following update

ut+1 = arg min
u

N,M∑
i=1,j=1

λ ((k ∗ u)i,j − fi,j)2
(31)

+ log ‖∇uti,j‖
p
2,ε +

‖∇ui,j‖p2,ε − ‖∇uti,j‖
p
2,ε

‖∇uti,j‖
p
2,ε

= arg min
u

N,M∑
i=1,j=1

λ ((k ∗ u)i,j − fi,j)2
+
‖∇ui,j‖p2,ε
‖∇uti,j‖

p
2,ε

.

so that the majorization-minimization algorithm can be summarized in Table 2.
Notice the similarity with reweighed least squares algorithms when p = 2.

5 Experiments

We evaluated the proposed algorithms on the dataset from Levin et al. [10]. The
dataset is made of 4 images of size 255 × 255 pixels blurred with 8 different
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blurs, and it is provided with ground truth sharp images and blurs. Therefore it
is possible to use metrics that take into account the intrinsic difficulty of each
blur, such as the SSD ratio proposed in [10]. This ratio can be computed by

r =

∑N,M
i=1,j=1(uk

e

i,j − u
g
i,j)

2∑N,M
i=1,j=1(uk

g

i,j − u
g
i,j)

2
(32)

where ug is the ground truth sharp image, uk
g

is the image obtained by solv-
ing a non-blind deconvolution problem with the ground truth blur, and uk

e

is
the image obtained by solving a non-blind deconvolution problem with the esti-
mated blur. For each method the same parameters are used for all the 32 blurry
images of the dataset. For all the tests we used the non-blind deconvolution al-
gorithm from Levin et. al. [12], where for each method we carefully selected the
regularization parameter in order to have the best SSD ratio.

In Fig. 1 we show the cumulative histogram of the SSD ratios for several
methods in the literatures and for our proposed algorithms (Log-TV MM and
Log-TV PD). The MM algorithm achieves error ratio equal to 1 for more than
50% of the images, clearly outperforming the methods from Wipf and Zhang [21]
and Babacan et. al. [1], and, for most error ratios, the method of Sun et al. [20].
Our primal-dual method is on par with high performing variational Bayesian
algorithms such as the one from Levin et. al. [11]. In Fig. 2 we also show the
cumulative histogram of the SSD errors, while in Fig. 3 we show some of the
sharp images obtained on this dataset3.

For our methods we used the same regularization parameter λ = 30000,
ε = 0.001, p = 2 and 3500 iterations for each pyramid level. For the primal-dual
algorithm we set N0 = 1, τ = 0.005 and σ = 1

32τ . The parameter values have
been found experimentally. We used a pyramid scheme where the input image
and the blur are down sampled at each level by

√
2, and the parameter λ is

divided by the number 2.1. The number of levels of the pyramid is computed
such that at the top level the blur kernel has a support of 3 pixels. For the
other methods we used the estimates provided by the authors, or we ran their
algorithm using the tuning that gives the best results. The primal-dual method
has the desirable feature of being parallelizable and therefore faster, but at the
cost of being too coarse (due to the convex approximation of the logarithmic
prior), thus unable to achieve the same accuracy of the MM algorithm.

6 Conclusions

In this paper we presented solutions to blind deconvolution based on a loga-
rithmic image prior. The chosen prior is as effective as `p norms with p < 1
on the image gradients, while at the same time leading to simple optimization
schemes despite its non convexity. To solve blind deconvolution with this image
prior we propose a computationally efficient scheme via a primal-dual approach

3 A list of all the experiments is available at www.cvg.unibe.ch/dperrone/logtv/
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Fig. 1. Cumulative histogram of SSD ratio results on the dataset [10].
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Fig. 2. Cumulative histogram of SSD results per image of the database [10].
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Fig. 3. Examples of deblurred images from Levin et al. [10] dataset.

and a high-accuracy scheme via the majorization-minimization approach. Both
approaches perform well and converge very robustly.
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