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Abstract

The human blood brain barrier (BBB) is a selective barrier formed by human brain endothelial cells (hBECs), which is
important to ensure adequate neuronal function and protect the central nervous system (CNS) from disease. The
development of human in vitro BBB models is thus of utmost importance for drug discovery programs related to CNS
diseases. Here, we describe a method to generate a human BBB model using cord blood-derived hematopoietic stem cells.
The cells were initially differentiated into ECs followed by the induction of BBB properties by co-culture with pericytes. The
brain-like endothelial cells (BLECs) express tight junctions and transporters typically observed in brain endothelium and
maintain expression of most in vivo BBB properties for at least 20 days. The model is very reproducible since it can be
generated from stem cells isolated from different donors and in different laboratories, and could be used to predict CNS
distribution of compounds in human. Finally, we provide evidence that Wnt/b-catenin signaling pathway mediates in part
the BBB inductive properties of pericytes.
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Introduction

BBB models can provide a valuable tool for studying

mechanistic aspects related to the transport of drugs at the brain,

as well as biological and pathological processes related to the BBB

[1]. Although in vitro models were established from various species,

the most widely used being rat, mouse, pig and bovine, the

establishment of a stable human BBB model is very important to

account for differences between species [1]. Primary human brain

endothelial cells (hBECs) and immortalized human cells have been

used as in vitro models [2,3]; however, several issues prevent their

general use including constraints in obtaining human tissue, loss of

hBEC phenotype during immortalized cell culture, or lack of

important tight junctions and low transendothelial electrical

resistance (TEER) values as shown in human cell lines. Recently,

hBECs have been differentiated from induced pluripotent stem

cells (iPSCs) [4]. However, the reproducibility of paracellular

permeability and TEER across replicates was relatively low. In

addition, it is unclear whether the reproducibility of the model is

affected by the type and history of iPSC line used to derive the

hBECs and the stability of the in vitro BBB model for periods of

time above 7 days, which might preclude its general use for drug

screening and toxicology studies [4]. Also recently, a human in vitro

BBB model based on the co-culture of cord blood-derived ECs

with astrocytes has been reported [5]. However, the BBB model

presents low TEER values and relatively high permeability (e.g. Pe

to Lucifer yellow= 1.2361023 cm/min).

Here, we report a general and relatively easy method to

generate a human BBB model using cord blood-derived hemato-

poietic stem cells, which can be obtained non-invasively. The cells

were initially differentiated into endothelial cells (ECs) followed by

the induction of BBB properties by co-culture with pericytes. The

model is very reproducible (similar paracellular permeability for

cells derived from 3 different donors and in 3 different

laboratories) and stable (for at least 20 days). Our results show

for the first time a good correlation between the in vitro predicted

ratio of concentrations of unbound drug in brain and plasma

obtained with our model and the in vivo ratio of concentrations of

unbound drugs in cerebrospinal fluid (CSF) and plasma reported

in humans. Finally, we show that Wnt signalling pathway mediates

in part the BBB inductive properties of pericytes.

Materials and Methods

An expanded version of the Methods section is provided in Text

S1. Materials and Methods.
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Isolation and Differentiation of CD34+ Cells from Human
Umbilical Cord Blood (UCB)
All human UCB samples were collected from donors, who

signed an informed consent form, in compliance with Portuguese

legislation. The collection was approved by the ethical committees

of Dr. Daniel de Matos Maternity Hospital in Coimbra and

Hospital Infante D. Pedro in Aveiro. CD34+ cells were isolated

from human UCB and differentiated into ECs according to a

protocol previously reported by us [6]. Briefly, isolated CD34+

cells were cultured in EGM-2 medium (Lonza) supplemented with

20% (v/v) fetal bovine serum (FBS; Life Technologies) and 50 ng/

mL of VEGF165 (PeproTech Inc.), on 1% (w/v) gelatin-coated 24-

well plates (26105 cells/well). After 15–20 days ECs are seen in the

culture dish. For each experiment, the cells were expanded in 1%

(w/v) gelatin-coated 100 mm Petri dishes (BD Falcon) in EGM-2

medium (with all the supplements except FBS and gentamycin/

amphotericin) supplemented with 2% (v/v) FBS, 50 mg/mL

gentamycin (Biochrom AG) and 1 ng/mL basic fibroblast growth

factor (bFGF).

Co-culture Experiments
For co-culture experiments, pericytes were initially seeded on

60-mm gelatin-coated petri dishes and cultured in Dulbecco’s

Modified Eagle’s Medium (DMEM) (Life Technologies) supple-

mented with 20% (v/v) FBS (Life Technologies), 2 mM L-

glutamine, 50 mg/mL gentamycin and 1 ng/mL bFGF. The cells

reached confluency after 2 days. 456103 cells were seeded into

each well of 12-well plates (Costar). CD34+-ECs growing on

gelatin-coated 100 mm petri dishes in EGM-2 (with all the

supplements except FBS and gentamycin/amphotericin) supple-

mented with 2% (v/v) FBS, 50 mg/mL gentamycin (Biochrom

AG) and 1 ng/mL bFGF were trypsinized and cells were seeded at

a density of 86104/insert onto the Matrigel-coated (BD Biosci-

ences) Transwell inserts (Costar).

Endothelial Permeability (Pe) Measurements
Prior to the experiments, HEPES-buffered Ringer’s solution (in

some cases EBM-2 medium) was added to empty wells of a 12-well

plate (Costar). Filter inserts, containing confluent monolayers of

CD34+-ECs, were subsequently placed in the 12-well plate, filled

with compound solution containing the fluorescent integrity

marker Lucifer Yellow (20 mM; Life Technologies), and then

placed on an orbital shaker. After 1 h, filter inserts were

withdrawn from the receiver compartment. Aliquots from the

donor solution were taken at the beginning and at the end of the

experiments and the fluorescence was quantified. At least three

inserts with cells and three without cells were tested in each

permeability measurement. Fluorescence detection was carried out

on a Synergy H1 multiplates reader (Biotek) using the following

excitation/emission wavelength (nm) settings: 432/538; 490/516;

542/570 for Lucifer yellow, Fluorescein Na and Cy3-Human

Serum Albumin and Human IgG respectively.

To obtain a concentration-independent transport parameter,

the clearance principle was used. The increment in cleared volume

was calculated by dividing the amount of compound in the

receiver compartment by the drug concentration in the donor

compartment [7]. The volume cleared was plotted versus time and

the slope estimated by linear regression analysis. The slope of the

clearance curve with inserts alone and inserts with cells is equal to

PSf and PSt, respectively, where PS (microliters/minute) is the

permeability surface area (square centimeter) product. The PS-

value for endothelial monolayer (PSe) was calculated. To generate

the endothelial permeability coefficient, Pe (cm/min), the PSe

value was divided by the surface area of the filter (A in cm2) insert

using the following equation: Pe= [1/PSt21/PSf]21/A. To assess

possible adsorption to plastics and non-specific binding to cells, the

mass balance (%) was calculated from the amount of compound

recovered in both compartments at the end of the experiment

divided by the total amount added in the donor compartment at

time zero. For Pe determination, mass balance value should be

between 80% and 120%.

Wnt Signaling Experiments
For Wnt signaling experiments, mono- and co-culture systems

were used. In monoculture, 86104 CD34+-ECs were seeded on

the Matrigel-coated transwell insert. The cells were then incubated

with agonists/ligands (6.25 ng/mL–100 ng/mL Wnt3A (R&D

Systems), 6.25 ng/mL–250 ng/mL Wnt7A (Peprotech) or 0.5–

5 mM BIO (Sigma)) for 1 or 5 days. Co-cultures were prepared as

described before. The CD34+-derived ECs co-cultured with

pericytes for 1 or 6 days were used in the signaling experiments.

Agonist (0.5–5 mM BIO) was added into the basolateral compart-

ment while antagonist (0.1–3 mM XAV939 (Selleckbio)) was

added in the apical part of the transwell system.

Expression of Adhesion Molecules by BLECs
Adhesion molecule expression by BLECs was determined by

FACS. For these experiments, CD34+-ECs were cultured with

pericytes for 6 days. After co-culture, transwells with BLEC

monolayers were transferred to a new 12-well plate. BLECs were

treated with 10 ng/mL TNF-a (Peprotech) for 24 h. Untreated

BLECs were used as control. Cells were dissociated from the

culture plate by exposure to Cell Dissociation Buffer (Life

Technologies) for 3–5 min and gentle pipetting, centrifuged and

finally resuspended in PBS supplemented with 5% (v/v) FBS. The

single cell suspensions were aliquoted (2.06105 cells per condition)

and incubated with primary antibodies against human CD40,

ICAM1, ICAM2, VCAM1, PECAM1 (Table S1). After the

incubation with primary antibodies, cells were incubated with

phycoerytrin (PE)-conjugated anti-rabbit (R&D Systems), and PE-

conjugated anti-mouse (Santa Cruz) secondary antibodies. FACS

Calibur (BD Biosciences) and BD Cell Quest Software (BD

Biosciences) were used for the acquisition and analysis of the data.

Ultrastructural Analysis of Cell Monolayers by
Transmission Electron Microscopy (TEM)
Wheat germ agglutinin conjugated horseradish peroxidase

(WGAHRP) (Sigma-Aldrich) was used for ultrastructural analysis

of EC monolayers. Filter inserts with ECs were transferred into

plates containing 1.5 mL of HEPES-buffered Ringer’s solution

(150 mM NaCl, 5.2 mM KCl, 2.2 mM CaCl2, 0.2 mM MgCl2-

6H2O, 6 mM NaHCO3, 5 mM HEPES, 2.8 mM glucose, pH 7.4)

(lower compartment), and 0.5 mL of HEPES-buffered Ringer’s

solution supplemented with 0.1 mg/mL WGA-HRP was applied

to the upper compartment. After 10 min incubation at 37uC in a

5% CO2/95% air atmosphere, the WGA-HRP solution was

removed and the specimens were washed twice with HEPES-

buffered Ringer’s solution and fixed for 1 h at room temperature

with 2.5% glutaraldehyde and 1% paraformaldehyde in 0.1 M

sodium cacodylate (pH 7.4). After washing with 0.1 M sodium

cacodylate, the fixed EC monolayers were incubated for 30 min at

room temperature with the HRP substrate 3, 39-diaminobenzidine

tetrahydrochloride (1.5 mg/mL; Sigma-Aldrich) and 0.02% H2O2

(v/v) in a TRIS-imidazol buffer (0.1 M imidazol, 0.05 M TRIS/

HCl, pH 7.0). After washing with 0.1 M sodium cacodylate, cells

were fixed again for 1 h at room temperature with 2.5%
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glutaraldehyde and 1% paraformaldehyde in cacodylate buffer.

Specimens were washed twice with 0.1 M sodium cacodylate

buffer, postfixed with 1% OsO4 in 0.1 M cacodylate buffer. After

dehydration in graded ethanol, samples were embedded in Epon

812. Ultrathin sections were cut on Ultracut UCT (Leica),

contrasted with uranyl acetate and lead citrate, and examined

with a Jeol 1011 TEM at an accelerating voltage of 100 Kv.

Microarray Studies
CD34+-ECs were cultured in monoculture or in co-culture with

pericytes for 3 days and 6 days in the same culture conditions

described in the CD34+-ECs co-culture experiments section. At

days 3 and 6, the CD34+-ECs were homogenized in Trizol reagent

(Life Technologies) and the total amount of RNA was extracted

with RNeasy Mini Kit (Qiagen), according to manufacturer’s

instructions. RNA quality was assessed by an Agilent 2100

Bioanalyser (G2943CA), using an Agilent RNA 6000 Nano Kit

(5067–1511). Gene expression was evaluated by a whole human

genome (4644 K) microarray (G4112F from Agilent Technolo-

gies). The microarrays were scanned by an Agilent B Scanner

(G2565BA). The raw data were analyzed using BRB-ArrayTools

v3.4.0 developed by Dr. Richard Simon and BRB-ArrayTools

Development Team [8]. This analysis generated a median

normalized dataset that was subjected to a statistical study and

clustering using MeV software [9]. The differential expressed

genes obtained from MeV were used to calculate the M-value and

Fold-change variation. It was considered as differentially expressed

gene a variation equal or higher than 2 times between the different

conditions. The microrray data in this paper have been deposited

in GEO (Gene Expression Omnibus) (accession no. GSE45171).

The results of microarray were confirmed by qRT-PCR (Text S1
and Table S2).

Statistical Analysis
For analysis involving three or more groups, ANOVA was used,

followed by a Bonferroni post-test. For analysis of two groups, a

paired t-test was used. Statistical analysis was performed using

GraphPad Prism software (San Diego, CA, USA). Results were

considered significant when P#0.05.

Results

Cord Blood Stem Cells can Differentiate into Brain-like
ECs
To differentiate stem cells into ECs,

CD34+CD45+CD31+KDR2vWF2CD142 cells isolated from cord

blood were initially cultured for 15–20 days in EGM-2 medium

with 20% (v/v) FBS and 50 ng/mL of VEGF165 [6] (Fig. S1A). At
this stage, cells have a cobblestone-like morphology, express high

levels of EC markers, including CD31, VE-cadherin and vWF and

are able to incorporate Ac-LDL (Fig. S1B). When these cells were

grown to confluence on filters for 6 days they show discontinuous

expression of ZO-1, occludin and claudin-5, do not express

claudin-1 at cell-cell contacts and have high permeability to

Lucifer yellow (2.061023 cm/min) as compared to bovine BECs

(Figs. S1C and S1D).

To induce BBB properties in CD34+-derived ECs, cells were

seeded in a transwell system and co-cultured with pericytes

(Fig. 1A). Pericytes were selected after a screening of different cell

types from the neurovascular unit (Figs. S2A and S2B) and

because of their role in the stabilization/maturation of BBB

[10,11]. Under these conditions, the permeability of ECs decreases

during the first 3 days until it reaches a stationary phase at day 4,

maintaining its stability up to 20 days (Fig. 1B). At day 6, the cells

had low permeability to Lucifer yellow values

(0.6160.1561023 cm/min, n=60) similarly to the values found

in other BBB models [12] (Fig. 1C), they showed a continuous

expression of ZO-1, occludin, JAM-A, claudin-1 and claudin-5 at

cell-cell contacts (Fig. 1F) and they were able to block the passage

of wheat germ agglutinin (WGA)- horseradish peroxidase (HRP) in

contrast with monolayers of CD34+-derived ECs where WGA-

HRP reached the underlying matrix (Fig. 1G). Importantly, the

induction of BBB properties in CD34+-derived ECs is highly

reproducible since similar permeability results were obtained for

cells derived from multiple human donors (Fig. 1D) and in 3

different laboratories (Fig. 1E). Furthermore, the BBB properties

of CD34+-derived ECs require the presence of pericytes, since

pericyte-conditioned medium does not have the same BBB-

inductive properties, and are lost if the pericytes are removed from

the co-culture system (Figs. S2C and S3B). These results show

that the crosstalk between the two cells is important to maintain

the BBB properties. Cells co-cultured with pericytes for 6 days

express transcripts encoding tight junctions such as ZO-1 and

claudin-1 higher than in ECs in monoculture, express claudin-3

and occludin at similar levels as ECs in monoculture, and express

claudin-5 at lower levels as EC in monoculture (Fig. 1H).

Importantly, the expression of influx transporters, specifically the

expression of aminoacid (SLC7A5, SLC16A1) and glucose

(SLC2A1) transporters and receptors (e.g. transferrin receptor;

TFRC) was increased when the cells were co-cultured with

pericytes relatively to cells cultured alone. The results are

consistent with previous results showing that the induction of

BBB properties in ECs correlate with an up-regulation of specific

transporter systems, most prominently SLC2A1 (Glut-1) [4,13]. In

addition, ECs co-cultured with pericytes for 6 days express

transcripts of key efflux transporters such as P-glycoprotein (P-gp),

breast cancer resistance protein (BCRP) and multidrug resistance

protein (MRP; subfamily of the ATP-binding cassette (ABC)

transporters) family, and they express large molecule receptors

such as low-density lipoprotein receptor-related protein 1 (LRP1),

the receptor for advanced glycation end products (RAGE) and

transferrin receptor (hTrf) (Fig. 1I). The expression of RAGE,

organic cation/carnitine transporter (OCTN2; also known as

SLC22A5) (Fig. S3A) and P-gp protein (Fig. 1J) was further

confirmed by immunofluorescence. As in hBECs, RAGE is mainly

located at the luminal side of cells while OCTN2 is located at the

abluminal side. Overall, ECs co-cultured with pericytes for 6 days

have BBB properties at gene, protein and permeability levels, and

from now on are named as brain-like endothelial cells (BLECs).

BLECs have the Ability to Act as an Active Barrier
The inhibition of P-gp protein by verapamil or elacridar, and

the concomitant blocking of the active transport of drugs to outside

the cell [14], leads to a significant increase in the accumulation of

the antitumor drug vincristine (Fig. 2A). This result demonstrates

that P-gp is functionally active in BLECs. The higher efflux ratio

of IgG as compared to human serum albumin shows receptor-

mediated transport of this macromolecule across the polarized

monolayer from the abluminal to the luminal side (Fig. 2B). In
addition, BLECs have the ability to form a monolayer that has a

TEER similar to monolayers of bovine BECs (Fig. 2C) and higher

than monolayers of human hCMEC/D3 cell line (,40 V6cm2)

[2] or monolayers of cord blood-derived ECs co-cultured with

astrocytes [5]. Moreover, BLECs express constitutively the

adhesion molecule PECAM-1 and ICAM-2, typically found in

hBECs [15]. These molecules are up-regulated in ECs exposed to

tumor necrosis factor alpha (TNF-a) mediated by the activation of

the pleiotropic nuclear factor–kB (NF-kB) [16]. Accordingly,

Human Blood-Brain Barrier Model Derived from Hematopoietic Stem Cells
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BLECs show an up-regulation in the expression of ICAM-1,

ICAM-2, CD40 and VCAM-1 after stimulation with 10 ng/mL

TNF-a for 24 h, as hBECs [2] (Fig. 2D). Taken together, these

results show that our in vitro model is functional and can reproduce

key aspects of the human BBB activity.

Importantly, BLECs can be used to predict CNS distribution in

humans of drugs with different properties. As the unbound brain-

to-plasma concentration ratio (Kp,uu,brain) is considered as a major

pharmacokinetic parameter in drug discovery [17,18] we recently

developed a methodology for assessing this parameter using an

in vitro model of the BBB [19]. Thus, the ability of BLECs to assess

unbound brain/unbound plasma concentration ratio in human

has been evaluated and the data obtained were compared to the

ratio of unbound CSF-to-plasma concentration (Kp,uu,CSF) in

Figure 1. Expression of BBB markers, stability, reproducibility and functional properties of a monolayer of human BLECs. (A) BLECs
were obtained by the co-culture of CD34+-derived ECs with pericytes for 6 days in a transwell system. (B–C) Paracellular permeability to lucifer yellow
of EC monolayers either cultured alone or with pericytes. (D–E) Paracellular permeability in a co-culture of CD34+-derived ECs with pericytes at day 6
obtained from (D) different donors and at (E) different laboratories (P = Portugal (LF); F = France (RC); S = Switzerland (BE)). From B to E, results are
Mean 6 SEM (n$4). (F) Expression of BBB markers in BLECs as obtained by immunofluorescence. (G) Electron micrographs of ECs co-cultured with
pericytes for 6 days (1) or alone (2). (1) Occlusion of the intercellular space between the ECs. WGA-HRP penetrates partially the intracellular cleft
(arrow). (2) No occlusion of the intercellular space between the ECs in 84% of the cases. WGA-HRP penetrates from the luminal compartment
(asterisk) through the entire intercellular cleft and is deposited in the underlying matrix (arrows). (H) Gene expression of tight junctions and influx
transporters in BLECs and CD34+-derived ECs. Results are Mean 6 SEM (n= 3). (I) Gene expression of efflux transporters and large molecule receptors
in BLECS, i.e., CD34+-derived ECs co-cultured with pericytes for 6 days. b actin was used as housekeeping gene (J) Expression of P-gp as evaluated by
immunofluorescence. In G and K, bar corresponds to 50 mm. *P,0.05, **P,0.01, ***P,0.001.
doi:10.1371/journal.pone.0099733.g001
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human, which is frequently used as a surrogate measure of

Kp,uu,brain [18]. For the 9 compounds tested, the estimation given

by our in vitro model for Kp,uu,brain correlates well (r2 = 0.89) with

Kp,uu,CSF in humans taken as a surrogate measurement the

unbound brain-to-plasma concentration ratio (Kp,uu,brain) (Fig. 2E;
Text S1. Materials and Methods).

The Induction of BBB Properties in ECs by Pericytes
Involves Changes in Gene Expression of Wnt Signaling,
Tight Junctions and Transporters
To study the induction of BBB properties in CD34+-derived

ECs, ECs cultured alone or with pericytes for 3 or 6 days were

characterized by whole genome microarrays. Gene expression

analyses at 6 days show that 84 and 2 genes are up- and down-

regulated in CD34+-derived ECs in co-culture, respectively,

relatively to CD34+-derived ECs in monoculture (Tables S3
and S4). From the overall up-regulated genes, 3 genes were

related with influx transporters including SLC44A5, SLC25A27

and SLC23A3 (Fig. 3A). SLC44A5, SLC25A27 genes were

further confirmed by qRT-PCR (Fig. 3B). Both genes peaked at

day 3. Although not shown in the microarray data, the expression

of other transporters (SLC7A5 and SLC16A1) in ECs cultured

with pericytes was statistically different to ECs cultured alone by

qRT-PCR (Fig. 1H). In this case, the temporal expression of the

transporters SLC7A5 and SLC16A1 genes peaked at day 6, as

Figure 2. Functional properties of BLECs. (A) Effect of P-gp protein inhibition on active transport of drugs. (B) Efflux ratio of small (sucrose) and
large (HSA and IgG) molecules. In A and B: Mean 6 SEM (n = 3–7). (C) Transendothelial electrical resistance (TEER) of monocultures of CD34+-derived
ECs or co-cultures of ECs with pericytes for 6 days. The TEER of the co-culture of ECs was compared with the gold standard of bovine brain
microvascular endothelial cells co-cultured with bovine astrocytes for 12 days on insert filters 30 mm diameter. Values are Mean 6 SEM, n = 4. ***P,
0.001; ns means P.0.05. (D) Expression of adhesion molecules by ECs in co-culture with pericytes. The expression of the adhesion molecules was
assessed by flow cytometry analysis on untreated and treated ECs by TNFa (10 ng/mL) for 24 h. (E) Correlation (r2 = 0.84; Pearson r = 0.9160) between
our human in vitro data (Kp,uu,brain) and human Kp,uu,CSF data (obtained from ref. [18]). Kp,uu,CSF = (In vivo concentration of unbound drug in
cerebrospinal fluid (CSF))/(In vivo concentration of unbound drug in plasma). Kp,uu,brain = (In vitro concentration of unbound drug in brain)/(In vitro
concentration of unbound drug in plasma). Kp,uu,brain were calculated from flux experiments using triplicate filters as described in Text S1. Materials
and Methods. Values are Mean 6 SEM (n= 3).
doi:10.1371/journal.pone.0099733.g002
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revealed by qRT-PCR (Fig. 3C). These results show that the

induction of BBB properties in ECs involves the up-regulation of

several transporters.

Two major pathways regulating the formation of BBB are the

canonical Wnt/wingless pathway acting via b-catenin stabilization

and Sonic hedgehog (Shh) pathway [13,20,21]. Two genes related

with Wnt signaling (Wnt inhibitory factor 1 (Wif1) and disheveled

associated activator of morphogenesis 1 (Daam 1)) were up-

regulated as shown by the whole genome microarray, suggesting

the involvement of Wnt signaling in the formation of the BBB

(Fig. 3A). The expression of those genes was monitored overtime

by qRT-PCR. Daam1 expression slightly decreased after day 3,

while Wif1 expression peaked at day 1 and then decreased until

day 6 (Fig. 3D).

We further investigated the involvement of Wnt signaling in the

BBB specification by analyzing the expression of Wnt ligands and

receptors in pericytes and ECs, respectively. Our protein analyses

show that pericytes do not express Shh but do express Wnt ligands

such as Wnt3a and Wnt7a (Fig. 4). On the other hand, ECs

express at the mRNA level Wnt receptors such as frizzled receptor

4, 6 and 7 (FZD4, FZD6 and FZD7) (Fig. 3E). Once in co-culture

with pericytes, ECs show a significant increase in Wnt3a transcript

at day 1 followed by a decrease at day 6 to baseline levels (Fig. 3F);
an increase of canonical Wnt ligands Wnt7a and Wnt7b

transcripts, which have been reported to be involved in BBB

Figure 3. Gene expression during the induction of BBB properties in CD34+-derived ECs. (A) Expression of BBB markers as evaluated by
whole genome microarrays of monocultures or co-cultures of CD34+-derived ECs with pericytes at day 3 and 6. (B–H) qRT-PCR results showing
changes on BBB transporters (B, C), Wnt signaling (D–G) and tight junctions (H) genes on CD34+-derived ECs co-cultured with pericytes for 1, 3 and 6
days. Values are Mean 6 SEM, n = 4.
doi:10.1371/journal.pone.0099733.g003
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development [21,22], at day 1 followed by a decrease at day 3 to

baseline levels (Fig. 3F); and an increase in Wnt receptor frizzled

7 (FZD7) transcripts up to 6 days, but not in Wnt receptor frizzled

4 (FZD4) and frizzled 6 (FZD6) (Fig. 3E). The expression of

LEF1, the b-catenin-associated transcription factor, peaked at day

1 matching the profile observed for Wnt3a and FZD7 (Fig. 3G).

The expression of APCDD1, an antagonist of Wnt signaling and

highly expressed in adult brain endothelial cells [23], peaked at

day 3, at the time that Wnt3a drops significantly (Fig. 3G). We

also investigated the temporal expression of tight junctions in ECs

co-cultured with pericytes since our results (Fig. 1H) indicated a

statistical difference in the expression of ZO-1, claudin-5 and

claudin-1 in ECs cultured alone or co-cultured with pericytes.

qRT-PCR results show an up-regulation of claudin-1 transcripts

for 6 days in ECs cultured with pericytes while the expression of

ZO-1 and claudin 5 transcripts peaked at day 6 and 3, respectively

(Fig. 3H). Overall, our results indicate that the induction of BBB

properties in ECs by pericytes involves, at least in part, Wnt

signaling, and an increase in the expression of tight junctions ZO-

1, claudin-5 and claudin-1, and several transporters.

Wnt3a and in Minor Extent Wnt7a Mediate in Part the
Induction of BBB Properties in ECs by Pericytes
To determine whether the activation of Wnt is required for the

induction of barrier properties in CD34+-derived ECs, we cultured

these cells alone up to 5 days and then exposed them to Wnt

ligands/agonists. ECs respond rapidly to BIO, a specific pharma-

cological inhibitor of glycogen synthase kinase-3 (GSK-3) and thus

an activator of Wnt signaling, or Wnt3a by increasing the

expression of active b-catenin (Fig. 5A). The paracellular

permeability of Wnt3a-treated ECs to Lucifer Yellow was

statistical lower (P,0.01, n=4) for short-term (5 days of

monoculture + 1 day of Wnt3a treatment) and long-term (1 day

of monoculture + 5 day of Wnt3a treatment) as compared to

untreated cells (Figs. 5A and 5B). The effect of Wnt7a and BIO

was only observed after 5-day treatment (Figs. 5A and 5C).
During the induction process by Wnt3a or BIO, there is an

increase in the expression and nuclear localization of total b-
catenin (Fig. 5D), the up-regulation of b-catenin-associated
transcription factor LEF1 gene (Figs. 6A and 6B), the up-

regulation of claudin-1 gene expression (Figs. 6A and 6B) and
the localization of claudin-1 at the cell-cell contacts (Fig. 5D). The

localization of claudin-1 at the periphery of the cells might explain

the restrictive permeability of ECs in co-culture with pericytes. To

further confirm the role of Wnt pathway in the induction of BBB

properties, we abrogated the Wnt signaling in ECs co-cultured

with pericytes. ECs were seeded in a transwell insert coated with

Matrigel while pericytes were seeded in the bottom of the transwell

(Figs. 6C–6E). ECs were treated with the Wnt antagonist XAV-

939 for 4 days by adding the inhibitor in the luminal side of the

insert. The abrogation of Wnt pathway, in conditions that did not

affect cell viability, increased the paracellular permeability of the

EC monolayer to lucifer yellow. Overall, our gain and loss

function experiments indicate that Wnt signaling is required for

the BBB properties in CD34+-derived ECs co-cultured with

pericytes.

Figure 4. Expression of Shh, Wnt7a and Wnt3a in pericytes and CD34+-derived ECs in mono-culture or in co-culture. (A–D) Western
blot for the expression of Shh (A), Wnt7a (B), Wnt3a (C) and total b-catenin (D) on cell lysates of CD34+-derived ECs in monoculture (E) or in co-culture
with pericytes (ECC), or cell lysates of pericytes in monoculture (P) or pericytes in co-culture with ECs (PCC), for 6 days. Human recombinant Wnt3a,
Wnt7a and Shh were used as a positive control. Data shown are representative of n= 2. In D: results 6 SEM, n= 2.
doi:10.1371/journal.pone.0099733.g004
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Discussion

Most in vitro BBB models currently available and fully charac-

terized are based on primary BECs or cell lines from animal origin

(bovine, porcine and murine) [12]. Only the hCMEC/D3 cell line,

which retains morphological and functional characteristics of brain

endothelium, is widely used as a human in vitro BBB model.

Because this model has limitations, specifically high permeability

to small hydrophilic compounds, there is a real need to develop

new models of human BBB for performing reliable pharmacolog-

ical and toxicological tests [5]. Here, we report the generation of a

human in vitro BBB model from ECs derived from cord blood

hematopoietic stem cells that is highly reproducible and stable for

at least 20 days after its derivation. This model fills all the

recommendations of the ECVAM workshop no 49 on the

definition on an in vitro model [24]. Due to the relatively easy

access to cord blood stem cells, this model can be adopted by the

research community to study molecular mechanisms at the level of

brain ECs in pathologies implicating the BBB such as neurode-

generative disorders (for example, Alzheimer’s disease and

multiple sclerosis), stroke and traumatic brain injury, infectious

processes and inflammatory pain.

To generate the human BBB model, we have used biological

principles observed in the repair of BBB in the human body. The

in vivo repair of the endothelium is mediated by endothelial

progenitor cells (EPCs, characterized by the expression of CD34

marker among other markers [25]). The EPCs migrate to the sites

of endothelial injury, incorporate in the endothelium and

differentiate into ECs [26,27]. Experimental results show that

EPCs participate in neovascularization processes in the adult brain

of mice after ischemia [28]. Therefore, our in vitro BBB model uses

the biologic principles that exist in the human body.

Recently, a human in vitro BBB model from iPSCs has been

reported [4,29]. The model was based in the co-culture of iPSC-

derived ECs with astrocytes. The derivation of ECs with BBB

properties from pluripotent stem cells is suited for the large-scale

production of BBB models, but suffers from several limitations

including the complexity of the differentiation process, the

reproducibility of the system and the uncertainty in terms of

stability. Regarding this last point, the TEER of the monolayer

reaches a peak after 25 h in culture but declines after 50 h. The

use of retinoic acid substantially enhanced the BBB properties [29]

(TEER up to 5000 V6cm2); however, the metabolic and the

phenotypic characteristics of the BBB model were unclear.

Furthermore, iPSCs are genetically reprogrammed and epigenetic

modifications, which persist after reprogramming, could impact

the application of these cells in basic research and drug

development [30]. Finally, no correlation between the in vitro data

and human permeability data was reported in this study.

During the submission of the present work, another study has

reported a human in vitro model based on the co-culture of human

endothelial cells derived from cord blood endothelial progenitor

cells with astrocytes [5]. The study has demonstrated an up-

regulation of tight junctions including occludin, the glucose

transporter GLUT-1 and the active efflux transporter P-gp.

However, the TEER value (60 V/cm2 versus 175 V/cm2) was

lower and the permeability values to Lucifer yellow

(1.2361023 cm/min versus 0.6161023 cm/min) were higher than

Figure 5. Activation of Wnt signaling in ECs by pericytes mediates BBB formation. (A) Effect of Wnt3a, Wnt7a and BIO in the expression of
b-catenin (after 1 day) as well as in the paracellular permeability (at days 1 and 5) of monocultures of CD34+-derived ECs. Results are Mean 6 SEM
(n = 3–6). The dashed line represents the paracellular permeability of ECs in co-culture with pericytes for 6 days. For permeability results the
concentrations of Wnt3a, Wnt7a and BIO were 6.25 ng/mL, 6.25 ng/mL, and 0.5 mM. (B–C) Paracellular permeability of untreated ECs or ECs treated
with different concentrations of human recombinant protein Wnt3a (B) or Wnt7a (C) for 5 days. Results are Mean 6 SEM (n= 4). (D) Expression and
localization of claudin-1 (at day 6) and total b-catenin (day 3) in monoculture of CD34+-derived ECs cultured in medium supplemented with BIO
(0.5 mM) or Wnt3a (6.25 ng/mL). Arrowheads indicate nuclear accumulation of b-catenin. Bar corresponds to 50 mm. *P,0.05, **P,0.01, ***P,0.001.
doi:10.1371/journal.pone.0099733.g005
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our in vitro model [5]. Indeed, the paracellular permeability results

were similar to those obtained with the hCMEC/D3 cell line.

Furthermore, the monolayer presented optimal paracellular

permeability during 4 days (between days 10 and 14) in opposition

to our model that kept the paracellular permeability for at least 16

days (from day 4 up to day 20). In addition, the transporter activity

of the cells for different ligands and correlation with human

permeability data were unclear.

Our results also indicate that pericytes have superior BBB

inductive properties on ECs derived from cord blood endothelial

progenitor cells than astrocytes. This hypothesis is supported by

our permeability results obtained with astrocytes (Fig. S2A).
Further studies should be performed to know whether the

differences observed in both systems are due to differences in the

secretion of Wnt proteins by pericytes/astrocytes.

Our study is the first one showing a correlation between an

in vitro human model prepared from stem cells and in vivo human

data. Previous studies have demonstrated a correlation between

human models and in vivo rat but not human data [2,4]. Although

further analysis should be performed with a larger library of

compounds, the agreement (r2 = 0.89) between in vitro Kp,uu,brain

and Kp,uu,CSF in humans is promising and suggests that the in vitro

method developed here might be useful for identifying compounds

susceptible to attain a desirable unbound drug concentrations in

the human brain in drug discovery programs.

Our work provides in vitro evidence for a role of pericytes in the

induction of BBB formation through the Wnt/b-catenin pathway.

Although recent studies have shown that pericytes regulate the

BBB, the underline mechanism was unclear. Previous studies have

shown that angiopoietin-1 [31] and transforming growth factor-b
[32] secreted by pericytes regulated the tight-junctions and the

functionality of the BBB, respectively. In this work, we demon-

strate that the BBB inductive properties of pericytes in ECs are

mediated, at least in part, by Wnt/b-catenin signaling. This is in

agreement with the fact that Wnt/b-catenin signaling regulates the

induction and maintenance of BBB characteristics [13,21].

Overall, our results contribute for a better understanding of the

human BBB specifically for its induction and maintenance, while

demonstrates the usefulness of our model for drug discovery

programs.

Supporting Information

Figure S1 Differentiation of human umbilical cord CD34+ cells

into ECs and evaluation of their paracellular permeability. (A)

Schematic representation of the differentiation of hematopoietic

stem cells (CD34+CD45+CD31+KDR2vWF2CD142) into ECs

(2–3 weeks of differentiation) and evaluation of their paracellular

permeability (Pe) using a Transwell system. (B) ECs immediately

after differentiation (before culture in the Transwell system)

Figure 6. Evaluation of Wnt signaling in the induction of BBB properties in ECs. (A) Schematic representation of the methodology used to
assess the modulation of Wnt signaling. CD34+-derived ECs were seeded in a transwell insert coated with Matrigel at a density of 80,000 cells. Wnt
ligands were added in the culture medium at the basolateral side. (B) qRT-PCR results showing differences in expression of claudin-1 and Lef1 genes
on CD34+-derived ECs cultured with or without Wnt3a. Values are Mean 6 SEM, n=4. (C) Schematic representation of the methodology used to
assess the effect of abrogation of Wnt signaling. CD34+-derived ECs were seeded in a transwell insert coated with Matrigel at a density of 80,000 cells
and cultured in medium supplemented with XAV 939 (0.1 and 1 mM). In the bottom of the transwell was seeded 45,000 bovine pericytes. After 4 days
of coculture, the paracellular permeability and cell organization were evaluated. (D) Fluorescence microscopy images showing the expression of ZO-1
in untreated ECs or ECs treated with XAV 939 (1 mM) for 4 days. Scale bar corresponds to 50 mm. (E) Paracellular permeability of untreated ECs or ECs
treated with 0.1 or 1 mM XAV939 for 4 days. Results are Mean 6 SEM (n= 4).
doi:10.1371/journal.pone.0099733.g006
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express typical EC markers including CD31, VE-cadherin

(VECAD), vWF and are able to incorporate AcLDL. Bar

corresponds to 40 mm. (C) ECs after culture in the Transwell

system have typical cobblestone morphology, express vWF and

markers associated to hBECs such as claudin-5, ZO-1, and

occludin; however, the expression of all these markers is

discontinuous and cells do not express claudin-1 at cell-cell

contacts. Bar corresponds to 50 mm. (D) Paracellular permeability

of human ECs in monoculture and bovine ECs in co-culture with

astrocytes for 12 days.

(TIF)

Figure S2 (A) Paracellular permeability of CD34+-derived ECs

after co-culture with different types of cells in EGM-2 supple-

mented with 2% fetal calf serum (FCS). Results are Mean 6 SEM

(n=6). (B) Characterization of bovine pericytes by phase contrast

and Immunocytochemistry for the expression of vimentin, neuro-

glial 2 (NG2), platelet-derived growth factor receptor beta

(PDGFR-b), and a-smooth muscle actin (a-SMA). Scale bar

corresponds to 50 mm. (C) The induction of BBB properties on

CD34+-derived ECs requires the presence of pericytes in the co-

culture system since pericyte-conditioned medium does not have

the same BBB-inductive properties. CM stands for conditioned

media.

(TIF)

Figure S3 (A) Double immunostaining for anti-human receptor

for advanced glycation endproducts (RAGE) and anti-human

organic cation/carnitine transporter (OCTN2; also known as

SLC22A5) in monoculture (A.1) or in co-culture of CD34+-derived

ECs with pericytes (A.2) at day 6. In the co-culture system, RAGE

is present essentially in the luminal side of endothelial cells and

OCTN2 in the abluminal side, while in monoculture, both

markers seem to be located in the same plane. Bar corresponds to

10 mm. (B) Stability of the BBB properties after removal of the

pericytes. CD34+-derived ECs were in co-culture with pericytes for

14 days (1) or in co-culture for 6 days and then 8 days in

monoculture (2).

(TIF)

Table S1 Antibodies used for immunofluorescenceX, flow

cytometryw and Western blot&.

(DOC)

Table S2 Primers used for quantitative real time-PCR and non-

quantitative PCR*.

(DOC)

Table S3 Down-regulated genes in the microarray. Gene

expression on CD34+-derived ECs in co-culture at day 6 and 3

was significantly different regarding BBB markers, specifically for

efflux transporters including solute carrier family members

SLC2A3, SLC6A6 and SLC47A1 (downregulated at day 6) and

non-BBB markers such as channels and extracellular matrix.

These results show that the induction process is a dynamic process

affecting the expression of transporters, channels and ECM

components.

(DOC)

Table S4 Up-regulated genes in the microarray. Gene expres-

sion on CD34+-derived ECs in co-culture at day 6 and 3 was

significantly different regarding BBB markers, specifically for efflux

transporters including solute carrier family members SLC30A3,

SLC26A10, SLC13A3 and SLC44A5 (upregulated at day 6) and

non-BBB markers such as channels and extracellular matrix.

(DOC)

Text S1 Materials and Methods.

(DOC)
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