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Abstract We present a new approach to the issues of space-
time singularities and cosmic censorship in general relativ-
ity. This is based on the idea that standard 4-dimensional
spacetime is the conformal infinity of an ambient metric
for the 5-dimensional Einstein equations with fluid sources.
We then find that the existence of spacetime singularities in
four dimensions is constrained by asymptotic properties of
the ambient 5-metric, while the non-degeneracy of the lat-
ter crucially depends on cosmic censorship holding on the
boundary.

1 Introduction

The geometry and physics of braneworlds [1–4] and holo-
graphic ideas [5] such as the AdS/CFT correspondence [6,7]
have provided conclusive evidence that new structures may
exist in higher dimensions described by some metric g5, with
the 4-dimensional, general relativistic world confined in a
suitable subspace g4. The precise nature of the theory describ-
ing our universe that forms the basis of this is likely a version
of string theory whose realization is presently unknown, and
the same is true in such frameworks of the possible resolu-
tion of the well-known issues of Einstein’s theory, such as
the existence and nature of spacetime singularities and the
justification of cosmic censorship.

Concerning the problem of singularities [8,9] and its
possible resolution in higher dimensions, we note that the
issue is further complicated by the appearance of new sin-
gularities in the geometry of the extra dimensions and the
associated problems that this brings about, cf. [10–17] (and
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references therein). Also, cosmic censorship [18] seems to
emerge as an inherent property of 4-dimensional general rel-
ativistic metrics g4, unconnected to the higher-dimensional
structures presumably responsible to the relativistic singu-
larity resolution.

In this work, we view the 4-dimensional relativistic world
as a suitable asymptotic and holographic limit of structures
that may exist only in higher dimensions. We know [19] how
to asymptotically split a 5-dimensional space g5 containing
a ‘braneworld’ [20–23] g4, and starting with our asymptotic
splitting solutions in the form (M ×R, g5 = a2(y)g4 +dy2),
in the first part of this paper we introduce a new way to con-
nect the properties of the 4-dimensional general relativistic
world to a possible higher-dimensional theory (in 5 dimen-
sions).

The basic idea of this work is that our world is the con-
formal infinity of a certain ‘ambient’ metric in one higher
dimension. (We use the adjective ‘ambient’ to declare an
analogy with the Fefferman–Graham ambient construction
[24].) The ambient metric (V = M × R, g+) satisfies the
5-dimensional Einstein equations with fluid sources, but it is
constructed locally in an open neighborhood of the bound-
ary, 4-dimensional conformal geometry (M, [g4]), and has a
suitable metric g̊|M in the conformal class as its conformal
infinity. Because of its dependence on formal power series,
this construction relies on both asymptotic as well as holo-
graphic properties of the higher-dimensional space, and pos-
sesses various novel properties. However, our approach is
distinct from the general braneworld approach as well as the
AdS/CFT and related approaches, in that in the former the
brane cannot be the conformal infinity of the bulk geom-
etry without spoiling the solutions completely, whereas in
the latter one does not deal with gravitational effects on the
boundary.

This paper falls into three parts. The first part, up to Sect.
3, deals with the general motivation and outlines the basic
features of our approach. In the next section we discusssome
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of the elements of standard braneworld cosmology relevant
to the present context, and in Sect. 3 we outline in a series of
distinct steps an alternative approach and method we use to
deal with several of the features of the standard braneworld
model. In Part 2, which includes Sects. 4–6, we expand on the
various justifications of the steps involved in our construc-
tion and describe the normal form of the ambient metric, its
conformal infinity and the asymptotic conditions, which are
all key elements of ambient cosmology. In the third part of
this work, Sects. 7 and 8, we discuss implications of this con-
struction for the existence of spacetime singularities and the
question of cosmic censorship in the 4-dimensional boundary
of the ambient world.

2 The standard braneworld cosmology

In previous works [20–23], we studied the asymptotic prop-
erties of bulk 5-geometries (V, g5) containing an embed-
ded 4-dimensional braneworld (M, g4) that was either a
4-dimensional Minkowski, or de Sitter, or Anti-de Sitter
spacetime, and showed that, in general, asymptotic solutions
have a form dictated by the method of asymptotic splittings
[19], namely,

a(y) = y p
∞∑

i=0

ci yi/s, y → 0, (2.1)

where the first constant c0 in the series is nonzero (this is
the dominant balance). Here, y denotes the coordinate of the
extra dimension in the 5-dimensional geometry g5, where

g5 = a2(y)g4 + dy2, (2.2)

g4 being a 4-dimensional braneworld metric with signature
(− + ++), and a(y) is a warp factor in the g5 geometry.
The metric g5 is taken to satisfy the 5-dimensional Einstein
equations

G AB = TAB, (2.3)

where A, B = 1, 2, 3, 4, 5, and TAB is the stress tensor of an
analog of a perfect fluid with equation of state P = γρ,
where the ‘pressure’ P(y) and the ‘energy density’ ρ(y)

depend only on y,1 filling the 5-dimensional geometry (other
cases like a bulk scalar field or a mixture of bulk fluids con-
sidered in [20–23] also lead to the general form (2.1) for
the warp factor of the 5-dimensional geometry (2.2)). These
equations become, for the metric (2.2), a dynamical system
of the form ẋ = f (x), with the solution vector having the
form x = (a, ȧ, ρ), and f being a suitable, smooth field

1 In the following, we drop the quotes for notational simplicity, even if
TAB is not a perfect fluid in the usual cosmological sense.

(cf. the references mentioned above). The asymptotic solu-
tions for the energy density ρ also have a form similar to
(2.1).

Further, the constants ci , i = 0, 1, 2, . . . in (2.1) are
determined recursively by the method of asymptotic split-
tings starting at 0th order with the dominant balance form
c0 y p, p = m/ l ∈ Q, m ∈ Z, l ∈ N (with the dominant bal-
ance constant c0 nonzero), and proceeding in a term-by-term
fashion, while s is defined to be any common multiple of the
denominators of the positive eigenvalues of the Kovalevskaya
matrix (cf. [19]).

This procedure leads to asymptotic solutions given gener-
ically by (2.1) (and similarly for the other unknowns), that
is, Puiseux or Fuchsian series (meaning series with fractional
exponents, and with or without a constant first term, respec-
tively) describing the geometry locally in a small neighbor-
hood around the location of the brane at y = 0, or at infinity.

The braneworld setup described above has the following
important properties: In the presence of a non-trivial fluid

• all 5-dimensional solutions are singular at a finite, arbi-
trary distance from the position of the brane, and the
metric g5 cannot be continued to arbitrary values in the
y-dimension;

• the properties of the metric g4 do not follow from those
of the bulk metric g5;

• there is no conformal infinity for the 5-dimensional
geometry.

These properties are common not only for the models in
[20–23] but, in fact, they are characteristic for all models of
references [10–17] (and related references therein). The first
point means that there are genuine singularities in the metric
and the curvatures in the 5-dimensional geometry which do
not allow the metric to be continued smoothly beyond them.

For the second point, we note that in most models of this
sort the 4-metric is either taken to be fixed (e.g., Minkowski),
or satisfying a 4-dimensional version of the Einstein equa-
tions with induced matter fields on the braneworld. In the
latter case, although there are important differences, singu-
larities are a typical feature of the evolution, in much the
same way as in standard general relativity.

For the third point in the enumeration above, we note
that in braneworld models the brane represents some kind of
‘boundary’ for the 5-dimensional spacetime, often a domain
wall with suitable boundary conditions, but it can never be
a conformal boundary. The reason is very simple: Trying to
bring a solution of the form (2.2) for the warp factor of the
5-dimensional geometry (having all the required properties
analyzed in detail in the references given above) to a suitable
‘conformal infinity’ form g̃5 = �2g5 by multiplying it by
a conformal factor, would completely destroy the properties
of the original solution. A consequence of this is that there
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is no possibility of a holographic interpretation and no way
to realize a boundary CFT.

A closely related issue is that an AdS/CFT or related
approach (such as the so-called ‘holographic renormaliza-
tion cf. e.g., [25]) could not really be used for the problems
we have in mind here, simply because there is no gravity on
the boundary. In such approaches, one starts from solutions
in the bulk satisfying Einstein’s equations with sources there,
and then one produces a conformal structure on the bound-
ary on which a CFT resides without any mention of possible
gravitational effects on the boundary.

3 The ambient cosmology

In this paper, we follow an inverse route and present a new
approach that is distinctly different from any AdS/CFT-based
or braneworld approach. Starting from a given metric defined
on the boundary, we then consider the conformal structure
of that boundary metric in the sense of [26], and use that to
construct in a series of steps, a 5-dimensional metric with
the property that after the construction it returns a suitable
4-metric belonging to the conformal structure on the bound-
ary that we started with. In this sense, our approach is closer
in spirit to the original Fefferman–Graham construction.

In the resulting ‘ambient’, 4-dimensional universe intro-
duced here, the classical singularities and the question of
cosmic censorship in the 4-dimensional conformal boundary
of the 5-dimensional ambient space acquire new meanings.
The general procedure consists of starting with a conformal
structure on a 4-dimensional boundary, and constructing the
ambient 5-metric corresponding to that structure which sat-
isfies the 5-dimensional Einstein-fluid equations and has a
nice conformal infinity.

In particular, we prove that corresponding to each 4-
metric g in the conformal class [g4] of another, well-behaved,
4-metric g4 on the 4-boundary M , that is, g4 = �2g, there is
a new 4-metric g̊|M , a constant rescaling of g4, which is the
conformal infinity of the ambient 5-metric g+ of the metric
g. The ambient metric g+ is defined on the ‘ambient’ space-
time V = M × R and satisfies the 5-dimensional Einstein
equations with a fluid source.

More specifically, we show how to extend the 5-metric
(2.2) corresponding to the ‘nice’ 4-metric g4, to a new,
5-dimensional metric g4,+ (this is the ambient metric) on
V [a point in V has coordinates (xμ,w)], such that the latter
has a nice conformal infinity. Then we show that any 4-metric
g on the boundary M that belongs to the conformal class of
g4 has itself an ambient 5-metric g+ with conformal infinity
(M, g̊|M ) which is a constant rescaling of the nice metric
g4. Hence, our construction produces from a given metric
g ∈ [g4] its ambient metric whose conformal infinity g̊|M

acquires various important and improved properties over the
original 4-metric g.

The aforementioned extension is achieved in a series of
steps as follows:

1. Take a 4-dimensional, non-degenerate ‘initial’ metric
gin(xμ) on spacetime M . This step essentially involves
the Penrose conformal method [26].

2. Conformally deform gin to a new metric g4 = �2gin by
choosing a suitable conformal factor �. This step con-
nects the ‘bad’ metric gin with the ‘nice’, non-degenerate,
and non-singular metric g4(xμ).

3. Using the method of asymptotic splittings for the 5-
dimensional Einstein equations with an arbitrary (with
respect to the fluid parameter γ ) fluid (2.3), solve for the
5-dimensional metric g5 = a2(y)g4 +dy2 and the matter
density ρ5.

4. Transform the solutions of step 3 to suitable factored
forms of the general type, (divergent part) × (smooth
part).

5. Construct the ‘ambient’ metric in normal form, g+, for
the 5-dim Einstein equations (2.3) with a suitable fluid.

6. (M, [g4]) is the conformal infinity of (V, g+), that is,
I = ∂V = M .

7. The metric g+ is conformally compact. This means that a
suitable metric g̊ constructed from g+ extends smoothly
to V , and its restriction to M , g̊|M , is non-degenerate (i.e.,
maintains the same signature also on M , cf. [24] for this
definition).

8. The conformal infinity M of the ambient metric g+ of
any metric in the conformal class [g4] is controlled by the
behavior of a constant rescaling of the ‘nice’ metric g4.

9. As a conformal manifold, (M, [g4]) has no singularities.
This means that there is always a regular metric on M :
the metric g̊|M belonging to [g4] is regular. (See Sect. 7.)

10. Cosmic censorship on (M, [g4]) is equivalent to the valid-
ity of the asymptotic condition satisfied by the ambient
metric g̊|M . (See Sect. 8.)

Some explanatory remarks are in order here. The initial
4-metric gin of step 1 is any metric with a conformal infinity.
For example, de Sitter, Anti-de Sitter, or Minkowski metrics,
when written is suitable forms using the conformal method
[26], show explicitly their conformal infinities. Similarly,
for the Schwarszchild, Reissner–Nordstrom, or Kerr met-
rics, gin represents their maximal analytic extensions (e.g.,
the Kruskal, double-null forms, etc.). The metric gin written
in this way, has a regular region which (like in the Einstein
static universe for the exact models) is bounded by certain
hypersurfaces, the conformal boundary. This boundary repre-
sents the various infinities of the metric, but most importantly
also contains the singularities (in the sense of the classical
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singularity theorems [27]), previously located at some finite
point not at infinity.

For example, in the FRW spaces, the bounding hypersur-
faces of the metric gin represent points at infinity, but also
contain the various singular points as some finite part of the
conformal boundary at infinity. So for instance the singular-
ity at t = 0 is represented by a spacelike surface (generally
part of the bounding hypersurfaces) at infinity. This is the
meaning of the conformal method [26], and it applies simi-
larly to other exact spacetimes (see also [27]). This is very
convenient for what follows because a t = 0, proper time
singularity surface, which would prevent us from compar-
ing the situation with a better metric in connection with the
ambient construction, has now moved to infinity, and we can
proceed with our 5-dimensional constructions even for sin-
gular 4-metrics (see below and especially Sect. 7).

In step 2, the term ‘nice’ has a suitable technical mean-
ing giving better asymptotic properties over the metric gin

that we started with. In this sense, considering the confor-
mal form of spacetimes in step 1 and having the classical
singularities at the conformal boundary by that construction,
has the advantage that we may basically kill off the infini-
ties and singularities of the gin metric simply by multiplying
by a suitable conformal factor, and so end up with a regular
spacetime, g4, for instance, Minkowski or de Sitter or Anti-
de Sitter. In all cases, we will have a boundary M possessing
a conformal structure [g4], where any two metrics belong-
ing to [g4] are conformal transformations of each other. For
instance, taking gin to be the flat FRW metric in its conformal
form, or an exact black hole spacetime (like the maximally
extended spacetimes mentioned above), we may choose a
suitable, smooth conformal factor in step 2, and obtain the
Minkowski metric for g4.

We also note that in steps 1–2, we do not impose any
dynamical equations for the metric gin(xμ) or g4. In this way,
we avoid the usual problems of having to decide which of
the two, conformally related metrics represents a ‘physical’
metric among the two conformal ‘frames’ (cf. [28–30] and
references therein). It is an important feature of the ambient
construction that in the end, for any two conformally related,
4-dimensional metrics belonging to the conformal structure
[g4] of M , their ambient metrics restricted on the boundary
M can be chosen to be not very different from the restricted
ambient metric corresponding to g4.

In step 3, the g4 metric is the one from step 2. It may also
be gin(xμ) from step 1, provided we exclude the points with
coordinates xμ on the singular boundary where the metric
becomes infinite. One may wonder whether we are allowed
to exclude such ‘ideal’ points from the metric gin(xμ) in
the sought-for 5-dimensional ansatz a2(y)gin(xμ) + dy2,
because such 5-dimensional solutions are obviously not
defined there. However, since we do not impose any field
equations on M , we do not know the domain of definition of

the metric gin(xμ), even locally, starting from initial data on
M . Therefore the only way to proceed is if we ‘move’ all pos-
sible singular finite points of the metric gin(xμ) to become
ideal points at infinity, so that gin(xμ) is regular elsewhere
on M . This is the purpose of using the conformal method on
gin(xμ). Then, in step 3, we build asymptotic 5-dimensional
solutions in the form of formal series expansions using the
technique of asymptotic splittings [19]. This method pro-
duces solutions for the warp factor and the density of the form
a(y) = y p1

∑∞
i=0 ci yi/s, ρ(y) = y p2

∑∞
i=0 di yi/s, y →

0. All such solutions are singular in a finite distance ys from
the boundary located at y = 0 in the variable y − ys . For
notational simplicity we set ys = 0 here and in everything
below, but this has the apparent effect of moving the singu-
larity from the point at finite distance ys from the boundary,
where it was originally located, to the boundary of the ambi-
ent space itself at y = 0. We also note that according to the
method of asymptotic splittings, the denominator s appear-
ing in such expansions is the same for all components of the
solution x(y) = (a, ȧ, ρ) of the dynamical system ẋ = f (x)

representing the 5-dimensional Einstein equations with the
aforementioned fluid source.

Steps 4, 5 are studied in Sect. 4. In step 4, we show
how to convert solutions of step 3 to the factored forms,
a(r) = rκ1 ξ(r), ρ(r) = rκ2 ζ(r) as r → 0, which contain
a divergent, power-law part, and a smooth, convergent part.
It is curious that this step necessarily introduces an asymme-
try in the y-dimension, in the sense that we no longer can
have invariance under the symmetry y → −y in the extra
dimension y. The transformation that prepares the solutions
to be brought to a suitable form that implies the convergence
we need (so that we may apply various relevant theorems,
see the first half of Sect. 4), is a very simple change in the
parametrization of the extra dimension, r = r(y), which
itself has certain properties: (1) It is consistent with the (later)
property that the 5-dimensional spacetime has a conformal
boundary at y = 0, (2) it is well-defined only in the half-
space y > 0,2 (3) the boundary in the new parameter r is
again located at 0, and (4) it strongly highlights the particu-
lar features of the series solutions we use.

We continue, in the second half of Sect. 4, with step 5:
the ambient metric has the form g+ = w−n

(
σ 2(w)g4(xμ)

+dw2
)
, n ∈ Q

+, as w → 0, with σ(w) a smooth (infinitely
differentiable) function such that σ(0) is a nonzero constant.
The metric g+ (essentially g5 up to constant rescalings in
different variables) solves the 5-dimensional Einstein equa-
tions (2.3) with a suitable fluid with density ρ+(w) that has
the generic form ρ+ = w−zθ(w), z ∈ Z and θ(w) smooth.
Both functions w(r) and w(y) are well-defined and invert-
ible.

2 This is similar to the situation with Minkowski space being the bound-
ary of the AdS space in the AdS/CFT correspondence.
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Step 6 is studied in Sect. 5 after we have introduced the
metric g̊. For this step, we prove that when g̊ is restricted
on M , it becomes a metric in the conformal class [g4]. In
the first part of Sect. 5, we also complete the construction
of the ambient metric started in the previous section, for two
special cases which need for their treatment the introduction
of the metric g̊.

The property of conformal compactness of step 7 is shown
later in Sect. 5. It means that we can always pass to the metric
g̊ = ω(w)g+, ω smooth (in a slight abuse of language, we
will also call g̊ the ambient metric), which extends smoothly
on V = M × R, and when restricted to the first factor M
gives the metric g̊|M that is non-degenerate. Although g̊ does
not solve the Einstein equations like g+, they both share the
same conformal boundary and so everything we say about
the behavior of g̊ on M holds essentially also for g+.

For step 8 we show in Sect. 6 that for a metric g ∈ [g4], the
difference of the two ambient metrics g̊ − g̊4 has a restriction
on M which satisfies a set of asymptotic conditions. These
conditions imply that the ambient metric g̊|M (0), for any
g ∈ [g4], is a constant rescaling of g4, and therefore has an
improved behavior over the original 4-metric g.

We thus end up with the following situation. There is an
ambient manifold (V, g+) on which we have the Einstein
equations (2.3) valid for the ambient metric g+ as defined
above. The ambient spacetime has a boundary where only
a conformal structure [g4], not a unique metric, is defined.
The construction is local in nature and shows that the asymp-
totic structure of the ambient 5-dimensional geometry g+ at
its conformal boundary (M, [g4]) has conformal infinity the
metric g̊|M as defined above. For any given 4-metric g ∈ [g4],
its ambient 5-metric is given by

g+ = w−n(gw + dw2), (3.1)

where

gw =
∞∑

i=0

ciw
i g, w → 0, (3.2)

with the coefficient of g being a convergent formal power
series of w, such that g0 = c0g (c0 = σ(0) is a nonzero con-
stant). Hence, gw represents a 1-parameter family of bound-
ary metrics constructed recursively by the method of asymp-
totic splittings, and it is asymptotic to σ 2(w)g, where σ 2 is
the asymptotic smooth sum of the power series. This sum, in
the limit w → 0, gives the metric g̊|M (0) belonging in the
conformal structure of the boundary [g4] and having constant
conformal factor.

This construction has implications for singularities and the
question of cosmic censorship on the boundary 4-spacetime
M as we discuss in Sects. 7 and 8.

4 The normal form of the ambient cosmology

It is not immediately obvious that a general Fuchsian formal
series leads to a well-defined function; in fact, such a series
generally will not because it either contains general powers
of the form

∑∞
i=−∞ ci yηi , ηi ∈ Q, or log terms, or both,

cf. [31].
However, in this section we show that due to its special

form, that is, having equal denominators (all being equal
to s), the series factor in Eq. (2.1) converges provided we
introduce an asymmetry in the y dimension, and this gives an
important first step to the realization of our basic construction
in this and the following sections.

To begin, we introduce the parameter

r = y1/sl , p = m/ l, m ∈ Z, l ∈ N, (4.1)

into (2.1) and notice that this is real provided we choose
y > 0, and well-defined since s, l are positive integers by
definition. This implies that we can have no symmetry of the
form y → −y in V . Then it follows that (4.1) is an invertible
transformation because dr/dy = (1/sl)y1/sl−1 > 0.

Since r → 0 when y → 0, the Puiseux series (2.1) then
trivially becomes a formal power series in disguise,

a(r) = rsm
∞∑

i=0

cir
il , r → 0. (4.2)

In this new form the convergence of the series in (4.2) fol-
lows because according to a theorem of Borel (cf. Ref. [32],
p. 300), when the coefficients ci are real, the formal power
series

∑∞
i=0 cir i always converges to a smooth function

σ : I = (−ε, ε) → R, for some ε > 0. A basic point
in the proof of Borel’s theorem is to use the mean value the-
orem of differential calculus and the constants ci to extend
the derivative σ (n) as a continuous function everywhere in I
by assigning it, at 0, the value σ (n)(0) = cn, n = 0, 1, 2, · · · .
The resulting function σ will also be real analytic in a small
neighborhood around each nonzero point of the interval I .
Therefore the warp factor will assume the form3

a(r) = rκ σ (r), as r → 0, κ = sm ∈ Z, (4.3)

so that a will always be the product of some smooth (in
fact real analytic) function times the factor rκ . We note that
because of the y-asymmetry we must necessarily have that
r > 0.

Now since p is a parameter in the theory (determined
by the structure of the field equations and the method of
asymptotic splittings), there is the issue of understanding

3 Actually, the theorem of Borel is a special case of Ritt’s theorem
about the convergence of formal power series with complex coefficients,
cf [32], p. 299. Such a power series will always be asymptotic to an
analytic function σ on an angular-shaped sector S, that is we have
σ(z) ∼ ∑∞

i=0 ci zi , z → 0, on S.
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the physical significance of the solutions as p varies and,
in particular, in the limit when p → ∞ in (2.1). We showed
above that when p is bounded, the warp factor reduces to
the canonical form (4.3), and so the 5-dimensional geometry
(2.2) becomes

g5(r) = r2sm
(
σ 2g4 + r−2qdr2

)
, q = sm − sl + 1.

(4.4)

We note here that q �= 1, iff m �= l (i.e., p �= 1). In this form,
σ is a new formal power series with coefficients determined
recursively by the method of asymptotic splittings. We use
again the same letter σ(r), but now r stands for the rescaled
variable r/sl which is also necessarily positive, and there is an
overall additional constant factor (1/sl)2sm multiplying the
brackets (again not shown for simplicity). To get σ , one con-
siders the dominant part f (0) of the vector field, and the eigen-
values of the Kowalevskaya matrix K = D f (0)(A) − diagP
(where the dominant balance is At P ) which are rational num-
bers, and where s is defined to be the least common multiple
of their denominators.

When the exponent q defined in Eq. (4.4) is different from
one we may introduce a new parameter w (not necessarily
positive this time), with

dw = r−qdr. (4.5)

Because y > 0, we see that dw/dr = y−q/sl and dw/dy =
(1/sl)y−p are positive, and so both reparametrizations are
invertible. Then the 5-dimensional geometry (4.4) becomes

g+ = w−n
(
σ 2(w)g4(xμ) + dw2

)
, w → 0, (4.6)

where

− n = 2m

l − m
= 2p

1 − p
. (4.7)

We call g+, which stands for g5(w) (possibly rescaled by a
constant factor of the form (1 − q)−2sm/(1−q) if necessary),
the normal form of the ambient metric. The exponent n sat-
isfies the following properties:

• 1 − p �= 0;
• −n < 0;
• n = n(p), and in fact, −n �= −2;
• −n → −2, as p → ∞.

Before we discuss the properties of this enumeration, we note
here that there are two cases, for p = 1 (already excluded
from the discussion above when we assumed which q �= 1)
and when p ∈ (0, 1) (when w → 0), that are not included
in the above discussion. For these two cases, the prefactor
in the normal form of the ambient metric g+ in Eq. (4.6)
tends to zero and is not divergent. We shall discuss these two
cases separately in the next section, when we introduce the
metric g̊.

Returning to the enumeration above, the first property
means that the exponent in the ambient metric (4.6) is always
well-defined. We note that σ is a new smooth (in fact, real
analytic) function, for which we keep the same symbol as
before. The second property justifies the name ‘normal form’
which we gave to the ambient metric (4.6), in analogy to
the Fefferman–Graham (FM) ambient metric construction
[24]. Their brilliant work provides an existence theorem for
the ambient metric in the case of the 5-dimensional Einstein
equations with a cosmological constant, and they also show
that their ambient metric g+ = w−2(σ 2g4 + dw2) is essen-
tially unique. However, the third property of n implies that
our ambient metric is distinct from the FM metrics [the lat-
ter always have the constant characteristic exponent equal to
−2 in place of our −n(p) in (4.6)]. This has a novel conse-
quence for our metrics g̊ (to be introduced shortly below):
that instead of having uniqueness for g+, we necessarily find
a non-trivial asymptotic condition on the scri of the ambient
metric g+ for g̊|M . The last property of n in the enumeration
above implies that the FM metrics appear in this context as
the p → +∞ limit of our geometry.

The form of the ambient metric (4.6) implies that the
original (asymptotic splitting) form of the density ρ =
y p′ ∑∞

i=0 ci yi/s , with p′ = m′/ l ′ ∈ Q, m′ ∈ Z, l ′ ∈ N,
becomes, in terms of r ,

ρ(r) = rsm′
∞∑

i=0

c′
i r

il ′, (4.8)

and therefore it takes the generic form (for p �= 1)

ρ+ = wzθ(w), z = p′

1 − p

l ′

l
, θ smooth. (4.9)

When p = 1, we find, ρ(w) = em′wθ(w), and then the
transformation w → 1/w makes the density a C∞ function,
if we define ρ(0) = 0.

5 The conformal infinity of the ambient metric

To complete the construction of the ambient metric of the
previous section, we discuss the two cases we left previously,
namely, when p = 1 and when p ∈ (0, 1). To proceed, on
V = M × R, we define the product metric

g̊ = ω2g+, (5.1)

where ω > 0 on V \ M , and zero on M . (Later in this section,
we choose ω = wn , but this is not important presently.)
We will shortly see that in this form, the metric g̊ in Eq.
(5.1) represents the regular (see below) conformal infinity of
g+, and justifies step 6 of Sect. 3. This means that when g+
blows up to +∞ at points of the boundary M , the conformal
factor ω tends to zero and so is responsible for a conformal
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squashing of g+ producing a finite g̊ at infinity, whereas when
g+ crunches to zero, ω blows up to infinity, again making g̊
finite there. All results above correspond to ω → 0 at the
conformal infinity of g+, since g+ diverged there, but when
p = 1, or p ∈ (0, 1), we shall find that ω → ∞.

When p = 1, the ambient metric will read g+ =
e2w(σ 2(w)g4(xμ) + dw2), where w/s = ln r , and so at the
conformal boundary (i.e., as r → 0), the conformal factor of
the ambient 5-geometry in Eq. (5.1), ω2 = e−2w, will tend
to +∞ at I . Similarly, when p ∈ (0, 1), then −n > 0, and
the ring metric becomes g̊ = wng+, which means that the
conformal factor ω = wn, n < 0, diverges at the boundary
(w → 0 now). We therefore see that both these cases are
exceptional in the sense that the conformal factor ω diverges
at the boundary points, instead of tending to zero there as
it does for all other p values. Hence, it appears that when
p ∈ (0, 1], the behavior of ω which describes the scaling
between the two metrics g̊ and g+ is somehow inverted, so
that ω becomes its reciprocal, ω → 1/ω.

Since the exponent p is generically [20–23] a function
of the equation-of-state parameter γ in the 5-fluid equation
of state P = γρ in Eqs. (2.1)–(2.3), we may interpret the
above situation by adopting the view that ω (or its inverse)
as a function of γ is not smooth. In general, ω is also a
real-valued function defined on the set M × R, so we may
write ω = ωγ (xμ,w), and think of the conformal factor ω

as a 1-parameter family of functions on V . The description
of the conformal boundary M in terms of properties of the
family ωγ is a more complicated problem, currently under
investigation.

Having constructed the ambient metric g+ given by (4.6),
steps 6, 7 of the construction now follow. For, if on V =
M × R we define the product metric

g̊ = wng+ = σ 2g4 + dw2, (5.2)

and since g4 is non-singular, we find that

det g̊ �= 0, σ 2(w) = c0 + c1w + · · · , (5.3)

so the metric (5.2) is manifestly regular at w = 0. Also, the
metric (wng+)|M = σ 2(w)g4 is clearly a metric belonging
in the conformal class [g4] (albeit one with smooth conformal
factor not depending on xμ but only on w). Thus a conformal
infinity exists for the ambient metric g+ given by (4.6), and
step 6 follows.

For the conformal compactness of the ambient metric g+
of step 7 of Sect. 3, we first note that since σ(w) is a smooth
function, we find that (5.2) extends smoothly everywhere in
the ambient spacetime V . As we already discussed, the metric
g̊ is non-unique in the sense that any function ω(w) with the
required properties will do. Here, we have chosen ω = wn ,
but this choice is not unique.

To show the non-degeneracy part of the property of con-
formal compactness, we proceed as follows. Since g̊ is a

spacetime metric, it will have indefinite signature. Because
its restriction to the first factor, g̊|M , that is, the pullback
j∗(g̊) by the inclusion map j : M → V , is given by the
form

g̊|M = σ 2(w)g4, (5.4)

it follows that g̊|M will be a well-defined metric on M if
and only if g4 is non-degenerate, so that g̊ sustains the same
signature also on M . Now, the Penrose construction [26] uti-
lized in step 2 generally guarantees the non-degeneracy of
the ‘nice’ metric g4. In general, the non-degeneracy of the
metric g̊|M dictates that g4 should not become degenerate
at any point of M , in any case, we view (5.4) as a kind of
compatibility condition. We shall have to say more on this in
Sect. 8.

To prepare for step 8 and the asymptotic conditions treated
next, we end this section with the following remarks. From
the results up to now, it follows that for two conformally
related 4-metrics of M , g1 = �2g2, the difference of their
ambient metrics on M is at best (meaning even for w = 0)
equal to g̊1|M (0)− g̊2|M (0) = c1g1 −c2g2, with c1, c2 being
the well-defined, nonzero constants ci = σ 2

i (0), i = 1, 2.
So it is not obviously zero, and uniqueness of the ambient
metric cannot really follow by simply quoting the case of
the FG metrics (cf. [24], chapters 3, 4). This is because in
their metrics in normal form, g+ = w−2(gw + dw2), the
1-parameter family gw of metrics on M does not necessarily
have the same form as our explicitly constructed σ 2(w)g. In
any case, they do not have a fluid in the ambient space like
we do, only a cosmological constant, and so an adaptation of
their uniqueness results to our case is not straightforward. We
also note that while the property of being an Einstein space,
i.e., Ric(g4) + λg4 = 0, is preserved under a conformal
rescaling with constant factor, g4 → cg4, this is not so for
solutions of the Einstein equations with a fluid source.

6 The asymptotic conditions

In this section we focus on proving step 8 of Sect. 3, in
particular, we show that the ambient metric of any 4-metric
in the conformal class of a given 4-metric on M , although
not unique, has a ‘universal’ conformal infinity in the sense
of giving a hugely simplified geometry in comparison to the
initial 4-metric on M it arose from.

In particular, we show that if we take two 4-metrics g1, g2

on M belonging to the same conformal class, that is, such that
there is a smooth conformal factor �(xμ) with g1 = �2g2,
then the M-restriction of the ambient metric of g2 at w = 0,
that is, the metric g̊2|M (0), equals a nonzero constant times
the ‘good’ metric g1(xμ). We may think of g1 as a ‘good’
metric as in step 2 and g2 as a ‘bad’ metric of step 1—i.e.,
one blowing up at � = 0, the scri of M , IM .
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For two such 4-metrics g1, g2 of M , their ambient metrics
on M × R are given as the product metrics

g̊i (w) = σ 2
i (w)gi (xμ) + dw2, i = 1, 2. (6.1)

Since g2(xμ) would possibly become infinite at points of
its conformal boundary, we exclude such points xμ from
the right hand side of (6.1) for g̊2(w). Then the restrictions
to M of the two ambient metrics in (6.1) will differ by the
symmetric 2-tensor ĝ(w) = g̊1|M (w) − g̊2|M (w) where,

ĝ(w) = g2

(
σ 2

1 (w)�2(xμ) − σ 2
2 (w)

)
, (6.2)

and the problem becomes one of deciding how bad this dif-
ference can really be. This difference measures how far the
ambient metric of the ‘bad’ metric g2 is from that of the good
metric g1. If this difference were not near g1, then the ambi-
ent construction could not really be considered as something
worth doing. On the other hand, if this difference were zero
then the ambient metric would be the one and only metric
for all 4-metrics in the conformal class of a given 4-metric
on M . This is the situation with the FG metrics [24]. Below,
we show that in our construction this difference, although
nonzero, becomes a constant multiple of g1, and so the ambi-
ent metric of any g2 in the conformal class of g1 corresponds
to a great simplification over the original situation of having
the two metrics g1, g2 on M . We note that the difference ĝ(w)

is not a well-defined metric on V because it is degenerate,
and so its projection to M is not defined. Only first restricting
the two ambient metrics (6.1) to M as in (5.4) and then tak-
ing their difference, produce a non-degenerate, well-defined
tensor field on M (see also below).

Setting w = 0 in Eq. (6.2), the difference will be,

ĝ|M = g2(c0�
2(xμ) − c′

0), (6.3)

where c0, c′
0 are the first constants in the formal series of the

two ambient metrics. Since these constants are nonzero and
uniquely determined by the method of asymptotic splittings,
while ∇g1� �= 0, as this is assumed in the conformal method
[26] so that � is not a constant on M , the term in the brackets
in Eq. (6.3) is not zero. Therefore, the function in the brackets
in Eq. (6.2) is not identically zero. Hence, we may regard
this ĝ(w) from Eq. (6.2) as a well-defined, 2-tensor living
on the original 4-manifold M , which has the variable w as
a parameter. In this sense, ĝ(w) represents a 1-parameter
family of 4-dimensional tensor fields on M depending on w,
and so we can take successive derivatives of ĝ(w) in Eq. (6.2)
with respect to w and then set w = 0.

Now, we know from the method of asymptotic splittings
that at finite orders in the series σ1, σ2, there appear arbi-
trary constants as coefficients precisely in those terms in
the series where the exponents equal the eigenvalues of the
Kowalevskaya matrix. So if the order i = i0 is such that
i0/s = ρi0 , where ρi0 is an eigenvalue of the Kowalevskaya

matrix (for the 5-dimensional Einstein equations with the
fluid source we solved to find g+), then the corresponding
coefficient ci0 in front of that term in the series σ(w) =∑∞

i ciw
i will be an arbitrary constant. We know that arbi-

trary constants appear in the terms with exponents equal to
those eigenvalues of the Kowalevskaya matrix (the so-called
‘K-exponents’) which have strictly positive real parts (cor-
responding to the unstable eigenspaces), and this property
is not only restricted to the case of the Puiseux series (i.e.,
e rational exponents), but continues to hold for the general
�-series containing log terms. Provided we set the arbitrary
coefficients corresponding to the negative eigenvalues equal
to zero, the resulting series developments always exist as
convergent sums [31].

We note in passing that our restriction to Puiseux series
from the beginning in this work was because we looked for
general solutions to the 5-dimensional Einstein equations
with fluid sources in [20–23] in an effort to answer the ques-
tion whether or not generic solutions of the system were
singular, that is, whether singularities were a typical feature
of all solutions in 5-dimensions. Had we instead started with
a �-series ansatz containing log terms and set to zero some
of the arbitrary constants in the supposed solutions at the end
would produce only particular solutions, since we would have
sacrificed some of the arbitrary constants, and we could not
contribute usefully to that search. However, for the purposes
of the arguments in the current work, we only need some (in
particular, the positive) arbitrary constants to be nonzero, not
all, and therefore we conclude that all arguments presently
would continue to be valid had we considered a �-series
instead of simple Puiseux expansions from the beginning.

We can now differentiate Eq. (6.2) with respect to w pre-
cisely i1 times, where i1 is the order where the first arbitrary
coefficient c′

i1
in the expansion σ 2

2 (w) associated with the
‘bad’ metric g2 appears. Then Eq. (6.2) becomes

∂ i1 ĝ

∂wi1
(w) = g2

(
(ci1 + ci1+1w

i1+1 + · · · )�2(xμ)

−(c′
i1

+ c′
i1+1w

i1+1 + · · · )
)

. (6.4)

Here ci1 is fixed but the constant c′
i1

is arbitrary. This is
so because the Kowalevskaya matrices corresponding to the
metrics g1, g2 do not in general have the same eigenvalues,
so that one should not expect that both constant coefficients
ci1 , c′

i1
will be arbitrary at the same order i1. Setting now

w = 0, we find that

∂ i1 ĝ

∂wi1

∣∣∣∣
w=0 = g2

(
ci1�

2(xμ) − c′
i1

)
. (6.5)

In this equation, unlike Eq. (6.3), we are allowed to set the
arbitrary constant c′

i1
= 0. Then we find the following asymp-

totic condition:
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∂ i1 ĝ

∂wi1

∣∣∣∣
w=0 = ci1 g1(xμ), on M, (6.6)

where g1 is the 4-dimensional metric on M with ‘nice’ prop-
erties. We note the following remarkable fact: Although from
the beginning of this section and up to and including Eq. (6.5)
we had to exclude the singular boundary points where the
‘bad’ metric g2 would diverge, Eq. (6.6) holds even at those
singular points because g1 is perfectly regular there.

Now suppose that the Kowalevskaya matrix correspond-
ing to the 5-dimensional Einstein equations for ambient met-
ric g2,+ of the ‘bad’ metric g2 has exactly k positive eigen-
values ρi1 = i1/s, · · · ρik = ik/s. Following the procedure
above, we will end up with k asymptotic conditions, one for
each one of the k derivatives of various orders of the metric
ĝ, evaluated at w = 0:

∂ i1 ĝ

∂wi1

∣∣∣∣
w=0 = ci1 g1, . . . ,

∂ ik ĝ

∂wik

∣∣∣∣
w=0 = cik g1, on M.

(6.7)

This is the set of the required asymptotic conditions we need
to determine ĝ. For, since we know that k derivatives of that
function at 0 are all constants times the metric g1, we con-
clude that

ĝ|M (w) = eawg1(xμ), a =
∑

a j c j , j = i1, · · · , ik .

(6.8)

The k unknown constant coefficients a j are found by solving
the nonlinear algebraic system
(∑

a j c j

)i1 = ci1 , . . . ,
(∑

a j c j

)ik = cik . (6.9)

This system always has a solution for a in the complex field.
We note that Eq. (6.8) holds also for the singular boundary
of the ‘bad’ metric g2 for the same reason as before, namely,
because g1 is perfectly regular at these points.

We may think of the result (6.8) as valid in a small,
local neighborhood around w = 0, because the extension
of the conformal boundary of the 4-metric g1 to V is regular
since we proved that g̊1 is regular in V . There the difference
ĝ|M (w) is a well-behaved multiple of g1, the factor depend-
ing only on w. Setting w = 0 in Eq. (6.8), we find that

g̊1|M (0) − g̊2|M (0) = g1, (6.10)

essentially a condition on the conformal infinity of the ambi-
ent metric g2,+ of the ‘bad’ 4-dimensional metric g2. It means
that the conformal infinity of the 5-metric g2,+ is equipped
with the metric g̊2|M , which differs from the ‘nice’ confor-
mal infinity g̊1|M by the ‘nice’ metric g1, and so it cannot
be very ‘wild’, it will be a rescaling of the ‘good’ metric g1.
This is true also for the points on the singular 4-boundary of
the metric g2 for reasons discussed above.

This w-rescaling of g1 from Eq. (6.8) will have the form
σ 2

1 (w)− eaw, where σ 2
1 is a convergent, formal power series

expansion for the ambient metric g1,+ of the ‘good’ metric
g1, with w taking values in a small neighborhood of the form
(−ε, ε) around 0. At 0, it will read c0 − 1, and so we find

g̊2|M (0) = (c0 − 1)g1(xμ). (6.11)

We note that when c0 turns out to be 1 (as could result by
the application of the method of asymptotic splittings), we
may use the freedom to multiply the right hand side of Eq.
(6.8) by a different integration constant of the form C = eb,
which was chosen equal to 1 above. The system for a =∑

a j c j + b would then solve as before, but with b added
inside the brackets in the left hand sides of (6.9), namely, we
will have the system,
(∑

a j c j + b
)i1 = ci1 , . . . ,

(∑
a j c j + b

)ik = cik .

(6.12)

Hence the constant in the right hand side of (6.11) may be
assumed to be nonzero. When this factor is positive, the con-
stant rescaling (homothety) of the metric g1 preserves the
causal character of curves on M , while when it is negative
we have the so-called metric-reversing [33]. In this case, all
geometric notions associated with the homothetic transfor-
mation remain the same, however, the causal character of
timelike and spacelike vector fields is reversed, while null
ones remain so. (In any case, the sign of the constant factor
is controlled by the choice of b.)

Equation (6.11) is then, in our context, the condition
replacing uniqueness of the Fefferman–Graham ambient
metric. We call this ‘the asymptotic condition’ because it is
one valid on the conformal infinity M of the ambient space V
after taking the limit w → 0. We have shown the following
result.

Theorem 6.1 A 4-metric g in the conformal class of a ‘good’
4-metric g4 on M has an ambient metric g+ which satisfies
the 5-dimensional Einstein equations with a fluid source and
has conformal infinity (Ig+ , g̊|M ) described as a constant
rescaling of g4, g̊|M = cg4. Any two conformally related
4-metrics on M, g1 = �2g2, can be chosen to have ambient
metrics differing by g̊1|M (0) − g̊2|M (0) = g1.

This concludes the discussion of our ambient construc-
tion. In the next two sections, we examine two important
implications of the ambient geometric structures studied so
far.

7 Conformal structure and singularities

Suppose that we start in step 1 of the ambient algorithm with
a spacetime (M,gin(xμ)) which in step 2 gives a conformally
related 4-dimensional metric g4 = �2gin(xμ). Then it fol-
lows from the work we did in previous sections that these
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two metrics have ambient metrics with the following prop-
erty. To g4, there is an ambient 5-metric g+ satisfying the
5-dimensional Einstein equations with a fluid source such
that its conformal infinity is described by the 4-dimensional
metric g̊|M that belongs to the conformal class [g4] and is
a constant w-rescaling of g4. Similarly, we can construct
the ambient metric of (M,gin(xμ)) (or of any other met-
ric in the conformal geometry [g4]) which will satisfy the
5-dimensional Einstein equations with a fluid source and the
metric g̊in|M , will be a different w-rescaling of g4. The dif-
ference of the two ambient metrics g̊in|M and g̊4|M corre-
sponding to the two conformally related boundary metrics
g̊in and g4 equals the initial metric g4.

Therefore, since for a given g ∈ [g4], g̊|M is an honest
metric we may imagine our 4-dimensional universe described
as the conformal infinity of the ambient 5-metric g+. In this
case, the properties of our 4-dimensional world would be dic-
tated by the 5-dimensional ambient spacetime and the ambi-
ent metric g+ satisfying the 5-dimensional Einstein-fluid
equations. Then, various fundamental cosmological ques-
tions acquire novel meanings: Will there be any singularities
in the 4-dimensional universe (M, g̊|M )? Is cosmic censor-
ship valid on (M, g̊|M )? What is the behavior of the various
fields living on the ambient space at their conformal infin-
ity? What is the behavior of the entropy on M , and how can
we distinguish initial from final singularities there? What is
the relation of the properties of (M, [g]) to quantum gravity?
Are there any observational tests that point to the structure
of (M, g̊|M )?

For the ambient 5-spacetime V , these are all deep and
difficult questions, and so the reader may wonder what we
have gained with our construction. In general, given a con-
formal structure on the boundary 4-spacetime (M, [g4]) as
we have done above, the ambient cosmologies will not of
course have a form like the one we assumed above, namely,
a2(w)g4 + dw2, since we do not know the global solution
to the 5-dimensional Einstein equations with fluid sources in
the ambient spacetime (and even if we did, it would prob-
ably be exceedingly difficult to extract any information by
elementary arguments).

However, suppose that we are not interested in what hap-
pens everywhere in the ambient spacetime V = M × R,
but only care about the physics on M . In this paper, we
have constructed the notion of an ambient cosmology by
starting from a conformal structure on M , and found that
there is an ambient metric g+ described in terms of for-
mal power series solutions locally in V about M of the
5-dimensional Einstein equations with fluid sources in V .
Corresponding to the conformal structure on M , the ambi-
ent metric g+ on V has conformal infinity that inher-
its the asymptotic properties of a ‘nice’ metric g4 in the
conformal M-geometry and is described as a homothetic
multiple of g4.

Therefore in this model, all physical properties of M
are captured and imprinted on it by its conformal structure
(M, [g4]) and the metric g̊|M , which is in turn determined by
the ambient metric formal series solutions about M of the 5-
dimensional Einstein equations with fluid sources. One may
ask: How do the asymptotic properties of the ambient metric
g+ and thermodynamic quantities such as the density ρ+ of
the 5-dimensional solutions affect the behavior on M? For
example, if ρ+ diverges on points of M , or everywhere on
M × {0}, how will such a behavior on V affect that on M?
As we have shown in previous sections, the form of the M-
restriction of the ambient metric g̊ = σ(w)g4, for a g ∈ [g4],
is determined by the smooth function σ(w) and the original
4-metric g4, so that it reads, g̊ = (c0 +c1w+· · · )g4, with the
constants determined by the 5-dimensional solutions of the
Einstein equations with the fluid source. Hence, the possibly
diverging behavior of the 5-dimensional density ρ+ at M ,
passes on to the metric g̊|M on M only through the constants
c0, c1, . . ., in the sense that the different possible behaviors
of ρ would just readjust the values of these constants in a
new g̊|M .

We may therefore conclude that any singularities present
in the metric g̊|M will be those remaining in g4 after the con-
formal ‘cleaning’ of gin(xμ) in step 2. No other new ones will
arise from the ambient spacetime V following our construc-
tion. What are the constraints on g4? The metric g4 is seen
to satisfy two conditions: The first is that it is constructed as
in step 2 following the application of the conformal method
[26] in step 1, and the second is that it must comply with
the basic condition Eq. (6.11). This can give an incompati-
ble constraint on g̊|M only when g4 (and, consequently, any
homothetic multiple of it) becomes degenerate somewhere
on M . This is discussed more fully in the next section.

Compared with the standard situation described in general
relativity as having the initial metric (M,gin(xμ)) satisfying
the 4-dimensional Einstein equations with some sources, our
situation described by the metric g̊|M induced on M (and
belonging in its conformal structure as above) constitutes a
considerable improvement. The 4-metric g̊|M imposed on M
by the 5-dimensional ambient model discussed above inherits
the properties of the ‘nice’ metric g4 (which in turn cannot
be a solution of the same 4-dimensional Einstein equations
satisfied by gin(xμ) because it is related conformally to the
latter), while it does not receive any new singularities from the
5-dimensional ambient metric because it lies in its conformal
infinity as described in this paper.

8 Non-degeneracy and cosmic censorship

In this work we have shown that there is a relation between
the conformal structure of the boundary geometry and the
5-dimensional ambient metric construction. The ambient
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metric leads to the asymptotic condition (6.11), g̊|M = cg4,
satisfied by the metrics g4 and g̊|M ∈ [g4], and this imposes
a compatibility condition on the two homothetically related
metrics. In particular, since g̊|M = σg is by its construction
non-degenerate on M , this means that cg4 must also be a
non-degenerate metric. We note that the latter is obtained by
finding the conformal infinity of the ambient metric corre-
sponding to the ‘nice’ metric g4, and then any metric g in
the conformal class of g4 with have this form. Thus, non-
degeneracy of the g4 metric in step two of the ambient algo-
rithm, is an immediate implication of the ambient construc-
tion on the conformal structure of M . (We note that metric
reversal does not produce degeneracy on g4.) Is it possible
that g4, in the process of step 2, develops singularities or
other structures that make the ambient condition (6.11) an
incompatible constraint for the ambient construction? This
is a question about the structure of the singular boundaries
of the two metrics in (6.11), which we address below.

We first note that a singular metric g4 does not necessar-
ily make the 5-dimensional ambient metric g+ (or the met-
ric g̊) degenerate, unless it becomes null or timelike some-
where. Therefore if a g4 develops a singularity that is space-
like everywhere, then g̊ will still be non-degenerate when
restricted on the boundary. (For example, such will be the
case for the singular part of the horizon in non-static coordi-
nates for the Schwarzschild black hole, while the null part is
regular.)

In general, non-degeneracy of the 5-dimensional metrics g̊
or g+ means that they do not become degenerate on important
subspaces of the ambient spacetime, especially, this must be
so at y = 0, so we require that these metrics, when restricted
on the boundary spacetime M , must not become degenerate.
Since the signature of the 5-dimensional metrics is (1, 3+1)

(meaning one − and four +’s), non-degeneracy implies that
on the conformal boundary M the restriction of the metric g+
must retain its signature (1, 4). Since the boundary spacetime
signature is (1, 3), we find that the boundary 3-space signa-
ture should not globally change from + + + to something
else, that is, to null − + +, or to timelike − − −, because
such a change would make the 5-dimensional metric degen-
erate (in the sense that a null surface could then form in the
ambient spacetime).

We propose that the choice of metric in the conformal class
[g4] in step 2 of the ambient procedure of Sect. 2, must be
made such that it does not spoil the non-degeneracy of the g̊
metric when restricted along the boundary M . As discussed
above, the only way then left for which the 5-dimensional
ambient metric will lose its non-degeneracy on M is when a
timelike or null hypersurface forms somewhere in g̊|M , that
is, when there are naked points at infinity on the boundary
spacetime. This then would make the ambient cosmology
g̊|M degenerate, and the difference ĝ|M in (6.10) will not
make sense, a contradiction because as we showed this dif-

ference equals a rescaling of a well-defined spacetime metric.
Therefore it seems that a choice must be made of those met-
rics g4 in step 2 of the ambient procedure that respect cosmic
censorship.4

Conversely, the absence of naked singularities which fol-
lows from the validity of the asymptotic (in the sense of being
valid on IV ) condition (6.11) of the ambient cosmology has
important implications. For example, it follows that a naked
singularity may not be the end product of the process of
Hawking evaporation of a black hole through thermal radi-
ation. In this case, future null infinity will generically meet
the vertical line coming out of the spacelike singularity of
the black hole due to the evaporation (compare the Penrose
diagrams in Figs. 3 and 5 of Ref. [36]), thus allowing mate-
rial from inside the spacelike singularity to be seen by an
observer sitting at infinity. This is sometimes interpreted, as
is well known, as a possible violation of cosmic censorship
at the quantum level, a complete loss of predictability in a
quantum treatment of black holes [37], and it is also inti-
mately related to the possible loss of information connected
with the inevitable increase of entropy during this process
[38].

Note added in proof: After the completion of this work,
we realized that there are certain analogies with some of
the ideas of conformal cyclic cosmology [39]. The ideas of
masslessness near the singularities and a possible univer-
sal decay of all particle masses asymptotically in [39] may
also be applicable here and associated with the crucial role
played by conformal (instead of Riemannian) geometry in
the 4-dimensional conformal infinity of the 5-dimensional
ambient metric. However, in our work, we only have 5-
dimensional Einstein equations with sources for the ambi-
ent metric. Another central characteristic implication of our
work is that the existence of black holes and the validity of
cosmic censorship in the 4-dimensional boundary spacetime
seem to be intimately connected with the ambient construc-
tion taking place in the extra dimension, because they appear
as properties of its conformal infinity. We believe it is an
interesting question whether the approach developed here
allows or even requires any cyclicity in the 4-dimensional
conformal manifold.

4 The only other possibility is that the non-degeneracy of the ambi-
ent metric is spoiled when spherical symmetry is violated, for example
when a suitable observer who falls into a black hole in an exact Kerr
metric with a < m (with m, a constants, m being the mass and ma the
angular momentum as measured from infinity), to whom the singular-
ity is actually naked. However, there are reasons to believe that such a
situation inside the event horizon is actually unstable, cf. [34], p. 234,
and generically perturbed Kerr solutions will always develop a space-
like singularity in the neighborhood of its Cauchy horizon. A spacelike
character of cosmological singularities is also supported by the BKL
studies, cf. [35] and references therein.
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