Accepted Manuscript

Title: Immunoblotting for the serodiagnosis of alveolar echinococcosis in alive and dead Eurasian beavers (*Castor fiber*)

Author: B. Gottstein C.F. Frey R. Campbell-Palmer R. Pizzi A. Barlow B. Hentrich A. Posautz M.-P. Ryser-Degiorgis

 PII:
 S0304-4017(14)00354-9

 DOI:
 http://dx.doi.org/doi:10.1016/j.vetpar.2014.06.017

 Reference:
 VETPAR 7295

To appear in:

Veterinary Parasitology

 Received date:
 29-4-2014

 Revised date:
 30-5-2014

 Accepted date:
 10-6-2014

Please cite this article as: Gottstein, B., Frey, C.F., Campbell-Palmer, R., Pizzi, R., Barlow, A., Hentrich, B., Posautz, A., Ryser-Degiorgis, M.-P.,Immunoblotting for the serodiagnosis of alveolar echinococcosis in alive and dead Eurasian beavers (*Castor fiber*), *Veterinary Parasitology* (2014), http://dx.doi.org/10.1016/j.vetpar.2014.06.017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 Immunoblotting for the serodiagnosis of alveolar echinococcosis in alive and dead Eurasian beavers 2 (Castor fiber) 3 B. Gottstein^{*1}, C.F. Frey¹, R. Campbell-Palmer², R. Pizzi², A. Barlow³, B. Hentrich¹, A. Posautz⁴, M.-P. 4 5 Ryser-Degiorgis⁵ 6 7 ¹Institute of Parasitology, Vetsuisse Faculty, University of Bern, Switzerland 8 ²The Royal Zoological Society of Scotland, Edinburgh, EH12 6TS, Scotland, UK 9 ³Animal Health and Veterinary Laboratories Agency, UK 10 ⁴Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria 11 ⁵Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Switzerland 12 13 Abstract 14 A novel species-specific anti-beaver-IgG-alkaline-phosphatase conjugate was synthesized for the 15 development a of a new serological test for echinococcosis in beavers. Two different ELISAs 16 conventionally used for human Echinococcus multilocularis serology (Em18-ELISA and Em2-ELISA) 17 yielded diagnostic sensitivities of 0% and 46%, respectively. In contrast, the subsequently developed 18 immunoblotting assay gave an 85% diagnostic sensitivity (11 out of 13 beavers with alveolar 19 echinococcosis were immunoblotting-positive, i.e. showed reactivity with a specific 21 Mr band), and 20 maximal specificity. In conclusion, this immunoblotting assay should be the method of choice for use in 21 serological studies on E. multilocularis in Eurasian beavers, and the test proved suitable to investigate 22 both animals alive and post-mortem. 23 24 **Keywords** 25 Echinococcus multilocularis; beaver; Em2-ELISA; Em18-ELISA; immunoblotting; EmVF-antigen 26 27 *Corresponding author at: Institute of Parasitology, Länggassstrasse 122, 3012 Bern, Switzerland. Tel.: 28 +41 31 631 24 18; fax: +41 31 631 24 22. 29 E-mail address: bruno.gottstein@vetsuisse.unibe.ch

30 Introduction

31 Echinococcus multilocularis is one of the most pathogenic parasitic zoonoses prevalent in central 32 Europe. The definitive (final) wildlife hosts in Europe are canids, including predominantly the red fox 33 (Vulpes vulpes), but the non-native raccoon dog (Nyctereutes procyonoides) and the domestic dog are 34 affected as well (Carmena and Cardona, 2013; Carmena and Cardona, 2014). Adult tapeworms live in 35 the small intestine of the definitive hosts, from which gravid parasite proglottids and eggs are shed with 36 the faeces into the environment. Intermediate hosts are infected when they ingest parasite eggs, which 37 upon release of an oncosphere, develop into the larval stage called metacestode. Metacestodes show a 38 distinct predilection for the liver. At a later stage of infection, metastases develop predominantly in the 39 lungs and brain, though other organs can be affected. The metacestode proliferates continuously and 40 leads to a cancer-like disease in affected intermediate hosts. The sylvatic cycle is completed by 41 carnivore predation of such infected intermediate hosts. In Europe several species of small microtine 42 and arvicolid rodents are the principle intermediate hosts, as well as two larger introduced species, the 43 coypu (Myocastor coypus) and the muskrat (Ondatra zibethicus) (Mathy et al., 2009). The Eurasian 44 beaver (Castor fiber) is another intermediate host. The first cases were reported from Switzerland 45 (Janovsky et al., 2001; Wimmershoff et al., 2012) and Austria (Cronstedt-Fell et al., 2010), and more 46 recent cases were described in the United Kingdom (Barlow et al., 2011) and in Serbia (Cirovic et al., 47 2012). Humans are paratenic ("accidental") intermediate hosts.

48 A beaver reintroduction to Britain is currently underway as a scientific trial in Scotland, with a large 49 population of free-living beavers now established on the east coast. Further releases have been 50 proposed in Wales, and feasibility investigations are undertaken in England. However, there is now 51 another growing population of free-living beavers, which have either escaped from captivity or been 52 purposely, released in Scotland and England but are not part of government-sanctioned trials. The origin 53 of beavers for importation has been subject to academic debate (Halley 2011, Rosell et al. 2012), the 54 health status of imported animals being a key parameter. Current prevention measures include a six 55 months guarantine period, which is deemed sufficient to prevent the associated entry of rabies. 56 Screening for other infectious organisms is not required during this period, but additional health 57 screening recommendations have been made (Goodman et al. 2012). Among others, the risk of 58 introduction of E. multilocularis to non-endemic regions via importation of beavers originating from 59 endemic areas has been assessed following the Office International des Epizooties (OIE) risk assessment 60 framework (Kosmider et al., 2013; Defra, 2012). Subsequently, cases have been detected among beavers 61 meant for reintroductions (Cirovic et al., 2012; Barlow et al., 2011), and it is now recognized that both 62 captive and wild-caught beavers from central Europe represent a risk to import E. multilocularis to 63 presently E. multilocularis-free areas (Barlow et al. 2011; Campbell-Palmer et al., 2012; Pizzi et al., 2012).

So far, cases of echinococcosis in beavers have mainly been diagnosed by post-mortem investigation,
principally based on methods that have been widely used to identify the larval stage of E. multilocularis
in other rodents and in human patients. Beside conventional histopathology, a molecular analysis by
PCR and/or direct immunofluorescence yields a reliable species-specific identification of the parasite.
This is particularly helpful in the rare cases where histology findings are inconclusive (Diebold-Berger et
al., 1997).

- 70 In contrast, diagnosing alveolar echinococcosis in live beavers is challenging. Imaging procedures may
- 71 provide a certain degree of information, as it has been demonstrated in other rarely infected
- 72 intermediate hosts, e.g. dogs (Scharf et al., 2004), rats (Asanuma et al., 2005) and non-human primates
- 73 (Kishimoto et al., 2009) but it is not reliable enough to rule out an infection. Currently, investigation of
- 74 live beavers prior translocation includes a time-consuming combination of clinical examination and
- 75 diagnostic imaging, such as detailed abdominal ultrasonography combined with endoscopic surgical
- visual examination of the liver and other abdominal organs in anaesthetized animals (Pizzi et al., 2012).
- A serological test could be used as a rapid diagnostic tool that could considerably reduce such
- 78 investigations in beavers. Besides its application to prevent the entry of the parasite via imported
- 79 individuals, serology could also be useful to assess exposure in captive or free-living populations
- 80 considered potential sources for translocation projects as well as to estimate prevalence in infected
- 81 populations. To our knowledge, serological diagnosis of parasitic infections in beavers has not yet been
- 82 reported. The goal of this study was to elaborate and evaluate serological tests regarding their suitability
- 83 to diagnose an E. multilocularis infection in the Eurasian beaver.
- 84

84 Materials and Methods

85 <u>Study design, animals and samples</u>

86 We comparatively evaluated several conventional antigens presently used to detect anti-E.

87 multilocularis antibodies in intermediate hosts such as humans and small rodents (crude vesicle fluid,

88 EmVF-antigen [Müller et al., 2007], Em2-antigen [Gottstein et al., 1991], Em18-antigen [Sako et al.,

89 2002).

90 In a first step we developed a new anti-beaver-IgG-specific secondary antibody, because we had found

91 out in preliminary experiments that heterologous conjugates (anti-mouse IgG; protein A, protein G)

92 yielded unsatisfactory results with beaver samples. This host-specific antibody, at an affinity-purified

93 status, was coupled to alkaline phosphatase by using a conventional procedure provided by the

94 manufacturer (Sigma-Aldrich, http://www.sigmaaldrich.com/life-science/metabolomics/enzyme-

95 explorer/analytical-enzymes/alkaline-phosphatase/conjugation.html).

96 In a second step, we compared two ELISAs and immunoblotting as previously evaluated for human

97 alveolar echinococcosis serology (Müller et al., 2007). Test evaluation was done using the samples from

98 three different groups of beavers: (1) a "positive" group of 13 beavers confirmed to be infected with E.

99 multilocularis by post-mortem investigations including histopathology and PCR (nine animals of Swiss

100 origin and four animals of Austrian origin); (2) a "negative" group consisting of 27 beavers originating

101 from a region known to be non-endemic for E. multilocularis (Scotland), i.e., animals expected to have

102 not been exposed to the parasite; (3) another "negative" group including 29 beavers from areas

103 endemic for E. multilocularis (25 dead animals from Switzerland and four from Austria), i.e., with

104 possible previous exposure. All negative beavers (groups 2 and 3) were necropsied and did not present

105 lesions consistent with the presence E. multilocularis infection. For statistical determination of a

106 negative-positive-threshold value in ELISA, only negative animals from group (2) were used.

107 _For all beavers, blood samples consisted in sero-sanguinous fluid collected post-mortem, either

108 obtained from clotted heart-blood, or (if not available) muscle juice obtained as described elsewhere

109 (Berger-Schoch et al., 2011). Samples were kept frozen at -20°C until further analysis.

110 Anti-beaver IgG-conjugate

111 $\,$ One ml of frozen beaver blood was used to purify IgG with the ammonium sulfate precipitation $\,$

112 technique as described by Page and Thorpe (2002), by applying a three-cycle-precipitation at 40%, 40%

113 and 50% saturation conditions. Purified beaver IgG was sent to Gallus Immunotech Inc. (Ontario,

114 Canada) for the production of affinity-purified chicken anti-beaver-IgG, based on IgY isolation from eggs

 $115 \qquad \text{derived from hens immunized with 100 } \mu\text{g beaver-IgG emulsified in Freund's adjuvants (indications refer}$

116 to one immunization shot; hens received 1 primary immunization and 3 boosters every 10 days). Egg

117 yolk IgY was subsequently immuno-affinity purified on a solid-phase beaver-IgG column as previously

118 described (Felleisen and Gottstein, 1993). All subsequent steps to prepare the final anti-beaver-IgG-

119 alkaline phosphatase-conjugate were carried out as described elsewhere (Baumann and Gottstein,

120 1987).

121 For a primary validation of the newly synthesized anti-beaver-IgG-conjugate, we electrophoretically

separated the purified beaver-IgG by SDS-PAGE and applied a Coomassie-blue staining, followed by

123 immunoblotting.

124 <u>ELISA</u>

125 All blood samples were examined for antibodies directed against the Em2- and recEm18-antigen from E.

- 126 multilocularis by ELISA as previously published for foxes (Gottstein et al., 1991) but using the beaver-
- 127 IgG-specific alkaline phosphatase conjugate described above. Beaver samples were considered sero-

128 positive when the ELISA A405nm-values exceeded the average negative control value plus 4 standard

129 errors (S.E.). The actual threshold value discrimination between negative and positive reactions was

130 based on a 99.9% range exhibited by the 26 "negative" beaver samples from non-endemic areas, this

131 was performed for each antigen separately. We used the mean plus 4 S.E. to calculate the threshold

values for the Em2- and the recEm18-antigen, respectively. All values above these cut-offs were

regarded as positive, all others below as negative. A ROC based approach was not feasible due to the

134 low number of "positive" cases.

135 Immunoblotting

136 Immunoblotting was performed as previously described for E. granulosus hydatid fluid (EgHF) antigen

137 (Poretti et al. 1999), with the exception that EmVF (7 µg per cm slot) was used instead of EgHF (Müller

et al., 2007). The conjugate was identical to that used for the ELISAs described above.

139 <u>Statistical analyses</u>

140 Data were analyzed using the computer program SPSS 17.0. One-way ANOVA and Student's t-test were

used to determine threshold values and to compare differences between groups. P<0.05 was consideredas indicating statistical significance.

143 Results

144 <u>Anti-beaver IgG-conjugate</u>

- 145 Electrophoresis (Figure 1A) and Coomassie blue staining revealed the presence of two predominating
- bands, the upper one corresponding by relative molecular mass (Mr) to the heavy chain of the
- 147 antibody, and the lower one to the light chain. Immunoblotting analysis of these two bands upon use of
- 148 the anti-beaver-IgG-alkaline-phosphatase conjugate revealed the binding capacity of the conjugate to
- 149 both antibody chains, with a stronger activity to the heavy chain (Figure 1B).

150 <u>ELISA</u>

- 151 Table 1 shows the results obtained with the two ELISAs for the beaver samples from the "positive"
- 152 group. With the Em18-ELISA, all samples from this group yielded negative findings. With the Em2-ELISA,
- 153 six out of 13 "AE-positive" beavers showed a serological reaction. Thus, the diagnostic sensitivities of
- 154 both tests were very low (0% and 46%, respectively).
- 155 All 29 beaver samples of the "negative" group from endemic areas were serologically negative, i.e., the
- 156 obtained values were all in the same range as the 27 "negative" samples from non-endemic areas used
- 157 to determine the cut-off point. Statistically, there was no difference between the median value of the
- 158 negative sera from non-endemic areas and those from endemic areas.

159 Immunoblotting

- 160 Immunoblot profiles, as shown for two samples from the "positive" group (beavers B1 and B2, Figure 2),
- 161 demonstrated antibody reactivity with one major immunoreactive band and two minor side bands of
- 162 approximately Mr 21 (major band), and Mr 19 and Mr 40 (minor bands). The localization of these three
- 163 bands corresponded to the localization of bands obtained with a positive control of human origin (H1).
- 164 This human serum banding pattern also matched the one described earlier in a large human serological
- 165 study (Müller et al. 2007). Based on the detection of an anti-21Mr-banding activity, the immunoblotting
- approach yielded an 85% diagnostic sensitivity, as 11 out of 13 beavers from the "positive" group were
- 167 seropositive, (Table 1). All "negative" and "true negative" beaver samples were clearly seronegative,
- 168 considering the absence of any band (exemplified by samples B3 B5 in Figure 2).

169

169 Discussion

- 170 The purpose of this study was to develop and evaluate the suitability of serological tests for the
- 171 detection of E. multilocularis infection in the Eurasian beaver. Such a rapid diagnostic tool is urgently
- 172 needed to facilitate the procedures aiming at minimizing the risk of introducing the parasite via
- translocated animals, which requires both the testing of translocated individuals in vivo prior to release,
- 174 and screenings of potential source populations.
- 175 A serological test would be applicable on blood samples from both live and dead beavers, making it
- suitable for in-vivo testing of animals prior translocation and for serological surveys using samples
- 177 collected post-mortem. The beaver-specific conjugate developed in this study operates methodically
- very well in ELISAs and also in immunoblotting assays, but the diagnostic performances turned out very
- 179 different between the two test systems.
- 180 None of the beavers from the "positive" group showed a seropositive reaction in the Em18-ELISA,
- 181 indicating that beavers do not develop a humoral immunity against this antigen. Results obtained with
- 182 the Em2-ELISA were very unsatisfying a well. Thus, the evaluation of these two tests revealed that they
- 183 are not suitable for diagnosis of E. multilocularis infections in beavers. One possible explanation for this
- 184 phenomenon may not be related to the antigen itself, but may be due to the quality of the beaver
- 185 "blood" used for serology. Post-mortem decay and degradation may decrease the serological quality of
- 186 the fluids recovered from the dead animals with regard to application in ELISAs that use highly purified
- 187 antigens, but may be not with regards to immunoblotting that uses the complex mixture of a crude
- 188 metabolic antigen. We plan to investigate this aspect upon direct comparison of the Em2-ELISA and
- 189 EmVF-IB with sera obtained from beavers captivated for translocation. However, such a study may be
- 190 very lengthy in time, as we would need to investigate their livers post-mortem to get a conclusive
- 191 diagnosis regarding the presence or absence of AE-lesions and E. multilocularis infection, respectively.
- In contrast, a diagnostic sensitivity of 85% was observed with immunoblotting, which, in terms of
 serodiagnosis, reaches an acceptable level, especially as specificity reached 100% in our study. Overall,
- 194 while a seropositive result in immunoblotting unambiguously indicates an infection (high positive
- 195 predictive value), a negative serological result has to be considered with caution.
- 196 Interestingly, the tested seropositive beavers showed a very weak banding pattern in immunoblots.
- 197 While a distinct and rather complex pattern of antigen bands is identified in samples of most human
- 198 patients with alveolar echinococcosis, beavers exhibit a binding activity with a maximum of three
- 199 different antigens. This suggests that the E. multilocularis metacestode antigens are of very weak
- 200 antigenicity, which may partially explain why all beavers demonstrated negative results with the
- 201 conventional Em18-antigen, and why only a very weak diagnostic sensitivity was obtained with the

202 conventional Em2-antigen. As discussed for the ELISAs above, one of the reasons why a few samples 203 from infected beavers were negative in immunoblotting may have been a decreased quality of the 204 beaver blood due to post-mortem decay. Another reason for the overall weak (methodically and 205 diagnostically) humoral immune response detected in beavers with alveolar echinococcosis may be 206 associated to a high susceptibility to infection of this animal species, i.e., infection and resulting organ 207 lesions may occur in a way that the host cannot mount an appropriate humoral immune response, as 208 compared to other intermediate hosts such as humans who react strongly by the humoral pathway of 209 immunity. Nevertheless, this explanation is unlikely as we know from observations in laboratory rodents 210 that antibody-deficient animals such as the μ MT mouse do not show an increased susceptibility (Dai et 211 al., 2004). However, a weak humoral immune response may be associated to a weak cellular immune 212 response, and it is known from murine and human alveolar echinococcosis in immunosuppressed 213 individuals that a weak cellular immune response markedly favours metacestode proliferation (Vuitton 214 and Gottstein, 2010). Referring to beavers, this weak immune response is likely not a particularity of 215 some putatively immunosuppressed individuals but rather a characteristic of the species itself. Indeed, if 216 some beavers would develop a strong antibody reaction (without subsequent lesions), it is probable that 217 part of the beavers from the "negative" group (i.e., animals without lesions but from endemic areas) 218 would have been seropositive. Yet, our sample size was limited and serological investigations of a larger 219 number of beavers originating from endemic areas and submitted to necropsy are necessary to further 220 address this guestion. Furthermore, as in alveolar echinococcosis susceptibility to disease is usually 221 associated to metacestode fertility, we invite wildlife pathologists to document the frequency of related 222 findings, e.g. protoscolex formation within the parasite tissue, and to carefully record the features of 223 periparasitic inflammatory and immune-mediated processes that may contribute to either accelerated 224 or delayed metacestode proliferation and maturation (Vuitton and Gottstein, 2010).

- 225
- 226

226 Conclusions

- 227 Serodiagnosis of E. multilocularis infection in beavers is now possible, and so far the best methodical
- 228 approach consists in performing immunoblotting based on the detection of anti-Mr21-band-binding
- 229 activity. Cross- or non-specific reactions did not occur in our study (100% specificity), and the diagnostic
- 230 sensitivity amounts to 85%. With these diagnostic sensitivity and specificity and a putative prevalence
- estimated in a future study area, positive and negative predictive values could now be determined. We
- encourage wildlife health scientists to make use of this tool in order to support further assessment of
- 233 factors that will help to better interpret serological results.
- 234
- 235

235 Acknowledgements

- 236 The authors would like to thank Cristina Huber and Beatrice Zumkehr for laboratory technical support,
- and all colleagues who contributed to sample and data collection. This work was supported by the Swiss
- 238 National Science Foundation (grant no. 31003A_141039/1) and by the European Commission French-
- 239 Swiss InterReg IV program 'IsotopEchino' project. The funders had no role in study design, data
- 240 collection and analysis, decision to publish, or preparation of the manuscript.

241 References

- Asanuma, T., Matsumoto, Y., Takiguchi, M., Inanami, O., Nakao, M., Nakaya, K., Ito, A., Hashimoto, A.,
- 243 Kuwabara, M., 2003. Magnetic resonance imaging and immunoblot analyses in rats with
- 244 experimentally induced cerebral alveolar echinococcosis. Comp. Med. 53, 649-656.
- 245 Barlow, A.M., Gottstein, B., Mueller, N., 2011. Echinococcus multilocularis in an imported captive
- 246 European beaver (Castor fiber) in Great Britain. Vet. Rec. doi:10.1136/vr.d4673
- Baumann, D., Gottstein, B., 1987. A double-antibody sandwich ELISA for the detection of Entamoeba
 histolytica antigen in stool samples of humans. Trop. Med. Parasit. 38, 81-85.
- 249 Berger-Schoch, A.E., Bernet, D., Doherr, M.G., Gottstein, B., Frey, C.F., 2011. Toxoplasma gondii in
- 250 Switzerland: A serosurvey based on meat juice analysis of slaughter pigs, wild boar, sheep and cattle.
- 251 Zoon. Publ. Hlth. 58, 472-478.
- 252 Campbell-Palmer, R., Girling, S., Rosell, F., Pulsen, P., Goodman, G., 2012. Echinococcus risk from
- 253 imported beavers. Vet. Rec. doi:10.1136/vr.e1508
- Carmena, D., Cardona, G.A., 2013. Canine echinococcosis: global epidemiology and genotypic diversity.
 Acta Trop. 128, 441-460.
- Carmena, D., Cardona, G.A., 2014. Echinococcosis in wild carnivorous species: Epidemiology, genotypic
 diversity, and implications for veterinary public health. Vet. Parasitol. 202, 69-94.
- 258 Ćirović, D., Pavlović, I., Kulišić, Z., Ivetić, V., Penezić, A., Ćosić, N., 2012. Echinococcus multilocularis in the
 259 European beaver (Castor fibre L.) from Serbia: first report. Vet. Rec. 171, 100.
- 260 Cronstedt-Fell, A., Stalder, G.L., Kübber-Heiss, A., 2010. Echinococcosis in a European beaver (Castor
- 261 fiber) in Austria. Poster presentation 36, 9th EWDA conference, Vlieland, September 13-16, 2010.
- 262 Dai, W.J., Waldvogel, A., Siles-Lucas, M., Gottstein, B., 2004. αβ+CD4+ T cell mediated immune response
- is crucial for the regulation of parasite 14-3-3 expression and for the control of parasite growth in
- 264 Echinococcus multilocularis infection. Immunol. 112, 481-488.
- 265 DEFRA, 2012. What is the risk of introducing Echinococcus multilocularis to the United Kingdom wildlife
- 266 population by importing European beavers which subsequently escape or are released?
- 267 <u>http://www.defra.gov.uk/animal-diseases/files/qra-non-nativespecies-echinoccocus-120627.pdf</u>.
- 268 Accessed July 5, 2012

- 269 Diebold Berger, S., Khan, H., Gottstein, B., Puget, E., Frossard, J.L., Remadi, S., 1997. Cytologic diagnosis
- of isolated pancreatic alveolar hydatid disease with immunologic and PCR analyses A case report.
- 271 Acta Cytol. 41, 1381-1386.
- 272 Felleisen, R., Gottstein, B., 1993. Echinococcus multilocularis: Molecular and Immunochemical
- characterization of diagnostic antigen II/3-10. Parasitol. 107, 335-342.
- 274 Goodman, G., Girling, S., Pizzi, R., Meredith, A., Rosell, F., Campbell-Palmer, R., 2012. Establishment of a
- health surveillance program for reintroduction of the Eurasian beaver (Castor fiber) into Scotland. J.
- 276 Wildl. Dis. 48, 971-978.
- 277 Gottstein, B., Deplazes, P., Eckert, J., Müller, B., Schott, E., Helle, O., Boujon, P., Wolff, K., Wandeler, A.,
- 278 Schwiete, U., Moegle, H., 1991. Serological (Em2-ELISA) and parasitological examinations of fox
- 279 populations for Echinococcus multilocularis infections. J. Vet. Med. B, 38, 161-168.
- 280 Halley, D.J., 2011. Sourcing Eurasian beaver Castor fiber stock for reintroductions in Great Britain and
- 281 Western Europe. Mammal Rev. 41, 40-53.
- Janovsky, M., Bacciarini, L., Sager, H., Grone, A., Gottstein, B., 2002. Echinococcus multilocularis in a
 European beaver from Switzerland. J. Wildl. Dis. 38, 618-620.
- 284 Kishimoto, M., Yamada, K., Yamano, K., Kobayashi, N., Fujimoto, S., Shimizu, J., Lee, K.J., Iwasaki, T.,
- 285 Miyake, Y., 2009. Significance of imaging features of alveolar echinococcosis in studies on nonhuman
- 286 primates. Am. J. Trop. Med. Hyg. 81, 540-544.
- 287 Kosmider, R., Paterson, A., Voas, A., Roberts, H., 2013. Echinococcus multilocularis introduction and
- 288 establishment in wildlife via imported beavers. Vet. Rec. 172, 606.
- 289 Mathy, A., Hanosset, R., Adant, S., Losson, B., 2009. The carriage of larval Echinococcus multilocularis
- and other cestodes by the muskrat (Ondatra zibethicus) along the Ourthe river and its tributaries
- 291 (Belgium). J. Wildl. Dis., 45, 279-287.
- 292 Müller, N., Frei, E., Nunez, S., Gottstein, B., 2007. Improved serodiagnosis of alveolar echinococcosis of
- humans using an in vitro-produced Echinococcus multilocularis antigen. Parasitol. 134, 879-888.
- Page, M., Thorpe, R., 2002. Purification of IgG by Precipitation with Sodium Sulfate or Ammonium
- 295 Sulfate. In: JM Walkler (ed.), The Protein Protocols Handbook, Humana Press Inc., Totowa, pp 983-
- 984.

- Pizzi, R., Cracknell, J., Carter, P., 2012. Echinococcus risk from imported beavers. Vet. Rec.
 doi:10.1136/vr.e2041
- 299 Poretti, D., Felleisen, E., Grimm, F., Pfister, M., Teuscher, F., Zürcher, C., Reichen, R. and Gottstein, B.,
- 300 1999. Differential immunodiagnosis between cystic hydatid disease and other cross-reactive
- 301 pathologies. Am. J. Trop. Med. Hyg. 60, 193-198.
- 302 Rosell, F., Campbell-Palmer, R., Parker, H., 2012. More genetic data are needed before populations are
- 303 mixed: response to 'Sourcing Eurasian beaver Castor fiber stock for reintroductions in Great Britain
- and Western Europe'. Mammal Rev. 42, 319-324.
- 305 Sako, Y., Nakao, M., Nakaya, K., Yamasaki, H., Gottstein, B., Lightowers, M.W., Schantz, P.M., Ito, A.,
- 306 2002. Alveolar echinococcosis: Characterization of diagnostic antigen Em18 and serological
- 307 evaluation of recombinant Em18. J. Clin. Microbiol. 40, 2760-2765.
- 308 Scharf, G., Deplazes, P., Kaser-Hotz, B., Borer, L., Hasler, A., Haller, M., Flückiger, M., 2004. Radiographic,
- 309 ultrasonographic, and computed tomographic appearance of alveolar echinococcosis in dogs. Vet.
- 310 Radiol. Ultrasound. 4, 411-418.
- 311 Vuitton, D.A., Gottstein, B., 2010. Echinococcus multilocularis and its intermediate host: a model of

312 parasite-host interplay. J. Biomed. Biotechnol. 2010:923193. Epub 2010 Mar 21.

- 313 Wimmershoff, J., Robert, N., Mavrot, F., Hoby, S., Boujon, P., Frey, C., Weber, M., Café-Marçal, V., Hüssy,
- D., Mattsson, R., Pilo, P., Nimmervoll, H., Marreros, N., Pospischil, A., Angst, C., Ryser-Degiorgis, M.-P.
- 315 2012. Causes of mortality and diseases in the reintroduced European beaver population in
- 316 Switzerland from 1989 to 2009. Proceedings of the joint WDA/EWDA conference, Lyon, July 22-27,
- 317 2012. P. 37.
- 318

- 318 Table 1: Serological investigation of 13 beavers with hepatic lesions associated with E. multilocularis
- 319 infection, as evidenced by histology and PCR. Abbreviations: CH: Switzerland; A: Austria; WB:
- 320 immunoblotting.
- 321

diagnosis	origin	Diagn. no.	Em2_ELISA	Em18_ELISA	WB
AE	СН	12S751	neg	neg	neg
AE	CH	12S752	neg	neg	pos
AE	CH	W07/0871	pos	neg	pos
AE	СН	W08/0973	pos	neg	pos
AE	СН	W07/4586	pos	neg	pos
AE	CH	W08/973	neg	neg	pos
AE	СН	W07/1152	neg	neg	pos
AE	CH	12S759	neg	neg	pos
AE	CH	W09/1428	pos	neg	pos
AE	A	12S751	neg	neg	neg
AE	А	12S752	neg	neg	pos
AE	А	12D2967	pos	neg	pos
AE	А	12D2968	pos	neg	pos
pos/tot			6/13	0/13	11/13
diagn. sensitivity			46%	0%	85%
"negative"*	Scotland	n = 27	n.d.	n.d.	0/27
"negative"	СН	n = 25	n.d.	n.d.	0/25
"negative"	Austria	n = 4	n.d.	n.d.	0/4
<i>neg/tot</i> diagn. specificity					0/60 100%

322 *data used to calculate the negative-positive threshold

S'

- 323
- 324

324 Legends to Figures

325

326	Figure 1: Quality control of the new anti-beaver-IgG-alkaline-phosphate conjugate. (A) Immunoblotting					
327	approach with 1 or 5 μ g of purified beaver-Ig, SDS-PAGE separated and transferred onto nitrocellulose.					
328	Subsequent antibody fragment detection was performed with the new conjugate. (B) Purity status of					
329	the purified beaver-IgG used to generate a polyclonal hyperimmune chicken IgY directed against beaver-					
330	IgG. The left blue lane shows stained Mr markers and corresponding Mr sizes. The estimated relative					
331	molecular mass of the beaver IgG heavy chain is Mr 55 kDa, while that of the light chain appears at					
332	approximately Mr 25 kDa.					
333						
334						
335	Figure 1					
336						
337						
338						
	A	В				
	1 μg 5 μg	lug				
		95kDa				
		72kDa				
	lgG heavy chain 🛛 ——>	55kDa				

 1 μg 5 μg
 1ug

 95kDa
 72kDa

 72kDa
 55kDa

 43kDa
 34kDa

 1gG light chain
 26kDa

 17kDa
 17kDa

338 Legends to Figures

339

- 340 Figure 2: E. multilocularis immunoblot analysis with the following sera: H1 human AE-patient (positive
- 341 banding pattern control); B1, B2 samples from beavers with alveolar echinococcosis (infection
- 342 confirmed by histology and PCR); B3-B5 samples from three beavers showing no macroscopic evidence
- 343 for an infection with E. multiulocularis (= negative animals). Arrow points at the diagnostic major band
- 344 at Mr21. Left lane shows stained Mr markers and corresponding Mr sizes.

345

