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Abstract

The direct Bayesian admissible region approach is an a priori state free mea-
surement association and initial orbit determination technique for optical
tracks. In this paper, we test a hybrid approach that appends a least squares
estimator to the direct Bayesian method on measurements taken at the Zim-
merwald Observatory of the Astronomical Institute at the University of Bern.
Over half of the association pairs agreed with conventional geometric track
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correlation and least squares techniques. The remaining pairs cast light on
the fundamental limits of conducting tracklet association based solely on
dynamical and geometrical information.

Keywords: Space situational awareness; too-short arc problem; optical
observations; admissible region; probability density function

1. Introduction

In space situational awareness (SSA), the vast majority of observations of
objects beyond low-Earth orbit are made by optical sensors, which measure
a time history of angles called “tracklets” for a given object (DeMars et al.,
2009; Tommei et al., 2007; Maruskin et al., 2009). The range and range-
rate, however, remains largely unconstrained, and thus multiple tracklets
must be combined in order to obtain a full 6-dimensional state estimate. For
short-arc observations common in survey-type observations, this task is not
trivial as a large subset of the state space is consistent with any given track-
let pair. Therefore, traditional initial orbit determination (IOD) techniques
often perform poorly giving rise to false correlation results and unrealistic
state estimates.

The direct Bayesian admissible region approach proposed by Fujimoto
and Scheeres is an a priori state free measurement association and IOD
technique (Fujimoto and Scheeres, 2012a). Given a tracklet, a compact region
in the range / range-rate space is defined based on a set of physical constraints
such that all likely and relevant orbits are contained within it. The admissible
region (AR) is a uniform probability density function (pdf) whose support is
the aforementioned compact set (DeMars and Jah, 2012). Multiple ARs may
be propagated to a common epoch and an a posteriori pdf computed based
on Bayes’ rule. Such a direct approach is feasible because the ARs are well
approximated as 2-dimensional manifolds in a 6-dimensional space, making
the problem sparse. Furthermore, from the Theory of General Position, two
ARs do not intersect generically and thus a non-zero a posteriori pdf is, in
almost all cases, indicative that their corresponding tracklets are associated.
IOD is achieved by examining the support of the a posteriori pdf. Therefore,
the rationale for the measurement association and the IOD are separate,
allowing for both processes to be robust to outliers without the need for
excessive parameter tuning.
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2. Background

In this section, necessary concepts are introduced, such as the too-short arc
problem and tracklet association with the direct Bayesian admissible region.
Next, observation capabilities at AIUB as well as the current procedure to
process observations are discussed.

2.1. The Too-Short Arc Problem

Optical observations of resident space objects (RSOs) only contain angular
information regarding the observed objects’ states; that is, per observation,
the range and range-rate remain largely unconstrained. Consequently, or-
bit determination has traditionally been conducted with some type of batch
or sequential estimation algorithm, whose a priori information is supplied
via geometric techniques known as initial orbit determination (IOD) (Tapley
et al., 2004; Vallado, 2007). Here, the association of observations must be
assumed initially and then deduced from the quality of the least-squares fit;
that is, the association of observations is a direct function of the quality of the
orbit estimation and vice versa. This approach becomes problematic espe-
cially in a survey-type observation strategy. Usually, only a limited number
of observations are available per night per object, each over short observation
arcs, or tracklets, that span a few minutes (Maruskin et al., 2009). Given
such a small window of data, a large subset of the state space remains con-
sistent with each tracklet, leading to poor convergence to the true solution
if not divergence. The association of tracklets, therefore, cannot be inferred
confidently.

Figure 1 shows the time history of the residuals in the angular variables
when fitting two tracklets of a geostationary (GEO) satellite to its true state
(Object 1) as well as a fictitious state (Object 2) separated by at least 270
km but still consistent with the observations. Table 1 shows the root mean
square (RMS) of the residuals. Each tracklet spans 2 minutes and consists
of 5 observations; the two tracklets are separated by 20 minutes. A 2 arcsec
1-σ Gaussian noise is added to the observed angles. The Keplerian orbit
elements (a [km], e, i [deg], Ω [deg], ω [deg], M [deg]) for each object at the
simulation epoch is as follows:

Object 1 (42164.154, 10−6, 0.1, 0, 0, 0)

Object 2 (41079.037, 0.01965, 0.1060,−18.29,−161.8,−179.9).
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Figure 1: History of residuals in right ascension (δRA) and declination (δDEC) for sim-
ulated observations of a GEO object fit to its true state (Object 1) and a consistent but
false state (Object 2).

We find that, in this situation, the residuals give us no indication which state
is more likely.

Furthermore, in order to derive tractable geometric relationships between
line-of-sight vectors, a simplistic dynamical model must be incorporated in
the IOD. For example, the orbit may be assumed to be circular or the Earth’s
gravity field may be considered as a point mass (Früh et al., 2009a). The
former fails to incorporate eccentric orbits such as those in a geostationary
transfer orbit (GTO) or high area-to-mass ratio (HAMR) objects (Rosengren
and Scheeres, 2012). The latter, although valid for celestial bodies that
are predominantly influenced by gravity, is less effective for RSOs which
experience many perturbing forces including atmospheric drag, irregularities
of the central body, and solar radiation pressure, just to name a few.

These difficulties in the association of optical tracklets of RSOs as well
as the subsequent orbit determination are referred to as the too-short arc
(TSA) problem (Tommei et al., 2007). A similar problem, albeit in longer
time scales, has been studied for heliocentric orbits; in fact, the method dis-
cussed in this paper was originally devised for the astrometry of celestial
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Table 1: The RMS of the residuals in right ascension (δRA) and declination (δDEC)
for simulated observations of a GEO object when fit to its true state (Object 1) and a
consistent but false state (Object 2).

Object 1 Object 2

δRA [arcsec] 1.83405 1.72122
δDEC [arcsec] 2.37513 2.86219

bodies (Milani et al., 2004; Milani and Knežević, 2005). The more general
problem of multiple target tracking using bearing-only sensors continues to
be tackled in the filtering community, but most solutions require a reference
state, a Gaussian assumption on the error distribution, or great computa-
tional power (Reid, 1979; Gustafsson et al., 2002).

2.2. The Direct Bayesian Admissible Region Apporoach

Various methods applying the admissible region (AR) concept to the TSA
problem for RSOs have been studied in recent years (Maruskin et al., 2009;
Tommei et al., 2007; Farnocchia et al., 2010; DeMars and Jah, 2012). In
this paper, we define the AR as a pdf constrained in the range ρ and range-
rate ρ̇ directions via a few physical criteria such as that the orbit is elliptic,
the object’s range is within the sensing capabilities, and so on (Fujimoto
and Scheeres, 2012a). The angle and angle-rate, nominally in right ascen-
sion α and declination δ, at the epoch of a tracklet may be estimated via a
least-squares fit of the tracklet data to a polynomial model in time. These
variables plus necessary parameters, such as the latitude ϕ and longitude Θ
of the observation point, are referred to collectively as the attributable vec-
tor (Maruskin et al., 2009). Thus, each point on the AR combined with the
attributable vector corresponds one-to-one with a state that the observed
object may have taken. Furthermore, the covariance from the least-squares
fit may be incorporated in the AR to represent observational errors.

Suppose that, given some set of criteria C, A is a compact set in state
space X that meet C. Then, the AR FC[X(t0);Y0] is a pdf over X assigned
to an attributable vector Y0 such that the probability p that the observed
object exists in region B ⊂ A at time t0 is

p[X(t0)] =

∫
B

FC[X(t0);Y0]dX0
1dX

0
2 . . . dX

0
n, (1)
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where X(t0) ∈ X and

X(ti) ≡ Xi = (X i
1, X

i
2, . . . , X

i
n). (2)

Note that we impose
∫
A
FC[X(t0);Y0]dX0 = 1. Figure 2 is an example of an

AR; here, as well as in the main analysis of this paper, the criteria are

C =
4∩

i=1

Ci, (3)

and

C1 = {(ρ, ρ̇) : E ≤ 0} (4)

C2 = {(ρ, ρ̇) : 1.03 ≤ ρ ≤ 8.53,−5 ≤ ρ̇ ≤ 5} (5)

C3 = {(ρ, ρ̇) : 1.03 ≤ rp} (6)

C4 = {(ρ, ρ̇) : ra ≤ 15}. (7)

where E is the specific geocentric energy of the particle, and ra and rp are
the apoapsis and periapsis radii of the orbit, respectively. Units of length
are in Earth radii and time in hours. The different shadings represent the
different regions which satisfy each criterion in set C; thus, the admissible
region is where all types of shading overlap, or the region outlined by the
black line. These criteria ensure that the AR encompasses most trackable
object relevant to SSA while simultaneously filtering out highly eccentric
orbits. Note that changing C allows one to be explicit about the types of
orbits that are included in the analysis. For example, if the observer is only
interested in identifying objects in and near the GEO belt, C may be modified
to

C1 = {(ρ, ρ̇) : E < 0} (8)

C2 = {(ρ, ρ̇) : 5 ≤ ρ ≤ 8,−1 ≤ ρ̇ ≤ 1} (9)

C3 = {(ρ, ρ̇) : 5 ≤ rp} (10)

C4 = {(ρ, ρ̇) : ra ≤ 8}. (11)

The AR expresses our limited knowledge regarding ρ and ρ̇ which are
not directly observed. In conventional filtering, pdfs of the observations only
describe the error in the attributable vector and are realized in the state space
as likelihoods. For underdetermined systems, the integral of the likelihood
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Figure 2: An admissible region for attributable vector Y = (α, δ, α̇, δ̇, ϕ, Θ) = (118.26
deg, -13.62 deg, 29.06 arcsec/sec, 3.75 arcsec/sec, 5.73 deg, 275.02 deg).
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function over the state space is divergent as we gain no information from
the observations in coordinate directions corresponding to the variables not
directly observed. We realize, however, that knowledge in these directions is
not completely lacking for many real-world systems as the likelihood function
may suggest. That is, we may add physical constraints C to the observed
object’s state such that we define a compact pdf F still representative of all
relevant states.

As a result, we may apply Bayes’ rule directly to ARs in a common state
space and at a common epoch τ ; no reference state is required. To obtain
the posterior pdf h[X(τ)] based on two ARs FC[X

1;Y1] and FC[X
2;Y2],

h[X(τ)] =
{T (τ, t1) ◦ FC[X

1;Y1]}{T (τ, t2) ◦ FC[X
2;Y2]}∫

{T (τ, t1) ◦ FC[X1;Y1]}{T (τ, t2) ◦ FC[X2;Y2]}dX
, (12)

where T (τ, ti) is a transformation that maps some pdf f(Xi, ti) from time ti

to τ , and X(τ) ≡ X. The domain of integration is over the entire state space.
Note that, in general, any pdf may be used as input, such as density infor-
mation from debris distribution models (Oswald et al., 2006). This approach
is computationally feasible because each AR, ignoring observation errors,
has codimension 4, making the problem extremely sparse. Furthermore, the
sparseness also ensures that misassociations are highly unlikely unless the
association is consistent with both the observation geometry and the dy-
namics (Carter, 1995). From the Theory of General Position, h[X(τ)] = 0
for all X generically if

dim
{
FC[X

1;Y1]
}
+ dim

{
FC[X

2;Y2]
}
< dim(X ), (13)

where dim(X ) is the dimension of the state space. Again, ignoring obser-
vation errors, dim {FC[X

i;Yi]} = 2 so the inequality holds for dim(X ) > 5.
The justification of associations is not at all related to the OD quality but
rather solely by the geometry of the AR maps; therefore, this method is
robust with minimal tuning.

Finally, transformation T (τ, ti) is expressed analytically by means of a
special solution to the Fokker-Planck equations valid for all deterministic
dynamical models. Given solution flow X(t) = ϕ(t;Xi, ti) to the dynamics
for initial conditions Xi, the pdf T (τ, ti) ◦ f(Xi, ti) = f(X, τ) is expressed as

f(X, τ) = f [ϕ(τ ;Xi, ti), τ ] = f(Xi, ti)

∣∣∣∣∂X(τ)

∂Xi

∣∣∣∣−1

, (14)

where | · | indicates the determinant operator.
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Figure 3: Current setup of ZimSMART (Herzog et al., 2011).

2.3. Observation Capabilities And Processing at AIUB

The Zimmerwald observatory, located about 10km south of Bern, Switzer-
land, consists of several optical telescopes (Herzog et al., 2011, 2010; Früh
et al., 2009b). One of them, the Zimmerwald SMall Aperture Robotic Tele-
scope (ZimSMART), is best suited for surveying the sky searching for RSOs.
ZimSMART is used to develop an orbital elements catalogue; a photograph is
given in Figure 3 its specs are listed in Table 2. Two different orbital regions
are surveyed: the GEO ring and the Medium Earth Orbit region (MEO).
The aim of the surveys of the GEO ring is maximum coverage of the region
around the celestial equator which can be observed from Zimmerwald.

Images taken with ZimSMART are analyzed as follows. First, the right
ascension and declination (RA/DEC) of each RSO in the image files are
automatically extracted. For each star, which appear streak-like, the center
of mass is calculated. RSOs, on the other hand, appear point-like; their
centers of mass are calculated as well. As each image has a finite exposure
time, the epoch of the coordinates is chosen to be the mid-exposure time.
The RA/DEC of the RSOs are calculated relative to celestial bodies whose
physical coordinates are known and cataloged. If the same object is detected
on at least 3 images, a tracklet will be produced; i.e., a text file containing the
observing epoch, position in right ascension and declination, and apparent
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Table 2: Instrument specs for the ZimSMART telescope.

Spec Value

Lat., Long., Alt. [deg, deg, m] 46.8772 N, 7.4652 E, 951.2
Cartesian [m] 4331306.2000, 567553.9900, 4633121.6600
System WGS-84

Telescope mount ASA DDM85
Telescope tube Takahashi ε-180
Aperture diameter 180 mm
Focal length 500 mm
Detector type CCD
Detector size 4096 × 4096 pixel
Field of view 4◦ × 4◦

Typical readout time 7 s
Wavelengths White light
Typical exposure time 10 s

Sensitivity
Magnitude 13.5 for 10s exposure time
(1m objects in GEO)

magnitude of the object for each image.
After extracting tracklets, one has to identify the observed objects. We

perform this process in three steps. First, we correlate each tracklet with the
JSpOC two-line element (TLE) catalogue and an internal AIUB catalogue
via positions and velocities. The complete procedures are described in detail
in Früh, et al (Früh et al., 2009b). In the second step, the leftover tracklets
are tested pairwise to check if some of them belong to the same object; if
so, they are stored as combined tracklets. Tracklets, for which no other
fitting tracklet could be found, remain single. This procedure reduces the
amount of computations in the following step. In the last step of the object
identification process, the orbital elements of objects in the AIUB internal
catalogue are compared with those of the new combined and single tracklets.
This method is very effective for newly detected objects with observations
from only one night. More details are described in Herzog, et al (Herzog
et al., 2010). The identifications via positions and velocities as well as those
via orbital elements have to be confirmed by a statistical orbit determination
(OD). The new tracklet is associated with an internal catalog object only
if the OD is successful; i.e., if the RMS of the residuals of a least squares

10



batch filter is below 1.5 arcsec. Due to the tracklets being too-short arc
and lacking dynamical information, especially when the tracklet pairs span a
single night, not every Keplerian element is included in the RMS, but rather
only the semi-major axis, inclination, and right ascension of the ascending
node.

Surveys of the geostationary ring are executed by scanning declination
stripes with fixed right ascension. These observations are taken without
a priori information of any catalogue objects. For the survey from which
data processed in this paper is extracted, 24 stripes are taken separated
by 1 hour in right ascension. These stripes are at 0 hr, 1hr, . . . , 23 hr.
Each stripe contains five fields separated in declination by the field of view,
and similarly, five images are taken for each field. The declination of the
lowest field depends on the known density of RSOs. The advantage of this
method is that the observations can be acquired in a fully automated fashion
with no human interaction. The telescope software chooses the visible fields
automatically. Again, a tracklet contains a minimum of three images and
a maximum of five, corresponding to the number of images taken per field.
Depending on the exposure time and the number of images, a tracklet thus
spans anywhere between 1 ∼ 2 minutes.

3. Method

The direct Bayesian approach is applied to optical tracks taken with the
ZimSMART telescope in order to ascertain its validity in real-world observ-
ing scenarios. In this section, the methodology from the observation to the
orbit estimate end-product is discussed. As such, two potential difficulties
are anticipated with the nominal assumption that the observation errors are
small enough to be ignored. The first is that the zero-error assumption causes
missed associations especially when the state space discretization is refined
as in (Fujimoto and Scheeres, 2011). The extension of the two-dimensional
linear map extrapolation discussed in (Fujimoto and Scheeres, 2012b) is de-
termined to be too computationally expensive for this particular problem.
The second is that the ambiguity in the number of revolutions the observed
object potentially made between two tracklet pairs leads to a large number
of false associations. A theoretical explanation of these fictitious solutions,
or multi-rev solutions, is given in (Fujimoto and Scheeres, 2012a).

We begin by discussing the strategy with which tracklets are obtained;
especially how the RA-DEC space and time are discretized. Next, simulation
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studies on the detrimental effects of measurement error on the association
process are shown. As a solution to the two difficulties mentioned previously,
a “direct Bayesian + least squares” hybrid algorithm is presented.

3.1. Assessing The Effect of Measurement Error

The addition of observational errors would make the AR, in principle, 6-
dimensional. Previous work showed that the uncertainty in the attributable
vector has a small effect on the discretized admissible region map and that
the 2-D assumption is justified for several days but only if the discretization
of the state space is coarse (∼ 100 km resolution in semi-major axis, ∼ 5◦

in mean anomaly) (Fujimoto and Scheeres, 2012a). We are interested in how
appropriate the 2-D assumption is for finer state space discretizations.

We consider 27000 objects distributed uniformly in the semi-major axis
(19134.3 ≤ a [km] ≤ 51024.8), eccentricity (0 ≤ e ≤ 0.8), and inclination
(−90◦ ≤ i ≤ 90◦) spaces but randomly in the other Keplerian orbit elements.
The observation point is also randomly chosen for each object so that the
observation takes place at least 11.5◦ above the horizon. This approach
ensures more control over the sample set than choosing objects directly from
ARs. Each state is then displaced in the 6 coordinate directions of the
inertial topocentric spherical coordinate frame one by one: ∆ρ = 6.059 km,
∆ρ̇ = 13.71 km/hr, ∆α = ∆δ = 1.62 arcsec, and ∆α̇ = ∆δ̇ = 3.6 · 10−3

arcsec/sec (Maruskin et al., 2009). These displacements correspond to the
size of one admissible region sample subset when the sample size is ∼ 105

and when Gaussian observation errors of σ = 2 arcsec in both α and δ
are considered up to 3-σ. The displacements are mapped statically to the
Poincaré orbit element space (L, l, G, g, H, h) via a linear transformation
ΦS = Φ3 ◦ Φ2 ◦ Φ1, where

Φ1 =
∂(x, y, z, ẋ, ẏ, ż)

∂(ρ, ρ̇, α, δ, α̇, δ̇)
,Φ2 =

∂(a, e, i,Ω, ω,M)

∂(x, y, z, ẋ, ẏ, ż)
(15)

Φ3 =
∂(L, l,G, g,H, h)

∂(a, e, i,Ω, ω,M)
, (16)

and (x, y, z, ẋ, ẏ, ż) are the Cartesian states. The Poincaré orbit elements
are a canonical counterpart to equinoctial elements. They are defined with
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respect to the Keplerian orbit elements as follows:

l = Ω+ ω +M

L =
√
µa

g =

√
2L

(
1−

√
1− e2

)
cos(ω + Ω)

G = −g tan(ω + Ω)

h =

√
2L

√
1− e2 (1− cos i) cosΩ

H = −h tanΩ, (17)

where µ is the standard gravitational parameter (Vallado, 2007). Finally, the
dynamics from the initial epoch t0 to some time τ are added also linearly
with a state transition matrix Φ4(τ, t

0) such that the complete linear map
is (Fujimoto and Scheeres, 2012a).

Φ(τ, t0) = Φ4(τ, t
0) ◦ ΦS(t

0). (18)

For simplicity, we assume two-body dynamics because the STM deviates from
an identity matrix only by the ∂l(τ)/∂L0 component:

∂l(τ)

∂L0
=

−3µ2(τ − t0)

L(t0)4
. (19)

Figure 4 shows the magnitude of the mapped displacements for all sim-
ulation cases. The different colors represent different coordinate directions
in the spherical coordinates. The simulations are indexed in lexicographical
order with a, e, and i as bases; thus, as the index increases, a monotonically
increases. We find that the errors in the angles, on the average, have an order
2 to 3 smaller effect on the map compared to the other variables. Therefore,
it is possible to ignore them and reduce the dimensionality of the problem
from 6 to 4 in many situations. We also notice that the mapped displacement
in the α̇ and δ̇ reach the same order of magnitude as those in the ρ and ρ̇
as either semi-major axis or propagation time increases. The map in the ρ
direction, however, is nearly parallel to the map in either α̇ or δ̇ especially
when propagation times are on the order of days; thus, its effect on the AR
is limited.

Conversely, when propagation times are short, the angle-rate errors can
displace the admissible region map in directions perpendicular to the ρ and
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Figure 4: Norm of displacement in the ρ (blue), ρ̇ (green), α (red), δ (cyan), α̇ (purple), and
δ̇ (gold) directions when mapped to the Poincaré orbit element space. Time propagated
for 0 (top) and 120 hours (bottom). Units in Earth radii - kg - hr.
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Figure 5: Scatter plot of the smaller angle between the map of the displacement in the
range and either angle-rate versus the velocity of the observed object. The propagation
time is 0.

ρ̇ maps, meaning that ignoring these errors may not be justified for fine
discretizations of the state space. This phenomenon is most prevalent when
the velocity of the observed object is slow (∼ 3 km/s and lower) as can be
inferred from Figure 5. The reason why the map of the errors in ρ and the
angle-rates align is because they both act to change the orbit energy and
thus L (equivalent to semi-major axis); the former through the orbit radius
and the latter through velocity. When the velocity is low, however, even a
small error in the angle-rates can strongly influence not only the orbit energy
but also the orbit plane orientation.

3.2. Proposed “Direct Bayesian + Least Squares” Hybrid Approach

Here, we propose a hybrid approach that takes the tracklet association and
initial orbit determination results of the direct Bayesian method and passes
them to a least squares estimator. Although the steps in this new process
are similar to those in a traditional IOD (Beutler, 2005), the justification of
the association and the estimation are separated, thus improving robustness.
The least squares step ensures good estimate precision without having to
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use a fine discretization of the state space, minimizing negative effects of
measurement error on tracklet association using ARs. Furthermore, in order
to better exclude multi-rev solutions, a minimum limit pmin is set to the p-
value associated with the model utility test of the observed minus computed
(O − C) residuals. Suppose that for n pairs of samples y1, . . . , yn each
associated respectively to independent variables x1, . . . , xn, the samples are
modeled with a simple linear regression model as

ŷi = β̂0 + β̂1xi, (20)

for all integers 1 ≤ i ≤ n, where the hat symbolizes that it is a model
estimate. Then, for the hypothesis test regarding slope parameter β1{

H0 : β1 = 0
H1 : β1 ̸= 0,

(21)

where H0 is the null and H1 the alternative hypothesis, the probability of
falsely rejecting H0 is set to be pmin. Through this step, a maximum bound is
effectively set for β1 itself, meaning the residuals must be unrelated to time
in a linear sense for a tracklet pair to be associated to a state estimate. The
best estimate for the slope parameter β̂1 is

β̂1 =
n
∑

xiyi − (
∑

xi)(
∑

yi)

n
∑

x2
i − (

∑
xi)2

, (22)

where the summation is from i = 1 to n. Since the tracklets arcs are so short,
we can assume that the residual bias is linear enough for us to use slope
parameter β1 in this context. The test statistic is Student’s t-distribution

t = β̂1

√
n(n− 2)

n
∑

y2i − (
∑

yi)2 + β̂1(
∑

xi)(
∑

yi)− nβ̂1

∑
xiyi

. (23)

Note that a normalized statistic of the goodness of fit to a linear model is
given by the coefficient of determination r2

r2 = 1− n
∑

y2i − (
∑

yi − β̂1

∑
xi)(

∑
yi)− nβ̂1

∑
xiyi

n
∑

y2i − (
∑

yi)2
(24)

r2 = 1 iff all sample pairs lie on a straight line.
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We now present an outline of the hybrid algorithm. First, the time history
of right ascension and declination must be converted into an attributable
vector at the tracklet epoch; i.e. a single set of angles and angle-rates. The
measured angles are fit to a polynomial kinematic model in time, such as for
the right ascension

α(t) = α0 + α̇0(t− t0) +
1

2
α̈0(t− t0)2, (25)

where superscript 0 denotes the state at the tracklet epoch (Maruskin et al.,
2009). Next, admissible regions are computed for each attributable vector in
the Poincaré orbit element space. As discussed in (Fujimoto and Scheeres,
2012a), the admissible region is divided into 375,000 subsets (750 units of
discretization in the range-direction × 500 units in the range-rate) and each
subset linearly extrapolated. The Poincaré space, and consequently the ARs,
are discretized such that the bounds of the state space are

Xmin = (4.5285, 0,−3,−3,−4,−4) (26)

Xmax = (14.110, 6.2832, 3, 3, 4, 4), (27)

where the units are in Earth radii - kg - hr. The bin size is set such that
the sides are 1.1052 · 10−2 (L), 1.7453 · 10−2 (l), 1.6667 · 10−2 (G, g), and
2.2222 · 10−2 (H, h) for a total of 5.2424 × 1015 bins over the entire space.
This resolution corresponds to approximately 100 km in the semi-major axis
direction and 1 degree in the mean anomaly direction. The admissible regions
are propagated to a common epoch, which is chosen to be the tracklet epoch
of the first tracklet, under two-body dynamics. The two-body assumption is
made only to simplify the problem and is not central to the direct Bayesian
technique.

To avoid the high computational cost of all-on-all association, the posterior
pdf h[X(τ)] based on the admissible regions is computed for tracklet pairs
in reverse chronological order (i.e., for a set of N tracklets ordered by epoch,
Tracklet 1 + Tracklet N , Tracklet 1 + Tracklet N−1, . . . ) until we find a pair
for which h[X(τ)] > 0 (Fujimoto and Scheeres, 2012a). We then temporarily
claim these tracklets as associated and run a bank of least squares filters
simultaneously to refine the fit of the measurements to the state estimate.
Note that if an object catalog exists, then one should first correlate tracklets
with these objects first. Also, only tracklet pairs whose epochs are separated
by at least 24 hours are considered so that enough dynamical information is
available.
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The reference state of each filter is the centroid of each bin where h[X(τ)] >
0 transformed into the J2000 cartesian space. In this paper, we assume that
no a priori information exists; if desired, the a priori covariance may be set
to approximate h[X(τ)]. The assumed observation error is set to 2 arcsec 1-σ.
The observation-state relationship and corresponding linear partials matrix
assume a spherical Earth

x = ρ cosα cos δ (28)

y = ρ sinα cos δ (29)

z = ρ sin δ. (30)

For the set of filters that converge, if

1. the RMS of the O−C residuals for both the right ascension and decli-
nation over all tracklets processed is less than some maximum RMSmax

AND

2. the p-value of the model utility test for both the right ascension and
declination for each individual tracklet is greater than some minimum
pmin,

then the tracklets are confirmed to be associated and the state estimate with
the smallest O−C residual RMS is added to the object catalog. In this paper,
RMSmax = 0.7 arcsec and pmin = 0.1; these values are chosen to best describe
the observational capabilities of ZimSMART. Finally, the next tracklet in the
set is paired with other tracklets as before, and the process is repeated until
all tracklets are processed. Figure 6 is an overall flowchart.

As an example of how the linear regression slope parameter can help iden-
tify multi-rev solutions, Table 3 shows the association result of two tracklets
correlated with the current AIUB approach to object 98006B in the JSpOC
TLE catalog. For Solution 1, which is most likely a multi-rev solution, even
though the RMS of the residuals in RA over the first tracklet is smaller than
the gating criterion, the coefficient of determination value suggests a strong
linear relationship between the residuals over time. In addition, the small p-
value indicates that it is highly unlikely to falsely infer β1 ̸= 0 due to random
chance.

4. Results

In this section, the outcome of observation association via the direct
Bayesian only approach and hybrid approach are compared. Then, the orbits
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Convert all N tracklets into attributable vectors

Compute admissible regions (ARs) for each tracklet

Reorder all AR in chronological order

j = 1, k = N

Pair AR j with AR k

If AR j and AR k exist AND time gap > 24 h

Compute posterior pdf

If h > 0

Run bank of least squares filters

If RMS < RMSmax AND p > pmin

Add h(X) to tracket list as AR N = N + 1

Remove AR j and AR k from tracklet list

j = j + 1, k = N

If k − 1 < j k = k − 1

j = j + 1

k = N

YES

YES

YES

YES

NO

NO

NO

NO

Figure 6: A flowchart of the “direct Bayesian + least squares” hybrid approach.

Table 3: For two orbit estimates computed based on the hybrid approach, the semi-major
axis (a), eccentricity (e) and inclination (i) are listed along with the RMS of the residuals
for the first tracklet in RA (RMSRA) and the coefficient of determination (r21,RA) with its
corresponding p-value.

a [km] e i [deg] RMSRA[arcsec] r21,RA p

Solution 1 20285 0.57013 2.2261 0.24841 0.97512 0.00469
Solution 2 42166 0.00466 0.2886 0.05599 -0.13651 0.82673
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Table 4: Parameters for the data set used in this example. # of objects detected is based
on AIUB correlation results.

Parameter Value

Epoch of Initial Field Aug 18, 2012 22:59:08.64 UTC
Epoch of Final Field Aug 20, 2012 02:01:32.69 UTC
Stripe Right Ascension 23 hr
Total # of Fields 55
Total # of Tracklets 212

Total # of Objects Detected 48
# of Objects Detected Twice w/ 24h Gap 19

of objects detected by the hybrid approach are examined in further detail.
The observation strategy is described in Section 2.3. We process a set of
tracklets taken with the ZimSMART telescope over one RA stripe; detailed
measurement parameters are given in Table 4.

Table 5 is a table of all 20 associated tracklet pairs detected. The solutions
can be categorized into three types.

Type I The solution is most likely a true solution; associates tracklets that
are also similarly correlated with the AIUB code (11/20 = 55% of
solutions).

Type II The solution is most likely a false positive (multi-rev) solution;
associates tracklets that are correlated to two separate objects with
the AIUB code AND the solution does not exist at or near (± 200 km)
GEO altitude (7/20 = 35%).

Type III The solution is most likely a new true solution; at least one of the
associated tracklets are not correlated with the AIUB code AND the
solution exists at or near (± 200 km) GEO altitude (2/20 = 10%).

Table 6 compares the distribution of solution types for the direct Bayesian
only and hybrid methods. Note that, for the direct Bayesian only case, the
discretization is refined dynamically over the support of the posterior pdf to
6.1449 · 10−4 (L), 1.7453 · 10−2 (l), 3.3333 · 10−3 (G, g), and 4.4444 · 10−3

(H, h) for a total of 5.8928 × 1019 bins over the entire space. As expected,
for the direct Bayesian only case, over 60% of the solutions found are multi-
rev solutions. This ratio improves to 35% for the hybrid case; furthermore,
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Table 5: Summary of association results ordered by solution type. Tracklets correlated
to the JSpOC TLE catalog objects are indicated by the object’s 6 letter international
designator. Tracklets associated with objects in AIUB’s internal catalog are indicated by
the object’s 7 letter designator starting with “Z.” Tracklets newly associated are indicated
by a bracketed number assigned by tracklet epoch.

Type Object ID Tracklet #1 Tracklet #2 δt [days]

Type I 2 ’94022A’ ’94022A’ 1.01325
3 ’93078B’ ’93078B’ 1.00508
5 ’00081A’ ’00081A’ 1.00508
11 ’91075A’ ’91075A’ 1.00387
12 ’02015B’ ’02015B’ 1.00172
13 ’98006B’ ’98006B’ 1.00172
14 ’10025A’ ’10025A’ 1.00172
15 ’08034B’ ’08034B’ 1.00172
16 ’98057A’ ’98057A’ 1.00172
17 ’85015B’ ’85015B’ 1.01285
19 ’Z11003C’ ’Z11003C’ 1.00932

Type II 4 ’10032B’ ’98050A’ 1.00635
6 ’98050A’ ’09008B’ 1.08071
7 ’00054A’ ’10025A’ 1.00635
9 ’08065B’ ’10021A’ 1.01453
10 ’11041A’ ’98057A’ 1.00603
18 ’04008A’ ’98024A’ 1.03621
20 ’01042A’ ’Z12230G’ 1.00963

Type III 1 [3] ’Z12230C’ 1.00635
8 [13] [120] 1.00635

2 additional “true” solutions are detected. If an object is indeed observed
twice or more, the fact that more multi-rev solutions are rejected means that
their observations are not “used up” before being properly associated. All
solutions obtained with the hybrid method are listed in Appendix A. Based
on these results, in a real-world scenario where hundreds of tracklets that
contain measurement errors are to be associated, we recommend modifying
the direct Bayesian admissible region approach so that it explicitly accounts
for errors as well as reduces multi-rev solutions.

4.1. Type II Solutions

We now examine in detail the 45% of hybrid method solutions that do not
agree with existing techniques. Table 7 lists the semi-major axis, eccentricity,
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Table 6: Orbit solutions found by type (I, II, or III) and association method. ∆ is the
difference between methods, and bold numbers indicate an improvement.

I II III Total

Direct Bayesian only 10 18 1 29
Hybrid 11 7 2 20
∆ +1 -11 +1 -9

Table 7: For Type II solutions, listed here are the semi-major axis a, eccentricity e,
inclination i, and ratio between the observation time gap δt and the orbit period T .

Object ID a [km] e i [deg] δt/T

4 20370.27 0.574014 2.36898 3.001
6 44103.76 0.033165 0.15711 1.013
7 20367.00 0.601097 4.21171 3.002
9 20489.57 0.566496 2.53346 2.999
10 26695.54 0.385897 1.64413 2.000
18 27240.55 0.344950 0.95749 2.001

and inclination of the Type II solutions. All objects except for Object 6 are in
altitudes where it is unlikely that any objects exist. As can be inferred from
the strict gating required for an association to be detected (RMSmax = 0.7
arcsec), however, these are not degenerate solutions but rather likely to be
multi-rev solutions that arise from the ambiguity of the number of revolutions
made by the observed object during the observation gap. Indeed, if we are
to look at ratio of the time gap between tracklets to the orbital period of
the solution, they are all nearly integers between 1 and 3. It should be
stressed that, without a priori knowledge regarding the distribution of RSOs,
for instance, these Type II solutions are dynamically just as viable as the
solutions given by the AIUB code. That multi-rev solutions may be solved
for without the need for parameter tuning is a potential strength of the direct
Bayesian AR method; if RSOs indeed exists on these orbits, they would be
difficult to detect with conventional geometric techniques.

Figures 7 and 8 are graphical representations of Object 9 as well as the
two catalogued objects to which the AIUB code correlated. As expected,
Object 9 and the catalogued objects align along the observation direction at
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Figure 7: The orbit (dotted red line) and position of Object 9 at the first tracklet epoch
along with orbits and positions of catalogued objects 08065B and 10021A (solid red lines)
as well as the observation direction (black). Figures generated with AGI’s STK.

each tracklet epoch. We find that the slight inclination common to Type II
solutions is necessary so that the solution appears at the same declination as
an object in the GEO ring.

4.2. Type III Solutions

Table 8 lists the Keplerian orbital elements of the Type III solutions found
and Figure 9 is a plot of their groundtracks. Unlike the Type II solutions,
both objects are very near circular at geosynchronous altitude, making it
likely that they are uncatalogued objects. Here, the long time gap between
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Figure 8: Similar to Figure 7 but for the second tracklet epoch. Figures generated with
AGI’s STK.
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Table 8: For Type III solutions, listed here are all 6 Keplerian orbital elements: semi-major
axis a, eccentricity e, inclination i, right ascension of the ascending node Ω, argument of
periapsis ω, and mean anomaly M .

Object ID a [km] e i [deg] Ω [deg] ω [deg] M [deg]

1 42167.94 0.005040 8.74794 38.5298 38.449 264.763
8 42166.74 0.000314 0.09691 56.8309 143.201 140.752

tracklets allowed the admissible regions to dynamically evolve so that previ-
ously uncorrelated tracks could be linked together.

4.3. Potential Improvements of The Observation Strategy

The proposed idea of applying a least squares batch filter to the direct
Bayesian probabilistic output is effective but nonetheless can still be im-
proved. Table 9 sorts the 19 objects expected to be detected based on the
AIUB correlation results by whether it matches the results from the hybrid
method or not. Type II solutions are not completely rejected; consequently,
about 15% of the expected objects are missed due to one or more of their
tracklets being associated to a multi-rev solution. Ruling out apparent multi-
rev solutions as false associations given just the two tracklets and dynamical
system flow may be difficult, especially when the measurement residuals are
so well behaved. Note that multi-rev solutions are not a problem in the
AIUB code as the tracklets are never associated beyond a single night. This
approach is not ideal either; as discussed in Section 2.1, a lack of dynam-
ical information can also lead to poor association solutions. Indeed, new
objects within the GEO belt are detected with the hybrid approach where
the associated tracklets are separated by at least 24 hours.

The easiest way to reject multi-rev solutions is to conduct follow-on ob-
servations based on the estimated state. If the multi-rev solution is indeed
truth, then its short orbital period relative to GEO objects should allow it
to be observed multiple times per night. Alternatively, one can make better
use of the information already available in the observations. Geometric cor-
relation to JSpOC catalogued objects as implemented in the current AIUB
code is, in effect, one example where a priori information is fused into the
association process. Preconditioning the ARs with pdfs derived from debris
catalogues or density models may similarly be effective; the prior has been
implemented in previous work to greatly improve computational speed (Fuji-
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Figure 9: Ground tracks of Type III solutions for a full orbit from the tracklet epoch:
Objects 1 (light blue) and 8 (dark blue). The position of each object at the epoch of the
first tracklet is indicated by a dot. The position of the Zimmerwald observatory is also
plotted with a black dot. Figure generated with AGI’s STK.

moto and Scheeres, 2012a). Information which would allow one to distinguish
between tracklets also exists outside of the realm of dynamics, such as pho-
tometry and spectroscopy from the CCD image files (Scott andWallace, 2009;
Schildknecht et al., 2009, 2010). Finally, because the evaluation of Bayes’ rule
when associating ARs is an embarrassingly parallel problem, all-on-all asso-
ciation may be possible within a reasonable time if many computation cores
are available.

Additionally, about 25% of the 19 expected objects are completely missed
by the hybrid approach. The solution corresponding to object 82082A is
rejected due to a particularly large O − C residual value (-2.445 arcsec)
in the declination direction for one angle measurement. If this particular
measurement is excluded, the RMS of the declination residuals improves
from 1.0113 arcsec to 0.59865 arcsec: within the maximum RMS gate for this
paper. For all of the other solutions, the p-value limit for the model utility
test of the residuals is triggered most probably by mistake. Figure 10 is one
such example: the residuals in the declination direction for the first tracklet
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Table 9: Objects where multiple tracklets with at least a 24 hour time gap are correlated
based on the AIUB algorithm. Tracklets of objects under “Agreement” are associated sim-
ilarly with the hybrid approach, “multi-rev” associated with another object, and “missed”
not associated at all. Number of objects in each category in parenthesis.

00081A
02015B
08034B
10025A
85015B
91075A
93078B 82082A
94022A 84028A
98006B 00054A 93015A
98057A 11041A 95067A
Z11003C 98050A 98056A

Agreement (11) Multi-Rev (3) Missed (5)

is “linear enough” such that p = 0.0432 < pmin = 0.1. As such, there exist
observation scenarios where reliably evaluating the “no linear relationship”
null-hypothesis can be difficult due to the small number of individual angle
measurements included in a tracklet. Increasing measurements per tracklet
not only will shed better light on any biases present in the residuals but also
has the added benefit of improving the angle-rate estimate in the attributable
vector.

Because the theory discussed in this paper addresses the TSA problem
in a much more probabilistically straightforward way than other IOD tech-
niques, it allows one to reevaluate future observational strategies so that they
minimize false positive / negative association solutions. Any changes to the
current strategy, such as the time gap between tracklets, directly affects the
a posteriori pdf in the state space without the need to assume an observation
geometry, dynamical system, or type of errors accounted for. Furthermore,
it is not necessary to parametrically account for multi-rev solutions, which
explained all false positive solutions encountered in this paper; rather, they
naturally appear in the a posteriori pdf as long as they are dynamically
viable.
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correlated to object 84028A with current AIUB code. Plot points to the left of the dotted
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5. Conclusions

In this paper, the direct Bayesian admissible region approach to short-arc
association and initial orbit determination is applied to optical observations
taken at the Astronomical Institute of the University of Bern. Traditional
methods rely on the quality of the orbit determination to conduct observa-
tion association, which is often unreliable. The direct Bayesian approach
improves robustness by leveraging the sparseness of probability distributions
that describe range and range-rate ambiguity given a single optical track.
Furthermore, a hybrid approach that appends a least squares batch filter is
found to efficiently incorporate measurement error and reduce false positives
due to multi-rev solutions. Processing a set of 212 tracklets results in 20
objects detected; 2 of which are newly detected by the proposed method.
Nonetheless, about 35% of the solutions are still deemed to be false positive
solutions, and thus ideas to further reject multi-rev solutions are proposed.
Future work is to implement these ideas, such as increasing the number of
angle measurements per tracklet, as well as further testing of the hybrid ap-
proach with more data sets.
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