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Abstract

For swine dysentery, which is caused by Brachyspira hyodysenteriae infection and is an economically important disease in
intensive pig production systems worldwide, a perfect or error-free diagnostic test (‘‘gold standard’’) is not available. In the
absence of a gold standard, Bayesian latent class modelling is a well-established methodology for robust diagnostic test
evaluation. In contrast to risk factor studies in food animals, where adjustment for within group correlations is both usual
and required for good statistical practice, diagnostic test evaluation studies rarely take such clustering aspects into account,
which can result in misleading results. The aim of the present study was to estimate test accuracies of a PCR originally
designed for use as a confirmatory test, displaying a high diagnostic specificity, and cultural examination for B.
hyodysenteriae. This estimation was conducted based on results of 239 samples from 103 herds originating from routine
diagnostic sampling. Using Bayesian latent class modelling comprising of a hierarchical beta-binomial approach (which
allowed prevalence across individual herds to vary as herd level random effect), robust estimates for the sensitivities of PCR
and culture, as well as for the specificity of PCR, were obtained. The estimated diagnostic sensitivity of PCR (95% CI) and
culture were 73.2% (62.3; 82.9) and 88.6% (74.9; 99.3), respectively. The estimated specificity of the PCR was 96.2% (90.9;
99.8). For test evaluation studies, a Bayesian latent class approach is well suited for addressing the considerable complexities
of population structure in food animals.

Citation: Hartnack S, Nathues C, Nathues H, Grosse Beilage E, Lewis FI (2014) Estimating Diagnostic Test Accuracies for Brachyspira hyodysenteriae Accounting for
the Complexities of Population Structure in Food Animals. PLoS ONE 9(6): e98534. doi:10.1371/journal.pone.0098534

Editor: Baochuan Lin, Naval Research Laboratory, United States of America

Received October 5, 2013; Accepted May 5, 2014; Published June 6, 2014

Copyright: � 2014 Hartnack et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors have no support or funding to report. Data originate from routine sampling.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: sonja.hartnack@access.uzh.ch

Introduction

Currently used diagnostic tests for Brachyspira
hyodysenteriae

Swine dysentery (SD) is caused by infection with the bacterium

Brachyspira hyodysenteriae and imposes major economic losses on

intensive pig production systems worldwide [1]. The affected

animals, usually growing or finishing pigs, show non-specific

clinical symptoms, such as diarrhoea, reduced growth and

decreased food conversion which precludes a diagnosis based

solely on pathognomonic signs. More specific signs, i.e. large

amounts of mucus and often flecks of blood in the faeces, can

become visible during the course of the disease, but this is not

guaranteed. Finally, sub-clinical disease can occur. The accurate

diagnosis of sub-clinical, as well as clinical disease, is a prerequisite

for providing efficient treatment procedures, and to support

prevention programmes in the field.

Animals in intensive pig production systems are reared in

distinct population groups, i.e. herds or farms, and within each

group may share multiple genetic and immunologic characteris-

tics. Animals, therefore, from the same population group will likely

be more similar to each other than to animals from other groups.

In epidemiological terms this may result in over-dispersion, that is,

the level of variation in disease prevalence (say) across multiple

population groups (e.g. multiple herds or farms) may be far in

excess of that allowed by commonly used statistical methods for

estimating diagnostic accuracy. Failure to account for such

population clustering may lead to highly unreliable results.

Moreover, such adjustment for excess variation is common place

in other types of epidemiological analyses, e.g. risk factor studies,

but as yet rare in diagnostic test evaluation despite identical issues

being present.

The development of methods for dealing with the complexity of

population structures found in food animal production, such as

clustered or hierarchical data, has been described as the single

most important advancement [2] for animal health researchers.

To ensure success, animal disease prevention programs, typically

organized at a national level, need to consider the inherent

complexity of the population structure, rather than simply treating

the population as an assemblage of individual and unrelated or

independent animals. With regard to data from diagnostic test

studies, this also holds true for laboratories which receive samples

for large-scale testing from national animal populations. The

necessity to consider variation of test accuracies at farm level,

where test errors might be clustered, has been stated by Donald

and co-workers [3], [4]. The ultimate diagnosis of SD should be
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based on the isolation of the causative agent, but this procedure is

extremely laborious, time-consuming and expensive, as the

bacteria are fastidious and grow slowly. Another disadvantage of

isolation is the fact that both confirmation and differentiation

between B. hyodysenteriae, and other less- or non-pathogenic

Brachyspira spp., are dependent upon colony morphology, pattern

and intensity of haemolysis and other growth characteristics,

which might be very similar among different subspecies [5].

Finally, isolation often fails to recover organisms when infected

pigs have been submitted to antimicrobial therapy prior to

sampling. This inevitably leads to a decreased diagnostic sensitivity

of cultural isolation, and as such, cultural isolation cannot be

assumed to be a perfect gold standard for diagnostic test evaluation

studies.

Polymerase chain reaction (PCR) is increasingly used for

diagnostic purposes, and produces more specific and sensitive

results in the detection of B. hyodysenteriae when compared with

other diagnostic methods [6], [7]. Others found PCR for B.

hyodysenteriae being less sensitive than culture [8], underlining that

none of these tests perform as a perfect gold standard, that is,

completely error-free (display 100% diagnostic sensitivity and

specificity). A number of false negative test results due to a less

than perfect sensitivity, and thus falsely classified animals may

contribute to the spread of a contagious agent. False positive test

results may lead to welfare and ethical issues if healthy animals are

subsequently culled. Reliable information about test accuracies,

including information about how well a diagnostic test performs in

a defined animal population, is crucial for efficient prevention and

control programs.

Generally speaking, for diagnostic test evaluation, the difficulty

of obtaining robust estimates for diagnostic sensitivity and

specificity by comparing a new diagnostic test with an established

standard test, which presumably is not a perfect gold standard, is

due to the uncertainty associated with results from the standard

test. If for example a highly sensitive PCR is compared with

culture as a standard test, which might be highly specific but less

sensitive, a number of samples might be correctly classified as

being positive by the PCR, but – due to a lower sensitivity – be

falsely classified as negative by culture. In this case, if the

diagnostic specificity of the PCR is derived by determining the

quotient of PCR negative test results divided by the number of

culture negative results, then the diagnostic specificity of the PCR

might be biased, being too low.

Using latent class models to estimate test accuracies
Statistical methods have been developed to deal with situations

of test evaluation where no gold standard test is readily available.

Seminal work was done by Hui and Walter – [9] after whom the

Hui-Walter paradigm was named (reviewed by [10] and [11] with

regard to the underlying assumptions with regard to the

characteristics of diagnostic test data). The term ‘‘latent’’ here

refers to the fact that the dichotomized test results contain, only

latently, statistical information about the parameters of interest i.e.

sensitivities, specificities, and prevalences. These parameters are

not directly observed but can be extracted from the data via an

appropriate statistical model. There are many extensions to the

original Hui-Walter paradigm. Most notably, models for the

inclusion of conditional dependencies between diagnostic test

accuracies have been developed [12–18]. Furthermore, latent class

models are now recommended in the Standard Operating

Procedures (SOP) of the OIE for validation and certification of

diagnostic assays [19].

The key caveat in using latent class or variable models is that the

parameter estimates obtained will be, to a greater or lesser extent,

dependent upon the model used to extract the latent information

from the observed data. Hence, particular attention must be paid

when selecting an appropriate model formulation – one that best

matches the type and structure of the study data. In respect of food

animal production the complexity of the population structure from

which study data is sampled is obviously of major importance. To

date in veterinary medicine, diagnostic test accuracy studies rarely

perform data analysis with regard to potential clustering, with only

a few but notable exceptions [20–23].

The aim of the present study was to estimate test accuracies of a

PCR and cultural testing for B. hyodysenteriae on 239 samples from

103 herds originating from routine diagnostic sampling at a

laboratory in Bakum, Germany. Given the number of different

population groups included in the study data the resulting

accuracy estimates could then be considered as broadly applicable

to the national swine population. The PCR has been designed to

be used as a confirmatory test displaying a high diagnostic

specificity.

Material and Methods

Samples
Faecal samples (n = 239) originating from 103 herds that had

been submitted to the Field Station for Epidemiology in Bakum for

the purpose of routine diagnostics due to diarrhoea in pigs were

included in this study. These samples arrived in the laboratory

during 2007 and 2011, and they were all examined for B.

hyodysenteriae by both, PCR and cultural testing.

Upon arrival in the laboratory faecal samples were carefully

homogenized and each time one aliquot of 200 mg was

transferred to a microtube for storage at 220uC. From the

remaining faeces a swab was obtained, transferred into a container

with transport medium and subsequently shipped to the Institute

of Bacteriology, University of Veterinary Medicine Hannover for

cultural testing.

PCR was exactly performed as previously described [24]. This

PCR had been designed to be used as a confirmatory test

displaying a high diagnostic specificity in detecting B. hyodysenteriae,

B. pilosicoli and/or Lawsonia intracellularis. For cultural isolation

swabs were streaked on Columbia blood agar plates (Oxoid,

Germany) and on TSA-plates (Trypticase Soy Agar) containing

0.1% yeast extract, 6 mg/ml vancomycin, 6.25 mg/ml colistin,

12.5 mg/ml rifampicin, 15.25 mg/ml spiramycin, 200 mg/ml spec-

tinomycin, and 5% bovine blood. These were incubated

anaerobically (AnaeroJar with AnaeroGen, Oxoid) at 42uC for

six consecutive days. Suspected growth of Brachyspira spp. was

confirmed and species were identified using nox-RFLP as

described previously [25].

The raw data of the 239 faecal samples tested in parallel by

PCR and culture are shown in table 1.

Statistical analysis
A Bayesian latent class analysis was performed to obtain robust

estimates for test accuracies of PCR and culture. It was assumed,

as is standard practice, that sensitivities and specificities of the tests

are constant across all animals. With the exception of culture,

where the specificity was set to 1, uninformative (‘‘flat’’) prior

distributions on key model parameters were utilized (prior beta

distribution (1,1) for the sensitivities of PCR and culture, for the

specificity of PCR, and prior uniform distribution (20.01,0.01) for

conditional test dependence between the two sensitivities). A

sensitivity analysis for three different beta priors was conducted

utilising Betabuster (http://www.epi.ucdavis.edu/diagnostictests/

betabuster.html) to define the two shape parameters. The priors

Estimating Diagnostic Accuracies for B. hyodysenteriae
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have been chosen as input information ‘‘to be 95% sure that the

parameter of interest is greater than 0.3, 0.4 and 0.5 and the mode

is at 0.6, 0.75 and 0.95’’ respectively. The model parameters were

estimated using a hierarchical beta-binomial approach which

allowed the prevalences for individual population groups (farms) to

vary as a farm level random effect. In other words, we allow

different farms to have potentially very different prevalences

subject to the condition that the overall distribution of farms

prevalences should follow a beta probability distribution (which is

very flexible in terms of shape). Gamma distributed priors of (5,

0.01) were used to model the shape parameters of this beta

distribution (describing the population level prevalence – i.e. the

distribution of within farm prevalences across all farms). Three

different gamma priors were tested in a sensitivity analysis.

The effect of conditional dependency between test results,

specifically two-way covariance between test sensitivities, was

assessed by formal model selection using DIC (deviance informa-

tion criterion) as the goodness-of-fit criterion, with lower values

indicating a better model fit [26]. All models were fitted using

Markov chain Monte Carlo estimation through JAGS software

(Just Another Gibbs Sampler) (http://mcmc-jags.sourceforge.net/)

version 3.3.0. Good standard practice was followed doing MCMC

running four chains independently for 500,000 iterations after a

burn-in of 25,000 iterations, and thinning of (10), thus resulting

10,000 values to derive the posterior means. Code for the final

model is presented in code S1. The output was analysed with the

package coda [27] within the software R (http://www.r-project.

org/) version 2.15.2. Gelman-Rubin statistics was used to assess

mixing [28].

Results

Two latent class models, one with and one without a covariance

term have been tested to obtain estimates for the parameters of

interest. Based on DIC as a decision criterion (without test

sensitivity covariance: 453.6 and with tests sensitivity covariance:

454.3), the model without any covariance structure between tests

was chosen due to the principle of parsimony. Additionally, the

inclusion of the covariance yielded similar values for the

parameters of interest. Posterior means and corresponding 95%

credibility intervals for all parameters of interest are shown in

table 2. Posterior estimates for the sensitivity of the PCR and

culture, and the specificity, are shown in figures 1 and 2. Four

chains were run from different starting points (figures S1–S3), and

after burn-in converged to a common distribution. Additionally,

convergence was also confirmed by the Gelman-Rubin statistics.

Utilising an uninformative beta prior for the specificity of culture

instead of fixing it –based on expert opinion equal to 1- led to

virtually unchanged estimates for the sensitivity of culture and the

specificity of PCR, but to an increased sensitivity of PCR of 83%

with a wider 95% CI (67.2,98.7). The estimate of the specificity

culture was 94.6% with a 95% CI (90.9,99.7). A sensitivity analysis

of different beta priors is presented in table S1 indicating a minor

influence of the different beta priors compared to non-informative

priors. A sensitivity analysis for the gamma priors modelling the

shape parameters suggested that the model would not converge

(MCMC sampler failure) with wider priors e.g. (0.01,0.01) or

(0.0001,0.0001), but did so with (0.5,0.0005) (results are present in

table S2).

Discussion/Conclusions

By applying a Bayesian latent class approach to data from large-

scale routine laboratory testing, robust estimates for diagnostic test

accuracies were obtained. The benefit of the random effects model

becomes evident when un-informative priors for the sensitivities

and specificities of PCR and culture are considered. In the case of

a classical Hui-Walter model Bayesian inferences based on a single

population with two tests will be imprecise e.g. a non-identifiable

situation [10]. A reason for the sampler failing in the sensitivity

analysis of the gamma priors is potentially explained by the

variable number of samples tested per herd (a small number of

herds had very few animals).

As – strictly speaking – diagnostic test accuracies are population

dependent characteristics [29] (as opposed to some fixed intrinsic

value related only to the diagnostic test being used), there is a need

to evaluate diagnostics tests in the population of interest. The Field

Station for Epidemiology in Bakum receives samples from a

significant number of swine herds in North-West Germany, thus

representing the population in the centre of the German pig

industry. The obtained estimates are not necessarily directly

applicable to another population e.g. a surveillance program

aiming at identifying subclinical cases shedding presumably low

levels of spirochetes or to a population consisting only of severe

clinical cases of SD.

This approach allowed estimation of the specificity of the PCR

without the need for a gold standard reference test, which is not

available for B. hyodysenteriae. The reasonably good sensitivity and

high specificity of the PCR compared to cultural testing, together

with financial advantages makes the PCR a valuable diagnostic

tool in which large numbers of samples can be tested for B.

hyodysenteriae. From the perspective of a routine laboratory, the

greatest advantage of the PCR is to enable the rapid implemen-

tation of therapeutic measures and preventive programmes in pig

farms intended to control SD. Using standard isolation methods,

the detection of B. hyodysenteriae usually requires 5–7 days.

Conversely, PCR results can be provided in 2 days at the longest.

Beside this advantage for PCR, this method is lacking the

possibility to detect novel pathogenic spirochetes such as those

recently identified in North America associated with SD [30]. In

case of suspicion of e.g. weakly beta hemolytic Brachyspira spp.

culture could be the method of choice.

The main novelty of the Bayesian latent class approach utilized

here lies in its use of random effects to model the complex

population structure of food animals, i.e. by allowing different

farms to have very different prevalences (resulting from within

farm clustering of disease). This is practically important, as without

such flexibility the results of any analyses (i.e. estimates of

sensitivity and specificities) are likely to be highly misleading.

In risk factor studies, accounting for clustering is considered

good, indeed arguably essential, statistical practice. Diagnostic test

evaluation studies, for tests applied at a regional or national level,

have identical issues which should be accounted for given the

complexities of population structure in food animal production.

Table 1. Dichotomized diagnostic test results of 239 porcine
faecal samples tested in parallel by culture and PCR for
Brachyspira hyodysenteriae.

Culture

+ 2

PCR + 52 18

2 11 158

doi:10.1371/journal.pone.0098534.t001
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Figure 1. Diagnostic sensitivities of bacteriology and PCR. Diagnostic sensitivities culture and PCR for detection of Brachyspira hyodysenteriae
infection in pigs, estimated by latent class analysis. Results are given in the form of posterior density distributions, and show that culture has a higher
sensitivity than PCR (red = PCR, black = bacteriology).
doi:10.1371/journal.pone.0098534.g001

Figure 2. Diagnostic specificity of PCR. Diagnostic specificity of PCR for detection of Brachyspira hyodysenteriae infection in pigs, estimated by
latent class analysis. Results are given in the form of a posterior density distribution.
doi:10.1371/journal.pone.0098534.g002
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Bayesian latent class approaches can be readily utilized for this

purpose.

Supporting Information

Figure S1 Four simulated chains for the sensitivity of
PCR. To ensure numerical robustness of the estimated diagnostic

sensitivity of PCR, multiple simulations were performed using a

Bayesian latent class model. The posterior density estimates of the

diagnostic sensitivities were compared across all four simulations to

check that the results were similar. It can be seen that the curves

(densities) are almost identical, therefore providing strong

confidence in the results.

(TIFF)

Figure S2 Four simulated chains for the sensitivity of
culture. To ensure numerical robustness of the estimated

diagnostic sensitivity of culture, multiple simulations were

performed using a Bayesian latent class model. The posterior

density estimates of the diagnostic sensitivities were compared

across all four simulations to check that the results were similar. It

can be seen that the curves (densities) are almost identical,

therefore providing strong confidence in the results.

(TIFF)

Figure S3 Four simulated chains for the specificity of
PCR. To ensure numerical robustness of the estimated diagnostic

specificity of PCR, multiple simulations were performed using a

Bayesian latent class model. The posterior density estimates of the

diagnostic sensitivities were compared across all four simulations to

check that the results were similar. It can be seen that the curves

(densities) are almost identical, therefore providing strong

confidence in the results.

(TIFF)

Table S1 Sensitivity analysis for different beta priors
for test accuracies.

(DOCX)

Table S2 Sensitivity analysis with different priors for
the gamma priors.

(DOCX)

Code S1 Code for the final model.

(DOCX)
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