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1 Introduction

The conjectured holographic duality between supersymmetric Yang-Mills quantum me-

chanics and the theory of D0 branes of type IIa string theory in the large-N limit in prin-

ciple allows to probe the physics of certain supergravity black holes by lattice Monte Carlo

simulations. In particular, N = 16 supersymmetric Yang-Mills (SYM) quantum mechanics

(QM) stemming from the dimensional reduction of N = 1 SYM in d = 10 dimensions is

supposed to describe the dynamics of D0 branes which are the degrees of freedom of the

underlying M-theory [1]. The connection to so-called black p-branes allows to study the

thermodynamics of black holes through the corresponding strongly coupled gauge theory.

We refer the reader to the review article [2] for further details. Here we report on our work

in this direction on an analogue, but simpler theory, namely N = 4 SYM QM with generic

gauge group SU(N). The model stems from dimensionally reducing N = 1 SYM in d = 4

dimensions, but is expected to share many qualitative features with the 16 supercharge
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model. The aim of this paper is to construct the fermion loop formulation of the strongly

coupled gauge theory regularised on the lattice, so as to make it susceptible to numerical

simulations.

There have already been a number of nonperturbative investigations of SYM QM

using numerical techniques. In [3–7] the Hamiltonian formulation was employed together

with the cut Fock space method. This approach also allowed analytic solutions, at least

for d = 2 dimensional SYM QM [8–12]. On the other hand, in [13] the Wilson lattice

discretization was constructed and the d = 4 SYM QM was simulated in the quenched

approximation [13, 14]. Further discretizations were proposed and investigated by Monte

Carlo simulations in [15–17], and it was also shown that the (naive) Wilson discretization

does not require any fine tuning to reach the correct continuum limit. A different non-

lattice approach has been followed by [18–21] which used a momentum cutoff regularization

while completely fixing the gauge.

Our motivation to study the loop formulation of this model is threefold. Apart from the

motivation given by the interesting physics related to the thermodynamics of black holes

and the possibility to test the gauge/gravity duality outlined above, the loop formulation

provides a new approach to simulate fermions on the lattice [22]. In contrast to standard

approaches the fermion loop formulation allows for local fermion algorithms [23], i.e., local

updates of the fermionic degrees of freedom. The simulation algorithm applicable to the

loop formulation works for massless fermions and appears not to suffer from critical slowing

down [23, 24]. This is of particular importance in the context of supersymmetric field

theories with spontaneously broken supersymmetry, since in such cases one has to deal

with a massless fermionic mode, the Goldstino fermion. The third motivation finally stems

from the fact that the fermion loop formulation offers the potential to control the fermion

sign problem. Again, this is of particular significance in theories with spontaneously broken

supersymmery where the partition function for periodic boundary conditions, and hence

the fermion determinant (or Pfaffian), averages to zero, since it represents the vanishing

Witten index [22, 25–27]. The possibility to control the fermion sign then follows from

the fact that in the loop formulation the fermionic contribution to the partition function

decomposes into contributions from fixed fermion number sectors, each of which has a

definite sign depending only on the specific choice of the fermionic boundary conditions.

The paper is organised as follows. In section 2 we discuss the d = 4 dimensional SYM

QM in the continuum and describe the lattice regularisation using the Wilson derivative.

In section 3 we derive a reduction formula for the determinant of the fermion matrix which

separates the dependence of the bosonic degrees of freedom from the chemical potential

and which then allows the straightforward discussion of the canonical sectors of the theory.

In section 4 the fermion loop formulation is introduced and in section 5 we discuss the

various fermion sectors emerging from the transfer matrices in the loop formulation. We

close the main part of the paper with our conclusions and an outlook in section 6. Finally,

in appendix A we review various ways how to determine the canonical determinants from

the reduced fermion matrix and prove in appendix B the algebraic equivalence between the

reduced fermion matrix approach and the fermion loop formulation.
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2 Lattice regularisation

We start from N = 1 SYM in d = 4 dimensions with gauge group SU(N) and dimension-

ally reduce the theory by compactifying the three spatial dimensions. While the temporal

component A(t) of the 4-dimensional gauge field remains unchanged, the three spatial com-

ponents become bosonic fields Xi(t), i = 1, 2, 3. The action of the dimensionally reduced

theory then reads

S =
1

g2

∫ β

0
dtTr

{
(DtXi)

2 − 1

2
[Xi, Xj ]

2 + ψDtψ − ψσi [Xi, ψ]

}
(2.1)

where the anticommuting fermion fields ψ(t), ψ(t) are complex 2-component spinors, σi
are the three Pauli matrices and Dt = ∂t − i[A(t), · ] denotes the covariant derivative. All

fields in the theory are in the adjoint representation of SU(N) and the theory possesses a

N = 4 supersymmetry.

Note that the analogue reduction from N = 1 SYM in d = 10 dimensions yields a

very similar action with the only change that there are 9 bosonic fields Xi(t), i = 1, . . . , 9

corresponding to the 9 compactified gauge degrees of freedom, the σi’s are the SO(9) γ-

matrices and the fermionic Grassmann variables are Majorana, i.e., can be taken to be

real. The dimensionally reduced theory then corresponds to N = 16 SYM QM.

Let us now describe the lattice regularised version of the N = 4 SYM QM where the

Euclidean time extent is discretised by Lt points. The bosonic part of the action is then

given by

SB =
1

g2

Lt−1∑
t=0

Tr

{
D̂tXi(t)D̂tXi(t)−

1

2
[Xi(t), Xj(t)]

2

}
(2.2)

where the gauge field is replaced by the gauge link U(t) living in the gauge group SU(N) and

the covariant lattice derivative is explicitly given by D̂tXi(t) = U(t)Xi(t+ 1)U †(t)−Xi(t).

For the regularisation of the fermionic part we use the Wilson discretisation to get rid of

the fermion doublers. Note that in d = 1 dimensions adding a Wilson term with Wilson pa-

rameter r = ±1 to the symmetric derivative yields either a forward or backward derivative,

∂W =
1

2
(∇+ +∇−)± 1

2
∇+∇− = ∇± . (2.3)

Hence, the discretised fermion action reads

SF =
1

g2

Lt−1∑
t=0

Tr
{
ψ(t)D̂tψ(t)− ψ(t)σi [Xi(t), ψ(t)]

}
(2.4)

where D̂t is simply the covariant derviative defined above. Note that the Wilson term

breaks the time reversal and hence also the charge conjugation symmetry. However, the

symmetries are restored in the continuum limit together with the full supersymmetries

without any fine tuning since any further symmetry breaking terms are prohibited by the

gauge symmetry [15].

For our further discussion of the fermionic part of the theory, it is convenient to work

in uniform gauge U(t) = U , although it is not necessary for the derivation of the reduced
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fermion matrix in the next section. In addition, we also include a finite chemical potential

term eµ in the forward fermion derivative [28] in order to facilitate our discussion of the

canonical fermion sectors in the next section. To be specific, the fermion action then reads

SF =
1

2g2

Lt−1∑
t=0

[
−ψaα(t)W ab

αβ e
µ ψbβ(t+ 1) + ψ

a
α(t)Φab

αβ(t)ψbβ(t)
]

(2.5)

where the gauge part of the hopping term connecting the nearest neighbour Grassmann

fields ψ
a
α(t) and ψbβ(t+ 1) is given by

W ab
αβ = 2δαβ · Tr{T aUT bU †} (2.6)

and is independent of t. Here, T a are the generators of the SU(N) algebra and are nor-

malised such that detW = 1. The Yukawa interaction between the fermionic and bosonic

fields is described by a 2(N2 − 1)× 2(N2 − 1) matrix

Φab
αβ(t) = (σ0)αβ · δab − 2 (σi)αβ · Tr{T a[Xi(t), T

b]} (2.7)

and the fermion action can be compactly written in terms of the fermion Dirac matrix

Dp,a, i.e.,

SF =
1

2g2
ψDp,a[U,Xi;µ]ψ . (2.8)

where the subscripts p,a specify periodic or antiperiodic temporal boundary conditions for

the fermions in time, ψ(Lt) = ±ψ(0), respectively.

Eventually, the grand canonical partition function reads

Z =

∫
DU DXi e

−SB [U,Xi] detDp,a[U,Xi;µ] (2.9)

where the determinant of the fermion Dirac matrix is the result from integrating out the

fermionic degrees of freedom ψ and ψ.

3 Fermion matrix reduction and canonical formulation

In d = 1 dimensions the fermion matrix is particularly simple and takes a cyclic block

bidiagonal form,

Dp,a =



Φ(0) −Weµ

Φ(1) −Weµ

Φ(2)
. . .
. . . −Weµ

∓Weµ Φ(Lt − 1)


. (3.1)

Subsequently, determinant reduction techniques based on Schur complements similar to the

ones described in [29] can be applied. As a consequence the grand canonical determinant

for the reduced fermion matrix yields

detDp,a[U,Xi;µ] = det
[
T ∓ e+µLt

]
(3.2)
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where T is the simple matrix product

T =

Lt−1∏
t=0

(Φ(t)W ) . (3.3)

For given background fields U and Xi(t) the formula allows to calculate the determinant

for any value of the chemical potential µ by simply diagonalising T and evaluating the

characteristic polynomial of order 2(N2−1) in eµLt . The coefficients of the polynomial are

then just the fermion contributions to the grand canonical partition functions [29],

detDp,a[U,Xi;µ] =

2(N2−1)∑
nf=0

(∓eµLt)nf detDnf [U,Xi] , (3.4)

which is the conventional fugacity expansion. Note that the computational effort to evalu-

ate eq. (3.2) grows only linearly with the temporal extent of the lattice (through the number

of multiplications in the product), for example as one takes the continuum limit Lt →∞.

One can also work in temporal gauge in which all gauge links are transformed to unity

except one denoted by W̃ , e.g., the one connecting time slice t = Lt − 1 and t = 0. The

relation to the uniform gauge is then W̃ = WLt and the product becomes
∏Lt−1
t=0 Φ(t) · W̃ .

Finally we note that for ordinary supersymmetric quantum mechanics the expression for

T reduces to the result given in [30].

Next we turn to the explicit evaluation of the canonical determinants. Denoting the

eigenvalues of T in eq. (3.3) by τj , j = 1, . . . , 2(N2 − 1) we can express the determinants

directly in terms of these by comparing the coefficients of the characteristic polynomial

detDp,a[U,Xi;µ] =

2(N2−1)∏
j=1

(
τj ∓ eµLt

)
(3.5)

with eq. (3.4). The canonical determinant in the sector with nf = 2(N2 − 1) ≡ nmax
f

fermions is trivial,

detDnmax
f

[U,Xi] = 1 , (3.6)

which simply reflects the fact that the sector with maximally saturated fermion number is

quenched. For the sector with nf = 0 we obtain

detDnf=0[U,Xi] =

2(N2−1)∏
j=1

τj = det

[
Lt−1∏
t=0

(Φ(t)W )

]
= det

[
Lt−1∏
t=0

Φ(t)

]
(3.7)

where we made use of the fact that detW = 1. The formula shows that the fermion contri-

bution in the nf = 0 sector is nontrivial, even though it is independent of the gauge link U .

The sectors with nf = 1 and nf = nmax
f − 1 fermions are similarly simple,

detDnf=1 =

2(N2−1)∑
j=1

∏
k 6=j

τk , (3.8)
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detDnf=nmax
f −1 =

2(N2−1)∑
j=1

τj = Tr(T ) . (3.9)

The generic formula for the canonical determinants in terms of the eigenvalues can be

expressed by the elementary symmetric functions Sk of the nmax
f eigenvalues τ1, . . . , τnmax

f

with k ≤ nmax
f . The kth elementary symmetric function is defined as

Sk(T ) ≡ Sk(τ1, . . . , τnmax
f

) =
∑

1≤i1<···<ik≤nmax
f

k∏
j=1

τij , (3.10)

where the sum has
(
nmax
f

k

)
summands, and the canonical determinant in the sector with

nf fermions eventually reads

detDnf = Snmax
f −nf (T ) . (3.11)

Of course the coefficients of the characteristic polynomial can be obtained in many

other ways. In appendix A we present several alternative methods how to calculate the

canonical determinants directly from the matrix T . One method makes use of the traces

of powers of T while the other employs the minors of T . The latter turns out to be closely

related to the transfer matrices emerging from the fermion loop formulation discussed in

the next section.

4 Fermion loop formulation

In the fermion loop formulation the decomposition into the various fermion sectors are

recovered in a completely different and independent way. The formulation is based on the

exact hopping expansion of the fermion Boltzmann factor involving the action in eq. (2.5).

Since the overall prefactor 1/2g2 only contributes a trivial factor we suppress it in the

following. We apply the expansion not only to the hopping term, but in fact to all terms in

the fermion action including the Yukawa term. The expansion is exact because it naturally

truncates after the first two terms due to the nilpotency of the Grassmann variables. Such

an expansion is most conveniently expressed by

ex = 1 + x =
1∑

m=0

xm , (4.1)

i.e., in terms of occupation numbers m. Applying this equation to each term in the fermion

action eq. (2.5) characterised by the colour indices a, b, the Dirac algebra indices α, β and

the time coordinate t, the expansion of the fermion Boltzmann factor yields

exp(−SF ) =
∏

t,a,b,α,β

 1∑
mabαβ(t)=0

(
−Φab

αβ(t)ψ
a
α(t)ψbβ(t)

)mabαβ(t)


×
∏
t,a,α

 1∑
habαβ(t)=0

(
ψ
a
α(t)W ab

αβψ
b
β(t+ 1)

)habαβ(t)

 , (4.2)

– 6 –
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Figure 1. Graphical representation of the Yukawa interaction between the fermionic degree of

freedom characterised by (a, α) on time slice t with the one characterised by (b, β) on the same time

slice and (a, α) with itself (monomer term). The contributions of the interactions (weights) after

the Grassmann integrations are also given.

Figure 2. Graphical representation of a gauged temporal hop connecting the fermionic degree of

freedom characterised by (a, α) on time slice t with the one characterised by (b, β) on time slice

t+ 1. The contribution of the hop (weight) after the Grassmann integrations is also given.

Here, the terms in the first product follow from the Yukawa interaction while the terms in

the second product stem from the hopping terms in which we have put µ = 0 to simplify

the discussion. Note that one has a separate expansion for every combination of indices

t, a, b, α, β which stops after the first two terms due to the Grassmannian character of the

fermionic degrees of freedom. The two terms in each expansion are characterised by the

occupation numbers habαβ(t) andmab
αβ(t) taking the values 0 or 1. The Grassmann integration

over the fermion fields requires that every pair ψ
a
α(t)ψaα(t) needs to be saturated by the

integration measure in order to give a nonvanishing contribution. This condition yields

local constraints on the occupation numbers habαβ(t) and mab
αβ(t) separately at each site t,∑

α,a

(
habαβ(t− 1) +mab

αβ(t)
)

= 1 ∀β, b, t , (4.3)

∑
β,b

(
habαβ(t) +mab

αβ(t)
)

= 1 ∀α, a, t . (4.4)

The integration over the fermion fields is then replaced by a summation over all configu-

rations of occupation numbers satisfying the constraints above.

The various configurations of occupation numbers and the corresponding constraints

can most easily be specified graphically by representing each pair ψ
a
α(t)ψaα(t) by a point

and each occupation number habαβ(t),mab
αβ(t) by an arrow −→ pointing from point (a, α) to

(b, β) saturating ψ
a
α and ψbβ, respectively. The graphical building blocks are then simply

given by the spatial (flavour or colour) hops characterised by mab
αβ(t) = 1, cf. figure 1,

and the temporal hops characterised by habαβ(t) = 1, cf. figure 2, where the gauge links

are reponsible for changing the flavour or colour index from a to b. Due to the breaking

of the time inversion symmetry, or equivalently charge conjugation, by the Wilson term

– 7 –
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nf = 0 nf = 1 nf = 2(N2 − 1)

Figure 3. Three sample configurations of closed oriented loops for four fermionic degrees of freedom

(representative for the generic 2(N2 − 1) ones) on a periodic lattice with four time slices.

there exist only temporal hops in forward direction of time. The contribution of each local

fermion integration can be read off from eq. (4.2) and are given as the weights in figures 1

and 2. From the contraints in eq. (4.3) and (4.4) it becomes immediately clear that in the

graphical representation only closed, oriented fermion loops are allowed. Moreover, each

fermion loop picks up the usual factor (−1) from the Grassmann integration. Eventually,

the full partition function in the fermion loop formulation reads

Z =

∫
DU DX e−SB [U,Xi]

∑
{h,m}

∏
t

[(
W ab
αβ

)habαβ(t) (
Φab
αβ(t)

)mabαβ(t)
]

(4.5)

where the sum is over all combinations of occupation numbers satisfying eq. (4.3) and (4.4).

5 Fermion sectors and transfer matrices

In figure 3 we show three sample configurations consisting of closed oriented fermion loops

for four fermionic degrees of freedom (representative for the generic 2(N2 − 1) ones). One

immediately notices that the configurations can be classified according to the number of

fermions nf propagating forward in time. For the three examples depicted in figure 3 the

fermion numbers are nf = 0, 1 and 4 (i.e. nf = 2(N2−1) for the generic case), respectively.

In each sector, the propagation of the nf fermions can be described by transfer matrices

Tnf (t) = TΦ
nf

(Xi(t)) · TWnf (U) (5.1)

where the first transfer matrix describes the various ways how to connect nf fermions

entering at time t with nf fermions exiting at t. It depends on the boson field configuration

Xi(t) through the Yukawa interactions matrix Φ(t) and hence depends on t. The second

transfer matrix describes how to connect nf fermions exiting at t and entering at t+1, and

hence depends on the gauge field U through W in eq. (2.6). In uniform gauge, this transfer

matrix has no time dependence. Then, for a given gauge and boson field background

– 8 –
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{U,Xi(t)} the fermion contribution to the partition function in the sector with nf fermions

is simply given by

detDnf [U,Xi] = Tr

[
Lt−1∏
t=0

Tnf (t)

]
. (5.2)

The full contribution is then obtained by adding up all these terms taking into account a

factor (∓1)eµLt for each fermion loop winding around the lattice in temporal direction, with

the sign depending on whether periodic or antiperiodic boundary conditions are employed.

The expression eventually reads

detDp,a[U,Xi;µ] =

2(N2−1)∑
nf=0

(∓eµLt)nf Tr

[
Lt−1∏
t=0

Tnf (t)

]
(5.3)

and can directly be compared with eq. (3.4).

Let us now look in more detail at the transfer matrices separately in each sector. First

we note that the size of Tnf is given by the number of states in sector nf , i.e.,

n ≡
(

2(N2 − 1)

nf

)
. (5.4)

The sectors with nf = 0 and nf = 2(N2 − 1) are therefore particularly simple since in

these cases the transfer matrix is just 1× 1. We will hence first discuss these two sectors,

followed by the still rather simple sectors with nf = 1 and nf = 2(N2 − 1) − 1, before

presenting the generic case for arbitrary values of nf .

5.1 Sector nf = 0

For nf = 0 we see by inspection of the corresponding configuration in figure 3 that there is

no gauge link dependence, and hence TW0 = 1, while the transfer matrix TΦ
0 (t) must contain

the sum of the weights of all fermion loop configurations on a given time slice t. By doing so,

we need to take care that each nontrivial fermion loop picks up the usual factor (−1) from

the Grassmann integration. It is not difficult to see that a given time slice configuration can

be specified by a permutation σ of the indices i = 1, . . . , 2(N2 − 1) labelling the fermionic

degrees of freedom. Each cycle (ijk . . . l) in the permutation then corresponds to a sequence

of indices characterising a specific fermion loop and its weight is given by ΦijΦjk . . .Φli. The

total sign of the configuration is given by including a factor (−1) for each nontrivial cycle,

i.e., counting whether the number of nontrivial cycles in the permutation is even or odd

which corresponds to the parity of the permutation. Finally, the sum over all configurations

amounts to summing up all permutations including the corresponding weights and the signs

given by the parity of the permutation. This prescription is of course nothing else than the

definition for the determinant, so the transfer matrix in the nf = 0 sector is simply given by

TΦ
0 (t) = det Φ(t) (5.5)

and the total fermion contribution factorises completely,

detDnf=0[U,Xi] =

Lt−1∏
t=0

det Φ(t) . (5.6)

– 9 –
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Comparing this with eq. (3.7) we obviously find complete agreement. In the fermion loop

approach however it is evident from the beginning that the gauge link U does not contribute

in the nf = 0 sector.

5.2 Sector nf = nmax
f

For nf = 2(N2 − 1) ≡ nmax
f the transfer matrix Tnmax

f
(t) is again 1 × 1. While there

are no contributions from the Yukawa interaction, hence TΦ
nmax
f

(t) = 1, we need to take

into account the nontrivial hopping in colour space. The complication arising here stems

from the fact that depending on the number of hoppings in colour space, the total number

of fermion loops winding in temporal direction changes, but not the number of winding

fermions. For example, if there are only colour diagonal hops, the number of winding loops

is nmax
f and the corresponding contribution comes with a positive sign. On the other hand,

if there is one single nondiagonal colour hop two loops merge into one, so the number

of winding loops becomes nmax
f − 1 and the contribution should hence contain a negative

sign relative to the contribution with nmax
f loops. So for every nondiagonal colour hop the

number of loops is changing by one.

Similarly to the nf = 0 sector we need to take all permutations of the colour indices

a, b into account. For each nontrivial permutation of two indices the number of fermion

loops winding in temporal direction is reduced by one and we take this into account by

including a factor (−1). Summing over all permutations including the sign corresponding

to the parity of the permutations again yields the determinant, i.e.,

TWnmax
f

= det [W ] = 1 (5.7)

yielding the total contribution

detDnmax
f

[U,Xi] =

Lt−1∏
t=0

Tnmax
f

(t) = 1 . (5.8)

This is in accordance with the result from the determinant reduction, cf. eq. (3.6), and it

is obvious that the same result would be obtained without referring to a particular gauge.

Since the fermions are completely saturated by the temporal hopping terms and contribute

only trivially to the canonical determinant, this sector corresponds to the quenched one as

noted before.

5.3 Sector nf = 1

Next, we look at the sector with nf = 1 fermions. The corresponding transfer matrices

T1(t) are of size 2(N2 − 1) × 2(N2 − 1). Each matrix element (TΦ
1 (t))ij contains the sum

of weights of all configurations at fixed t where the fermion degree of freedom i = (a, α) is

entering time slice t and j = (b, β) is leaving. The corresponding degrees of freedom are

then already saturated by the corresponding hops in and out of the time slice and hence the

weights Φki and Φjk, k = 1, . . . , 2(N2−1) can not appear in any of the configurations. The

remaining time slice configurations can be obtained in analogy to the considerations in the

nf = 0 sector, that is by constructing all permutations, i.e., cycles of the remaining degrees
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of freedom and taking into account factors of (−1) for each nontrivial cycle. Following the

arguments from the nf = 0 sector it turns out that this is again equivalent to taking the

determinant of Φ(t), but with row j and column i removed, i.e.,(
TΦ

1

)
ij

= (−1)i+j det Φ|Φki=δkj ,Φjk=δik
≡ (−1)i+j det ΦCjCi (5.9)

which is in fact the (j, i)-cofactor of Φ. This will be discussed in more detail in section 5.5.

Similarly, in order to include the colour changing hops due to the gauge link between time

slices we multiply with the corresponding gauge link transfer matrix TW1(
TW1

)
ij

= (W )ij (5.10)

which in uniform gauge is constant in time and is in fact the complementary (i, j)-minor

detW ij . Eventually, the full fermion contribution in the nf = 1 sector reads

detDnf=1[U,Xi] = Tr

Lt−1∏
t=0

[
TΦ

1 (t) · TW1
]

(5.11)

and comparing this result to the one in eq. (3.8) from the fugacity expansion, we find

a nontrivial relationship between the two expressions. We will comment further on this

relation in section 5.5 and establish it in detail in appendix B.

5.4 Sector nf = nmax
f − 1

In the sector where all but one, i.e., nmax
f − 1 fermions are propagating, the states of

the transfer matrices Tnmax
f −1(t) are most conveniently labelled by the degree of freedom

i = (a, α) not occupied by a temporal hopping term. The transfer matrices are hence of

size 2(N2− 1)× 2(N2− 1) = nmax
f ×nmax

f . The matrix elements (TΦ
nmax
f −1)ij are calculated

following the arguments outlined above for the nf = 0 and 1 sector, namely to take the

determinant of the Yukawa matrix Φ with all columns and rows deleted except i and j,

respectively. The reduced Yukawa matrix is then just a single element and hence we have

(TΦ
nmax
f −1)ij = (−1)i+jΦij (5.12)

which is just the complementary (i, j)-cofactor of Φ up to an overall sign. The transfer

matrix describing all the possible configurations within a time slice needs to be comple-

mented by the one inducing the colour changing hops due to the gauge link between the

time slices. If fermion i is not hopping out of t and j not into t+1 they will not contribute,

while the mixing of the remaining degrees of freedom is described as before by taking the

determinant of the hop matrix,

(TWnmax
f −1)ij = detW CiCj (5.13)

which is the (i, j)-minor of W . The full fermion contribution in the nf = nmax
f − 1 sector

finally yields

detDnmax
f −1[U,Xi] = Tr

Lt−1∏
t=0

[
TΦ
nmax
f −1(t) · TWnmax

f −1

]
. (5.14)

This can be compared to the one in eq. (3.9) from the fugacity expansion and we find again

a nontrivial relationship between the two expressions.
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5.5 Sector with generic nf

Similar constructions can be worked out in all the other sectors, but the constructions

become more involved since the number of states grows rapidly towards the half-filled

sector with nf = 2(N2−1)/2. However, our previous discussion indicates a generic pattern

which becomes clear after careful further investigation of all the weights and signs of each

configuration. Employing some higher linear algebra one can eventually formulate the

following rule. The sector with nf fermions contains n =
(
nmax
f
nf

)
states and the elements

of the corresponding n×n transfer matrix TΦ
nf

are given by the cofactors of Φ of order nf ,

while the matrix elements of TWnf are given by the complementary minors of W .

To be more precise, let A and B be two index sets A,B ⊆ {1, 2, . . . , 2(N2− 1)} of size

nf , then the cofactor of Φ of order nf is the signed determinant of the (2(N2 − 1)− nf )×
(2(N2− 1)− nf ) submatrix ΦZBZA obtained from Φ by deleting the rows indexed by B and

the columns indexed by A, so(
TΦ
nf

)
AB

= (−1)p(A,B) det ΦZBZA (5.15)

where p(A,B) =
∑

i∈A i+
∑

j∈B j, while the complementary minor detWAB is the deter-

minant of the nf ×nf submatrix WAB obtained from W by keeping only the rows indexed

by A and the columns indexed by B,(
TWnf

)
AB

= detWAB . (5.16)

If the two sets A and B are equal, the cofactors reduce to minors and the corresponding

determinants are called principal minors or principal complementary minors. Note also that

in the literature the role of the minor and complementary minor is sometimes exchanged.

In analogy to the discussion before, the cofactor CZBZA(Φ) = (−1)p(A,B) det ΦZBZA in-

cludes all contributions to the transition of nf fermions indexed byA entering at time t to nf
fermions indexed byB exiting from time t, with all the weights and signs properly accounted

for. Similarly, the minor MAB(W ) = detWAB connects nf fermions indexed by A exiting

t in all possible ways with nf fermions indexed by B entering time t + 1 with the correct

weight and sign for each connection. Hence, the full transfer matrix at time t in the sector

with nf fermions is then TΦ
nf

(t) · TWnf and the corresponding canonical determinant reads

detDnf [U,Xi] = Tr

Lt−1∏
t=0

[
TΦ
nf

(t) · TWnf
]
. (5.17)

It is easy to check that this generic definition yields the correct expressions for the transfer

matrices and canonical determinants for the cases nf = 0, 1, nmax
f −1, nmax

f discussed in the

previous sections. Note that for the empty sets A = B = {} the principal minor, and anal-

ogously the complementary principal minor for the full sets A = B = {1, . . . , 2(N2 − 1)},
is 1 by definition.

Finally, one can show that the canonical determinants obtained in the fermion loop

approach are equal to the ones using the fermion matrix reduction, cf. eq. (3.11). Using
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various relations between matrices of minors and cofactors, one can derive that(
Lt−1∏
t=0

[
TΦ
nf

(t) · TWnf
])

AB

= (−1)p(A,B) det TZAZB = CZAZB(T ) . (5.18)

The details of this derivation are given in appendix B. The r.h.s. forms the n × n matrix

of cofactors of T of order nf and the trace in eq. (5.17) then yields the sum over the n

principal minors of T of order nf denoted by Enf , i.e.,

detDnf =
∑
B

det TZBZB ≡ Enf (T ) . (5.19)

Recalling a known relation from linear algebra between the sum of minors of a matrix and

its symmetric functions [31] one has

Enf (T ) = Snmax
f −nf (T ) (5.20)

which establishes the equivalence between eq. (3.11) and eq. (5.19).

5.6 Remarks

We close this section with several remarks. Firstly, we note that in contrast to the full

determinant det[U,Xi], which can be proven to be positive [15], the various canonical deter-

minants detDnf [U,Xi] need not necessarily be positive. Obviously, detDnf=2(N2−1)[U,Xi]

is so and it seems that at least detDnf=0[U,Xi] is also positive, although we do not have

any proof. It would be interesting to study potential fermion sign problems in the canonical

sectors in the present model. Despite its simplicity due to the low dimension, it nevertheless

contains all the important features of a gauge theory, and hence conclusions can most likely

be generalised to more complicated gauge theories in higher dimensions, such as QCD in

the canonical formulation [29].

Secondly, we note that the various sectors, in particular the ones with many fermions,

can in principle be simulated by open fermion string (fermion worm) algorithms along the

lines described in [23, 24]. This approach has indeed already been applied successfully in

ordinary supersymmetric quantum mechanics [22], in the supersymmetric nonlinear O(N)

sigma model [32] and in the two dimensional N = 1 Wess-Zumino model [25, 27] where

the transfer matrix techniques discussed here and in [26] are out of reach. Furthermore,

for the model discussed in this paper, a discrete bond formulation for the bosonic degrees

of freedom is available [33]. Such a formulation promises a huge gain in efficiency for nu-

merical simulations, but it is not clear whether the bosonic bond formulation can be put

into practice.

Thirdly, from investigations in the Hamiltonian formulation of the theory [3], where

time is treated as a continuous variable, it is known that there is a (spectral) symmetry

between the sectors with nf and 2(N2 − 1)− nf fermions, due to the exchange symmetry

between particles and antiparticles. Our results above indicate that the symmetry is not

maintained by our choice of the discretisation in the Lagrangian formalism, but the reason

for this is clear. As we mentioned earlier the Wilson term needed to control the doubler
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fermions explicitly breaks the time reversal and hence the charge conjugation symmetry

which of course is crucial for an exact particle/antiparticle exchange symmetry. However,

since the symmetries are restored in the continuum limit without fine tuning, the sym-

metries between the various canonical sectors will also be mended automatically in the

continuum, and the difference between the related sectors will provide a good estimate of

the remaining systematic lattice artefacts.

6 Conclusions and outlook

In this paper we have investigated in detail the structure of the fermionic part of the d = 4

dimensional supersymmetric Yang-Mills quantum mechanics, i.e., N = 4 SYM QM with

gauge group SU(N). On the one hand, we derived a reduced fermion matrix whose size

is independent of the temporal extent of the lattice. In addition, the dependence on the

chemical potential is factored out and this allows the exact projection of the fermion de-

terminant onto the canonical sectors with fixed fermion number, once the eigenvalues of

the reduced matrix are calculated. On the other hand, we have presented the fermion

loop formulation of the theory in which the grand canonical fermion determinant natu-

rally decomposes into sectors with fixed fermion numbers. The construction of transfer

matrices is rather straightforward in the various fermion sectors and the comparison with

the fugacity expansion, accessible via the reduced fermion matrix, yields identical results

and interesting relations between the transfer matrices and the eigenvalues of the reduced

fermion matrix. In fact, we presented a proof which establishes the equivalence of the

canonical determinants from the reduced fermion matrix approach and from the fermion

loop formulation on the algebraic level.

Our results open various possibilities for a range of nonperturbative investigations of

the theory. This can be done for example by numerical simulations using methods differ-

ent from the usual Hybrid Monte Carlo approach, either using the transfer matrices in the

various canonical sectors with fixed fermion numbers, or using the projection to the sectors

with the help of the reduced fermion matrix. Another interesting approach could be the ap-

plication of mean field methods to the spatial gauge degrees of freedom, again either in the

transfer matrix approach or using the reduced fermion matrix. It is even conceivable that

the methods presented here and the emerged simple structures lead to new analytic results

in some interesting limits. All results obtained either way will provide important insights

into the conjectured M-theory and will add to our understanding of the corresponding

gauge/gravity duality, besides unveiling interesting physics of the model itself.

Another interesting line of research starting from here concerns the investigation of

ordinary, non-supersymmetric gauge field theories in higher dimensions at finite fermion

density, such as QCD at finite baryon density. It is notoriously difficult to obtain reliable

results in these theories using the known numerical approaches, due to the intrinsic fermion

sign problem at finite density, and any insight into how the simulations of these theories

could be facilitated would be extremely valuable. The explicit fugacity expansion derived

in this paper allows to investigate finite density simulations or canonical simulations in a
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simple setup which nevertheless displays a similar structure, and hence contains all the

important features, as the more complicated theories in higher dimensions such as QCD.

Finally, the extension of the loop formulation to N = 16 supersymmetric Yang-Mills

quantum mechanics is in principle straightforward but requires special care. This is due

to the fact that the corresponding dimensionally reduced model has obviously a different

Dirac structure, and it remains to be seen whether the structure is compatible with the

requirements for the fermion loop formulation. The fermion matrix reduction on the other

hand should be unaffected by the change of the Dirac structure.
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A Determinations of canonical determinants

In this appendix we review three alternative methods to calculate the canonical determi-

nants from the matrix T in eq. (3.3). As shown in section 3 the canonical determinants are

just the coefficients of the characteristic polynomial of the matrix T . The first method pro-

vides recursion relations which yield the coefficients in terms of the eigenvalues τi of T . The

second method evaluates the coefficients in terms of the traces of powers of T and the third

makes use of the minors of T . The latter method turns out to be closely related to the trans-

fer matrix approach in the fermion loop formulation and hence deserves special emphasis.

In the following we assume the matrix T to be of size n × n and for simplicity we

consider only the case of antiperiodic b.c., hence the relevant characteristic polynomial is

g(x) = det(T + x · 1) =

n∑
k=0

ck · xk (A.1)

where 1 is the n × n unit matrix and the coefficients ck are the canonical determinants

detDnf=k in sector k.

A.1 Coefficients from recursion relations

The coefficients can be obtained from the eigenvalues τi of T using recursive relations [29].

To this end, we first define the partial products

Πr(x) =
r∏
j=1

(τj + x) =
r∑

k=1

c
(r)
k xk (A.2)

which fulfill
∏
r+1(x) = (τr+1 + x)

∏
r(x). Setting c

(r)
−1 = 0 we have the recursion relation

c
(r+1)
k = τr+1c

(r)
k + c

(r)
k−1 (A.3)
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for all 0 ≤ k ≤ r+ 1 which allows to compute c
(r+1)
k from c

(r)
k . After n steps we obtain the

coefficients ck ≡ c
(n)
k of

∏
n(x) which are then just the canonical determinants detDnf=k.

The generalisation of the recursion to include the minus sign from the periodic b.c. is

straightforward.

A.2 Coefficients in terms of traces

Here we review the calculation of the coefficients ck in terms of traces of powers of the

matrix T . To do so we introduce the notation

tk = Tr(T k) . (A.4)

Then, Newton’s identities (or the Newton-Girard formulae) provide a set of relations be-

tween the traces,

t1 − cn−1 = 0, tk − cn−1tk−1 + . . .− cn−k+1t1 + k · cn−k = 0, k = 2, 3, . . . , n , (A.5)

which can be solved recursively. The solution can conveniently be written down in closed

form as

cn−k =
1

k!
det



t1 1 0 0 · · · 0

t2 t1 2 0 · · · 0

t3 t2 t1 3 · · · 0
...

...
...

...
. . .

...

tk−1 tk−2 tk−3 tk−4 · · · k − 1

tk tk−1 tk−2 tk−3 · · · t1


(A.6)

and the generalisation to periodic b.c. is again straighforward.

A.3 Coefficients in terms of minors

Instead of computing the traces of the matrices T , T 2, T 3, . . . , T n we now present an al-

ternative method for determining the coefficients of the characteristic polynomial which is

more interesting from the point of view of the transfer matrix construction discussed in

section 5. The method involves the expansion of determinants of order 1 to n [34]. In order

to determine the coefficients ck of xk in g(x) it is useful to separate the occurrences of x

by introducing

f(x1, x2, . . . , xn) = det (T + diag(x1, x2, . . . xn)) . (A.7)

One then has g(x) = f(x, x, . . . , x) and ck is the sum of the coefficients of the terms with

total degree k in f(x1, x2, . . . , xn). Since f(x1, x2, . . . , xn) is of degree 1 in each xi, it is

straightforward to express the coefficient in terms of derivatives w.r.t. xi’s,

ck =
∑

1≤i1<···<ik≤n

∂k

∂xi1∂xi2 · · · ∂xik
f(x1, x2, . . . , xn)

∣∣∣∣∣∣
x1=x2=...=xn=0

(A.8)

where 0 ≤ k ≤ n. As a consequence the coefficients are now expressed explicitly in terms

of the matrix elements of T . Denoting them by tij it turns out that

ck =
∑

1≤i1<···<ik≤n

∂k

∂ti1i1∂ti2i2 · · · ∂tikik
det T . (A.9)
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This can be seen most easily by suppressing the dependence of det T on the off-diagonal

elements tij , i 6= j and define D as a function of the n variables t11, t22, . . . , tnn,

D(t11, t22, . . . , tnn) ≡ det T , (A.10)

and hence

f(x1, x2, . . . , xn) = D(t11 + x1, t22 + x2, . . . , tnn + xn) . (A.11)

It is then immediately clear that

∂kf

∂xi1∂xi2 . . . ∂xik
=
∂kD(t11 + x1, t22 + x2, . . . , tnn + xn)

∂ti1i1∂ti2i2 · · · ∂tikik
. (A.12)

from which eq. (A.9) follows via eq. (A.10).

On the other hand the rules for the Laplace expansion of a determinant by a row or

a column indicate that ∂ det T /∂tij is the (i, j)-cofactor of T , or in fact the (i, i)-minor

when i = j. Therefore, the partial derivatives in eq. (A.9) are simply the subdeterminants

of T resulting from crossing out the rows and columns numbered by i1, i2, . . . , ik, i.e., the

principal minors of T of order k.

Denoting the sum of principal minors of order k of T by Ek(T ) and keeping in mind

that detDk = ck one finds by comparison with eq. (3.11) that

Sn−k(T ) = Ek(T ) (A.13)

for each k = 1, . . . , n, which is a known identity in matrix analysis from linear algebra, see

e.g. [31].

Comparing these results with the ones derived in section 5 we immediately notice that

the trace over the states of the transfer matrix is represented in eq. (A.9) by the sum∑
i1<i2<...<ik

. The number of summands here is
(
n
k

)
and indeed equal to the number of

states in the sector with nf = k. Furthermore, the principal subdeterminants (minors) in

eq. (A.9) correspond to the diagonal elements of the product of transfer matrices in the

given sector.

B Equivalence of canonical determinants

Here we show that the canonical determinants obtained in the fermion loop approach,

cf. eq. (5.17), are equal to the ones using the fermion matrix reduction, cf. eq. (3.11).

Following the notation introduced in section 5.5, for two index sets A and B of size nf
the transfer matrix TΦ

nf
in eq. (5.15) is the transposed matrix of cofactors of Φ of order nf

and is denoted by (
TΦ
nf

)
AB

= CZBZA(Φ) , (B.1)

while the transfer matrix TWnf in eq. (5.16) is the matrix of complementary minors denoted

by (
TWnf

)
AB

= MAB(W ) . (B.2)
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Now we note that the complementary minor matrix MAB(W ) is related to the minor matrix

of the inverse MZAZB(W−1) by

MZAZB(W−1) = (−1)p(A,B)MBA(W )

detW
(B.3)

where p(A,B) =
∑

i∈A i +
∑

j∈B j. Up to the determinant, the r.h.s. is the higher order

generalisation of the adjugate (or classical adjoint) of W , i.e. AdjAB(W ). (To order 1 the

adjugate is just the transposed complementary cofactor matrix.) Hence, with detW = 1,

W−1 = W † = W T and MAB(W ) = MBA(W T ) we have

CZBZA(W †) = CZAZB(W ) = MAB(W ) , (B.4)

i.e., the transfer matrix TWnf can be expressed as a cofactor matrix instead of a complemen-

tary minor matrix.

Next, we note that the cofactor matrix C and the corresponding minor matrix M

are related by modifying the sign of each element according to CAB = (−1)p(A,B)MAB.

The sign change can be achieved by a similarity transformation with the matrix SAB =

(−1)
∑
i∈A i δAB, i.e., C = S−1 ·M · S. Therefore a product of cofactor matrices becomes a

product of minor matrices under a trace, and so we can eventually write

detDnf = Tr

Lt−1∏
t=0

[
TΦ
nf

(t) · TWnf
]

(B.5)

= Tr

Lt−1∏
t=0

[
C(Φ(t))T · C(W )

]
(B.6)

= Tr

Lt−1∏
t=0

[M(Φ(t)) ·M(W )] . (B.7)

Note that we have made use of the fact that C(Φ)† = C(Φ) since Φ† = Φ.

We can now employ the Cauchy-Binet formula which states in its symmetric form that

given the n× n matrices P,Q with R = PQ and two index sets A,B of size 1 ≤ k ≤ n the

(AB)-minor of R is

detRZAZB =
∑
D

detPZAZD detQZDZB (B.8)

where the sum is taken over all index sets D of size k. From the formula it follows that for

the matrices of minors (and similarly for the matrices of cofactors) one has

M(PQ) = M(P )M(Q) (B.9)

and consequently from eq. (B.7)

detDnf = Tr

Lt−1∏
t=0

[M(Φ(t)) ·M(W )] (B.10)

= TrM

(
Lt−1∏
t=0

[Φ(t)W ]

)
(B.11)

= TrM(T ) . (B.12)
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Finally, the trace sums over the
(
nmax
f
nf

)
diagonal elements of the minor matrix which

are just the principal minors,

detDnf =
∑
B

det TZBZB ≡ Enf (T ) . (B.13)

Recalling from linear algebra [31] the fact that the sum of all principal minors of order nf of

a matrix is equal to the (nmax
f −nf )th symmetric function of its eigenvalues, i.e. Enf (T ) =

Snmax
f −nf (T ), eventually proves the equivalence between detDnf from the fermion loop

formulation in eq. (5.19) and from the fermion matrix reduction in eq. (3.11).
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