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Definition
Biological phenomenon. Spike-timing dependent plasticity (STDP) in its narrow sense refers to the change
in the synaptic strength as a result of electrically eliciting pairs of action potentials (‘spikes’) with a fixed
time difference between the pre- and post-synaptic action potentials (Markram et al., 1997; Bi and Poo,
1998; Sjostrom et al., 2001). STDP is typically observed for synapses between hippocampal or cortical
pyramidal neurons in slices of juvenile rodents, and the spike pairings are repeated 50-100 times with
various frequencies, e.g. 1 or 10 Hz. This protocol induces a change in the amplitude of a single excitatory
postsynaptic potential (EPSP) which is plotted against the spike time difference ∆t = tpost−tpre between
the postsynaptic spike and the presynaptic spike (Fig. 1). The change takes in many cases a few minutes
to be expressed and lasts at least for the duration of the experiment. Typically, when the presynaptic
spike precedes the postsynaptic spike by roughly 10 ms, the synapse is potentiated; if the presynaptic spike
follows the postsynaptic spike, the synapse is depressed (for reviews see Bi and Poo (2001); Senn (2002);
Sjostrom et al. (2008); Sjöström and Gerstner (2010)).

Figure 1. Change of the EPSP amplitudes as a function of the time difference ∆t = tpost − tpre
between the post- and pre-synaptic spike. Pairing protocol: 60 spike pairs at 1 Hz. Inset: postsynaptic
action potential, relative to the time of the presynaptic spike (vertical line). Scale bars: 10ms, 50mV.
Figure from Bi and Poo (2001).

Learning rules. In a computational context, STDP refers to plasticity rules that depend on the timing
of pre- and postsynaptic spikes and that are involved in various learning scenarios for neuronal networks.
These learning rules either emphasize the link to the biophysics underlying the synaptic modification
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(Senn et al., 2001; Shouval et al., 2002; Karmarkar and Buonomano, 2002; Rubin et al., 2005; Graupner
and Brunel, 2012), or are minimalistic with respect to a biological implementation (Kempter et al., 2001;
Song and Abbott, 2001), or are derived from the maximization of a utility function (Pfister et al., 2006;
Toyoizumi et al., 2007; Florian, 2007; Urbanczik and Senn, 2009; Friedrich et al., 2011). The learning
rules are studied in the context of supervised, unsupervised, or reinforcement learning. When evaluated
from the performance point of view, learning rules that are mathematically derived from an optimization
principle are superior over STDP rules designed to fit a given set of experimental data (Frémaux et al.,
2010). Interestingly, biological plausibility and computational relevance may go together when considering
2-compartment neurons with synapses on a dendritic tree (Urbanczik and Senn, 2014).

Detailed Description
STDP models come in different flavors, emphasizing more the phenomenology, the biophysics, or the
computational aspects. As learning rules, their primary focus is on enabling computations rather than on
reproducing synaptic plasticity data. An excellent and comprehensive review to STDP models, starting
with the basic pair-based STDP models (Fig. 2A) and including also functional consequences, is found in
the Scholarpedia article by Sjöström and Gerstner (2010). Here we highlight the properties of third-order
STDP models and focus on gradient rules.

Phenomenological STDP models
The simplest online model that phenomenologically reproduces the basic STDP curve (Fig. 1) separately
induces long-term potentiation (LTP) or long-term depression (LTD), by either a pre-post or post-pre co-
incidence detector, respectively. The key feature is that pre- and postsynaptic spikings are each tracked by
a leaky integrator, the so-called synaptic eligibility traces, while LTP and LTD is triggered proportionally
to these traces at the times of the post- and presynaptic spikes, respectively (Fig. 2A).

The triplet model The simple STDP model which depends on pairs of spikes (pre-post and post-
pre) correctly predicts the weight change only for a restricted number of protocols. If potentiation is
assumed to be governed by triplets of spikes (pre-post-post) instead of pairs of spikes, a much broader
class of experimental data can be captured (Pfister and Gerstner, 2006). This so-called triplet model
can be expressed as a sum of a depression term (Fig. 2 B2) and a triplet term where at the time of the
postsynaptic spike the weight change is proportional to the product of a postsynaptic and a presynaptic
eligibility trace (Fig. 2 B1).

The triplet model becomes especially relevant when the repetition frequency of the pre-post pairs
increases. The pair-based model predicts a decrease of potentiation as a function of the pairing frequency.
But in the visual cortex (L5→L5 pyramidal neurons, Sjostrom et al. (2001)) potentiation increases with
increasing repetition frequency, and this is well reproduced by the triplet model (Fig. 2C; it is also
qualitatively captured by the early STDP model by Senn (2002)).

This triplet model has also interesting computational properties. Under the assumption of indepen-
dent pre- and postsynaptic Poisson firing rate (Pfister and Gerstner, 2006), the expected weight change
predicted by the triplet model is consistent with the Bienenstock-Cooper-Munro (BCM) learning rule
(Bienenstock et al., 1982) which elicits input selectivity, i.e. the output neuron becomes strongly re-
sponsive to one given (rate-based) input pattern and much less to all the other ones. Furthermore, if
the independent Poisson assumption is relaxed such that output firing rate depends on the presynaptic
spike timings, the triplet rule becomes sensitive to third-order spiking correlations in the input, thereby
generalizing the BCM learning rule to spiking-correlated patterns (Gjorgjieva et al., 2011).
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Extended models A next important extension of STDP models takes account of the modulation
of plasticity by the postsynaptic voltage (Clopath et al., 2010; Clopath and Gerstner, 2010). This
unifying model is formulated in terms of the postsynaptic voltage time course and presynaptic spikes. It
can explain the widest set of STDP experiments, including burst-induced synaptic plasticity and those
experiments that reveal the dependence on the postsynaptic voltage, as e.g. in Artola et al. (1990) and
Sjostrom et al. (2001). This voltage-dependent model can also be seen as an extension of the triplet
model where the postsynaptic eligibility trace in the potentiation term is replaced by a low-pass filter of
the postsynaptic voltage. The triplet model, in turn, can be seen as a simplified version of the model
by Senn et al. (2001). This latter model also depends on triple events (pre-post-post) for the induction
of long-term plotentiation, but the pre-post-post ordering is important while in the triplet model both
pre-post-post as well as post-pre-post events lead to potentiation.

Biophysical STDP models Another class of STDP models explains the synaptic modifications as a
nonlinear function of the postsynaptic calcium concentration. The question whether the postsynaptic
calcium alone can capture the characteristical STDP curve of Fig. 1 (see Shouval et al. (2002) versus
Karmarkar and Buonomano (2002)) has been affirmed by taking into account of the calcium dynam-
ics (Rubin et al., 2005) or additional nonlinearities (Graupner and Brunel, 2012). Functionally, these
threshold-nonlinearities are very similar to the ones imposed on the pre- and postsynaptic eligibility
traces introduced in the phenomenological models (Senn et al., 2001; Clopath et al., 2010). Yet, by
starting with individual protein kinetics a biophysical model may explain how these nonlinearities arise
(Rubin et al., 2005), see also Spike Timing-Dependent Plasticity (STDP), Biophysical Models.

Gradient-based STDP learning rules
By their nature, the phenomenological and biophysical STDP models are not directly designed as synaptic
learning rules that solve an explicit learning task. When canonical target functions for the learning can be
defined, such as in the supervised and reinforcement learning scenario, spike-timing dependent learning
rules can be derived from gradient procedures that maximize/minimize these functions. A very convenient
neuron model suited for a theory of learning is the escape rate neuron. Indeed since it allows to explicitly
quantify the probability for a given postsynaptic spike train as a function of the afferent synaptic strengths
wj , the likelihood of a given spike train is differentiable with respect to wj , see e.g. Pfister et al. (2006).
This neuron stochastically emits spikes with instantaneous firing rate ρ(u) that is an increasing function
of the instantaneous membrane potential u(t). The latter is itself a sum of the postsynaptic potentials
(PSP’s) weighted by the synaptic strengths, u(t) =

∑
j wjPSPj(t), optionally subtracted with a reset

kernel after a postsynaptic spike.

Supervised learning In the supervised learning scenario, the target function can be defined as a
distance between the desired postsynaptic spike train, Scl

post(t) =
∑

i δ(t − t
post
i ), that is clamped as an

output to the neuron, and the spike trains that would be generated by the neuron itself. If we pick
out a specific synapse, the presynaptic eligibility trace Epre(t) is again obtained by the leaky integration
of the presynaptic spike train Spre(t) =

∑
i δ(t − t

pre
i ). Typically, the integration time constant τpre is

equal to the membrane time constant, and hence this trace can also be identified with the postsynaptic
potential induced by that synapse, Epre(t) = PSP(t). The gradient rule that maximizes the log-likelihood
of reproducing the clamped target spike trains is then obtained as (Fig. 3A, Pfister et al. (2006))

Epre(t) =

∫ t

−∞
Spre(t̃)e

− t−t̃
τpre dt̃ (1)

ẇ(t) = η
ρ′

ρ

(
Scl
post(t)− ρ(u(t))

)
Epre(t) , (2)
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Figure 2. Phenomenological STDP models. (A) Simplest model reproducing Fig. 1. (A1) Each
presynaptic spike stepwise increases a presynaptic eligibility trace Epre that otherwise exponentially
decays to 0 with time constant τpre (≈ 17ms to fit the LTP in Fig. 1, see also Eq. 1). LTP is induced by
each postsynaptic spike proportionally to the amount of Epre available at that time. (A2) LTD is
induced by each presynaptic spike proportionally to Epost that low-pass filters the postsynaptic spiking
with time constant τpost (≈ 34ms to fit the LTD in Fig. 1). Note that the post-pre chain is itself acausal
and does not appear in the gradient-based learning schemes represented in the subsequent figures. (B)
Triplet rule. (B1) In the triplet model, LTP is induced at the time of the postsynaptic spike and is
proportional to the product EpreE

′
post. (B2) In the triplet model, LTD is induced by pairs of spikes as in

B1. (C) Weight change as a function of the repetition frequency of the pre-post pairs (solid lines,
tpost − tpre = 10 ms) and the post-pre pairs (dashed lines , tpost − tpre = −10 ms). The triplet model
(brown) fits well the data from (Sjostrom et al., 2001) (black) while the pair-based model (green) cannot.

where η is some small learning rate. Here, ρ′ = ρ′(u(t)) is the derivative of the escape rate ρ with respect
to u, evaluated at t.

Interestingly, by expressing Eq. 2 as a sum of a potentiation and a depression term, we note that
potentiation depends on 3 factors (the postsynaptic spike, the presynaptic eligibility trace and a nonlinear
function of the postsynaptic membrane potential ρ′(u)/ρ(u) ) and depression on 2 factors (the presynaptic
eligibility trace and ρ′(u)). This learning rule has close similarities to the phenomenological voltage-triplet
rule developed by Clopath and Gerstner (2010), with a correspondance highlighted in more details in
Brea et al. (2013). A purely 2nd-order, phenomenological STDP rule has also been shown to perform well
for supervised learning (Ponulak and Kasiński, 2010), but it assumes that target spikes and self-generated
spikes can be distinguished by a synapse.



5

A	  

B1	  

Δw	  

pre	  

τpre	  
Epre	  

post,	  	  u	  	  

pre	  

τpre	  
Epre	  

post	  	  

V	  

LTP	  

LTD	  

B2	  

u

V	  
w	  

gI	  gE	  

pre	  

post	  

Gradient	  rule,	  1-‐comp	  Neuron	  

Gradient	  rule,	  2-‐comp	  Neuron	  

Figure 3. Gradient-based SDTP for supervised learning (A,B) and unsupervised learning (B). (A)
Such a gradient-based learning rule that has the goal to reproduce the timing of given (‘clamped’) output
spike needs to take account of the postsynaptic membrane potential u beside the pre- and post-synaptic
spikes (Eqs 1 & 2). (B1) In a biological version, u is only slightly ‘nudged’ by excitatory and inhibitory
conductances gE and gI. The strength of synapses on the dendrites are adapted such that the dendritic
potential V converges to the nudged somatic potential u. (B2) The corresponding gradient rule yields
LTP that does only depend on the pre-post spike timings, and LTD that depends only on the
pre-synaptic spike time (captured by Epre) and the local dendritic voltage (V, see Eqs 1 & 3).

Arguably, clamping the postsynaptic spike train Scl
post is also biologically unfeasible as it would require

that the membrane potential u is ∞ at the time of a target spike and −∞ else, conflicting with the
evaluation of ρ and ρ′ at the synaptically generated value of u. A biologically motivated alternative is to
separate the spike-generating voltage from the synaptically induced voltage and consider a somatic and
dendritic membrane potential, u and V , that are interpreted as a ‘teacher’ (u) and ‘student’ (V ) potential,
respectively (Fig. 2, B1; Urbanczik and Senn (2014)). The soma receives conductance-based synaptic
input that represents a teaching signal, and the postsynaptic spike train Spost is stochastically generated
in the ‘free’ run, i.e. according to a firing intensity ρ(u) that is affected by this teaching input. Without
teaching input, the somatic membrane potential is just the attenuated dendritic voltage, u = αV , where
α represents some dendritic attenuation factor, and the instantaneous somatic firing is therefore ρ(αV ).
But if the somatic teaching input is turned on, the somatic voltage typically differs from the ‘dendritic
prediction’, u 6= αV . Learning is driven by the ‘prediction error’ measured in terms of the firing rates,
ρ(u)− ρ(αV ). It reduces this error by adapting the synaptic strengths of the dendritic ‘student inputs’.
At the synaptic location on the dendrite, the somatic rate ρ(u) can be sampled by the backpropagating
spikes Spost. The learning rule (2) now translates to the biological version,

ẇ(t) = η
ρ′

ρ

(
Spost(t)− ρ(αV (t))

)
Epre(t) , (3)

that can operate all the time, without need for clamping (Fig. 2, B2).
Crucially, after learning the teaching input driving the synaptic plasticity (3) can be turn off or on,

without affecting the somatic voltage and hence without inducing additional weight changes. This is a
consequence of the conductance-based teacher input that itself only changes the membrane potential if
it deviates from the reversal potential defined that teaching input (Urbanczik and Senn, 2014). The rule
shares other interesting biological features. When the backpropagation is hampered, say due to insufficient
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dendritic depolarization, Spost is thinned out at the synaptic site and a putative LTP turns into LTD,
as observed for synapses on the distal apical tree of cortical pyramidal neurons (Sjostrom and Hausser,
2006). Similarly, when the dendritic depolarization V is enhanced without additional postsynaptic spikes,
LTD dominates as observed for these same cells (Sjostrom et al., 2004).

Unsupervised learning The learning rule (2) in the free run is itself not suited for unsupervised
learning since averaging ẇ across trials cancels out to 0 at each point in time. However, if we consider
a 2-dimensional sheet of 2-compartmental neurons as described in Figure 2B, with Mexican-hat shaped
somato-somatic connections, the somatic potential u is nudged away from V ∗ and the somatic firing in
average does not anymore reflect the dendritic drive, 〈Spost〉 6= ρ(V ∗). In this case, the lateral connectivity
induces a soft winner-take-all dynamics in the network that becomes a spike-based self-organizing feature
map (Urbanczik and Senn, 2014). When the dendrites of these neurons are supplied by spatio-temporal
spike patterns via plastic synapses governed by the rule (3), the feature map learns to cluster the spike
patterns according to their similarity.

Another form of a gradient-based unsupervised learning that maximizes the mutual information be-
tween the pre- and postsynaptic spike trains was also shown to share classical STDP features while being
able to develop receptive field properties (Toyoizumi et al., 2007). In the unsupervised setting, functional
properties have also been shown for phenomenological STDP models in forming auditory maps (Gerstner
et al., 1996), cortical columns (Song and Abbott, 2001), direction selective neurons in the visual cortex
(Buchs and Senn, 2002), or receptive fields similarly as described in the BCM-theory (Gjorgjieva et al.,
2011).

Reinforcement learning In reinforcement learning (RL), the putative synaptic weight changes in-
duced by the pre- and postsynaptic activities are first low-pass filtered, and when a binary reward signal
R = ±1 is applied, the changes accumulated until this time are multiplicatively modulated by R and
turned into a real synaptic weight change. The phenomenological STDP model shown in Figure 2 has also
been adapted to this reinforcement learning scenario where it is referred to as R-STDP (Izhikevich, 2007;
Legenstein et al., 2008). However, R-STDP is shown to be problematic since for each stimulus class the
expected reward must be 0 (Frémaux et al., 2010). This is because the integral over the STDP curve
(Fig. 1) in general deviates from 0 and hence learning with 〈R〉 6= 0 would cause a weight drift. No weight
drift is present for the rule in Eq. 2 in the free run, nor for Eq. 3 in the absence of somatic teaching
conductances. These latter rule translates to the RL rule schematized in Figure 4B,

Epost(t) =

∫ t

−∞

ρ′

ρ

(
Spost(t̃)− ρ(u(t̃))

)
Epre(t̃) e

− t−t̃τR dt̃ (4)

∆w(T ) = ηREpost(T ) , (5)

where Epre is given in (1) and for the 2-compartmental model the argument u of ρ and ρ′ is replaced
by V ∗. The rule is shown to perform stochastic gradient ascent on the expected reward and has been
studied in different applications (Xie and Seung, 2004; Pfister et al., 2006; Florian, 2007; Frémaux et al.,
2010).

Stochastic gradient rules are not unique since the same gradient can be obtained from different esti-
mators. The rule in Eq. 5, for instance, represents an estimator of the gradient of the expected reward,
∂
∂w 〈R〉 = 〈R ∂

∂w logPw(y|x)〉, averaged across stimuli x, network activity y, time and reward. The re-
ward R may depend on quantities downstream of x and y like the decision (or action) D that itself may
stochastically depend on y. The reward R(x, y) therefore is a stochastic function of (x, y) with condi-
tional expectation 〈R|x, y〉 =

∑
D R(x,D)P (D|x, y). For a synapse that has only access to the pre- and

postsynaptic activities (components of x and y), the samples R(x, y) have a large variance and so will the
samples R(x, y) ∂

∂w logPw(y|x) of the gradient estimate have. In contrast, R(x,D) may be a deterministic
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Figure 4. Gradient-based SDTP for reinforcement learning (RL). With incorporating downstream
quantities into the synaptic plasticity, learning becomes faster. (A) The simplest spike-based RL rule
changes the presynaptic release probability p as a function of the presynaptic spike (pre) and the release
(rel), low-pass filtered with a time constant τR corresponding to the typical reward delay (Seung, 2003).
(B) The same synaptic modifications for supervised learning (Fig. 3) yields RL when low-pass filtered
with τR and modulated with the delayed reward R (Eqs 1, 4 & 5). (C) As a decision is made by a
population of neurons, synaptic updates should take account of the population decision signal Dpop,
compare it with the single neuron decision Dpost, low-pass filter the correlation between the two decision
signals with τR, and only then implement the resulting weight change modulated by R (Eqs 1, 6-8). For
an formal overview on these rules see also Reinforcement Learning in Cortical Networks.

function (or again a stochastic function with smaller variance) and the samples R(x,D) ∂
∂w logPw(D|x)

of the same reward gradient ∂
∂w 〈R〉 show a smaller variance. To calculate ∂

∂w logPw(D|x), however, a
synapse needs to have access to D (beside the pre- and postsynaptic activities).

Instead of considering R(x, y), the reward can even be seen as a stochastic function of only the
presynaptic spikes and the synaptic releases, R(x, rel). This leads to a learning rule where synaptic
releases that are correlated with subsequent rewards are made more likely by enhancing the corresponding
release probability (Seung, 2003). But the variance of this reward gradient estimator can be reduced by
taking account of the postsynaptic activity. In this way, more and more downstream information can be
taken into account in the synaptic update, leading to learning rules that consider (A) only presynaptic
spikes/releases and reward, (B) presynaptic spikes/releases, postsynaptic activity and reward, and (C)
presynaptic spikes/releases, postsynaptic activities, single neuron and network decisions, and reward (Fig.
4). In these gradient estimators, the correlation between the synaptic parameter change and reward is
progressively increased the more reward-relevant information the synapse exploits. In the case of only
evaluating presynaptic spikes and releases, learning was claimed to mimic song acquisition in the zebra
finch (Seung, 2003). When additionally evaluating the postsynaptic spikes and the membrane potential,
the rule was shown to learn motor trajectories (Frémaux et al., 2010). When further evaluating the
population decision the rule was shown to be successful in a complex sequential association task with
delayed and scrambled rewards that are even hard to be learned by humans (Friedrich et al., 2011).

In population RL, the synaptic plasticity is modulated by the population decision that ultimately
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leads to the reward signal (Urbanczik and Senn, 2009). The sign of the weight change should depend on
whether the decision of the individual postsynaptic neuron Dpost coincides with population decision Dpop

formed by the majority of population neurons. These signals intrinsically depend on the neuronal code
with which neurons and populations represent the possibly multivalued decisions and actions (Friedrich
et al., 2014). In the simplest case of binary decisions, these signals may be set to 1 or −1, depending on
whether the neuronal or population activity, low-pass filtered by τDec, is above or below the corresponding
decision threshold (Friedrich et al., 2011). The gradient-rule emerging from this reasoning reads as (cf.
Fig. 4C)

Epost(t) =

∫ t

−∞

ρ′

ρ

(
Spost(t̃)− ρ(u(t̃))

)
Epre(t̃) e

− t−t̃
τDec dt̃ (6)

EDec(t) =

∫ t

−∞
Dpost(t̃)Dpop(t̃)Epost(t̃) e

− t−t̃τR dt̃ (7)

∆w(T ) = ηREDec(T ) . (8)

Intracellular recordings from dendrites during plasticity induction protocols has shown that SDTP
also depends on dendritic NMDA-spikes (Gordon et al., 2006). This raises the question whether there
are spike-timing dependent plasticity rules that take account of such dendritic spikes as well. There is in
fact a class of gradient-based RL rules that incorporates the ‘triple-spike timing’ among the presynaptic,
dendritic and postsynaptic spike sequence, including the dendritic and somatic voltage and the reward
modulation, analogously to the 4-step cascade schematized in Figure 4C (Schiess et al., 2012).

Cross-References
Learning Rules: Overview

Spike Timing-Dependent Plasticity (STDP), Biophysical Models

Long Term Plasticity, Biophysical Models

Reinforcement Learning in Cortical Networks

Reward-Based Learning, Model-Based and Model-Free

Tempotron Learning

References
Artola A, Bröcher S, Singer W (1990) Different voltage-dependent thresholds for inducing long-term depression and
long-term potentiation in slices of rat visual cortex. Nature 347:69–72.

Bi G, Poo M (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic
strength, and postsynaptic cell type. J Neurosci 18:10464–10472.

Bi G, Poo M (2001) Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu. Rev. Neu-
rosci. 24:139–166.

Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificity
and binocular interaction in visual cortex. The Journal of Neuroscience 2:32–48.

Brea J, Senn W, Pfister JP (2013) Matching recall and storage in sequence learning with spiking neural networks. J.
Neurosci. 33:9565–9575.

Buchs NJ, Senn W (2002) Spike-based synaptic plasticity and the emergence of direction selective simple cells: simulation
results. J Comput Neurosci 13:167–186.

Clopath C, Büsing L, Vasilaki E, Gerstner W (2010) Connectivity reflects coding: a model of voltage-based STDP with
homeostasis. Nat Neurosci 13:344–352.



9

Clopath C, Gerstner W (2010) Voltage and Spike Timing Interact in STDP - A Unified Model. Front Synaptic Neu-
rosci 2:25.

Florian RV (2007) Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity. Neural
Comput 19:1468–1502.

Frémaux N, Sprekeler H, Gerstner W (2010) Functional requirements for reward-modulated spike-timing-dependent
plasticity. J Neurosci 30:13326–13337.

Friedrich J, Urbanczik R, Senn W (2011) Spatio-temporal credit assignment in neuronal population learning. PLoS
Comput Biol 7:e1002092.

Friedrich J, Urbanczik R, Senn W (2014) Code-specific learning rules improve action selection by populations of spiking
neurons. Int. J. of Neural Systems 24:1–17.

Gerstner W, Kempter R, van Hemmen JL, Wagner H (1996) A neuronal learning rule for sub-millisecond temporal coding.
Nature 383:76–81.

Gjorgjieva J, Clopath C, Audet J, Pfister JP (2011) A triplet spike-timing-dependent plasticity model gen-
eralizes the Bienenstock-Cooper-Munro rule to higher-order spatiotemporal correlations. Proc. Natl. Acad. Sci.
U.S.A. 108:19383–19388.

Gordon U, Polsky A, Schiller J (2006) Plasticity compartments in basal dendrites of neocortical pyramidal neurons. J.
Neurosci. 26:12717–12726.

Graupner M, Brunel N (2012) Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern,
rate, and dendritic location. Proc. Natl. Acad. Sci. U.S.A. 109:3991–3996.

Izhikevich EM (2007) Solving the distal reward problem through linkage of STDP and dopamine signaling. Cereb
Cortex 17:2443–2452.

Karmarkar UR, Buonomano DV (2002) A model of spike-timing dependent plasticity: one or two coincidence detectors?
J. Neurophysiol. 88:507–513.

Kempter R, Gerstner W, van Hemmen JL (2001) Intrinsic stabilization of output rates by spike-based Hebbian learning.
Neural Comput 13:2709–2741.

Legenstein R, Pecevski D, Maass W (2008) A learning theory for reward-modulated spike-timing-dependent plasticity
with application to biofeedback. PLoS Comput. Biol. 4:e1000180.

Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs
and EPSPs. Science 275:213–215.

Pfister J, Toyoizumi T, Barber D, Gerstner W (2006) Optimal spike-timing-dependent plasticity for precise action potential
firing in supervised learning. Neural Comput 18:1318–1348.

Pfister JP, Gerstner W (2006) Triplets of spikes in a model of spike timing-dependent plasticity. Journal of Neuro-
science 26:9673–9682.

Ponulak F, Kasiński A (2010) Supervised learning in spiking neural networks with ReSuMe: sequence learning, classifica-
tion, and spike shifting. Neural Comput 22:467–510.

Rubin JE, Gerkin RC, Bi GQ, Chow CC (2005) Calcium time course as a signal for spike-timing-dependent plasticity. J.
Neurophysiol. 93:2600–2613.

Schiess M, Urbanczik R, Senn W (2012) Gradient estimation in dendritic reinforcement learning. J Math Neurosci 2:2.

Senn W (2002) Beyond spike timing: the role of nonlinear plasticity and unreliable synapses. Biol Cybern 87:344–355.

Senn W, Markram H, Tsodyks M (2001) An algorithm for modifying neurotransmitter release probability based on pre-
and postsynaptic spike timing. Neural Comput 13:35–67.

Seung HS (2003) Learning in spiking neural networks by reinforcement of stochastic synaptic transmission. Neu-
ron 40:1063 – 1073.

Shouval HZ, Bear MF, Cooper LN (2002) A unified model of NMDA receptor-dependent bidirectional synaptic plasticity.
Proc. Natl. Acad. Sci. U.S.A. 99:10831–10836.

Sjöström J, Gerstner W (2010) Spike-timing dependent plasticity. Scholarpedia 5:1362.

Sjostrom PJ, Hausser M (2006) A cooperative switch determines the sign of synaptic plasticity in distal dendrites of
neocortical pyramidal neurons. Neuron 51:227–238.

Sjostrom PJ, Rancz EA, Roth A, Hausser M (2008) Dendritic excitability and synaptic plasticity. Physiol. Rev. 88:769–840.

Sjostrom PJ, Turrigiano GG, Nelson SB (2001) Rate, timing, and cooperativity jointly determine cortical synaptic
plasticity. Neuron 32:1149–1164.



10

Sjostrom PJ, Turrigiano GG, Nelson SB (2004) Endocannabinoid-dependent neocortical layer-5 LTD in the absence of
postsynaptic spiking. J. Neurophysiol. 92:3338–3343.

Song S, Abbott LF (2001) Cortical development and remapping through spike timing-dependent plasticity. Neu-
ron 32:339–350.

Toyoizumi T, Pfister JP, Aihara K, Gerstner W (2007) Optimality model of unsupervised spike-timing-dependent plasticity:
synaptic memory and weight distribution. Neural Comput 19:639–671.

Urbanczik R, Senn W (2009) Reinforcement learning in populations of spiking neurons. Nat Neurosci 12:250–252.

Urbanczik R, Senn W (2014) Learning by the dendritic prediction of somatic spiking. Neuron 8:521–528.

Xie X, Seung HS (2004) Learning in neural networks by reinforcement of irregular spiking. Phys Rev E Stat Nonlin Soft
Matter Phys 69:041909.


