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KEY POINTS SUMMARY 

• Refractoriness of calcium release in heart cells is altered in several disease states, but the 

physiological mechanisms that regulate this process are incompletely understood.   

• We examined refractoriness of calcium release in mouse ventricular myocytes and 

investigated how activation of different intracellular signaling pathways influenced this 

process. 

• We found that refractoriness of calcium release is abbreviated by stimulation in cells of the 

“fight-or-flight” response, and that simultaneous activation of multiple intracellular 

signaling pathways contributes to this response. 

• Data obtained under several conditions at the sub-cellular, microscopic level were 

consistent with results obtained at the cellular level.  

• The results provide insight into regulation of cardiac calcium release and how alterations to 

this process may increase arrhythmia risk under different conditions.   

Word count: 123 
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ABSTRACT 

Time-dependent refractoriness of calcium (Ca2+) release in cardiac myocytes is an 

important factor in determining whether pro-arrhythmic release patterns develop. At the subcellular 

level of the Ca2+ spark, recent studies have suggested that recovery of spark amplitude is controlled 

by local sarcoplasmic reticulum (SR) refilling whereas refractoriness of spark triggering depends on 

both refilling and the sensitivity of the ryanodine receptor (RyR) release channels that produce 

sparks. Here we studied regulation of Ca2+ spark refractoriness in mouse ventricular myocytes by 

examining how β-adrenergic stimulation influenced sequences of Ca2+ sparks originating from 

individual RyR clusters. Our protocol allowed us to separately measure recovery of spark amplitude 

and delays between successive sparks, and data were interpreted quantitatively through simulations 

with a stochastic mathematical model. We found that, compared with spark sequences measured 

under control conditions: (1) β-adrenergic stimulation with isoproterenol accelerated spark 

amplitude recovery and decreased spark-to-spark delays; (2) activating protein kinase A (PKA) with 

forskolin accelerated amplitude recovery but did not affect spark-to-spark delays; (3) inhibiting 

PKA with H89 retarded amplitude recovery and increased spark-to-spark delays; (4) preventing 

phosphorylation of the RyR at serine 2808 with a knock-in mouse prevented the decrease in spark-

to-spark delays seen with β-adrenergic stimulation; (5) inhibiting either PKA or Ca2+/calmodulin-

dependent protein kinase II (CaMKII) during β-adrenergic stimulation prevented the decrease in 

spark-to-spark delays seen without inhibition. The results suggest that activation of either PKA or 

CaMKII is sufficient to speed SR refilling, but activation of both kinases appears necessary to 

observe increased RyR sensitivity. The data provide novel insight into β-adrenergic regulation of 

Ca2+ release refractoriness in mouse myocytes. 
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Abbreviations: 

βAR β-Adrenergic Receptor 

CaMKII Ca2+/Calmodulin-dependent protein Kinase II 

CI  Confidence Interval 

CPVT Catecholaminergic Polymorphic Ventricular Tachycardia 

GPU Graphical Processing Unit 

ISO  Isoproterenol 

JSR  Junctional Sarcoplasmic Reticulum 

NSR Network Sarcoplasmic Reticulum 

PKA Protein Kinase A 

RyR Ryanodine Receptor 

SERCA Sarco/Endoplasmic Reticulum Ca2+ ATPase 

SR  Sarcoplasmic Reticulum 

 



Poláková et al. PKA and CaMKII affect Ca2+ spark refractoriness 4 
INTRODUCTION 

In ventricular myocytes, release of calcium (Ca2+) from the sarcoplasmic reticulum (SR) is 

both critical for contraction and centrally involved in arrhythmia initiation. The SR releases Ca2+ in 

response to Ca2+ entry through L-type Ca2+ channels each time the heart beats, and this released 

Ca2+ enables contraction by binding to myofilaments. SR Ca2+ release, however, can occur 

spontaneously, when the SR is overloaded with Ca2+ or the channels responsible for release, 

ryanodine receptors (RyRs), exhibit abnormal gating. Spontaneous release induces inward 

membrane current when Ca2+ is extruded from the cell through the electrogenic Na+-Ca2+ exchanger 

(Pogwizd et al., 2001).  When this spontaneous release occurs simultaneously in many cells, it can 

trigger inappropriate action potentials in ventricular myocytes and initiate potentially lethal 

arrhythmias (Xie et al., 2010).  

After Ca2+ release begins, local depletion of SR Ca2+ stores is the most important factor 

involved in release termination (DelPrincipe et al., 1999; Sobie et al., 2002; Terentyev et al., 2002; 

Sobie & Lederer, 2012; Cannell et al., 2013; Stern et al., 2013). This local depletion enables a 

refractory period, during which it is more difficult (but not impossible) to initiate a second Ca2+ 

release event (Cheng et al., 1996; Szentesi et al., 2004; Sobie et al., 2005; Ramay et al., 2011). Ca2+ 

release refractoriness is an important factor in determining whether potentially arrhythmogenic 

patterns develop. Refractoriness is shortened in disease states that are associated with Ca2+-triggered 

ventricular arrhythmias, such as catecholaminergic polymorphic ventricular tachycardia (CPVT) 

(Kornyeyev et al., 2012; Belevych et al., 2012; Liu et al., 2013; Brunello et al., 2013).  

Refractoriness is also important in the development of alternating large-small-large patterns of 

release, so-called Ca2+ transient alternans (Rovetti et al., 2010; Shkryl et al., 2012). These Ca2+ 

release alternans can produce beat-to-beat alterations in action potential duration, a pattern that 

predisposes hearts to arrhythmias (Qu et al., 2013). In fact, it has been suggested that refractoriness 

is governed by the “Goldilocks Principle” such that abnormally short refractoriness and abnormally 

long refractoriness can both be detrimental, albeit for different reasons (Liu et al., 2012). This fine 

balance indicates the need to obtain reliable quantitative measurements of changes in release 

refractoriness under different conditions.   

Besides being altered in disease states, Ca2+ release refractoriness can be modified 

physiologically, specifically after stimulation of β-adrenergic receptors (Szentesi et al., 2004). Our 

group has previously shown, at the level of the Ca2+ spark, that β-adrenergic stimulation accelerates 

recovery from refractoriness, and we demonstrated that a combination of experiments and 

mathematical modeling can provide quantitative insight into the changes that occur after stimulation 
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(Ramay et al., 2011). The previous data (Ramay et al., 2011), however, did not address the 

particular signaling pathways, or the specific phosphorylation sites, that are responsible for 

shortening the refractory period. In particular, both protein kinase A (PKA) and Ca2+/calmodulin-

dependent protein kinase II (CaMKII) are activated when β-adrenergic receptors are stimulated with 

an agonist such as isoproterenol (Curran et al., 2007; Gutierrez et al., 2013; Curran et al., 2014), 

even in quiescent cells that are not undergoing Ca2+ transients, and each kinase may contribute to 

the observed changes.  

In this study we examined restitution of Ca2+ sparks in mouse ventricular myocytes under 

several conditions to delineate the pathways responsible for accelerating the recovery of Ca2+ 

release after β-adrenergic stimulation. By coupling the experimental results to simulations with a 

stochastic mathematical model of the Ca2+ spark (Sobie et al., 2002; Ramay et al., 2011), we 

developed quantitative predictions about whether particular interventions cause a change in the rate 

of refilling, altered RyR sensitivity, or both. Our experimental results suggest that activation of 

either PKA or CaMKII is sufficient to speed up the rate of refilling, but that activation of both 

kinases is required to observe maximal changes in RyR sensitivity during β-adrenergic stimulation. 

Moreover, the data also suggest that phosphorylation of the RyR at serine 2808 is involved in the 

increased RyR sensitivity observed during β-adrenergic stimulation, potentially helping to define a 

physiological role for RyR phosphorylation at this residue.   
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METHODS 

Ethical approval 

This investigation conforms with the Guide for the Care and Use of Laboratory Animals by the US 

National Institutes of Health (NIH Publication No. 85-23, revised 1996). All experimental protocols 

were approved by the Institutional Animal Care and Use Committee of Icahn School of Medicine at 

Mount Sinai and with the permission of the State Veterinary Administration and according to Swiss 

Federal Animal protection law (permit BE126/12). 

Isolation of ventricular myocytes 

C57Bl/6 (Charles River Laboratories; Wilmington, MA) and S2808A knock-in mice 

(Benkusky et al., 2007), generated in a sv129/C57B1/6 background, were used in this study at 2.5-4 

months of age. In total we used N=25 control mice and N=5 S2808A mice. Standard enzymatic 

dissociation techniques (Wolska & Solaro, 1996; Guatimosim et al., 2001) were used to isolate 

ventricular myocytes. Briefly, mice were given an intraperitoneal injection of a lethal dose of 

pentobarbital (100 mg/kg). Hearts were rapidly removed from chest cavity and retrograde perfused 

on a Langendorff apparatus with Ca2+-free-Tyrode solution (NaCl 140, KCl 5.4, MgCl2 1.1, HEPES 

5, NaH2PO4 1, glucose 10; pH 7.3, adjusted with NaOH; 300 mOsm) for 5 minutes at 37 ºC. For 

tissue digestion, solution was then switched to Tyrode’s solution containing containing 36 µM Ca2+, 

collagenase (112 U/mL; Worthington) and protease (0.16 U/mL) for approximately 5 minutes. 

Ventricles were removed from the heart and cut to a small pieces in Tyrode’s solution containing 

200 µM CaCl2, yielding individual cells. [Ca2+] was gradually increased from 200 µM to 1 mM 

over a period of 30 minutes. 

Solutions 

During measurement, cells were perfused with Tyrode solution: NaCl 140, KCl 5.4, MgCl2 

1.1, HEPES 5, NaH2PO4 1, glucose 10, CaCl2 1.8, pH 7.4 and osmolarity of 300 mOsm. We studied 

6 experimental groups besides control: 1) H89 (1µM H-89 to block PKA); 2) ISO (100 nM 

isoproterenol to stimulate β-adrenergic receptors); 3) ISO + KN92 (100 nM isoproterenol plus 1 

µM KN-92 (EMD chemicals), an inactive form of CaMKII blocker); 4) ISO + KN93 (100 nM 

isoproterenol plus 1µM KN-93, an active CaMKII blocker); 5) ISO + H89 (100 nM isoproterenol 

plus 1µM H-89, a blocker of PKA); 6) FORSKOLIN (1µM Forskolin (Cayman chemicals) to 

activate adenylyl cyclase). Drugs were purchased from Sigma unless noted otherwise. Experiments 

were performed at room temperature (22 ºC). 
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Confocal recordings 

Isolated ventricular myocytes were loaded with the Ca2+ indicator fluo-3AM (5 µmol/L, 30 

minutes loading; 30 minutes deesterification; Invitrogen). During Ca2+ spark restitution 

measurements, EGTA-AM (5 µmol/L, 30 minutes loading; 30 minutes deesterification; Invitrogen) 

was also added to suppress intracellular Ca2+ waves (Ramay et al., 2011). Cells were imaged using 

a confocal microscope (LSM 5 exciter; ZEISS, Germany, or Olympus Fluoview 1000) operating in 

line scan mode. To record intracellular [Ca2+], fluo-3 was excited at 488 nm, and fluorescence 

above 505 nm was acquired.  

Ca2+ spark restitution experiments  

The “ryanodine method” (Sobie et al., 2005) was used to record repetitive Ca2+ sparks 

originating from single cluster of RyRs. This protocol is based on the idea that a ryanodine-bound 

RyR will open much more frequently and can serve as a potential Ca2+ spark trigger (Buck et al., 

1992; Bidasee et al., 2003). Through this approach repetitive sparks can be then recorded from a 

single cluster of RyRs (Sobie et al., 2005; Ramay et al., 2011).  

Before recording, cells were exposed to the drugs in the particular experimental groups 

(H89, ISO, ISO+KN92; ISO+KN93; ISO+H89) for 30 minutes except the FORSKOLIN group 

where exposure lasted 3 minutes, to allow the SR Ca2+ load to reach a new steady-state level. 

Tyrode’s solution containing drugs and 50 nM ryanodine was then applied to the cell, and active 

Ca2+ spark sites within the myocyte were identified and scanned at high speed (0.96-3.07 ms/line) 

for 10 s. Ryanodine exposure was limited to 8 minutes to minimize the probability that RyR sub-

conductance states could produce extremely long sparks (Ramay et al., 2011). 

Ca2+ transient experiments 

We followed the same exposure times for different drugs as in spark restitution 

experiments. Cells were perfused with Tyrode’s solution containing drugs and field stimulated for 

25 s at 1Hz, at which point steady-state Ca2+ transients were recorded.  After stimulation, cells were 

rapidly exposed to 10 mM caffeine, and resulting changes in intracellular [Ca2+] were recorded to 

assess SR Ca2+ load. 

Data analysis  

Repetitive Ca2+ sparks and Ca2+ transients were analyzed using custom programs written in 

MATLABTM (Mathworks, Natick, MA). Briefly, background fluorescence was subtracted from the 
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confocal image. To convert to units of F/F0, fluorescence averaged over either the whole cell (Ca2+ 

transient experiments) or a 1.8 µm region (Ca2+ spark experiments) was normalized to fluorescence 

recorded during a quiescent period to convert to unites of F/F0.  

Ca2+ spark restitution analyses consisted of two parameters for each spark pair: 1) 

amplitude of the second normalized to the first; and 2) the delay between sparks in ms. The same 

criteria for exclusion were used as in (Ramay et al., 2011). Briefly: 1) while all spark-to-spark 

delays were included in histograms, amplitude ratios were excluded if the initial spark in the pair 

occurred soon after a previous event (200 ms); 2) active sites were excluded if: i) there was Ca2+ 

spark activity recorded from two sites close by, which made it difficult to resolve the position of the 

sparks; ii) very long sparks (> 200 ms), indicating RyR sub-conductance states, were observed; 3) 

confocal images were excluded if the frequency of Ca2+ sparks exceeded 15 per 100 µm per second. 

Ca2+ transient analyses included two parameters for each experimental group: 1) transient 

decay; and 2) fractional release (Fig 1b). Transient decay is represented by time constant (τ, in s), 

extracted from an exponential function fit to the decaying phase of the Ca2+ transient [amplitude*e-

time/τ]. Fractional release, calculated as field-stimulated Ca2+ transient amplitude divided by caffeine-

induced Ca2+ transient amplitude, describes fraction of the SR depleted in response to the field 

stimulus. 

To statistically compare fractional release and Ca2+ transient decay rates between groups, 

we used ANOVA, followed by student’s t-test for two-group comparisons. To compute confidence 

intervals (10%-90%) for spark restitution time constants and spark-to-spark delay medians, we 

implemented a bootstrapping approach (Calmettes et al., 2012), described in more detail in Figures 

S2 and S3 (Supporting Information).    

Mathematical modeling 

Simulations were performed with a modified version of the sticky cluster model (Sobie et 

al., 2002; Ramay et al., 2011; Lee et al., 2013). The model contains 4 compartments: 1) subspace, 

2) cytosol, 3) junctional SR (JSR) and 4) network SR (NSR). Ca2+ buffering within each 

compartment, Ca2+ diffusion between compartments, and stochastic gating of RyRs are calculated. 

Sparks occur when Ca2+ flux through a single RyR stochastically causes most of the 28 RyRs to 

open. Each RyR has two states (open and closed), with no explicit inactivation process (Liu et al., 

2012), and gating depends on subspace [Ca2+], JSR [Ca2+], and allosteric coupling between RyRs 

within the cluster.  
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To mimic the ability of a ryanodine molecule to induce repetitive Ca2+ sparks, we make a 

single RyR within the cluster hyperactive by reducing this channel’s mean closed time from 28175 

s to 55 ms. All other RyR properties were unchanged. Frequent opening of the hyperactive channel 

provided random triggers for Ca2+ sparks, but, due to stochastic gating of the cluster, not every 

opening was sufficient to activate a spark. We generated sequences of random, repetitive Ca2+ 

sparks by simulating the autonomous stochastic gating of an RyR cluster for 1250 s (time step of 

10-6 s). This model sufficiently simulated each experimental group by modifying just two 

parameters: 1) the maximum opening rate of the RyRs and 2) the time constant of refilling (see 

Table 2).  

The number of open RyRs (NRyR) and the current through the cluster of RyRs (IRyR) were 

recorded during simulations. Threshold for Ca2+ spark was at a peak of at least 5 open RyRs, as 

simulations have shown that such an event should be detectable (Williams et al., 2011). For each 

simulated Ca2+ spark pair, two variables were calculated: 1) the delay between sparks; and 2) the 

amplitude of the second spark relative to the first (figure 1A). Integral of IRyR during the spark was 

used instead of spark amplitude as these two parameters highly correlated with each other (Figure 

S1 in the Supporting Information). 

Simulation execution 

To speed up the simulations we performed the calculations on a Graphical Processing Unit 

(GPU) and used MATLAB’s parallel computing toolkit. A file created in the parallel computing 

platform CUDA that described the sticky cluster model was created, using the curand_kernel.h. 

This file was compiled to parallel thread execution (PTX) file using nvcc compiler in the NVIDIA 

CUDA Toolkit. Both files .CU and .PTX were used to create an executable kernel in MATLABTM 

(CUDAKernel object). A computer containing an NVIDIA QUADRO 4000 GPU unit was used for 

all simulations. 
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RESULTS 

β-adrenergic stimulation accelerates Ca2+ spark restitution in mouse ventricular myocytes 

We have previously shown, in rat ventricular myocytes, that stimulation of β-adrenergic 

receptors (βARs) leads to accelerated recovery of Ca2+ spark amplitude and dramatically shorter 

spark-to-spark delays when repetitive Ca2+ sparks are induced with low-dose ryanodine (Ramay et 

al., 2011). Mathematical modeling of this phenomenon supported the conclusion that βAR 

stimulation led to both faster refilling of local SR Ca2+ stores and to increased sensitivity of RyRs. 

Our initial goal was to confirm these results in mouse ventricular myocytes. Treatment of cells with 

50 nM ryanodine led to repeated Ca2+ sparks from the same cluster of RyRs (Fig. 1A), as previously 

seen (Sobie et al., 2005; Ramay et al., 2011). These repeated sparks were analyzed by computing 

Ca2+ spark amplitude recovery as a function of time and by generating histograms of spark-to-spark 

delays (Fig. 1B). Consistent with previous results in rat myocytes (Ramay et al., 2011), βAR 

stimulation with 100 nM isoproterenol (ISO) led to accelerated recovery of Ca2+ spark amplitude 

(time constant τ = 74 ms in control; τ = 62 ms with ISO) and a leftward shift in the delay histograms 

(median = 330 ms in control, 232 ms with ISO).  

The time constants and medians reported above were computed from complete data sets: 

hundreds of Ca2+ spark pairs obtained at numerous repetitive spark sites from several cells. To 

compute confidence intervals of these estimates and statistically compare differences between 

groups, we employed a bootstrapping approach (Calmettes et al., 2012). As described in more detail 

in Figures S2 and S3 (Supporting Information), this involved repeatedly estimating time constants 

and medians from samples of the complete datasets. Using this procedure, we determined 10%-90% 

τ confidence intervals (CIs) of 68.7-80.4 ms for CTRL and 57.3-67.4 ms for ISO, and median CIs 

of 316.1-349.3 ms for CTRL, 221.4-242.7 ms for ISO. We further calculated p-values of 0.02 for τ, 

CTRL vs. ISO, and < 0.001 for median, CTRL vs. ISO. 

We complemented these Ca2+ spark recordings with measurements at the cellular level of 

steady-state Ca2+ transients and the response of myocytes to rapid application of 10 mM caffeine 

(Fig. 1C). The two primary metrics we extracted from these whole cell recordings were the time 

constant of Ca2+ transient decay and the “fractional release,” defined as the ratio of Ca2+ transient 

amplitude to the amplitude of the caffeine response. Consistent with prior results (Ginsburg & Bers, 

2005), ISO led to faster decay of Ca2+ transients (smaller time constant) due to stimulation of 

SERCA, and to increased fractional release.   

Activation of PKA explains some but not all effects of β-adrenergic stimulation 

Stimulation of βARs leads to activation of protein kinase A (PKA), but this may induce 

additional downstream changes as well. To begin to delineate the specific role of PKA activation in 
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Ca2+ spark restitution, we analyzed repeated sparks after application of either forskolin, an activator 

of adenylyl cyclase, or H89, a PKA inhibitor (Fig. 2A). Forskolin led to acceleration of Ca2+ spark 

amplitude recovery (τ = 74 ms in control; τ = 54 ms with forskolin; 10%-90% CIs, 68.7-80.4 ms 

CTRL, 49.17-59.52 ms Forskolin). This faster restitution would be expected to induce a leftward 

shift in the spark-to-spark delay histogram, and indeed a minor shift is seen with forskolin (median 

= 330 ms in control, 304 ms with forskolin; 10%-90% CIs, 316.1-349.3 ms CTRL, 288.2-319.9, 

Forskolin). Together these results suggest that selective activation of PKA leads to faster local SR 

refilling but does not increase sensitivity of RyRs to Ca2+. It also implies that additional signaling 

pathways must be activated to explain the full range of effects seen with βAR stimulation. In 

contrast, PKA inhibition by H89 caused slower restitution of Ca2+ spark amplitude (τ = 74 ms in 

control; τ = 92 ms with H89; 10%-90% CIs, 68.7-80.4 ms CTRL, 85.2-99.0 ms, H89) and a 

rightward shift in the delay histogram (median = 330 ms in control, 442 ms with H89; 10%-90% 

CIs, 316.1-349.3 ms CTRL, 421.5-464.4, H89). This result implies that mouse ventricular myocytes 

have substantial PKA activation at baseline. Cellular-level measurements were in agreement with 

the Ca2+ spark restitution recordings. Compared with control conditions, forskolin decreased the 

Ca2+ transient time constant and increased fractional release whereas H89 caused opposite effects. 

Phorphorylation of RyRs at S2808 contributes to the response to βAR stimulation 

Next we wished to gain insight into which phosphorylation sites might contribute to the 

increased RyR sensitivity seen with βAR stimulation. A serine residue located at position 2808 in 

the mouse RyR (2809 in human RyR) has been hypothesized to be critical for both physiological 

changes to RyR gating and to the development of heart failure (Marx et al., 2000; Marx & Marks, 

2013), although this idea has been challenged (Bers, 2012; Houser, 2014). We examined Ca2+ spark 

restitution in myocytes from S2808A knock-in mice (Benkusky et al., 2007), in which 

phosphorylation at this particular residue is impossible. In these cells (Fig. 3A), βAR stimulation 

with ISO led to accelerated restitution of Ca2+ spark amplitude, but only a minor shift in the median 

of the delay histogram (294 ms to 261 ms; 10%-90% CIs, 281.9-305.9, S2808A, 247.9-274.4, 

S2808A ISO). This contrasts with the much larger shift in median observed in control mice (330 ms 

CTRL to 232 ms with ISO). This lack of a robust shift in spark-to-spark delays implies that 

phosphorylation of the RyR at S2808 does indeed contribute to the complete physiological response 

induced by βAR stimulation. Consistent with the Ca2+ spark restitution experiments, cellular-level 

recordings (Fig. 3B) showed that ISO caused a decrease in Ca2+ transient decay time constant and 

an increase in fractional release in cells from S2008A mice.   

Mathematical modeling suggests that ISO does not alter RyR gating in S2808A mice 
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To interpret the experimental results obtained so far, we performed simulations with a 

mathematical model of the cardiac Ca2+ spark (Sobie et al., 2002; Ramay et al., 2011; Lee et al., 

2013). The basic model structure and parameters were as previously described (Ramay et al., 2011), 

but the model was improved to include a single hyperactive RyR that opens stochastically and 

frequently (mean closed time = 55 ms) and can potentially trigger repeated Ca2+ sparks from the 

remaining 27 RyRs in the cluster. These sequences of events were analyzed to generate plots of 

simulated spark amplitude restitution and delay histograms, analogous to the experimental data. To 

reproduce the results seen in control myocytes (Fig. 4C), we assumed a refilling time constant of 

6.55 ms and a maximum opening rate of 42 ms-1.   

Each experimental condition was simulated, and two parameters were adjusted to 

recapitulate the experimental data: (1) the time constant of JSR refilling was adjusted to match 

spark amplitude restitution; and (2) the maximum opening rate of the RyR was adjusted, if 

necessary, to match the median of the delay histogram. This allowed us to make inferences of the 

most likely changes occurring under each experimental condition. For instance, recapitulating the 

effects of ISO in control cells required decreasing the refilling time constant (from 6.55 to 4.9 ms) 

and increasing the maximal RyR opening rate (from 42 to 60). In contrast, the effects of ISO in cells 

from S2808A mice could be reproduced by altering the refilling time constant (5.5 to 4.9 ms) 

without assuming any changes in RyR gating. The simulation results therefore support the 

suggestion that phosphorylation at S2808 contributes to the alterations observed with full 

stimulation of βARs.   

Activation of both PKA and CaMKII is required for full effects of βAR stimulation 

The next set of experiments aimed to delineate the contributions of PKA and CaMKII to the 

overall response to βAR stimulation. To do this, we measured Ca2+ spark restitution and whole-cell 

Ca2+ transients after ISO application, also in the presence of drugs to block either PKA or CaMKII 

activity. As a control, and as used in previous studies (Sossalla et al., 2010), we incubated cells with 

ISO plus KN92, the inactive form of the CaMKII blocker KN93, and this led to effects nearly 

identical to those observed with ISO alone – an acceleration of both Ca2+ spark amplitude restitution 

and a dramatic leftward shift in the delay histogram (Fig. 5A, first column). When ISO was added 

along with either the PKA inhibitor H89 or the CaMKII inhibitor KN93, we observed acceleration 

of Ca2+ spark amplitude restitution but only a much smaller leftward shift in the delay histogram 

(Fig. 5A, second and third columns). For instance, the median of the delay histogram was 330 ms in 

control, 232 ms with ISO only, and 286 ms with ISO plus KN93 (10%-90% CIs, 183.1-193.6, ISO 

+ KN92, 270.0-295.4, ISO + KN93, 283.0-310.2, ISO + H89). Measurements made at the cellular 

level were consistent with the spark-level results. All 3 conditions (ISO + KN92, ISO + KN93, ISO 
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+ H89) caused a decrease in Ca2+ transient decay time constant and an increased fractional release, 

but less dramatic effects were seen with the inhibitors than with ISO alone or ISO plus the inactive 

inhibitor. These results suggest that both PKA and CaMKII must be activated to achieve the full 

effects of βAR stimulation. 

Figure 6 illustrates the consistency of the spark restitution and whole-cell measurements 

over the different experimental conditions examined. In Fig. 6A we plot the time constant of Ca2+ 

transient decay at the cellular level versus the time constant of restitution at the Ca2+ spark level. 

The two variables are positively correlated, which is expected since both should depend on the 

activity of the SERCA pump. In Fig. 6B we plot fractional release assessed at the cellular level 

versus the median of the delay histogram assessed at the spark level. A smaller median, implying 

increased RyR sensitivity, is associated with larger fractional release. Although fractional release 

will also depend on the magnitude of L-type Ca2+ current, which was not directly measured in these 

experiments and which is expected to increase with β-adrenergic stimulation, the strong correlation 

between the two variables supports the idea that alterations in RyR Ca2+ sensitivity should affect 

both quantities.    

Simulations provide quantitative insight into changes in SR refilling and RyR gating 

Finally, we performed additional numerical simulations to interpret the Ca2+ spark 

restitution data obtained under different experimental conditions. For each condition, we simulated 

the effects of low-dose ryanodine by dramatically shortening the mean closed time of one RyR 

within a cluster of 28 channels, thereby allowing that single RyR to potentially initiate repetitive 

Ca2+ sparks (Fig. 4). We adjusted the time constant of local SR refilling in the model and the 

maximal opening rate of the other RyRs within the cluster to simulate the changes that occurred 

under different experimental conditions. Changes to these parameters that were required to 

reproduce experimental results are shown in Table 2. From these model-derived parameter values 

we can make the following experimental inferences: (1) activation of either PKA or CaMKII is 

sufficient to accelerate Ca2+ spark restitution through faster SR refilling; (2) simultaneous activation 

of both PKA and CaMKII is necessary for the increase in RyR sensitivity seen with βAR 

stimulation; (3) the slower spark restitution and longer delays observed with H89 can be explained 

solely through changes to SR refilling – additional changes to RyR gating are not required to 

recapitulate the data.  
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DISCUSSION 

The results presented in this study provide new insight into changes in SR Ca2+ release that 

occur in heart cells after β-adrenergic stimulation. Consistent with our previous results (Ramay et 

al., 2011), we show that β-adrenergic stimulation accelerates the recoveries of both Ca2+ spark 

amplitude and Ca2+ spark triggering probability . The acceleration of amplitude recovery occurs 

because of faster SR refilling whereas the changes to spark triggering probability depend on both 

refilling and increased RyR Ca2+ sensitivity. These changes, however, are not mediated solely 

through activation of PKA, since more modest changes to spark triggering probability are observed 

when either CaMKII activity is blocked, (Fig. 5) or when activation of PKA occurs independent of 

β-adrenergic receptors (Fig. 2). Moreover, the results suggest that mouse ventricular myocytes, 

unlike rat myocytes, exhibit substantial PKA activity at baseline, since inhibition of PKA with H89 

slows recovery from refractoriness (Fig. 3). When the experimental results are interpreted using 

simulations with our mathematical model, the results overall suggest the scheme illustrated in 

Figure 7. Block of basal PKA activity can slow local SR refilling, with little effect on RyR 

sensitivity, whereas activation of PKA or CaMKII alone will accelerate SR refilling, again with 

little effect on RyR sensitivity. It is only when PKA and CaMKII are activated in concert that 

refilling will be faster and RyRs will become more sensitive, leading to the greatest changes in 

refractoriness. The implications of these different effects and the possible clinical consequences are 

discussed below.   

Although it seems clear that RyR Ca sensitivity increases with βAR stimulation,  

[here discuss the nuances of forskolin and the possibility that phosphorylation can either 

increase or decrease r 

One surprising finding in the present results was that blockade of PKA activity with H89 

slowed the recovery from refractoriness, even in control myocytes in which βARs had not been 

stimulated. H89 applied to unstimulated myocytes caused a slower recovery of Ca2+ spark 

amplitude and a pronounced rightward shift in the spark-to-spark delay histogram (Fig. 2). 

Importantly, this intervention also increased the time constant of decay of the cellular Ca2+ transient 

and decreased fractional release (Fig. 2), providing a critical confirmation of the Ca2+ spark data. 

These results imply that mouse ventricular myocytes exhibit substantial PKA activity at baseline, 

and they confirm prior findings suggesting that basal phosphorylation of key PKA targets may be 

higher in mouse than in other species (Huke & Bers, 2008; Parks & Howlett, 2012).    

Two lines of evidence indicate that both PKA and CaMKII are activated when β-adrenergic 

receptors are stimulated with isoproterenol, and that activity of both kinases is required for maximal 
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acceleration of recovery from refractoriness. First, direct activation of adenylyl cyclase with 

forskolin, an intervention that presumably activates PKA without activating CaMKII in resting 

cells, does not lead to increased sensitivity of RyRs (Figure 2 and Table 2). Second, when βARs are 

activated in the presence of KN93, a CaMKII inhibitor, RyR sensitivity is similarly not increased. 

These results are consistent with prior studies indicating that both PKA and CaMKII are activated 

when βARs are stimulated with isoproterenol (Curran et al., 2007; Gutierrez et al., 2013; Curran et 

al., 2014). At present, however, the mechanisms by which β-adrenergic stimulation, in the absence 

of Ca2+ transients, may lead to activation of CaMKII remain incompletely understood and under 

active investigation. One possibility is that signaling downstream of Epac (exchange protein 

directly activated by cAMP) leads to an increase in CaMKII activity, although forskolin would 

presumably activate such a mechanism. Therefore a more likely possibility, supported by recent 

results (Gutierrez et al., 2013; Curran et al., 2014), is that CaMKII becomes activated through a 

nitric oxide dependent pathway.   

Our results also suggest that phosphorylation of the RyR at serine 2808 is essential for the 

changes in refractoriness seen during β-adrenergic stimulation. In the S2808A knock-in mouse, 

where phosphorylation of this residue is impossible, β-adrenergic stimulation caused faster recovery 

of Ca2+ spark amplitude, consistent with increased SERCA activity, but only a minimal leftward 

shift in the spark-to-spark delay histogram, implying that RyR function was not altered. This 

contrasted with the much larger leftward shift seen in myocytes from control mice, confirming that 

S2808 was necessary for the full effects of β-adrenergic stimulation on refractoriness. This is 

consistent with recent results showing that S2808A mice, while exhibiting a subtle phenotype, do 

indeed show altered responsiveness to β-adrenergic stimulation (Ullrich et al., 2012). 

Phosphorylation at S2808 has been hypothesized to play a central role in the development of heart 

failure (Marx & Marks, 2013), although this hypothesis remains extremely controversial (Bers, 

2012; Dobrev & Wehrens, 2014; Houser, 2014). Although our data do not address the controversy 

relating to heart failure development, the results do suggest that phosphorylation at S2808 has 

functional consequences, in particular a shortening of the Ca2+ release refractory period. It seems 

fairly clear, however, that the positive inotropic response seen after β-adrenergic stimulation results 

primarily from phosphorylation of the L-type Ca2+ channel and phospholamban rather than from 

altered RyR function (Houser, 2014). It is intriguing that the relatively mild alteration in 

refractoriness seen in S2808A mice was similar to the effect seen after ISO application when 

CaMKII activity was inhibited by KN93. This could indicate that phosphorylation at S2808 occurs 

primarily through CaMKII rather than PKA. Although this residue is commonly considered a PKA 

site rather than a CaMKII site, it should be noted that early publications describing this site noted 
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the ability of both CaMKII and PKA to phosphorylate this particular serine (Witcher et al., 1991; 

Rodriguez et al., 2003).   

The data also provide new insight into factors that may increase the risk of arrhythmias 

during β-adrenergic stimulation. Just as the heart’s electrical refractory period protects against 

propagation of improper electrical signals, the Ca2+ release refractory period helps to minimize the 

possibility that spontaneous release events will occur soon after triggered release. An abbreviated 

refractory period is associated with conditions that lead to increased risk of Ca2+-triggered 

arrhythmias, such as CPVT (Kornyeyev et al., 2012; Liu et al., 2013; Brunello et al., 2013) or heart 

failure (Belevych et al., 2012). The results presented here provide additional evidence that a 

shortened refractory period may be an important factor in the increased risk of Ca2+-triggered 

arrhythmias seen during β-adrenergic stimulation. Moreover, since our results suggest that both 

PKA and CaMKII are activated in response to isoproterenol, and since both kinases contribute to 

the effects that are observed, these results support the idea that CaMKII inhibition is a viable 

therapeutic strategy (Swaminathan et al., 2012). Targeting this kinase may be a way to prevent 

some of the negative consequences of β-adrenergic stimulation without fully inhibiting all of the 

positive consequences.   

We should note several important limitations of the study. One is that, besides the insight 

gained from the experiments with S2808A mice, we do not know the precise residues involved in 

the acceleration of refractoriness seen with β-adrenergic stimulation. The increase in RyR 

sensitivity seen with concurrent activation of PKA and CaMKII may involve phosphorylation at 

S2814 (Wehrens et al., 2004)and/or S2030 (Xiao et al., 2005)in addition to phosphorylation at 

S2808. A second caveat is that, while we can conclude that RyR sensitivity is increased in the 

presence of ISO, we cannot conclusively determine whether RyR sensitivity is unchanged, or 

perhaps slightly decreased, under other experimental conditions (FORSKOLIN, ISO plus KN93, 

ISO plus H89). This issue is important and challenging in light of recent results suggesting that 

phosphorylation may either increase or decrease RyR Ca2+ sensitivity, depending on the baseline 

phosphorylation state (Liu et al., 2014).  

In summary, we have shown that both PKA and CaMKII contribute to the abbreviation of 

the Ca2+ release refractory period that is observed during β-adrenergic stimulation. By combining 

the experimental results with numerical simulations, we developed quantitative predictions about 

changes in SERCA activity or RyR sensitivity that occur under different conditions. The 

simulations suggest that activation of either PKA or CaMKII can increase the rate of local SR 

refilling, but both kinases must be active to observe increased RyR sensitivity. The data provide 
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new insight into the regulation of SR Ca2+ release, and in particular the factors that control the 

release refractory period, a critical factor in determining the risk of Ca2+-triggered arrhythmias.   
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TRANSLATIONAL PERSPECTIVE 

Triggered release of calcium from the sarcoplasmic reticulum in heart cells is the critical 

physiological process that links electrical excitation to contraction. Improper regulation of this 

process, however, increases the risk of spontaneous calcium release, which may initiate life-

threatening ventricular arrhythmias. The refractory period after release is an important factor in 

determining whether harmful spontaneous calcium release occurs. The refractory period can be 

abbreviated in disease states and is regulated by β-adrenergic stimulation. We examined the calcium 

release refractory period at the microscopic level in mouse ventricular myocytes, and we tested the 

hypothesis that multiple downstream pathways activated during β-adrenergic stimulation work 

together to alter the release refractory period. Consistent with previous studies, we found that β-

adrenergic stimulation accelerates recovery from refractoriness. We further determined that both 

Protein Kinase A and Ca2+/calmodulin-dependent protein kinase II contribute to this accelerated 

recovery. Using a genetically-modified mouse, we also found that phosphorylation of the release 

channels, ryanodine receptors, at a particular residue (Serine 2808), plays a role in abbreviated 

release refractoriness during β-adrenergic stimulation. The results provide new insight into the 

mechanisms by which β-adrenergic stimulation may increase the risk of calcium-triggered 

ventricular arrhythmias, and the data provide support for particular therapeutic interventions that 

may help to reduce the risk of these arrhythmias.    

Word count: 210 
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TABLES 

Table 1.  Summary of drugs used in the experimental protocol. 

drug Concentration (µM) Incubation (mins) Purpose 
ryanodine 0.05 < 8 Activate repetitive sparks 

isoproterenol 0.1 30 β-adrenergic agonist 
Forskolin 1 3 Activate adenylyl cyclase 

KN-92 1 30 Inactive CaMKII blocker 
KN-93 1 30 CaMKII blocker 
H-89 1 30 PKA blocker 

caffeine 10000 instant application Empty SR 
 

Table 2.  Model parameters that matched experimental data. 

Experimental group τ refill (ms) kopen (ms-1) 
CTRL 6.55 42 
ISO 4.9 60 

Forskolin 4.6 30 
H89 8.8 35 

S2808A 5.5 42 
S2808A + ISO 4.9 42 
ISO + KN92 4.5 90 
ISO + KN93 5.3 42 
ISO + H89 5.7 40 
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FIGURE LEGENDS 

Figure 1.  Ca2+ spark restitution and cellular Ca2+ transients after β-adrenergic stimulation.  (A) 

Line scan and time courses of repetitive Ca2+ sparks induced by 50 nM ryanodine. Spark to spark 

delay and the amplitude of the second spark relative to the first were calculated and analyzed (see 

annotations). (B)  Line scan and time course of whole cell Ca2+ transient (1 Hz for 25s) and 

subsequent caffeine application (10 mM). Ca2+ transient decay and fractional release (Frrel = 

Atrans/Acaff) were measured for analyses (see annotations).  (C) Each column shows spark amplitude 

restitution (top; normalized amplitude of the second spark vs. the delay between sparks) and spark 

to spark delay histogram (bottom) for different conditions: 1) ISO - ryanodine plus isoproterenol 

(100 nM); 2) CTRL – ryanodine only. Bold lines show fits to the data of exponential recovery 

curves with indicated time constant and number of spark pairs. Histogram binning is 100 ms; 

median and number of spark to spark delays are indicated.  (D) Ca2+ transient decay and fractional 

release in 1) ISO (N = 25; N = 17) and 2) CTRL (N = 20; N = 15) conditions. If not indicated 

otherwise p<0.01.  

Figure 2.  Ca2+ spark restitution and cellular Ca2+ transients after PKA activation/inhibition.  (A) 

Each column shows spark amplitude restitution (top) and spark to spark delay histogram (bottom) 

for different conditions: 1) Forskolin (1 µM), an activator of PKA; 2) CTRL (replotted from Fig. 1 

for comparison); 3) H89 (1 µM), an inhibitor of PKA. Bold lines show fits to the data of 

exponential recovery curves with indicated time constant and number of spark pairs. Histogram 

binning is 100 ms; median and number of spark to spark delays are indicated. Spark restitution was 

performed in presence of 50 nM ryanodine to induce repetitive Ca2+ sparks. (B) Ca2+ transient decay 

and fractional release in 1) Forskolin (N = 8 for both parameters); 2) CTRL (N = 20; N = 15) and 3) 

H89 (N = 23; N = 20) group.  If not stated otherwise p<0.01.  

Figure 3.  Spark restitution in S2808 mice.  (A) Ca2+ spark amplitude restitution (top row) and 

spark-to-spark delay histogram (bottom row) for different conditions (columns): 1) ISO – ryanodine 

plus isoproterenol and 2) CTRL – only ryanodine exposure. Bold lines show fits to the data of 

exponential recovery curves with indicated time constant and number of spark pairs. Histogram 

binning is 100 ms; median and number of spark-to-spark delays are indicated.  (B) Whole cell Ca2+ 

transient statistics for ISO and CTRL groups. If not indicated otherwise p<0.01.  

Figure 4.  Mathematical modeling results. (A) Simulations of 4 s of activity of isolated RyR either 

without (top) or with (bottom) a single ryanodine molecule bound. Ryanodine was assumed to 

cause repetitive openings due to a dramatic decrease in mean closed time (28175 s to 55 ms). Mean 
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open time was 2 ms in either condition. (B) Simulations of a single ryanodine-bound RyR within a 

cluster of channels resulted in repetitive Ca2+ sparks, as seen in either the number of open channels 

(top), simulated line scan (middle) or simulated Ca2+ spark time course (bottom). We set a threshold 

of 5 open channels for an event to be defined as an identifiable spark (Williams et al., 2011). (C) 

Ca2+ spark amplitude restitution and spark-to-spark delays as observed experimentally (left) and as 

simulated numerically (right). 

Figure 5.  Ca2+ spark restitution and cellular Ca2+ transients after β-adrenergic stimulation 

combined with PKA or CAMKII inhibition.  (A) Ca2+ spark amplitude restitution (top) and spark to 

spark delay histogram (bottom) for different conditions (columns): 1) ISO (100 nM) + KN92 (1 

µM), an inactive CaMKII inhibitor; 2) ISO + KN93 (1 µM), a CaMKII inhibitor; 3) ISO + H89 (1 

µM), a PKA inhibitor; 4) CTRL (replotted from Fig. 1 for comparison). Bold lines show fit to the 

data of exponential recovery curves with indicated time constant and number of spark pairs. 

Histogram binning is 100 ms; median and number of spark to spark delays are indicated. 

Experiments performed in presence of 50 nM ryanodine to induce repetitive Ca2+ sparks. (B) Whole 

cell Ca2+ transient statistics in 1) ISO+KN92 (N = 15; N = 13); 2) ISO+KN93 (N = 17; N = 12); 3) 

ISO+H89 (N = 21; N = 19); 4) CTRL (N = 20; N = 15). If not indicated otherwise p<0.01.  

Figure 6.  Relationship between single spark and whole cell transient measurements to summarize 

experimental results. (A) Median of spark to spark delays vs. fractional release and (B) time 

constant of calcium spark restitution vs. whole cell transient decay. Each symbol corresponds to a 

different experimental condition as labeled. 

Figure 7.  Schematic summary of changes seen under different experimental conditions. β-

adrenergic stimulation led to increases in both SR refilling and apparent RyR sensitivity. Activation 

of either PKA alone or CaMKII alone led to faster SR refilling but no apparent change in RyR 

sensitivity. Block of PKA activity led to slower SR refilling. 
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