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1 Introduction

The Standard Model completed by several generations of right-handed neutrinos represents
a minimal renormalizable framework which is able to describe all available data from terres-
trial experiments. It appears well motivated to explore the cosmological significance of this
framework [1]–[4]. The present paper aims to contribute to such an endeavour, by studying
the behaviour of right-handed neutrinos of any mass M (1GeV <∼ M <∼ 1015GeV). We con-
centrate on temperatures above about 160GeV, so that the Higgs mechanism is not operative
and the vacuum masses of particles such as the top quark or W±, Z0 bosons can be neglected.
The right-handed neutrinos interact with the Standard Model degrees of freedom through
Yukawa interactions, which are assumed to be weaker than typical Standard Model interac-
tions (gauge interactions, or Yukawa interactions associated with the top quark). We treat
the neutrino Yukawa interactions at leading order, whereas for Standard Model interactions
the goal is to explore the magnitude of higher-order corrections as well.

It is well known that relativistic thermal field theories suffer from a breakdown of the
conventional loop expansion. One reason is that multiple interactions in the plasma generate
thermal masses for different excitations, thereby forming a system of “quasiparticles” whose
kinematics may differ substantially from the vacuum case. Another aspect of the problem is
that when a highly energetic particle passes through a plasma, very many interactions take
place within the time scale needed for the initial particle to decay or coalesce into another
particle. It is a particular goal of the present paper to derive results which in one limit
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extrapolate to the validity range of the conventional loop expansion, and in another to a
regime where the mentioned thermal effects need to be systematically “resummed”.

More precisely, one observable we consider is the production rate of right-handed neutri-
nos from an initial state in which the Standard Model particles are in equilibrium at a temper-
ature T , whereas the right-handed neutrinos appear with an abundance much smaller than
the equilibrium one. There have been several recent studies of this production rate. In the
so-called non-relativistic regime [5–7], the conventional loop expansion does apply, with ther-
mal corrections appearing only through small power corrections ∼ O(T 2/M2) [8]. Alas, the
non-relativistic expansion shows convergence only at very low temperatures T <∼M/15 [9], by
which time most of the physics of interest to, say, leptogenesis, has already played its role [10].
A broader “relativistic” regime T <∼M/3 can also be addressed up to next-to-leading order
(NLO), even if only in numerical form [9]. In the relativistic regime the conventional loop
expansion is still valid at NLO. Increasing the temperature to T ∼M/g1/2, where g denotes
a generic Standard Model coupling, the loop expansion breaks down for the first time. This
initial breakdown can be cured by resumming a subset of higher order diagrams into a ther-
mal mass for the Higgs field [9]. Proceeding to T >∼M/g, a further reorganization is needed.
Then an iterated resummation, including Hard Thermal Loop (HTL) resummation for prop-
agators and vertices, and Landau-Pomeranchuk-Migdal (LPM) resummation accounting for
multiple soft scatterings, needs to be implemented in order to obtain correct leading-order
(LO) results [11, 12]. As is usual with effective descriptions, the LPM result needs to be
systematically combined with other (non-resummed) processes contributing at the same or-
der [13]. Borrowing effective field theory language, we refer to the latter step as a “matching
computation”. In its current implementation the matching computation is only valid for
the ultrarelativistic temperatures T >∼M/g, because it was carried out by setting M/T = 0.
It is also discomforting that another (phenomenological) implementation of the matching
computation led to a much larger production rate [14].

The objective of the present paper is to suggest a smooth interpolation between the
relativistic regime T <∼M/3 and the LPM-resummed ultrarelativistic regime T >∼M/g. We
present numerical results in a tabulated form which hopefully permits for their practical
incorporation into leptogenesis computations.

The plan of this paper is the following. After defining the observables considered in 2,
existing NLO computations and LPM resummations are reviewed in sections 3 and 4, re-
spectively. In section 5 the NLO result is dissected into a contribution also appearing as a
part of LPM resummation, and a remainder which needs to be added to the LPM result. An
important subtlety, stemming from the fact that the NLO computation reviewed in section 3
was carried out with a vanishing (thermal) Higgs mass, is addressed in section 6. All ingre-
dients are put together in section 7, leading to a single result interpolating between different
regimes (however the interpolant’s parametric accuracy varies from regime to regime). Some
conclusions and an outlook are offered in section 8. Four appendices contain details con-
cerning the NLO result, HTL resummation, cancellation of infrared divergences, and choice
of parameters.

2 Basic definitions

Denoting by K = (k0,k) the four-momentum of on-shell right-handed neutrinos of mass M ,
so that k0 =

√
k2 +M2 with k ≡ |k|, and by hνi(µ̄) a renormalized MS neutrino Yukawa

coupling attaching right-handed neutrinos to the left-handed lepton generation i ∈ {1, 2, 3},
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the production rate of out-of-equilibrium right-handed neutrinos from an equilibrium plasma
at rest can be expressed as

dN+(K)
d4Xd3k =

2nF(k0)

(2π)3k0
|hν |2 ImΠR(K) +O(|hν |4) , |hν |2 ≡

3
∑

i=1

|hνi(µ̄)|2 . (2.1)

Here nF is the Fermi distribution (similarly, nB denotes a Bose distribution), and the subscript
in N+ indicates that both spin states have been summed together. The retarded correlator
ΠR can be expressed as an analytic continuation of a corresponding imaginary-time one,

ΠE(K) ≡ Zν Tr
{

i /K

∫ 1/T

0
dτ

∫

x

eiK·X
〈

(φ̃†aL ℓ)(X) (ℓ̄ aR φ̃)(0)
〉

T

}

, (2.2)

as

ΠR(K) = ΠE(K)|kn→−i[k0+i0+] . (2.3)

In these equations, Zν is a renormalization factor related to the neutrino Yukawa couplings;
K ≡ (kn,k) where kn denotes a fermionic Matsubara frequency; X ≡ (τ,x) is a Euclidean
space-time coordinate; φ̃ = iσ2φ

∗ is a Higgs doublet; aL, aR are chiral projectors; ℓ is a left-
handed lepton doublet; and 〈. . .〉T denotes an equilibrium expectation value. At NLO, the
renormalization factor reads

Zν = 1 +
1

(4π)2ǫ

[

h2tNc −
3

4
(g21 + 3g22)

]

+O(g4) , (2.4)

where the space-time dimension has been expressed as D = 4 − 2ǫ; ht is the renormalized
top Yukawa coupling; Nc ≡ 3 is the number of colours; and g1, g2 are the renormalized
hypercharge and weak gauge couplings, respectively. In addition to these couplings, the
Higgs self-coupling λ also appears in our results; how these parameters are fixed in terms
of physical observables is explained in appendix D. The notation g2 refers generically to the
couplings h2t , g

2
1, g

2
2, λ which are taken to be parametrically of the same order of magnitude.

The total production rate of right-handed neutrinos reads

γ+(M)

|hν |2
=

∫

k

2nF(k0)

k0
ImΠR(K) +O(|hν |2) , (2.5)

where the integration measure is defined as
∫

k
≡

∫

d3k
(2π)3

. A closely related quantity deter-

mines the lepton number dissipation (“washout”) rate in models containing right-handed
neutrinos [15]:

W(M) ≡ −
∫

k

2n′
F(k0)

k0
ImΠR(K) . (2.6)

As explained in ref. [15], this needs to be combined with a “susceptibility matrix” and a
group-theoretic prefactor of O(|hν |2) in order to get the complete result for the washout rate.

Rather than the differential rates ∂kγ+ and ∂kW, we mostly discuss ImΠR in the follow-
ing. The reason is that, unlike the integrands in eqs. (2.5), (2.6), ImΠR is a Lorentz-invariant
quantity in vacuum, i.e. only dependent on M2 = K2 at T ≪ M (rather than separately on
M and k). At a finite temperature this is no longer the case (cf. figure 4(right)), however even
then ImΠR turns out to display only a modest dependence on k for fixed M , and therefore
allows us to present results in a relatively economic fashion (i.e. as a sparse table).
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Figure 1. The processes, up to O(g2), through which right-handed neutrinos can be generated.
Arrowed, dashed, and wiggly lines correspond to Standard Model fermions, scalars, and gauge fields,
respectively, whereas right-handed neutrinos are denoted by a double line. The closed “virtual” loops
include both vacuum and thermal corrections.

3 NLO result in the relativistic regime

We start by discussing the production rate in the “naive” language of Feynman diagrams
and the loop expansion. The relevant amplitudes are shown in figure 1. If the right-handed
neutrino is massive and all other particles are assumed massless, the LO process is the 2→ 1
coalescence depicted up left. The NLO level includes virtual corrections to the 2→ 1 reaction,
as well as real 3 → 1 and 2 → 2 processes. In a massless theory, the real and virtual NLO
processes are IR divergent; their sum is finite for any M > 0 [9, 16]. All the NLO processes
have been evaluated numerically in ref. [9].

It was pointed out in ref. [9], however, that for M ∼ g1/2T the loop expansion breaks
down, and a thermal mass resummation is needed for the Higgs field. The (“asymptotic”)
thermal masses associated with the Higgs field (mφ) and with left-handed leptons (mℓ) are

m2
φ = −m2

H

2
+
(

g21 + 3g22 +
4

3
h2tNc + 8λ

)T 2

16
, m2

ℓ =
(

g21 + 3g22
)T 2

16
, (3.1)

where mH is the vacuum Higgs mass, and corrections of O(g2m2
H , g3T 2) have been omit-

ted [17]. In ref. [9] such a mass resummation was implemented not only for the Higgs field,
for which a resummation is unambiguous, but also for leptons, for which it amounts to a
higher-order effect when M ∼ g1/2T . It turns out that once proceeding to M <∼ gT , where
thermal mass resummation becomes necessary even for leptons, the correct procedure differs
from the naive implementation of ref. [9] (the correct procedure for leptons is part of the
LPM resummation as discussed in section 4). Hence, in order to be able to combine the
NLO result with the LPM result in a systematic way, we need to re-express the NLO result
of ref. [9] without a thermal mass resummation for leptons.

Keeping a thermal mass for the Higgs only, the leading-order result with a general
four-momentum K in the time-like domain M2 ≡ K2 > 0 can be expressed as

ImΠLO
R ≡

(M2 −m2
φ)T

8πk
ln











sinh
[

k++m2
φ
/(4k+)

2T

]

cosh
[

k+(1−m2
φ
/M2)

2T

]

sinh
[

k−+m2
φ
/(4k−)

2T

]

cosh
[

k−(1−m2
φ
/M2)

2T

]











. (3.2)

Here we have defined

k± ≡
k0 ± k

2
. (3.3)

The result of eq. (3.2) can be evaluated (and is positive) both for M > mφ and M < mφ.
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(a) (b) (c) (d) (e)

Figure 2. Examples of processes for right-handed neutrino production: (a) a tree-level process
producing a massive right-handed neutrino (double line) out of a coalescence of a Higgs (dashed
line) and a left-handed lepton (solid line); (b) the same process after HTL resummation, generating
thermal self-energies or effective vertices (filled blobs); (c) processes contributing at the same order
as (b), due to exchanges of soft W±, Z0, γ bosons; (d) another channel allowed by the thermal masses
generated by HTL resummation (if mφ > M); (e) processes contributing at the same order as (d). In
the language of eq. (4.5), the processes (a)–(c) originate from the range k0 = ω1+ω2, ω1 > 0, ω2 > 0,
whereas (d) and (e) correspond to ω2 = k0−ω1, ω1 < 0, where ω1 is the lepton, ω2 the Higgs, and k0
the right-handed neutrino energy.

Once the NLO expression of ref. [9] is written as a sum of eq. (3.2) and a remainder,
the final result becomes

ImΠNLO
R ≡ ImΠLO

R

+ 2h2tNc

{

−ρT

Ĩf
+ ρT

Ĩh

− πM2

(4π)4k

∫ k+

k−

dp
nF(k0 − p)nB(p)

nF(k0)

[

ln
(k+ − p)(p− k−)µ̄

2

k2M2
+

11

2

]}

+
g21 + 3g22

2

{

2
[

ρT

Ib
− ρT

Ĩb
+ ρT

Îd
− ρT

Id
+ ρT

Ig
+ ρT

Îh’
+ ρT

Ij

]

− 4
[

ρT

Ih
+ ρT

Îh

]

+
3πM2

(4π)4k

∫ k+

k−

dp
nF(k0 − p)nB(p)

nF(k0)

[

ln
(k+ − p)(p− k−)µ̄

2

k2M2
+

41

6

]}

. (3.4)

The objects ρT

Ix
are “master” spectral functions, depending on k0, k and T and evaluated

numerically in refs. [9, 18]. Eq. (3.4) replaces eq. (3.14) of ref. [9]. It should be noted that
mφ = 0 in the terms shown in eq. (3.4), which will play a role in the following (cf. section 6).

Let us reiterate that even though expressed in a concise form in eq. (3.4), the NLO
expression incorporates many types of physical processes. There are real 2 → 2 and 3 →
1 reactions that can be assembled into compact expressions, given in appendix A, which
could also have been derived from a Boltzmann equation. In addition there are “virtual”
corrections, i.e. self-energy and vertex insertions into the 2→ 1 process, given in appendix B.
These can be pictured as in figure 2, and include thermal effects represented through the
HTL effective theory [19, 20] (actually the HTL vertex correction vanishes). In the NLO
computation the self-energy corrections appear as insertions rather than in a fully resummed
form, but they nevertheless suffice to cancel soft divergences from the real processes.

4 LPM resummation for light-cone kinematics

When M ≪ πT , all particles participating in 2→ 1 processes would be essentially “massless”
from the point of view of the thermal motion characterized by the scale πT , were it not that
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they obtain effective thermal masses ∼ gT through interactions with the other particles in
the plasma (the thermal mass of the right-handed neutrino is ∼ |hν |T and can be neglected
for |hν | ≪ 1). Typical processes taking place in this situation are depicted in figure 2. Instead
of 2 → 1 coalescence, 1 → 2 decays of thermal Higgs quasiparticles are the dominant “tree-
level” process if gT ≫ M . In addition, however, there are higher-order scatterings, such as
those shown in figures 2(c) and 2(e), which are not suppressed despite the additional vertices,
because the exchanged t-channel gauge boson has soft virtuality ∼ g2T 2 (it is space-like, and
regulated by HTL self-energies). All these processes need to be summed together, which can
be achieved through a procedure known as LPM-resummation.

Given that the “leading” particles participating in the reaction are ultrarelativistic, the
kinematics of the process amounts to an expansion around the light cone (k0 → k). Tech-
nically this means that kinematic variables are evaluated as a power series in mass/energy,
so that for instance k0 − k ≈ M2/(2k0). For any fixed M , this implies that only momenta
k ≫M are treated consistently. However, in practice the breakdown of the framework does
not appear to be dramatic even when this inequality is not strictly satisfied [21].

Following ref. [12] but changing the notation slightly, the basic equations for the LPM
resummation can be expressed as follows. Let us define a Hamiltonian

Ĥ ≡ −M2

2k0
+

m2
ℓ −∇2

⊥

2ω1
+

m2
φ −∇2

⊥

2ω2
+ i V (y) y ≡ |y| ≡ |y⊥| , (4.1)

where ∇⊥ is a two-dimensional gradient operating in directions orthogonal to k (y⊥ ·k = 0),
and mℓ, mφ are the thermal masses from eq. (3.1).1 The “potential” V plays the role of a
“thermal width”, erasing phase coherence from a (φ, ℓ) pair as it propagates through the
plasma; its form reads

V (y) =
T

8π

2
∑

i=1

di g
2
i

[

ln

(

mDiy

2

)

+ γE +K0

(

mDiy
)

]

, (4.2)

where d1 ≡ 1; d2 ≡ 3; K0 is a Bessel function; and mD1, mD2 are electric screening masses
for the U(1) and SU(2) gauge bosons:

m2
D1 =

11

6
g21T

2 , m2
D2 =

11

6
g22T

2 . (4.3)

With the Hamiltonian at hand, we need to solve the inhomogeneous equations

(Ĥ + i0+) g(y) = δ(2)(y) , (Ĥ + i0+) f(y) = −∇⊥δ
(2)(y) . (4.4)

Then the LPM-resummed contribution to the correlator of eqs. (2.2), (2.3) reads [12]

ImΠLPM
R ≡ − 1

4π

∫ ∞

−∞
dω1

∫ ∞

−∞
dω2 δ(k0 − ω1 − ω2)

[

1− nF(ω1) + nB(ω2)
]

× k0
ω2

lim
y→0

{

M2

k20
Im

[

g(y)
]

+
1

ω2
1

Im
[

∇⊥ · f(y)
]

}

. (4.5)

Apart from the LPM result, hard 2→ 2 scatterings also contribute in the ultrarelativis-
tic regime [13]. In our approach these originate from the part of the NLO result (section 3)

1The overall sign of iV is a convention and can be reversed by a corresponding sign change in eq. (4.5).
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which is left over when the resummed 1 + n ↔ 2 + n processes, now part of the LPM
expression, are subtracted. This subtraction is accomplished in section 5.

As has been discussed in ref. [21] (following a strategy originally proposed in ref. [22]),
the solutions of the inhomogeneous equations (4.4) can be reduced to regular solutions (urℓ) of
the corresponding homogeneous equations, with a specific angular quantum number (denoted
by ℓ ∈ Z). Introducing a dimensionless variable ρ ≡ ymD2, the homogeneous equation reads

[

− d2

dρ2
+

ℓ2 − 1/4

ρ2
+

M2
eff(ω)

m2
D2

+ 2i
ω(k0 − ω)

k0m2
D2

V
( ρ

mD2

)

]

urℓ(ρ) = 0 , (4.6)

where the particle masses appear through the combination

M2
eff(ω) ≡

(k0 − ω)m2
ℓ

k0
+

ωm2
φ

k0
− ω(k0 − ω)M2

k20
. (4.7)

Choosing normalization such that the small-ρ asymptotics reads

urℓ(ρ) = ρ1/2+|ℓ|
[

1 +O(ρ2)
]

, (4.8)

eq. (4.5) can then be re-written as

ImΠLPM
R = − 1

π2

∫ ∞

−∞
dω

[

1− nF(ω) + nB(k0 − ω)
]

×
∫ ∞

0
dρ

[

ωM2

4k20
Im

{

1

[ur0(ρ)]
2

}

+
m2

D2

ω
Im

{

1

[ur1(ρ)]
2

}]

. (4.9)

We have checked numerically that this agrees with the results of ref. [12].

5 Subtraction of a 2 ↔ 1 part from the NLO expression

The NLO expression of section 3 contains 2→ 1, 2→ 2, and 3→ 1 processes (cf. appendix A).
The LPM resummation of section 4 treats 2 + n ↔ 1 + n processes to all orders. However,
it does nothing to 2→ 2 and 3→ 1 processes. Therefore, the 2→ 2 and 3→ 1 processes of
the NLO expression need to be added to the LPM result [13]. But in order to avoid double
counting in doing so, the 2→ 1 part needs first to be subtracted from the NLO expression.

Of course, the 2 → 1 part cannot be subtracted from the NLO expression as such,
because virtual corrections make it infrared divergent. Yet it is only a particular subpart of
the virtual corrections to the 2 → 1 processes, given by HTL effects, which play a role in
the LPM resummation. It turns out that if we carry out HTL resummation also in the real
2→ 2 processes dominated by soft momentum transfer, then the 2→ 1 and 2→ 2 processes
are separately infrared finite. Then we can subtract the HTL-induced 2 → 1 part from the
NLO expression, and add the remainder to the LPM result.

It is important to note that since in the NLO part of eq. (3.4) all internal particles are
massless, we need to set mφ → 0 in the corresponding terms of the present section. This
does not lead to any divergences, however there is a certain endpoint sensitivity related to
Bose-enhanced Higgs bosons which needs to be treated with care (cf. section 6).2

2A different logic for determining the subtraction term was presented for the case of dilepton production
from hot QCD in ref. [21]. Applying the same logic here would reproduce eq. (5.9), apart from the term T/k0,
whose sign depends on the ordering of taking mφ/M → 0 and M/k → 0 in terms of O(m2

ℓ).
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We proceed in steps. First, the 2 → 2 corrections need to be modified such that soft
momentum transfer is regulated by HTL resummation. In the NLO expression of section 3,
all the correct HTL structures do appear, albeit as “insertions” rather than in a resummed
form. As is shown in appendix C (cf. eq. (C.8)), this means that the soft contribution to
2→ 2 processes appears as

ImΠHTL,ins,cut
R ≡ m2

ℓ

4π

[

nB(k0) +
1

2

] (

ln
2Λ

λ
− 1

)

, (5.1)

where Λ is an ultraviolet cutoff (gT ≪ Λ≪ πT ) and λ is an infrared regulator. If the same
processes are treated with full HTL resummation, the result gets modified into (cf. eq. (C.6))

ImΠHTL,full,cut
R ≡ m2

ℓ

4π

[

nB(k0) +
1

2

] (

ln
2Λ

mℓ

− 1
)

. (5.2)

These results will be needed presently.
Consider then the 2 → 1 part of the NLO expression (cf. appendix B). Carrying out

the velocity integral as well as the integral over the angles between p and k in eq. (B.9), and
taking the infrared regulator λ→ 0 wherever possible, eq. (B.9) can be expressed as

ImΠHTL,ins,pole
R ≡ 1

8πk

∫ k+−
m2

ℓ
4k+

k−−
m2

ℓ
4k

−

dp p

ǫℓ
(M2 +m2

ℓ )
[

1− nF(ǫℓ) + nB(k0 − ǫℓ)
]

+
m2

ℓ

8πk

∫ k+

k−

dp

[

−k0
p

+
M2

2p2

(

1− ln
2p

λ

)]

[

1− nF(p) + nB(k0 − p)
]

. (5.3)

Here ǫℓ ≡
√

p2 +m2
ℓ and it is understood that we expand to O(m2

ℓ ) after the computation.

The integration ranges in eq. (5.3) originate from δ(k0− ǫℓ− |p− k|) in the terms where the
next-to-leading order in m2

ℓ is needed, and from δ(k0 − p− |p− k|) otherwise.
The first line of eq. (5.3) is readily integrated by taking ǫℓ as an integration variable.

Expanding subsequently in m2
ℓ and taking also the limit M ≪ k leads to

δ1 ImΠHTL,ins,pole
R ≡ m2

ℓ

8π

{

T

k0
+

∫ k0

0

dω

k0

[

nB(k0 − ω)− nB(k0)− nF(ω) + nF(0)
]

}

, (5.4)

where the term of O(m0
ℓ ) was omitted (it will be added separately later on). In order to

integrate the term −k0/p on the second line of eq. (5.3), we add and subtract the value of
1− nF(p) + nB(k0 − p) at p = 0 and take subsequently M ≪ k, producing

δ2 ImΠHTL,ins,pole
R ≡ m2

ℓ

8π

{

[

nB(k0) +
1

2

]

ln
(M2

4k20

)

−
∫ k0

0

dω

ω

[

nB(k0 − ω)− nB(k0)− nF(ω) + nF(0)
]

}

. (5.5)

For the last part of eq. (5.3), we carry out a similar addition-subtraction step, and note that
with the subtracted weight, the integral is only logarithmically sensitive to the lower bound.
This yields a contribution of O((m2

ℓM
2/k20) ln

2(M2/2λk0)) ∼ O(g4T 2) which is omitted
from the HTL consideration (the logarithmic divergence cancels against real corrections).
The other part is easily integrated, and a substitution at the lower bound gives

δ3 ImΠHTL,ins,pole
R ≡ m2

ℓ

8π

[

nB(k0) +
1

2

]

ln
(4λ2k20

M4

)

. (5.6)
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We can now define the HTL-induced 2→ 1 part of the NLO result. We write this as

ImΠ∆(2→1)
R ≡ ImΠ

∆(2→1),m0

ℓ

R + ImΠ
∆(2→1),m2

ℓ

R . (5.7)

The term of O(m0
ℓ ) was omitted above; it needs to be computed in the presence of mφ >

0 like eq. (3.2). In fact the result is a limit of eq. (3.2) but for the kinematics M2 ≪
min(k20, k0mφ, k0T ) assumed in the LPM computation:

ImΠ
∆(2→1),m0

ℓ

R ≡
(M2 −m2

φ)T

8πk0
ln











sinh
(

k0
2T

)

cosh
[

k0
2T

(

1− m2
φ

M2

)]

sinh
(

k0m2
φ

2TM2

)











. (5.8)

The correction of O(m2
ℓ ), in turn, is a sum of eqs. (5.4)–(5.6) and the cut contribution from

eq. (5.1) (reshuffled here from the original 2→ 2 corrections), from which the HTL-resummed
cut of eq. (5.2) is subtracted (since this should now appear as a part of 2→ 2 corrections):

ImΠ
∆(2→1),m2

ℓ

R ≡ (δ1 + δ2 + δ3) ImΠHTL,ins,pole
R + ImΠHTL,ins,cut

R − ImΠHTL,full,cut
R

=
m2

ℓ

8π

{

[

nB(k0) +
1

2

]

ln

(

m2
ℓ

M2

)

+
T

k0

+

∫ k0

0
dω

(

1

k0
− 1

ω

)

[

nB(k0 − ω)−nB(k0)− nF(ω)+nF(0)
]

}

. (5.9)

Note that both the ultraviolet cutoff Λ and the infrared regulator λ have dropped out here.
The expression in eq. (5.9) needs to be subtracted from the NLO computation as will be
discussed in more detail in section 7, but before doing so we need to clarify one feature of
virtual 2→ 1 corrections that goes beyond the HTL limit.

6 Issues related to contributions from soft Higgs bosons

It was mentioned in section 3 that, even though the Higgs mass needs to be thermally
resummed when M <∼ g1/2T as done in the LO result of eq. (3.2), the Higgs mass was kept
at zero in the NLO contribution of eq. (3.4). This does not cause the NLO contribution to
diverge; nevertheless, as we now argue, its value is not physically correct for M ≪ g1/2T .

The reason for the problem is that there are parts in the NLO contribution which include
two Bose factors. This may lead to an enhancement ∼ T 2/ǫ2φ, where ǫφ is the Higgs energy.

If the Higgs were massless, its energy could be as small as ∼ M2/(4k), whereby we may
obtain a contribution ∼ 4kT 2/M2 from

∫

dǫφ. Therefore, even if there were a prefactor M2,
a finite result could be left over. Such an expression is not correct, however, because in the
presence of a mass, ǫφ ≥ mφ, and there can be no divergence at M/k → 0.

There are only two structures in eq. (3.4) which suffer from this problem, namely the
master spectral functions ρT

Ih
and ρT

Ij
which, according to refs. [9, 18], have a finite limit for

M/T → 0 even though they contain no HTL structures. Employing the same notation as in

– 9 –



J
C
A
P
1
2
(
2
0
1
4
)
0
3
2

appendices A and B, their contributions to eq. (3.4) can formally be expressed as

nF(k0)
(

ρT

Ij
− 2ρT

Ih

)

=

∫

dΩ2→1 nF(p1)nB(p2)
∑

∫

Q

M2

Q2(Q− P2)
2

[

1 +
M2

(Q−K)2

] ∣

∣

∣

∣

p2n=−ip2, kn=−ik0

+

∫

dΩ2→2

{

nB(p1)nB(p2)
[

1− nF(k2)
]

[

−M2(M2 − t)

st

]

+ nF(p1)nB(p2)
[

1 + nB(k2)
]

[

M2(M2 − s)

st
+

M2(M2 − u)

ut

] }

+

∫

dΩ3→1

{

nF(p1)nB(p2)nB(p3)

[

M2(M2 − s12)

s12s23

] }

. (6.1)

Let us illustrate the issue with the simplest term, the self-energy correction (P2 ≡
(p2n,p2))

φ(p2) ≡
∑

∫

Q

1

Q2(Q− P2)
2

∣

∣

∣

∣

p2n=−ip2

. (6.2)

In naive power counting this would be of O(1) and contains no HTL structures ∼ T 2 [23].
However, taken literally, φ(p2) is infrared divergent. If we insert a regulator, 1/(Q− P2)

2 →
1/[(Q−P2)

2+λ2], and note that the Bose-enhanced singularities at q = 0 and q = p2 cancel
against real corrections (cf. ref. [9], eq. (B.70) ff), the Bose-enhanced part of the result can be
written as (away from singular points and after a partial cancellation against real corrections
as well as a substitution q → q + p2 in one of the terms)

φ(p2) ≃
T

(4π)2p2

∫ ∞

0

dq

q
ln

∣

∣

∣

∣

p+ q

p− q

∣

∣

∣

∣

=
T

32p2
. (6.3)

Since the answer grows only linearly in T , it is not part of HTLs. Inserting the result into
the 2→ 1 phase space integral yields subsequently

nF(k0) δρ
T

Ih
≃ − πM2T

32(4π)2k

∫ k+

k−

dp2
p2

nB(p2)nF(k0 − p2) ≃ −
πM2T 2nF(k0)

32(4π)2k k−
, (6.4)

where we only kept the Bose-enhanced contribution from the lower edge of the integration
range. Given that k− ≈ M2/(4k) for M ≪ k, the factor M2 is seen to cancel out, leaving
over a finite contribution.

This finite contribution is not “correct”, however. Indeed, had we had the Higgs mass
in the 2 → 1 phase space integral, the minimal Higgs energy would have been ǫmin

φ = k− +

m2
φ/(4k−) for M > mφ, and ǫmin

φ = k+ +m2
φ/(4k+) for M < mφ. Obviously ǫmin

φ ≥ mφ for

any M , and to a good approximation ǫmin
φ ≈ k0 for M <∼ mφ. In 2 → 2 scatterings smaller

values can appear, but in any case ǫmin
φ ≥ mφ is always satisfied.

In order to account for these features properly, the NLO computations of refs. [9, 18]
should be repeated with mφ > 0. This is a hard task and goes beyond the scope of the
present study. Here, we rather resort to a phenomenological interpolation which has the
correct limiting values for M ≫ g1/2T and M ≪ g1/2T .

According to 2 → 1 kinematics with ǫmin
φ = k− + m2

φ/(4k−) for M > mφ, the phase
space employed in the NLO result of eq. (3.4), as illustrated in eq. (6.4), is physically correct
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only if k− ≫ m2
φ/(4k−). For M ≪ k this corresponds to mφ ≪ M2/(2k). We need to

“switch off” the incorrect contributions as soon as this inequality is not satisfied. This can
be achieved by defining

ImΠNLO,φ
R ≡ ImΠNLO

R −Θ
(2kmφ

M2
− 1

)

(g21 + 3g22)
(

ρT

Ij
− 2ρT

Ih

)

, (6.5)

where Θ is a smoothed step function, for instance Θ(x) ≡ [1 + tanh(2x)]/2. Obviously, the
recipe is purely phenomenological in the intermediate range M ∼

√

2kmφ, but it does have
the correct limiting values on both sides of this range. For illustration of the numerical
(un)importance of the precise choice made, we also consider an implementation with another
width of the switch-off region, namely

Im Π̃NLO,φ
R ≡ ImΠNLO

R −Θ

(

m2
φ/4k− − k−

T

)

(g21 + 3g22)
(

ρT

Ij
− 2ρT

Ih

)

. (6.6)

The difference with respect to eq. (6.5) is plotted as a grey band in figures 3(right) and 4(left),
and is practically invisible in the final result shown in figure 4(left).

7 Putting together the NLO and LPM results

After the considerations of sections 5 and 6, we are in a position to subtract the HTL-induced
2 → 1 part from the NLO expression. The remainder, incorporating HTL-resummed 2 → 2
processes, subleading corrections to 2 → 1 processes, and 3 → 1 processes (which do not
contribute when M/T → 0), is defined as

ImΠ∆(2→2)
R ≡ ImΠNLO,φ

R − ImΠ∆(2→1)
R , (7.1)

where ImΠNLO,φ
R is from eq. (6.5) and ImΠ∆(2→1)

R is from eqs. (5.7)–(5.9).

Returning briefly to ImΠ∆(2→1)
R , we note that the first term on the right-hand side

of eq. (5.9) is logarithmically divergent for M2 → 0. The divergence also appears in the
NLO result, and is removed by the subtraction in eq. (7.1). This cancellation constitutes a
crosscheck of our computation. The logarithmic dependence on mℓ in eq. (5.9) can also be
compared with literature: our result agrees with ref. [13], after noting that nB(k0) +

1
2 can

be expressed as nB(k0)/[2nF(k0)] and that the discussion in ref. [13] concerns the integrand
of eq. (2.5).

Having subtracted the ∆(2→1) part, eq. (7.1) can be added to the LPM expression of
section 4, which leads to our final result:

ImΠR ≡ ImΠLPM
R + ImΠ∆(2→2)

R . (7.2)

How accurate this expression is, depends on the regime considered: in the relativistic regime
M >∼πT relative errors are of O(g3), whereas in the ultrarelativistic regime M <∼ gT relative
errors are likely to be suppressed by O(g) [24, 25]. In between there is a regime in which the
expression is not consistent even at leading order, as has been discussed in section 6.

Let us proceed to numerical evaluations. In figure 3(left), the “naive” NLO and LPM
results from eqs. (6.5) and (4.9) are shown; in figure 3(right), the difference defined by
eq. (7.1), which needs to be added to the LPM result, is displayed. The final estimate from
eq. (7.2) is shown in figure 4(left) as a function of M/T ; and in figure 4(right) as a function
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Figure 3. Left: NLO correlator from eq. (6.5) (thin lines) and the LPM one from eq. (4.9) (thick
lines). Right: correction of the LPM result through ∆(2→2) from eq. (7.1). The couplings and the
renormalization scale are fixed as specified in appendix D.
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Figure 4. Left: final results for the correlator in eq. (7.2). Right: the same results as a function of
k/T . The couplings and the renormalization scale are fixed as specified in appendix D.

of k/T . In figures 3(right) and 4(left), the uncertainty related to the phenomenological step
in eq. (6.5) is illustrated with a grey band (cf. the discussion around eq. (6.6)). The total
rates, from eqs. (2.5) and (2.6), are shown in figure 5. Finally, in figure 6 we display on a
linear scale how the full result is made up of the LPM-resummed 2 ↔ 1 result, and 2 → 2
and 3 → 1 scatterings as well as subleading corrections to 2 ↔ 1 processes involving top
quarks and gauge bosons.
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Figure 5. Left: total right-handed neutrino production rate from eq. (2.5), for M = 107 GeV. Shown
are results from eq. (7.2) (“LPM + ∆(2→ 2)”); eq. (4.9) (“LPM”); with naive thermal masses as
given e.g. in eq. (3.9) of ref. [9] (“TREE”); and from ref. [6] (“NON-REL”). Right: similar results for
the function defined in eq. (2.6). The solid lines constitute our final results.
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Figure 6. Left: like figure 5(left) but with ∆(2→2) separated into contributions from top-quark and
gauge-boson scatterings. Right: similar results but for fixed M = 0.02T , as a function of T/GeV.

In addition to the figures, we have prepared a table containing results with temperatures
in the range T = (160 . . . 1015)GeV, masses in the range M = (0.02 . . . 20)T , and momenta in
the range k = (10−1 . . . 102)T . The lowest temperature is determined by the location of the
electroweak crossover in the Standard Model [26]. The tabulated results can be downloaded
as explained in footnote 3.
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A few comments are in order:

• The physical spectra entering eqs. (2.5), (2.6), viz.

∂k γ+
|hν |2

≡ k2nF(
√
k2 +M2)

π2
√
k2 +M2

ImΠR , (7.3)

∂k W ≡ −k2n′
F(
√
k2 +M2)

π2
√
k2 +M2

ImΠR , (7.4)

can be obtained from the results displayed in figure 4(right) by trivial multiplications.

• Since empirically the results appear to have a smooth limit as M/T → 0 (cf. fi-
gure 4(left)), expressions for the massless case M = 0 can to a good approximation be
obtained from the row of our table having M = 0.02T . (Our numerics, optimized for a
generic M ∼ T , becomes ineffective for very small M/T , so we cannot set M/T = 0.)
Let us note, however, that for M <∼ 0.1T the spectrum shows an unphysical dip at
k <∼ 0.2T , cf. figure 4(right). We believe this to be an artefact of the approximations
made, which are based amongst others on the assumption that k ≫ gT . Fortunately
this regime is phase-space suppressed in the observables of figure 5. If however spectral
information plays an important role in a particular application, it is probably prudent
to use the stable value M ∼ 0.2T rather than M = 0.02T as an approximation for
M/T = 0.

• Typical numerical values of the thermal masses are mφ ∼ 0.4T and mℓ ∼ 0.3T . The
rate at M ≪ T has a contribution from the 1→ 2 decay φ→ ℓN , since mφ > M +mℓ

then. At temperatures close to the electroweak crossover, however, the Higgs mass
becomes small, cf. eq. (3.1), and another channel may open up. Therefore, the rate has
a non-trivial shape at low temperatures, as is visible in figure 6(right).

• For M ≪ T our results, as displayed in figures 5 and 6, are in good numerical agreement
with ref. [13]. In contrast, the results of ref. [14] are larger by a factor ∼ 2. It is difficult
to identify a precise reason for the discrepancy, but let us note that if the considerations
of section 6 were omitted, i.e. the doubly Bose-enhanced contributions from massless
Higgs bosons were included in the NLO expression, our numerical results would be
larger by a factor ∼ 1.7 at M ≪ T (for M = 107GeV).

8 Conclusions and outlook

We have provided numerical results for the imaginary part of the right-handed neutrino
self-energy, entering gauge-invariant physical observables as dictated by eqs. (2.5) and (2.6),
as a function of the right-handed neutrino mass M and momentum k, for a wide range
of temperatures T ≥ 160GeV.3 Previous results for M ≪ T [13] cannot be extrapolated to
M >∼T because the 2→ 2 contributions were evaluated by assuming M/T = 0, whereas NLO
results obtained for M >∼πT [9] cannot be extrapolated to M ≪ πT because of a powerlike
breakdown of the loop expansion. Our results smoothly interpolate between the two regimes,
although for the moment this comes with the price of a phenomenological treatment in a
particular intermediate range (cf. section 6). In order to avoid this compromise in the future,

3Tabulated results can be downloaded from www.laine.itp.unibe.ch/production-highT/.
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the NLO computation of ref. [9] should be repeated with mφ > 0. From a practical point of
view, though, it appears that only a narrow mass range is affected, so that even the present
results should suffice for many applications (cf. the grey bands in figures 3(right) and 4(left),
the latter being practically invisible).

Apart from numerical evaluations, it would be highly desirable to obtain analytic expres-
sions as well. For the moment this has only been achieved as an expansion in a power series
in (πT/M)2, corresponding formally to an Operator Product Expansion [8] and referred to
as a non-relativistic regime [5–7]. Unfortunately, as discussed in ref. [9], this expansion shows
poor convergence for T >∼M/15, and is therefore not terribly useful for estimating thermal
corrections in practice. Nevertheless it is helpful as a stringent crosscheck passed by the NLO
expression [9], as well as a tool for formulating a theoretically consistent framework for the
full leptogenesis computation [10].

Let us end by noting that the imaginary part of the right-handed neutrino self-energy
has also been studied at temperatures below about 10GeV [27].4 It is a relevant challenge
for future work to close the gap between T <∼ 10GeV and T >∼ 160GeV.
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A Real corrections within the NLO expression

In order to allow for a comparison with Boltzmann equations, we re-write here the “real
corrections” appearing in eq. (3.4) in the form of matrix elements squared. The normalization
is chosen so as to permit for a direct comparison with the expressions given in table 1 of
ref. [13]. (Let us stress again that the 2 → 2 and 3 → 1 corrections are not integrable as
such, but that the expression as a whole is finite, provided that its 1-loop corrected 2 → 1
part is added in the presence of a consistent regulator for soft momentum transfer.)

By making use of the results listed in refs. [9, 18], eq. (3.4) can be re-expressed as

2nF(k0)
[

ImΠNLO
R − ImΠLO

R

]

=

∫

dΩ2→1

{

eq. (B.2)
}

+

∫

dΩ2→2

{

nB(p1)nB(p2)
[

1− nF(k2)
]

|Ma|2

+ nF(p1)nB(p2)
[

1 + nB(k2)
]

∑

|Mb|2

+ nF(p1)nF(p2)
[

1− nF(k2)
]

∑

|Mc|2
}

+

∫

dΩ3→1

{

nF(p1)nB(p2)nB(p3) |Md|2

+ nF(p1)nF(p2)nF(p3) |Me|2
}

. (A.1)

Here dΩn→m denotes the usual phase space integration measure with 4-momentum conserva-

tion, dΩn→m ≡ Πn
i=1

d3pi

2pi(2π)3
Πm

j=2
d3kj

2kj(2π)3
(2π)4 δ(4)(

∑n
i=1 Pi−

∑m
j=1Kj). The three-momenta

of incoming particles are denoted by pi, with pi ≡ |pi| and Pi ≡ (pi,pi); those of outgoing

4Tabulated results can be downloaded from www.laine.itp.unibe.ch/production-lowT/.
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particles are ki, with k1 ≡ k the right-handed neutrino momentum. The matrix elements
squared read

|Ma|2 ≡
(

g21 + 3g22
)

(

u−M2

t
− 2uM2

st

)

, (A.2)

∑

|Mb|2 ≡
(

g21 + 3g22
)

(

M2 − u

s
+

M2 − s

u
+

2uM2

st
+

2sM2

ut

)

, (A.3)

∑

|Mc|2 ≡ 2h2tNc

(

3− M2

s
− 2M2

t

)

, (A.4)

|Md|2 ≡
(

g21 + 3g22
)

(

M2 − s13
s12

+
2s13M

2

s12s23

)

, (A.5)

|Me|2 ≡ 2h2tNc

(

−1 + M2

s23

)

. (A.6)

Here s ≡ (P1 + P2)2, t ≡ (K2 −P2)2, u ≡ (K2 −P1)2, and sij ≡ (Pi + Pj)2; these quantities
are related through s + t + u = s12 + s13 + s23 = M2. Setting M → 0 the 2 → 2 matrix
elements agree with those in ref. [13], with u↔ t in the s-channel case.

B Virtual corrections within the NLO expression

We define a 2→ 1 integration measure like in appendix A, but in the presence of dimensional
regularization and after the introduction of an infrared regulator λ into the lepton energy:

dΩ2→1 ≡
d3−2ǫp1

2ǫ1(2π)3−2ǫ

d3−2ǫp2

2p2(2π)3−2ǫ
(2π)4−2ǫ(P1 + P2 −K) , (B.1)

where ǫ1 ≡
√

p21 + λ2 and P1 ≡ (ǫ1,p1). Then the 2→ 1 part of the NLO result in eq. (3.4)
can formally be written as (for k0 > k)
[

ImΠNLO
R − ImΠLO

R

]

2→1
= lim

λ→0

∫

dΩ2→1

[

1− nF(ǫ1) + nB(p2)
]

(B.2)

× P
{

m2
ℓ

[

1 +M2

←−
d

dλ2

]

− h2tNc
∑

∫

{Q}

M2

Q2(Q− P2)
2

∣

∣

∣

∣

p2n=−ip2

+ (g21 + 3g22)

[

−∑
∫

Q

M2

Q2(Q−K)2

∣

∣

∣

∣

kn=−ik0

+
∑

∫

Q

M2

Q2(Q− P2)
2

∣

∣

∣

∣

p2n=−ip2

+
∑

∫

Q

M2 + (1− ǫ)Q ·K
Q2(Q− P1)

2

∣

∣

∣

∣

p1n=−ip1

+
∑

∫

Q

M4

Q2(Q− P2)
2(Q−K)2

∣

∣

∣

∣

p2n=−ip2, kn=−ik0

]}

,

where P refers to a principal value, and {Q}, P1 and K are fermionic Matsubara four-
momenta (with Pi ≡ (pin,pi) etc). The thermal lepton mass is given by eq. (3.1), and can
also be expressed as

m2
ℓ =

g21 + 3g22
2

∫

q

nB(q) + nF(q)

q
. (B.3)

With a similar notation, the LO part can be expressed as (for mφ → 0)

lim
m

φ
→0

ImΠLO
R = M2 lim

λ→0

∫

dΩ2→1

[

1− nF(ǫ1) + nB(p2)
]

. (B.4)
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Comparing eq. (B.2) with eq. (B.4), most of the terms in eq. (B.2) would appear to
be NLO corrections to the LO result. Indeed, evaluating the sum-integrals in the limit
of zero temperature and keeping only the 1/ǫ-divergences, it can readily be checked that
divergences are those cancelled by Zν of eq. (2.4). However, because momenta are set on-
shell in the structures appearing in eq. (B.2), the results are infrared divergent (even at zero
temperature). The full result is finite only once summed together with the real processes.

There are a few structures in eq. (B.2) which are particularly important at high temper-
atures, being of relative magnitude ∼ g2T 2/M2 in this limit. These are the so-called Hard
Thermal Loops (HTLs). Apart from the terms already expressed as m2

ℓ , the only other HTL

originates from Σ
∫

Q

Q·K
Q2(Q−P1)2

[23].5 It turns out, however, that in reality even some non-HTL

structures lead to a similarly large final result, despite the apparent prefactor M2. This
issue is discussed in section 6. Here we show that the “normal” HTL structures in eq. (B.2)
amount exactly to the HTL resummation of the lepton propagator.

The HTL-resummed inverse lepton propagator reads [28, 29] Σ(P )= i
[

/P+
m2

ℓ

2

∫

v
iγ0+v·γ
ipn+v·p

]

,

where |v| = 1,
∫

v
1 = 1, and we employ Euclidean Dirac-matrices. If the HTL self-energy is

treated as an insertion, the lepton propagator reads

Σ−1(P ) = − i /P

P 2
+

im2
ℓ

2

/P

P 2

∫

v

iγ0 + v · γ
ipn + v · p

/P

P 2
. (B.5)

Determining the correlator of eq. (2.2) with this propagator, we find

ΠHTL,ins
E ≡ lim

λ→0

∫

v

∑

∫

P

2

(P −K)2

{

−
(

1+m2
ℓ

d

dλ2

)

2K · P
P 2 + λ2

− m2
ℓ (ikn+v · k)

(P 2+λ2)(ipn+v · p)

}

, (B.6)

where λ has been introduced as an infrared regulator.
In the last term of eq. (B.6), there are two “inverse propagators”, P 2+λ2 and ipn+v ·p.

If the part P 2 + λ2 is cut, we get “pole” contributions, whereas cutting ipn + v · p yields a
“cut” contribution. These can be separated by partial fractioning (ǫ1 ≡

√

p2 + λ2),

1

(P 2 + λ2)(ipn + v · p) =
1

2ǫ1

[

1

(ǫ1 + v · p)(ǫ1 − ipn)
− 1

(ǫ1 − v · p)(ǫ1 + ipn)

]

+
1

[ǫ21 − (v · p)2](ipn + v · p) . (B.7)

The last term represents the soft momentum transfer regime of 2 ↔ 2 scatterings, and is
analyzed in more detail in appendix C. The structure 1/(ǫ1− ipn) leads to δ(k0−|p−k|+ ǫ1)
after carrying out the sum over pn and taking the cut, which does not get realized for k0 > k.
Therefore the only 2↔ 1 correction arises from the second term of eq. (B.7). Summing this
together with the first term in eq. (B.6) and noting that

lim
λ→0

(

1 +m2
ℓ

d

dλ2

)

(M2 + λ2) f(λ2) = M2f(0) + lim
λ→0

m2
ℓ

(

1 +M2 d

dλ2

)

f(λ2) , (B.8)

the 2↔ 1 part of eq. (B.6) can be re-written as (ǫ1 ≡
√

p2 + λ2, ǫ2 ≡ |p− k|)

ImΠHTL,ins,pole
R ≡ lim

λ→0

∫

v,p

{

M2 +m2
ℓ

(

1 +M2 d

dλ2
− k0 + v · k

ǫ1 + v · p

) }

×2πδ(k0 − ǫ1 − ǫ2)

4ǫ1ǫ2

[

1− nF(ǫ1) + nB(ǫ2)
]

. (B.9)

5Note that terms leading to a thermal Higgs mass were already taken away into eq. (3.2).
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It is now easy to check that the m2
ℓ -parts of eq. (B.9) agree with the HTL parts of

eq. (B.2), once the structure Σ
∫

Q

Q·K
Q2(Q−P1)2

|p1n=−ip1
is expanded to leading order in p1/T ; the

thermal lepton mass is identified as eq. (B.3); and a velocity variable is defined as v ≡ q/q.

C Region of soft momentum transfer

At zero temperature it is well established that infrared (collinear and soft) divergences as-
sociated with real and virtual corrections cancel in physical observables. As was observed
in refs. [9, 18] (generalizing on a previous analysis at vanishing spatial momentum [30]), a
similar cancellation takes place in every “master” spectral function at finite temperature. As
a part of the analysis of section 5, we have shown that the cancellation also takes place in the
ultrarelativistic regime, where it can be treated within the HTL effective theory (specifically,
this refers to the cancellation of λ in eq. (5.9)). In this appendix we provide more details
concerning the HTL setup, and also compute the “cut” contributions needed in section 5,
representing the effects of 2→ 2 scatterings mediated by soft t-channel leptons.

If we consider the correlator of eqs. (2.2), (2.3) within the HTL theory, it may first be
verified (by explicit computation) that there is no vertex correction. In the Higgs propagator
the only change is the appearance of a thermal mass. Denoting by ρℓ(ω,p) the spectral
function corresponding to the lepton propagator, we find

ImΠHTL,full
R ≡

∫ ∞

−∞
dω

∫

p

−2K · ρℓ(ω,p)
ǫ2

[

1− nF(ω) + nB(ǫ2)
]

δ
(

k0 − ω − ǫ2
)

, (C.1)

where only that pole from the Higgs propagator which gets realized in practice has been

kept, and ǫ2 ≡
√

(p− k)2 +m2
φ. The spectral function (defined as a four-vector) can be

expressed as

ρℓ(ω,p) ≡
(

ω ρ̂0(ω, p),p ρ̂s(ω, p)
)

. (C.2)

Carrying out the angular integral in eq. (C.1) yields

ImΠHTL,full
R = − 1

2π2k

∫ ∞

−∞
dω

∫ pmax(ω)

pmin(ω)
dp p

[

1− nF(ω) + nB(k0 − ω)
]

×
{

k0 ω
[

ρ̂0 − ρ̂s
]

+
M2 −m2

φ + ω2 − p2

2
ρ̂s

}

. (C.3)

The spectral functions ρ̂0, ρ̂s have a “pole part” at |ω| > p and a “cut part” at |ω| < p.
The latter is often referred to as Landau damping, and reflects the effects of 1↔ 2 scatterings
of off-shell leptons on thermal gauge bosons, which are a subpart of 2 → 2 scatterings in
figure 1. The explicit forms of the spectral functions read

ρ̂0 = Im

{

1− m2
ℓ
L

2ω
[

ω − m2
ℓ
L

2

]2 −
[

p+
m2

ℓ
(1−ωL)

2p

]2

}

, (C.4)

ρ̂s = Im

{

1 +
m2

ℓ
(1−ωL)

2p2

[

ω − m2
ℓ
L

2

]2 −
[

p+
m2

ℓ
(1−ωL)

2p

]2

}

, (C.5)
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M
2
 / k

0
 << m

l
 << M

p

ω

Λ k

m
l
  <<  M

2
 / k

0

p

ω

Λ k

Figure 7. An illustration of the phase space relevant for HTL resummation. The grey-shaded area
and the dotted blue line indicate regions in which ρℓ is non-zero (only one pole is shown). The solid

black line, with intercept ω = k0 −
√

k2 +m2

φ at p = 0, delineates the region allowed kinematically

by the δ-constraint in eq. (C.1). The hashed areas denote regions contributing to eq. (C.3).

where L ≡ 1
2p ln

ω+p
ω−p and ω has a small positive imaginary part. The corresponding phase

space is illustrated in figure 7. (There are actually two poles, although only one contributes
in the regime p≫ mℓ. Both poles, but no cuts, were included in ref. [31].)

Let us now consider the contribution of soft momenta (p<∼ gT ) to ImΠHTL
R . For this we

introduce a cutoff Λ, satisfying mℓ ≪ Λ ≪ k (cf. figure 7). In the soft region we can also
set mφ = 0, because the Higgs momentum k− p is hard (p≪ k); in fact, for the analysis of
section 5 we need to set mφ = 0, because this is the case in eq. (3.4). We work within the
kinematics relevant for the ultrarelativistic regime, i.e. M ≪ k, so that k0 ≈ k.

In this appendix we focus on soft 2 → 2 scatterings which, as mentioned, correspond
to the cut contribution in the HTL setup. We consider the cut contribution in two different
ways. First we consider it in the “full” form as dictated by the HTL theory. Second, we
consider it in the “inserted” form in which it appears in the 2→ 2 part of the NLO result of
section 3, where the scale m2

ℓ only appears as an overall prefactor.
For |ω| < p, the function L has an imaginary part, ImL = −π/(2p). The cut originates

from this imaginary part, and is necessarily proportional to m2
ℓ . Therefore, omitting higher-

order corrections, we can put M → 0 in pmin = k− ≈ M2/(4k0). Furthermore, the second
term in eq. (C.3) is subleading, given that ρ̂s is antisymmetric in ω. Therefore the first term
gives the leading contribution:

ImΠHTL,full,cut
R ≡ − 1

2π2

∫ Λ

0
dp p

∫ p

−p
dω ω

[

nB(k0) +
1

2

]

Im

{ m2
ℓ
(ω2−p2)L

2ωp2
− m2

ℓ

2p2

[

ω − m2
ℓ
L

2

]2 −
[

p+
m2

ℓ
(1−ωL)

2p

]2

}

=
m2

ℓ

4π

[

nB(k0) +
1

2

]

[

ln
(2Λ

mℓ

)

− 1

]

+O
( 1

Λ

)

. (C.6)

The integral was carried out by substituting ω = px whereby the integrations factorize;
integrating over p first; expanding the result in powers of m2

ℓ/Λ
2; and identifying a finite

contribution as
∫ +1
−1 dx Im

[(

1
2(1−x) +

1
4 ln

1+x
1−x − iπ

4

)

ln
(

1
2(1−x) +

1
4 ln

1+x
1−x − iπ

4

)]

= π(ln 2− 1).
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(Of course the result is easily reproduced through numerical integration, verifying also that
terms argued to be subleading are indeed so.)

Let us now see how the result is modified if we “mistreat” the soft momentum domain
by carrying out a Taylor expansion in m2

ℓ . Expanding eqs. (C.4), (C.5) while keeping λ ≡ 0+

as an infrared regulator in the denominator, we have

ρ̂0
|ω|<p
≃ πm2

ℓ

4pω(ω2 − p2 − λ2)
, ρ̂s

|ω|<p
≃ πm2

ℓω

4p3(ω2 − p2 − λ2)
. (C.7)

Then the inserted cut contribution reads (here the correct integration bounds need to be
kept because the infrared domain is not regulated by m2

ℓ )

ImΠHTL,ins,cut
R ≡ −m2

ℓ

8π

∫ Λ

M2

4k0

dp p

∫ p

M2

2k0
−p

dω
[

nB(k0) +
1

2

]

{

− 1

p3
+

ω(M2 + ω2 − p2)

2k0 p3(ω2 − p2 − λ2)

}

=
m2

ℓ

4π

[

nB(k0) +
1

2

][

ln
(2Λ

λ

)

− 1
]

+O
( 1

Λ
, g4T 2

)

. (C.8)

For completeness we note that the integrand on the first line can also be obtained directly
from the last term in eq. (B.7), by taking ω ≡ v · p as an integration variable instead of v.

As expected, eqs. (C.6) and (C.8) depend identically on the ultraviolet cutoff Λ. The
dependence on Λ thus cancels in the difference that plays a role in our actual computation, cf.
eq. (5.9). In the “fully” HTL-resummed result of eq. (C.6), there is no infrared divergence,
with the infrared regime having been regulated by mℓ. In the “inserted” HTL result of
eq. (C.8), there is an infrared divergence, but this cancels against a corresponding divergence
in the inserted pole contribution, as is demonstrated in eq. (5.9). This cancellation completes
the proof of infrared insensitivity of the observable ImΠR within the HTL setup.

D Choice of parameters

The physical Higgs mass is set to mH = 126GeV. In order to convert pole masses and
the muon decay constant to MS scheme parameters at a scale µ̄ = µ̄0 ≡ mZ we employ
1-loop relations specified in ref. [32]; subsequently, 1-loop renormalization group equations
determine the running of the couplings to a scale

µ̄ref ≡ max(M,πT ) , (D.1)

where they are evaluated for purposes of the present paper. Within this approximation the
U(1), SU(2) and SU(3) gauge couplings g21, g

2
2, g

2
3 have explicit solutions (we have set Nc = 3

and considered 3 families),

g21(µ̄) =
48π2

41 ln(Λ1/µ̄)
, g22(µ̄) =

48π2

19 ln(µ̄/Λ2)
, g23(µ̄) =

24π2

21 ln(µ̄/Λ3)
, (D.2)

where Λ1,Λ2,Λ3 are solved from the boundary values at µ̄ = µ̄0. The top Yukawa and the
Higgs self-coupling at µ̄ > µ̄0 are solved numerically from

µ̄
dh2t
dµ̄

=
h2t
8π2

[

9

2
h2t −

17

12
g21 −

9

4
g22 − 8g23

]

, (D.3)

µ̄
dλ

dµ̄
=

1

8π2

[

3

16

(

g41 + 2g21g
2
2 + 3g42

)

− 3

2
λ
(

g21 + 3g22

)

+ 12λ2 + 6λh2t − 3h4t

]

. (D.4)

For definiteness let us recall that at tree level λ ≈ g22m
2
H/(8m2

W ) ≈ 0.13.
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