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Pinpointing regional surface distortions of the amygdala in patients 
with spider phobia
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Abstract 
The amygdala is a key brain structure involved in emotional processing, especially fear. Neuroimaging studies in patients 
with phobias have revealed alterations in amygdala reactivity and volumes. Here, we investigated the shape composition of 
the amygdalae to explore if patients with spider phobia show local morphological differences as compared to healthy controls. 
Magnetic resonance imaging data was analyzed from 20 female spider phobic patients and 20 age-matched healthy controls. 
Amygdala shape was quantified using a surface-based mesh modeling method (FIRST). Differences in amygdala topography 
were most prominently located over the basolateral and central nuclei of the left, but not right amygdala. These differences were 
further related to the severity of spider phobic symptoms and were independent of age, years of education or duration of illness. 
The present results point to focal amygdala distortions in spider phobic patients. Due to anomalies within the amygdala, spider 
phobia might be characterized by a deregulation in both an initial amplified fear response during exposure to spiders as well as a 
subsequent impaired down-regulation of the elicited fear response. 
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Introduction
Spider phobia is a disease characterized by abnormal and 
automated fear reaction towards spiders [3]. Theories about 
the etiology of phobic fear suggest that the enhanced fear 
response in phobic patients results from a systematically 
biased interpretation of the danger associated with the feared 
stimulus [5]. Öhman’s theory presumes that in healthy subjects, 
after encountering a phobia-relevant stimulus, an affective 
response is elicited through automatic and rapid evaluation of 
the stimulus, which initiates a sequence of controlled processing 
procedures. In phobic patients, these controlled mechanisms are 
suggested to be overridden by the automatic and exaggerated 
affective response [34].

Indeed, deregulation of emotional processes is one of the 
core clinical characteristics of spider phobia [16,23] and sev- 
eral neurobiological studies have suggested that the patho-
physiology of spider phobia involves brain circuits sub-serving 
emotion regulation processes, encompassing fronto-limbic 
brain regions [24,42]. Amongst them, the amygdala has been 
suggested to play a role in a wide range of emotional processes 
which include: the perception and experience of emotional 
states, emotional learning and formation of emotional memories 
and emotion regulation [4,7,15,22,48,53,63].

Studies on amygdala morphology have revealed that the 
amygdala complex is not a homogenous structure and comprises 
sub-groups of specialized nuclei: a) the cortico-medial group 
with the cortical and medial nuclei, b) the central nucleus, 
and c) the basolateral group with the accessory basal, basal 
and lateral nuclei [2,31,32]. The amygdala is presumed to be 
implicated in the processing of sensory information through 
extensive connections that receive inputs from several brain 
areas [32]. Although the functional specialization of the amyg-
daloid nuclei in humans remains vague, evidence from animal 
studies suggest distinctive roles of different amygdaloid nuclei, 
with for example the central nucleus playing a crucial role in 
reflexive, conditioned responses to aversive stimuli and the 
basolateral complex playing a key role in voluntary behavior 
based on emotional episodes [25]. Furthermore, it has been 
suggested that the basolateral complex of the amygdala 
plays a key role in mediating the memory-enhancing effect of 
emotional arousal [44]. However, although animal studies are 
useful to identify the role of different amygdala nuclei in fear 
processes, it may not be applicable to humans [28].

Although specific phobias are one of the most prevalent 
mental disorders in the general population [1,55], it has received 
limited attention in structural brain imaging, so far. It has been 
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argued that not only disturbances in amygdala function, but 
also in its structure might contribute to emotional dysfunction 
in individuals with anxiety disorders [11,21,47,50]. Though there 
is extensive literature on differences of amygdala activation 
in fear and phobias [6,9,13,56,62], to our knowledge, there 
is no study published on amygdala surface properties in 
specific phobia. We decided to compare the amygdala shape 
composition, because volumetric analyses do not account for 
the different amygdala subdivisions and thus not showing in 
which part changes are occurring. If only the total volume of 
the amygdala is estimated, it cannot be determined whether 
potential volume differences are diffuse and covering the 
whole amygdala or whether it is localized to specific regions. 
Since the amygdala has been shown to be an important 
structure in the generation of fear reactions and consists 
of several specialized nuclei, the aim of this study was to 
advance the knowledge about anatomical differences within 
the amygdala of phobic patients by focusing on differences 
in surface constitution compared to healthy controls.
 
Methods
Subjects
Participants were recruited by advertisements and were 
screened by a structured interview to exclude history of 
psychiatric or neurological illness. Age in the control group 
was matched with those in the patient group. Only women (in 
whom specific phobias are much more prevalent [19]) were 
included into the analysis in order to reduce variation due 
to gender effects. Because participant’s handedness might 
influence the lateralization or symmetry of the amygdalae [57], 
only right-handed participants (assessed by the Edinburgh 
Handedness Inventory [35]) were included into the study. The 
often-observed co-morbidities make it difficult to directly 
attribute structural abnormalities to the disease. Therefore, 
participants were excluded from the study for the following 
reasons: a) any neurological problem, b) psychiatric diseases, 
other than spider phobia in patients, and c) medical conditions 
that could influence the results of the study. We further exluded 
participants that were taking any medication acting on the 
cerebral nervous system or using hormonal contraceptives. 
Written informed consent was obtained from all participants 
prior to the investigation. Finally, twenty spider phobic patients 
and twenty healthy controls were entered into the analysis. 
The study was conducted in accordance with the principles 
of the Declaration of Helsinki [41] and approved by the ethics 
committee of the Canton of Bern, Switzerland (161/07). 

Clinical assessment
Diagnosis of spider phobic disease in patients was made 
according to the Diagnostic and Statistical Manual of Mental 
Disorders, fourth edition (DSM-IV) [3], using a computer-based 
structured clinical interview (DIA-X) [65], which is based on 
the Composite International Diagnostic Interview (CIDI) [45]. 
Asking patients retrospectively about the first appearance of 

phobic symptoms assessed information about age at onset 
of the illness. The duration of illness was defined as the time 
between onset of spider phobic symptoms and scan acquisition. 
Patients were screened with a questionnaire for DSM-IV 
disorders (SKID II) [20] and healthy controls were screened 
by the Symptom Checklist by Degoratis (SCL-90-R) [18]. In all 
participants, spider phobic symptoms were assessed more 
specifically with the Spider Phobia Questionnaire (SPQ) [27] 
and the Fear of Spiders Questionnaire (FSQ) [58].

Data acquisition
Structural magnetic resonance images were collected on a 
3T Siemens Magnetom Trio Scanner (Erlangen, Germany). T1-
weighted structural scans for subcortical analysis were acquired 
using modified driven equilibrium Fourier transform (mdeft) 
sequence [12] with the following parameters: repetition time 
(TR)=7.92msec, echo time (TE)=2,48msec, field of view (FOV) 
=256x256mm, voxel size=1x1x1mm and 910msec inversion 
time (Ti) for an optimal contrast-to-noise ratio [12].

Amygdala shape analysis
Automated amygdala segmentation and vertex analysis 
were performed using the FIRST module of FSL (FSL v4.1.9; 
available on: http://www.fmrib.ox.ac.uk/fsl). FIRST is an 
automatic, surface based segmentation tool that is used 
to analyze shape differences of subcortical brain structures 
[37]. First, the structural images were brain extracted using 
BET (brain extraction tool, [51]) and then registered to the 
MNI152 standard space using global affine transformation. 
The registration was then refined using a subcortical mask 
to improve the joint alignment of the subjects’ amygdalae. 
Afterwards, a deformable model was fitted to the images in 
native space, based on a Bayesian shape and appearance 
model. The model is derived using a training set consisting 
of 336 brain scan training set and was then transferred to 
standard space using affine registration. The shapes of the 
amygdalae are then expressed as a mean with modes of 
variation (principal components). Finally, a boundary correction 
was used to determine which boundary voxels belonged to 
the amygdala [52]. To determine these voxels, the algorithm 
requires the number of iterations as input, which was set to 
80, according to the recommendations of Patenaude and 
his colleagues [37]. For more technical details on subcortical 
segmentation with FIRST, see Patenaude’s Thesis [36].

To test for local shape differences between groups, a vertex-
wise analysis was finally performed in standard space in order 
to account for differences in brain size. The statistics were 
calculated using general linear model (GLM) and corrected 
for multiple comparisons using false discovery rate (FDR). To 
test for local shape differences between groups, a vertex-wise 
analysis was finally performed in standard space in order to 
account for differences in brain size. More in detail, in a vertex-
wise analysis a single vertex point (sing-Vtx) [that describes a 
scalar in a 3D topological space] is compared to a “reference” 
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vertex point of a template (temp-Vtx). In this step, vertex 
points belonging to each separated set of amygdala of each 
subject are projected onto the surface of a template. A distance 
between these two points is subsequently estimated. If the 
resulted distance is positive then the sing-Vtx lays outside the 
surface of the template; if the resulted distance is negative 
then the sing-Vtx lays inside the surface of the template.

To clarify whether the severity of the disease or the disease 
duration has an effect on specific amygdala nuclei, separate 
correlation analyses were performed within the patient group. 

Statistical analyses
Statistical analyses of clinical scores and demographics were 
conducted using R (version 2.14.1, http://www.r-project.org). 
Group differences in demographic and clinical characteristics 
were analyzed with unpaired t-tests. All tests were two-tailed 
and a probability of less than 0.05 was considered significant.

Results
Subject characteristics
As seen in Table 1, spider phobic patients and healthy controls 
differed significantly in clinical scores with regard to spider 
phobic symptoms. The two groups did not differ significantly 
with respect to demographic variables and other clinical scores, 
except the number of years of education (t38=2.48; p=0.02). 
To rule out this potential confound, a separate vertex analysis 
with level of education as covariate was conducted.

Patients (n=20) Controls (n=20)
Characteristics Mean SD Mean SD  t p
Age 29.9 11.3 27.1 5.9 -0.98 0.33
Years of education 13.1 1.9 14.6 2.0  2.47 0.02
Age at onset 6.7 3.3 -- --  -- --
Duration of illness (years) 22.2 13.01 -- --  -- --
Handedness scores 9.7 0.6 9.8 0.4  0.65 0.52
SPQ 21.6 4.3 6.1 3.8 -11.99 0.00
FSQ 79.7 11.6 14.7 18.9 -12.55 0.00

Table 1. Demographic and clinical characteristics of the patients 
and their control group.

SPQ: Spider Phobia Questionnaire; FSQ: Fear of Spiders Questionnaire

Amygdala surface properties
In Figure 1, statistical multivariate F statistic maps based on 
Pillai’s Trace indicate regions of structural differences in spider 
phobic patients relative to healthy controls, with high F-values 
indicating regions of considerable structural differences. The 
F-values are color-coded from 2 to 5 with significant differences 
shown as green/blue and red regions indicating no statistical 
significance. Surface deformations were restricted to regions 
in the approximate vicinity of the basolateral complex and the 
central nucleus of the left amygdala. There were no significant 
surface differences of the right amygdala between patients 
and controls.

In order to facilitate the view of these results the shape of the 
bilateral amygdala are overlaid and projected onto an axial slice 
of the standard space (Figure 2). In the same Figure 2 the quality 
of the segmentation performed by FSL/FIRST is displayed for 
two representative patients. The anatomical location of the 
amygdala is shown on an axial slice of these patients that 

Superior (Z)

Lateral (X)

Rostral (Y)

BL

CE

CE
BL

Figure 1. Amygdala statistical maps with F-values indicating 
structural differences between individuals diagnosed with 
spider phobia and healthy controls rendered on reference 
amygdalae. The colors indicate the statistical strength of the 
difference. Regions in blue/green correspond to the parts of 
the amygdala that are larger in controls than in patients. The 
color bar on the right indicates the vertex-wise F-statistic 
values, corrected for multiple comparisons by False Discovery 
Rate. (A) ventral view; (B) dorsal view; CE: central nucleus; 
BL:basolateral complex encompassing the accessory basal, 
basal and lateral nuclei. The little arrows pointing outwards in 
the figure indicates increased shape in controls as compared to 
a template. The level of significance is indicated by a line in the 
colorbar.

Pat #2 Pat #2

LL

L

Figure 2. Projection of the surface as shown on Figure 1 on a 
axial slice of the standard brain. The quality of the segmentation 
performed by FSL/FIRST is displayed for two representative 
patients. The anatomical location of the amygdala is shown 
on an axial slice of these patients that also includes the filled 
contour of the segmentation (in red).

n.s.
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also includes the filled contour of the segmentation (in red).
The regions of the amygdala that are larger in controls as 
compared to patients (see Figure 1) were additionally found 
to lie outside the reference amygdala (i.e., template). This 
finding is represented on Figure 1 by the little arrows pointing 
outwards. The differences in the shape of the amygdala 
between patients and controls can additionally be expressed 
as changes in the volume of the amygdala. Patients showed 
significant smaller left amygdala volumes as compared to 
controls (Left Amygdala controls: volume=1802.6±162.1 
and pat: volume=1649.7±198.9; t38=2.66; p=0.01). No sign-
ificant differences were observed for the right amygdala 
(Right Amygdala controls: volume=1708.8±235.2 and pat: 
volume=1654.0±374.4; t38=0.58; p=n.s.). Unfortunately, it is 
not possible to further delineate the segmentation results 
to the nuclei level.

Effect of age, symptom severity and duration of illness
To rule out potential factors that could affect the amygdala 
surface constitution, correlational analysis between surface-
based mesh modeling and age, SPQ score, FSQ score and 
duration of illness were conducted. Within the whole pop-
ulation, regional differences in the vicinity of the basolateral 
and central nucleus of the left but not right amygdala sign-
ificantly correlated with the severity of phobic symptoms 
(Figure 3). Age did not account for differences in amygdala 
shape in both the patient and control groups. Within the 
phobic sample, duration of illness was not associated with 
the surface constitution of both amygdalae.

The overlap of both the statistical maps (from group com-
parison as shown in Figure 1 and from symptom severity 
correlation as shown in Figure 3) is visualized on Figure 4 by 
the blue regions. The red background shows all remaining 
regions that do not overlap between both statistical maps. 
This overlap was constructed by logical conjunction (i.e., 
AND) of p<0.05 values in both statistical maps. The total 
number of vertex-points of the overlapping region is 159 out 
of 229 vertex points in the group comparison and 202 in the 
correlation analysis.

Discussion
We evaluated shape differences of the amygdala between 
patients diagnosed with spider phobia and healthy comparison 
subjects. The current study demonstrates decrements localized 
in regions in the vicinity of the basolateral and central nuclei 
in patients with spider phobia. These sub-regional alterations 
were associated with symptom severity. Moreover, results could 
not be attributed to years of education nor ageor duration of 
illness. Therefore, the observed differences in left amygdala 
topography over distinct nuclei in our patient group might 
be linked to disorder-related amplified fear responses during 
phobic situations.

Theories about the etiology of phobic fear suggested that 
laterality differences may account for innate versus conditioned 

Figure 3. Correlations of symptom severity with amygdala 
surface of the whole population. The colors on the surface of 
the mesh display the significance of the variation in symptom 
severity that can be attributed to the regression of surface 
and symptom severity. The color bar depicts the calculated 
F-values for the analysis of variance. Higher F-values (blue/
green) indicates loci of significant correlation, whereas lower 
F-values indicate no significant correlation. (A) correlation 
with scores on the Spider Phobic Questionnaire; 
(B)correlation with scores on the Fear of Spiders 
Questionnaire.The ventral and the dorsal view is shown for 
each correlation.

Superior (Z)

Lateral (X)

Rostral (Y)

dorsal

dorsal

R L

n.s.

Figure 4. Overlap of both the statistical maps (from group 
comparison as shown in Figure 1 and from symptom severity 
as shown in Figure 3) is visualized by the blue regions. The 
red background shows all remaining regions that do not 
overlap between both statistical maps.

fearful stimuli, with the left amygdala playing a greater role 
in response to innate fearfully stimuli such as spiders [14]. 
Evidence for this hypothesis stems from neuroimaging 
studies investigating the habituation phenomenon which 
demonstrated greater and more sustained activation of the 

Superior (Z)

Ventral view

dorsal view

Lateral (X)

Rostral (Y)
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left amygdale [39,64,66]. In patients, the observed structural 
differences in the left amygdala could reflect impairments in 
top-down cognitively mediated processing. Our findings of 
left-lateralized differences suggest that the two amygdalae 
do not perform entirely equivalent functions. Evidence from 
a functional imaging study suggest, that activation of the left 
amygdala is strongly correlated with the fear response [38]. 
Hence, the right amygdala may have a general role during 
the initial automatic reaction, whereas the left amygdala 
could be more specifically involved in a more differentiated 
emotional reaction [33,66].

Apart the lateralization of fear responses, animal studies 
suggest that the basolateral nucleus is critically involved in 
fear memory [17,43] or in the consolidation of information 
that leads to phobic avoidance and constitutes a genetic 
predisposition to acquire specific phobias [25]. Because the 
amygdala integrates the information related to fear and 
strong emotions and sends outputs via the central nucleus 
for automatic arousal and via the basolateral nucleus for more 
active aspects of coping [29], atrophies in these regions may 
lead to phobic diseases. Importantly, the central nucleus 
have been suggested to be involved in many of the phobic 
symptoms and may exert modulatory influences upon 
hypothalamus and brainstem, mediating autonomic reactions 
which are characteristic of fear behavior [8,10,30,40].

Beyond animal studies, Sheline and colleagues [49] found 
a decrease in the size of both basolateral nuclei in patients 
with depression, attributing these volume losses to neuronal 
degeneration as a result of hypercortisolemia which may occur 
by the amplified activity of the amygdala. In phobic patients, 
the hyperactivity of the amygdala has been proposed to result 
from a lack of cortical inhibition by the prefrontal cortex, which 
sends dense projections to the amygdala primarily through 
GABAergic neurons [54]. The basal nucleus of the amygdala 
receives inputs from the hippocampus and prefrontal cortex 
and might integrate these signals to regulate the fear response 
[32,61]. Thus, there might occur an uncoupling of prefrontal 
inhibition of the amygdala in phobic patients that triggers 
extreme amygdala responses. Though, this uncoupling might 
be further supported by the observered structural deficits 
within the amygdala.

Altogether, it is still unclear whether morphological alter-
ations of the amygdala constitute a state characteristic of 
the disorder or a trait marker. Multiple mechanisms could 
account for the occurrence of behavioral symptoms, functional 
differences and morphological features. The interplays between 
these factors are largely unknown. Though, phobic diseases 
could be driven by a genetic polymorphisms x environment 
interaction, modulated by molecular processes that lead to 
the expression of adaptive changes and phobic diseases. 
Furthermore, the microstructural determinants of group 
differences in amygdala morphology are unknown, as is the 
extent to which differences in surface properties relate to 
abnormalities in the underlying nuclei of the amygdala.

It is not trivial to provide a conclusive meaning of what the 
measure of surface morphology generally captures. Intuitively, 
the measure of shape morphology as compared to a simple 
volumetric investigation offers a more detailed view of the 
investigated region of interest. In fact, volumetric changes 
alone could result from two totally different regions that 
share no or few geometrical properties (i.e., like a sphere and 
a cube; or a cube and a torus). Shape analysis additionally 
provides a micro-architectonic description of local deviations 
of a region of interest from a template. In the present study 
both, the volume and the shape of the left amygdala were 
found to be significant different in patients as compared to 
healthy controls. The measure of volume alone represents 
just a simple number while the shape analysis additionally 
provides detailed information on how and where the surface 
of the amygdala might be deformed. The assessment of 
deformation can be understood as a non-linear method that 
may capture morphological changes and that goes beyond 
conventional linear voxel vise analysis of volume. Moreover, 
volume changes in the left amygdala alone describe uniquely 
a global feature while shape analysis additionally captures 
regional properties within the left amygdala. The observed 
volumetric changes in the patients left amygdala are not due 
to a general reduction in volume as compared to healthy 
controls: shape analysis locates the significant deviations in 
distinct nuclei of the left amygdala. This is the major insight 
that in the present study was uniquely obtained through the 
shape analysis.

Nonetheless, there are a few studies investigating morpho-
logical properties such as in hippocampal and enthorinal cortex 
of elderly [60], mild cognitive impairment and Alzheimer’s 
disease [59] and hippocampal gender differences in puberty 
[46]. All these investigations are based on FSL/FIRST as 
described in [37].

There are some limitations of the study that need to be taken 
into account. Focusing only on single brain regions does not 
recognize that phobia is a disorder encompassing multiple 
brain regions sub-serving phobic fear. Furthermore, the 
standard resolution of structural imaging at 3T does not allow 
a reliable localization of structural alterations within specific 
amygdala cell groups. The relative sensitivity of magnetic 
resonance imaging in detecting amygdala damage, compared 
to histological analysis has so far not been established. The 
precise identification of amygdala nuclei requires histological 
investigation. It needs to be clarified that the labeling of 
the amygdala nuclei in this study was based on information 
obtained from a brain atlas [31]. Furthermore, the possibility 
remains that surface distortions also reflect atrophies in nuclei 
that are not represented on the surface of the amygdala. The 
modest number of subjects in each group (n=20) raises the 
possibility of a type II statistical error. Moreover, sex differences 
may also have an influence on amygdala structure [26]. As we 
only analyzed data from females, results can’t be generalized.

Overall, the findings provide initial evidence for structural 
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amygdala abnormalities as an element in the pathophysio-
logy of phobic diseases. Our findings further illuminate the 
need to treat the amygdala as a heterogeneous structure. 
The documented findings might be clinically relevant as 
localized alterations might be reversible by pharmacotherapy 
or psychotherapy, which should be addressed in future 
studies. Although future prospective longitudinal research 
is required to establish structure-function relationship and 
neural mechanisms underlying phobic diseases, this study 
highlights the importance of the amygdala as a potentially 
important neural substrate.
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