

ECOLOGICAL Society of America

Ecology/Ecological Monographs/Ecological Applications

PREPRINT

This preprint is a PDF of a manuscript that has been accepted for publication in an ESA journal. It is the final version that was uploaded and approved by the author(s). While the paper has been through the usual rigorous peer review process of ESA journals, it has not been copy-edited, nor have the graphics and tables been modified for final publication. Also note that the paper may refer to online Appendices and/or Supplements that are not yet available. We have posted this preliminary version of the manuscript online in the interest of making the scientific findings available for distribution and citation as quickly as possible following acceptance. However, readers should be aware that the final, published version will look different from this version and may also have some differences in content.

The doi for this manuscript and the correct format for citing the paper are given at the top of the online (html) abstract.

Once the final published version of this paper is posted online, it will replace the preliminary version at the specified doi.

1	Multievent capture-recapture analysis reveals individual foraging specialisation in a generalist
2	species
3	
4	SANZ-AGUILAR, A. ^{1,2*+} , JOVANI, R., ¹⁺ , MELIÁN, C.J. ³ , PRADEL, R. ⁴ AND TELLA, J.L. ¹
5	
6	¹ Estación Biológica de Doñana (CSIC), Américo Vespucio s⁄n, Sevilla 41092, Spain.
7	² Population Ecology Group, Institut Mediterrani d'Estudis Avançats, IMEDEA (CSIC-UIB),
8	Miquel Marqués 21, 07190 Esporles, Islas Baleares, Spain.
9	³ Fish Ecology and Evolution Department, Center for Ecology, Evolution and Biogeochemistry,
10	Swiss Federal Institute of Aquatic Science and Technology, Eawag, Seestrasse 79, Kastanienbaum
11	6047, Switzerland.
12	⁴ CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier -
13	EPHE, 1919 Route de Mende, 34293 Montpellier cedex 5, France.
14	
15	Authors E-mail adresses: ana.sanzaguilar@ebd.csic.es; jovani@ebd.csic.es;
16	carlos.melian@eawg.ch; roger.pradel@cefe.cnrs.fr; tella@ebd.cisc.es
17	
18	*Corresponding Author: Ana Sanz-Aguilar, Estación Biológica de Doñana (CSIC), Américo
19	Vespucio s/n, E-41092 Sevilla, Spain, E-mail: ana.sanzaguilar@ebd.csic.es
20	
21	⁺ Ana Sanz-Aguilar and Roger Jovani contributed equally to this work
22	<i>Running Head</i> : Foraging specialisation in generalist storks

23 ABSTRACT. Populations of species typically considered trophic generalists may include 24 specialised individuals consistently feeding on certain resources. Optimal foraging theory states that individuals should feed on those resources most valuable to them. This, however, may vary 25 26 according to individual differences in detecting or processing resources, different optimization 27 criteria, and competitive abilities. White storks (Ciconia ciconia) are trophic generalists at the 28 population level. Their European population recovery has been attributed to increased wintering in 29 Southern Europe (rather than Africa) where they feed upon new anthropogenic food subsidies: 30 predictable dumps and less predictable and more difficult to detect but abundant invasive 31 Procambarus clarkii crayfishes in ricefields. We studied the foraging strategies of resident and 32 wintering storks in SW Spain in ricefields and dumps, predicting that more experience in the study 33 area (residents vs. immigrants, old vs. young) would increase ricefield specialisation. We 34 developed the first multievent capture-recapture model to evaluate behavioural consistency, 35 analysing 3,042 observations of 1,684 banded storks. There were more specialists among residents 36 (72%) than immigrants (40%). All resident specialists foraged in ricefields, and ricefield use 37 increased with individual age. On the other hand, immigrants specialised on either dumps (24%) or 38 ricefields (16%) but the majority were generalists (60%). Our results provide empirical evidence 39 of high individual foraging consistency within a generalist species and a differential resource 40 selection by individuals of different ages and origins probably related to their previous experience 41 in the foraging area. Thus, future changes in food resource availability at either of the two anthropogenic subsidies (ricefields or dumps) may differentially impact individuals of different 42 ages and origins making up the wintering population. The use of multievent capture-recapture 43 44 modelling has proven useful for studying inter-individual variability in behaviour.

- 45 *Keywords*: ecological processes, anthropogenic food subsidies, niche specialisation, foraging
- 46 behaviour, White stork, Ciconia ciconia, multievent.
- 47
- 48

INTRODUCTION

49 A large number of animal species benefit from anthropogenic food subsidies (e.g. refuse dumps, fishery discards or feeding stations) where high amounts of food are highly predictable in space 50 and time (Oro et al. 2013). Anthropogenic food subsidies have promoted life history changes in 51 52 many species, causing increases in their populations and even cascading effects in food webs and 53 ecosystems (Robb et al. 2008, Carey et al. 2012, Cortés-Avizanda et al. 2012). However, little is 54 known about individual consistency in the use (or lack of use) of food subsidies, or about the 55 causes behind this individual specialisation (Oro et al. 2013). This is relevant because food subsidies affect the body condition, reproduction, home range, spatial distribution, and survival of 56 individuals (Oro et al. 2013). For instance, Annett and Pierotti (1999) reported that Western gulls 57 58 (Larus occidentalis) strongly relying on human refuse had lower life-time reproductive success than individuals feeding on natural resources (i.e., fish), and suggested that individual differences 59 in resource use may be heritable. Moreover, individuals using food subsidies may be a non-60 61 random subset of the population (e.g., weaker individuals, Votier et al. 2010). Thus, not only the 62 proportion of the population using food subsidies, but also the individual traits associated with 63 their use would predict the impact of food subsidies upon population dynamics. Particularly, the consequences of a drastic reduction of food subsidies would greatly differ if it affects the most 64 successful breeders vs. the weakest individuals of the population. 65

66 This problem is thus framed within the wider topic of individual specialisation, which is 67 gaining momentum after the first review on the subject by Bolnick et al. (2003) in which they noted that "most empirical and theoretical studies of resource use and population dynamics treat 68 69 conspecific individuals as ecologically equivalent. This simplification is only justified if 70 interindividual niche variation is rare, weak, or has a trivial effect on ecological processes". Their 71 review challenged this "rare interindividual niche variation" by reporting a strong and widespread 72 occurrence of individual resource specialisation in different taxa, and their individual and 73 population consequences. A recent review (motivated by a sudden increase in studies on individual 74 specialisation) confirmed these conclusions (Araújo et al. 2011). While it was recognized that the current early development of the topic does not allow for strong hypotheses on the factors 75 76 governing resource specialisation in a given population, foraging theory was highlighted as a 77 candidate framework (Araújo et al. 2011).

Optimal foraging theory states that individuals feed on those resources most valuable to 78 them, according to the diversity and abundance of resources and on individual traits (Araújo et al. 79 80 2011). Three non-exclusive mechanisms have been proposed to explain the relationship between 81 optimal foraging and individual traits (Araújo et al. 2011). First, phenotypic variation among 82 individuals may change optimal diets according to individual ability to detect or process different resources resulting in divergent rank preferences. Second, individuals may present different 83 84 optimal diets due to different physiological requirements (e.g., specific nutrients for reproduction) or may differ in their optimization criteria (e.g., some prioritizing safety regarding predation risk 85 while others prioritizing energy intake). Third, individuals may have the same optimal diets but 86 87 different competitive abilities (e.g. dominant individuals may displace subordinate individuals

88 from the optimal resources).

89 The white stork (*Ciconia ciconia*) is a good candidate species as a model for assessing individual foraging strategies on anthropogenic food subsidies. This large-sized migratory wading 90 91 bird preys on a wide range of animals, including insects, fish, amphibians, reptiles, small 92 mammals and birds, but also makes use of waste resources. European populations of the species suffered a drastic decline after 1945 related to long drought periods in African wintering grounds, 93 94 habitat deterioration, and casualties from power lines along their migration routes (Kanyamibwa et 95 al. 1990, Barbraud et al. 1999, Schaub et al. 2005). Spanish stork populations have become 96 sedentary since the 1980s, and northern European populations shortened their migration distances to overwinter in Spain. Currently, ca. 4,000 storks are wintering in southwest Spain (Doñana 97 98 marshlands), including individuals of different origins: local residents and immigrant individuals 99 from Germany, France, Netherlands and Switzerland (Aguirre 2013). This migratory behavioural 100 change was related to the increase in food availability (mainly in refuse dumps) in Spain in recent 101 decades (Tortosa et al. 2002, Rendón et al. 2008, Ramo et al 2013). Moreover, access to 102 predictable and abundant food at dumps contributed to the concentration of breeding distribution, 103 an increase in breeding success and juvenile survival, and to the advancement of the recruitment 104 age of white storks (Tortosa et al. 2002). Contemporaneous with the increase in food availability at 105 dumps, the introduction and rapid spread of the exotic invasive red swamp cravfish (*Procambarus*) 106 *clarkii*) in the Doñana marshlands contributed to the substantial increase of the white stork local 107 breeding and wintering population (Rendón et al. 2008, Tablado et al. 2010).

108 The red swamp crayfish is a species native to the southeastern United States and northern 109 Mexico that colonized the study area in 1973 and has increased in numbers since then, becoming

110	an important food subsidy for the community of predators in the area (Tablado et al. 2010). Storks
111	breeding in the area intensely feed on crayfish during the breeding season (Tablado et al. 2010),
112	feeding their nestlings with this abundant food resource (Negro et al. 2000). However, during
113	winter, feeding in dumps may be easier than feeding on crayfish in ricefields (Correia and Ferreira
114	1995). Dumps are easy to locate at a distance and provide a large food supply predictable in space
115	and time (Oro et al. 2013). Crayfish in ricefields, however, require more advanced skills to locate
116	and prey upon than organic rubbish at dumps. During the wintering season, crayfish are only
117	easily available after the ploughing of ricefields by farmers. Consequently, storks have to either
118	relate the activity of farmers to the ephemeral availability of easier-to-capture crayfish or rely on
119	public social information to locate this prey.
120	Currently, refuse at dumps and crayfishes from ricefields are the main food resources for
121	wintering (either resident or immigrant) white storks in southern Spain (Tortosa et al. 1995,
122	Tablado et al. 2010). Habitat changes or the occurrence of new food sources may provide new
123	opportunities for ecological/evolutionary changes in the species, but anthropogenic food subsidies
124	may also lead to ecological traps affecting the populations permanently (Oro et al. 2013).
125	Moreover, if resident and immigrant individuals differ in their level of specialisation on the two
126	main food resources, any changes in the resource availability at a local level may have different
127	consequences for birds of different origins. Thus, describing potential individual specialisation and
128	understanding their causes within this species is important both from a theoretical and an applied
129	perspective.
130	This scenario represents a valuable opportunity to study the occurrence of inter-individual

131 differences in the use of food subsidies (i.e., specialisation on crayfishes or rubbish) in relation to

132 individual traits. We hypothesized that foraging patterns differ between resident and immigrant 133 individuals and with age. White storks exhibit very high annual nest-site fidelity (87%, Barbraud 134 et al. 1999) and breeding dispersal distances are generally short (18±41 Km) (Itonaga et al. 2010); 135 thus, old residents should have better knowledge of the area than immigrants and young birds. 136 Moreover, resident storks are known to consume high amounts of crayfish during the breeding 137 season in the study area (Tablado et al. 2010), suggesting a high nutritional value of this prev 138 (Negro et al. 2000). However, crayfishes are not usually found in the stork diet outside the study 139 area (Negro et al. 2000), and thus immigrants may be unfamiliar with this food resource and more 140 familiar with rubbish consumption given that dumps are present throughout the species breeding 141 range. Consequently, in agreement with the hypothesis of inter-individual phenotypic/genetic 142 differences related to individual ability to detect particular food resources (hypothesis 1 in Araújo 143 et al. 2011), residents may present greater abilities to detect and consume cravfishes. On the other 144 hand, while food availability in refuse dumps is highly predictable in space and time, red swamp 145 crayfishes remain buried under mud during the autumn-winter (Correia and Ferreira 1995), 146 becoming available when ricefields are ploughed (also during autumn-winter), thus being less 147 predictable. Again, due to their greater experience in the area, residents and older individuals may 148 consume crayfishes in higher proportions (hypothesis 1 in Araújo et al. 2011). On the contrary, 149 during the wintering (i.e., non-breeding) season no differences in physiological requirements 150 between individuals are expected (hypothesis 2 in Araújo et al. 2011). Similarly, competitive 151 exclusion (hypothesis 3 in Araújo et al. 2011) is not expected as both cravfishes and rubbish are 152 widely available at the Doñana wintering area and defense of food for a single stork is difficult; in 153 fact, storks typically forage in loose groups where aggressive interactions are rare (authors' own

154 data).

155 We tested the existence of divergent individual foraging preferences (hypothesis 1 in 156 Araújo et al. 2011) in relation to residence status and age by studying individual foraging 157 strategies (either generalism or specialisation) of banded resident and immigrant white storks in 158 their main European wintering area (Doñana marshes, SW Spain, Aguirre 2013). We used state-of-159 the-art capture-recapture modelling, developing specific multievent finite-mixture models 160 originally used to account for capture heterogeneity (Pledger 2000, Pradel 2005). Models 161 evaluated the extent of individual foraging specialisation on the available anthropogenic food 162 subsidies (rubbish at dumps and crayfishes in ricefields) and quantified resource utilisation as a 163 function of residency status (taking into account residency uncertainty for some individuals) and 164 individual age.

165

METHODS

166 **Field work** —From October 1st to December 19th 2003, two observers travelled through the white stork's main wintering area in SW Spain, which covers ca. 10,000 Km² (Fig. 1), looking 167 168 for foraging individuals. The study area includes seven dumps surrounding a vast surface area 169 (43,905 ha) of marshlands transformed for rice crops since 1931 in the area of Doñana National 170 Park (Ramo et al. 2013). Travelling via unpaved roads crossing the marshlands allowed the 171 monitoring of a number of unploughed ricefields as well as to locate a total of 17 ricefield 172 localities (Fig. 1) asynchronously ploughed during the study period where red swamp crayfishes were made available for storks during several days after ploughing (Appendix A). Therefore, 173 174 crayfishes were available at some ricefields throughout the study period, varying temporarily in 175 their spatial location. Due to permit constraints, visits to dumps were periodic, ca. once a week. In

total, we recorded foraging storks during 106 visits to ploughed ricefields and 48 visits to thedumps (see Appendix A for more field work details).

178 Individual data — During the study period (lasting 80 days) dumps and ricefields were 179 sampled on 35 and 42 different days, respectively (Appendix A). A total of 3,042 bands were 180 identified and georeferenced, belonging to 1,684 different individuals. Thanks to a long-lasting 181 banding program and several concurrent studies (Jovani and Tella 2004, 2007, Blas et al. 2007, 182 Baos et al. 2012), many white storks were known to breed (or live) in the study area during the 183 previous two breeding seasons. In particular, 876 nests in 2002 and 1,056 nests in 2003 were 184 monitored, identifying a total of 535 resident individuals either breeding or living in the area 185 during the breeding season (March-August). 191 of these previously identified "resident" 186 individuals were observed during the 2003 wintering season and 161 of them (i.e., marked as 187 chicks) were aged based on their year of ringing. We classified individuals from foreign countries as "wintering immigrants" (N=711): Belgium (12), Denmark (112), France (235), Germany (179), 188 189 Portugal (106), Switzerland (53), and 14 individuals with unknown (but foreign) band types. 190 Storks with Spanish bands (782) but not encountered during the breeding season were classified as 191 "uncertain", since an unknown number of resident individuals could have been overlooked during 192 monitoring. Observations of marked storks during the study period at ricefields (coded 1) and 193 dumps (coded 2) or not detected (coded 0) were encoded in individual encounter histories 194 including 80 occasions (days) by group (i.e., 1=certain residents, 2=certain immigrants and 195 3=uncertain) (Appendix B, Supplement SD1). Age during winter 2003 of known-age residents 196 was incorporated in capture histories as an individual covariate (Appendix B, Supplement SD2). 197 **Biological hypotheses**—We considered the following biologically plausible hypotheses

(regarding the existence or lack thereof of foraging strategies/preferences and the potentialdifferences between individuals with different traits):

200 **A.** *Only* generalist individuals: **1.** *No* difference between residents/immigrants and strictly 201 generalist individuals. The wintering population of storks is composed of generalist individuals 202 that forage at ricefields and dumps in the same proportions (50%). 2. No difference between 203 residents/immigrants. The wintering population of storks is composed only of generalist 204 individuals that forage at ricefields and dumps differentially. **3.** Foraging habitat use differs 205 between residents/immigrants. The wintering population of storks is composed only of generalist 206 individuals of which residents and immigrants forage at ricefields and dumps differentially. 207 **B.** Generalists and specialists: **4.** No difference between residents/immigrants. The 208 wintering population of storks is composed of a mixture of ricefield specialists, dump specialists 209 and generalist individuals in the same proportions of residents and immigrants. 5. Foraging 210 *habitat use differs between residents/immigrants*. The wintering population of storks is composed 211 of a mixture of ricefield specialists, dump specialists and generalist individuals in different 212 proportions of residents and immigrants. Among generalists, residents and immigrants forage at 213 ricefields and dumps differentially. 214 **C.** *The role of age:* **6.** *No age effect.* Probabilities of foraging at ricefields by resident storks

are similar among age classes. 7. *Age effect*. Probabilities of foraging at ricefields by resident
storks increase with age.

Multievent capture-recapture models —*Multievent modelling of foraging strategy and residency status.* We applied a multievent modelling approach (Pradel 2005) able to evaluate the degree of individual consistency in foraging specialisation in relation to residency status

220	(biological hypotheses 1-5). We present a general multievent model for hypothesis 5 (see below).
221	The alternative hypotheses (1-4) were tested by alternative models fixing or constraining
222	parameters from the general model (Table 1). Models were built and fitted to the data using E-
223	SURGE 1.7.1 software (Choquet et al. 2009b). Model selection was based on the Akaike's
224	Information Criterion (AIC). Additionally, for each model j , we calculated the Akaike weight, w_i ,
225	as an index of its relative plausibility (Burnham and Anderson 2002).
226	The multievent framework distinguishes what can be observed in the field (the events
227	coded in the encounter histories) from the underlying biological states of the individuals, which
228	must be inferred (Pradel 2005). Here, the events were '0' (stork not observed on a particular
229	occasion), '1' (stork observed foraging in a ricefield) and '2' (stork observed foraging at a dump).
230	The general model included 7 underlying biological states: 6 states for live resident (R) and
231	immigrant (I) storks belonging to 3 different foraging strategies (see below), coded R1, R2, R3, I1,
232	I2 and I3; and one state for dead individuals, coded D. R1 and I1 represent individuals specialised
233	in ricefields, R2 and I2 represent individuals specialised in dumps, and R3 and I3 represent
234	generalist individuals. Exploratory analyses showed that apparent survival rate during the study
235	period was close to 1 ($\phi = 0.99999$). This is in agreement with the short duration of the study
236	period (80 days) and its timing (winter). Mortality and departure from the study area could
237	therefore be neglected. Thus, we analysed the population as a closed population, allowing an
238	increase in the precision of parameter estimates.
239	Multievent models use three kinds of parameters: the initial state probabilities, which
240	correspond in our model to the proportions of newly encountered resident/immigrant individuals

belonging to the different foraging strategy states (R1, R2, R3, I1, I2 and I3); the probabilities of

242	transition between the states (i.e., survival probability, which in this case was fixed at 1); and the
243	probabilities of the events, which here involve the probabilities of presence at the two trophic
244	subsidies (ricefields vs. dumps) and resighting probabilities. These parameters were estimated
245	simultaneously from whole encounter histories by maximum likelihood (Choquet et al. 2009b).
246	Matrix representations with departure states in rows and arrival states in columns are
247	commonly used in multievent models (see a detailed description in Appendix B and pattern matrix
248	in Supplement SP1 and SP2). We broke down the initial state probabilities into two steps: the first
249	step (residency status assignment, matrix 1) corresponded to the probability that a newly
250	encountered individual was a resident "R" (π) or an immigrant "I" (1- π) depending on the group
251	(g) in which the individual was previously classified. For the groups with known residency status,
252	π values were fixed at 1 for group 1 ("certain residents") and at 0 for group 2 ("certain
253	immigrants"). For group 3 ("uncertain"), the proportion of residents was estimated by the model.
254	$\begin{array}{cc} R & I \\ \text{Residency Status} = \begin{pmatrix} \pi_g & 1 - \pi_g \end{pmatrix} \text{ matrix } 1. \end{array}$
255	The second step corresponded to the individual foraging strategy adopted (matrix 2). The
256	corresponding probabilities denoted by β are conditional on the residency status (R=residents;
257	I=immigrants), thus allowing a differential mixture of foraging strategies at dumps and ricefields
258	between residents (R1, R2 and R3) and immigrants (I1, I2 and I3).
259	Foraging Strategy = $ \begin{array}{cccccc} R1 & R2 & R3 & I1 & I2 & I3 \\ R \begin{pmatrix} \beta_1 & \beta_2 & 1-\beta_1-\beta_2 & 0 & 0 & 0 \\ I & 0 & 0 & \beta_3 & \beta_4 & 1-\beta_3-\beta_4 \end{array} \right) \text{ matrix 2.} $
260	The event probabilities were broken down into two steps: the first step corresponded to the

261 daily probabilities of foraging in ricefields (α) and dumps (1- α) (matrix 3). They were allowed to

262 vary with residency status and foraging strategy. In the general model, α was fixed at 1 for the

ricefield specialists (R1, I1), at 0 for dump specialists (R2, I2) and α was estimated for generalists

264 (R3, I3), representing the daily percentage of generalists foraging in ricefields (Table 1).

			Ricefields	Dumps	
		R1	α_{I}	$1-\alpha_1$	
		R2	α_2	$1-\alpha_2$	
0.65	Foraging =	<i>R</i> 3	α3	$l-\alpha_3$	
265		<i>I</i> 1	α_4	$l-\alpha_3$	matrix 3.
		<i>I</i> 2	α_5	$l-\alpha_5$	
		<i>I</i> 3	α_6	$l - \alpha_6$	
		D	1	0	J

The second step involved foraging-habitat-specific probabilities of resighting (*p*) (matrix 4). Resighting probabilities in all models were left to vary between ricefields and dumps and over days (*t*) correcting for unbalanced field effort in both habitats (Appendix A). Additionally, we fixed resighting probabilities at 0 in those habitats and days without fieldwork (Appendix A). To avoid overparameterized models we only considered time effects on resighting probabilities. $\begin{pmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \\ Resighting = \frac{\text{Ricefields} \begin{pmatrix} 1-p_{1t} & p_{1t} & 0 \\ 1-p_{2t} & 0 & p_{2t} \end{pmatrix}}{\text{matrix 4}}$

Goodness-of-fit tests for multievent models have yet to be developed. The diagnostic goodness-of-fit for the most general model currently available is that of the general Arnason-Schwarz multisite model (Pradel et al. 2005), but this was not appropriate here, as this model, unlike ours, assumes Markovian transitions between sites. Instead, we ran the goodness-of-fit test from the Cormark Jolly Seber model (CJS) assuming full time variation of survival and resighting parameters common to the two types of feeding habitats. We ran this test with U-CARE 2.2.2 software (Choquet et al. 2009a). This test was statistically significant ($\chi 2$ =627.57, d.f.=366,

279	P<0.001) indicating that individuals tended to be detected on successive occasions (tests 2.CT and
280	2.CL: trap dependence-like effects, Pradel et al. (2005)). This was expected because of the
281	combination of unequal detectability in the two habitats and the correlation between observations
282	in the ricefields on successive days. Although unequal detectability was treated in our model, the
283	autocorrelation of observations in the ricefields remained untreated. Consequently, we decided to
284	conservatively apply an overdispersion inflation factor (c-hat) of 1.71 calculated as 627.57/366
285	(χ^2/df) , which is a reasonable value for a large dataset (Burnham and Anderson 2002).
286	Multievent modelling of resident age. The encounter histories of 161 known-age residents
287	were coded as in the previous analyses and an individual covariate indicating their age at the time
288	of this study (ranging from 3 to 18 years) was included. We developed a simpler multievent model
289	(Appendix B) in which the daily probability of presence at ricefields (α , matrix 5) was modelled as
290	a linear function of age (hypothesis 7) or as a constant (i.e., no age effects, hypothesis 6).

291 Ricefields Dumps Foraging = $\begin{array}{c} R & \alpha & 1-\alpha \\ D & 1 & 0 \end{array}$ matrix 5

In this analysis no uncertainty in residency status (all individuals were known residents) or different individual foraging strategies were considered. Consequently, individuals belonged to a unique departure state (R) and survival as in the previous model was fixed at 1 (Appendix B). Resighting probabilities were modelled as in the previous modelling approach (matrix 4). The goodness-of-fit of the CJS model was not statistically significant (χ 2=55.89, d.f.=70, P=0.89) indicating a good fit to the data.

298

RESULTS

Individual patterns of foraging according to residency status— Overall, 813 storks
 14

300	(1,332 band readings) were found only at ricefields, 621 individuals (896 readings) only at dumps,
301	and 250 individuals (800 band readings) were observed foraging in both habitats. While this
302	cannot be converted to absolute abundances of birds foraging on each type of food subsidy, it
303	firmly illustrates that the species behaved as a generalist forager. The best-supported model in
304	terms of QAICc was the general model (hypothesis 5, Table 2). Models considering alternative
305	hypotheses showed much larger QAICc values (hypotheses 1-4, Table 2). The selected model
306	(hypothesis 5, Table 2) estimated that 19% (8-40%) of the 782 individuals of uncertain origin
307	would actually be classified as "residents" (n=149), with the remaining uncertain individuals
308	classified as "immigrants" (n=633). This leads to mean estimates of 340 (i.e., 191+149) resident
309	and 1,344 (i.e., 711+633) immigrant marked storks wintering in the study area.
310	Resident individuals showed a high consistency in their choice of food subsidies: 72% (CI:
311	60-81%) of residents daily foraged exclusively in ricefields (i.e., were ricefield specialists, n=245
312	individuals), while the remaining individuals (28%, CI: 19-40%, n=95 individuals) behaved as
313	generalists. Among resident generalists using both foraging habitats during the study period, 31%
314	(CI: 18-49%) and 69% (CI: 51-82%) of individuals daily foraged in ricefields and dumps,
315	respectively. Dump specialisation did not occur among residents as the proportion of dump
316	specialists (R2 foraging strategy) was 0. In contrast, immigrants exhibited the three different
317	foraging strategies: 16% (CI: 9-18%) were ricefield specialists (n=215 individuals), 24% (19-31%)
318	were dump specialists (n=323 individuals) and 60% (CI: 50-68%) were generalists (n=805
319	individuals). 60% (CI: 52-67%) and 40% (CI: 33-0.48%) of immigrant generalists daily foraged in
320	ricefields and dumps, respectively. Consequently, on a daily basis, 81% of resident and 52% of
321	immigrant storks foraged in ricefields. These proportions lead to estimates of 710 marked storks

daily foraging in dumps (65 residents and 645 immigrants) and 974 marked storks daily foraging
in ricefields (275 residents and 699 immigrants).

The effect of age as a driver of individual specialisation— Resident storks showed higher probabilities of foraging in ricefields with age (Fig 2). Accordingly, the model considering an individual age effect on probabilities of foraging in ricefields was better supported in terms of AICc than the model without age effects (hypothesis 7 vs. hypothesis 6, Table 2). The effect of age was statistically significant, as confidence intervals of the beta estimate corresponding to the linear slope did not include zero (1.32, CI: 0.38-2.27).

Spatial foraging patterns— For individuals seen in at least two localities, the distance between the farthest pair of localities was slightly longer for immigrants than for resident individuals (average, range): 22.8, 3.5-116.0 Km, and 17.8, 3.5-72.2 Km, respectively (Mann-Whitney W = 6833, p = 0.09). This was due to the fact that distances between dumps (highly used by immigrants) were higher than distances between ricefields (Fig. 1). However, both immigrants and residents moved throughout the study area (Fig. 1).

336

DISCUSSION

337 Individual traits as drivers of foraging specialisation

338 The existence of intraspecific differentiation in niche or personality has received special attention

during the last decade (Bolnick et al. 2003, Araújo et al. 2011, Dall et al. 2012). Less is known,

however, about the ecological causes of individual specialisation (Araújo et al. 2011) or its long-

- 341 term evolutionary consequences (Dall et al. 2012). Here, we studied the role of individual traits
- 342 (residence status and age) on foraging specialisation under the optimal foraging theory framework
- 343 (Araújo et al. 2011). We found that at the population level wintering white storks in SW Spain16

344	used two anthropogenic food subsidies in large numbers as would be expected in an opportunistic
345	generalist species. However, individual storks were either specialists or generalists on their
346	foraging substrates (ricefields or dumps) during the study period (autumn-winter 2003). Although
347	our study reflects a specialisation on a particular foraging habitat type rather than on a specific diet
348	(i.e. prey items), crayfishes are the prey most frequently consumed by wintering white storks in
349	ricefields (ranging from 86% to 98 % in two different winters, Tablado et al. 2010). On the
350	contrary, storks can forage on a large variety of refuse items at dumps of likely lower nutritional
351	quality than that of crayfish, a prey very rich in carotenoids (Negro et al. 2000).
352	As predicted, residents were highly specialised in feeding at ricefields, with no residents
353	specialised in feeding at dumps. On the contrary, we found a slightly higher proportion of
354	immigrants specialising in dumps than in ricefields, but most immigrant individuals (60%) were
355	generalists. Moreover, diet preferences changed with age. According to our prediction, older
356	resident storks had a higher probability of foraging in ricefields than younger individuals,
357	suggesting that foraging skills in this particular habitat may increase with age and thus with
358	accumulated learning and experience in the area (Marchetti and Price 1989, Giraldeau and Caraco
359	2000). Wintering immigrants were similarly specialised on dumps and ricefields. High annual
360	fidelity to wintering areas observed in other long-lived birds (Sanz-Aguilar et al. 2012) could
361	explain the ricefield specialisation of some wintering immigrant individuals (as in residents)
362	through the acquisition of experience in the area. On the other hand, supplementary feeding
363	programs carried out in several European countries for the conservation of the species may have
364	habituated certain individuals to highly predictable food resources such as dumps (Doligez et al.
365	2004, Schaub et al. 2004, Massemin-Challet et al. 2006). A non-exclusive alternative hypothesis

366	would be that specialisation on dumps may only occur among juvenile immigrants. Note that
367	resident juvenile storks (younger than three years old) were not present in our sample. In fact, all
368	42 satellite-tracked juveniles born in the study area wintered in African quarters during their first
369	years of life (J. Blas, unpubl. data). This could also explain the lack of dump specialisation among
370	residents. Unfortunately, we have no data on the previous experience of immigrant storks
371	wintering in the study area to test this hypothesis.
372	Ecological implications and consequences of foraging specialisation
373	At the individual level, two studies on seabirds related the existence of individual foraging
374	specialisation on anthropogenic food subsidies with long-term fitness consequences: Northern
375	gannets, Morus bassanus, foraging on fisheries discards and Western gulls foraging on refuse
376	showed a lower body condition and lifetime reproductive success, respectively, than individuals
377	actively preying upon live fish (Annett and Pierotti 1999, Votier et al. 2010). In our study case, an
378	alternative but non-exclusive hypothesis to explain the age-related increased probability of
379	foraging in ricefields would be differential survival (Curio 1983, Marchetti and Price 1989); i.e., if
380	individuals consistently foraging in ricefields survive more, they would be overrepresented among
381	older age classes. However, since our study only covered one wintering season, further research on
382	long-term consistency of individual foraging specialisation and its potential demographic and
383	population effects is needed.
384	At the population level, the high availability of food resources at rubbish dumps throughout
385	the wintering and along the breeding range of white storks has promoted behavioural,
386	demographic and population changes in this (Tortosa et al. 1995, 2002, Doligez et al. 2004,
387	Schaub et al. 2005, Massemin-Challet et al. 2006) and other animal species (Oro et al. 2013).
	18

388	Moreover, selection processes (e.g., wintering mortality or nest failure) have been relaxed by
389	shortened migratory distances and greatly increased food availability (Tortosa et al. 2002, Schaub
390	et al. 2004). Our study model demonstrates the existence of both consistent (i.e., specialist) and
391	flexible (i.e., generalist) individual foraging strategies among the wintering population of white
392	storks in the Doñana marshlands. The existence of consistent individual behaviours has been
393	recognized as a driver of adaptation to new environments (i.e., new anthropogenic niches, Carrete
394	and Tella 2011, 2013). Moreover, individual experience (shaped by age and origin) seems to be
395	the most plausible mechanism responsible for differential use of subsidies. This has implications
396	for our understanding of how a population-level generalist species such as the white stork could
397	cope with anthropogenic habitat changes (Oro et al., 2013).
398	Doñana marshlands represent the most important European wintering area for the species
399	and numbers of immigrant storks largely exceed the number of residents. Although ricefields were
400	preferentially selected by resident storks, many individuals foraged daily at dumps; mainly
401	immigrants (48%) and young residents (Fig. 2). Storks at Doñana benefited from two
402	anthropogenic subsidies, but crayfishes are not available in other wintering areas. European
403	environmental policies are now directed at curtailing food accessibility (i.e., biodegradable waste)
404	to animals in rubbish dumps by 2016 (Directive 2001/77/EC), and an effect on wintering white
405	storks is expected (http://www.bto.org/science/migration/tracking-studies/stork-tracking).
406	Although white stork populations have grown spectacularly during the last two decades after
407	becoming endangered in the 1950-60's, several populations remain small (Thomsen and Hötker
408	2006).
409	Our results predict interesting consequences of potential dump management. Future food

410	limitations may have important consequences at the population level (Oro et al. 2013), with
411	wintering migrant storks from northern European populations being potentially more affected due
412	to the large number of wintering birds and their greater use of dumps. While dump closure could
413	appear to be a local phenomenon, our results suggest that it would directly affect stork populations
414	thousands of kilometres away (immigrant storks), rather than just the local population (Peters et al.
415	2007). However, immigrant storks were highly generalist at the individual level. Thus, an eventual
416	dump closure would increase the number of immigrant storks feeding on ricefields, increasing
417	competition and reducing resource availability for the resident population.
418	Methodological aspects and opportunities of multievent models
419	Repeated observations over time in individual foraging choices are essential to correctly study and
420	quantify the consistency of individual foraging specialisation (Bolnick et al. 2003, Araújo et al.
421	2011, Dall et al. 2012). However, perfect detection of individuals in natural conditions is often rare
422	or costly. Here, we developed for the first time a capture-recapture modelling approach to
423	calculate consistency in individual behaviour using capture-recapture data. This new method
424	allowed a robust quantification (including confidence intervals) of individual strategies with the
425	incorporation of imperfect detection of individuals. Additionally, we extended our modelling
426	approach to allow uncertainty in individual classification (which in other cases may correspond to
427	sex, breeding status or other factors, Pradel 2005, Frederiksen et al. 2013; see in particular
428	Gourlay-Larour et al. (2014) for another study separating immigrants from residents on a
429	wintering ground). In this way, we were able to estimate the proportion of resident individuals
430	missed despite intense breeding monitoring, a parameter currently impossible to derive with other
431	methods. Our model assumes that observations of the same individual on different dates are

432 uncorrelated and that individuals move independently of each other. This is probably not true as 433 individuals may preferentially return to a site where they were able to forage successfully and 434 individuals may also use the behaviour of conspecifics as clues to find suitable sites. These types 435 of dependency and any remaining heterogeneity among individuals beyond the factors 436 incorporated in our model (foraging strategy and residency status) are why goodness-of-fit tests were significant. When such non-structural departures are involved, the use of a variance inflation 437 438 factor protects against the detection of spurious effects at the expense of power (Burnham and 439 Anderson 2000). This is the approach we adopted. Moreover, our large numbers of individuals 440 with certain residency status allowed us to repeat the analyses without the individuals of uncertain 441 residency status with similar results, demonstrating the robustness of our multievent approach, 442 which deals well with uncertainty (Appendix B). The use of this approach is therefore useful when 443 sample sizes are logistically constrained and the proportion of individuals of uncertain 444 status/behaviours is necessarily large. A step-by-step description of the analyses is provided in the 445 supporting information with the aim of encouraging the application of our multievent model to 446 other studies.

This study emphasised the application of longitudinal data on replicated observations of
individual resource use over time for quantitative studies on individual foraging specialisation
(Araújo et al. 2011). Tracking technologies are becoming very valuable tools to monitor
individuals over large temporal and spatial scales (Millspaugh and Marzluff 2001), including
European storks (http://projekt-storchenzug.com/). However, sample size is usually small due to
high costs. In contrast, extensive marking programs, such as those carried out with European white
storks, allowed the identification and monitoring of a large number of individuals. Capture-

454 recapture methods were developed to estimate demographic parameters while accounting for 455 imperfect detection of individuals. Today, the flexibility of multistate and recently of multievent 456 models, as presented here, has allowed the study of additional parameters of interest (Clutton-457 Brock and Sheldon 2010, Frederiksen et al. 2013) and the incorporation of discrete individual 458 heterogeneity classes (i.e., finite-mixture models) in capture-recapture modelling (Pledger 2000, 459 Pradel 2005). Our study provides a robust new modelling approach for the study of individual 460 behavioural specialisation from non-invasive and imperfect individual resightings in the wild. 461 Further studies could also consider the potential dependence among individual decisions as white 462 storks usually gather at foraging sites forming large groups, both in our study area and in other 463 populations (e.g., Carrascal et al. 1990, Giraldeau and Caraco2000). However, models including 464 dependence among individuals forming groups have only been developed for fixed groups (with 465 individuals belonging to the same group during the whole study period, Choquet et al. 2013), and 466 further research is needed to determine the consistency of membership composition of foraging 467 groups in white storks. Nonetheless, survival parameters have been found to be robust when 468 dependence in recapture among individuals occurs (Choquet et al. 2013). 469 Acknowledgements – RJ is supported by a Ramón y Cajal research contract (RYC-2009-03967) 470 from the Ministerio de Ciencia e Innovación and ASA by a Juan de la Cierva research contract 471 (JCI-2011-09085). CJM was supported by the Swiss National Science Foundation (project 472 31003A-144162). We want to thank Juan Manuel Terrero and Francisco Gabriel Vilches for their 473 field work, Giacomo Tavecchia for statistical advice and Isabel Afán for figure editing. L. Zanette 474 and three anonymous reviewers provided useful suggestions to improve the manuscript. 475

LITERATURE CITED

- 476 Aguirre, JL. 2013. Cigueña blanca Ciconia ciconia. Pages 152–153 in J. C. del Moral B., Molina
- 477 A. Bermejo and D. Palomino, editors. Atlas de las aves en invierno en España 2007-2010.
- 478 Ministerio de Agricultura, Alimentación y Medio Ambiente-SEO/BirdLife. Madrid, Spain.
- 479 Annett, C. A., and R. Pierotti. 1999. Long-term reproductive output in western gulls:
- 480 consequences of alternate tactics in diet choice. Ecology 80:288–297.
- 481 Araújo, M. S., D. I. Bolnick, and C. A. Layman. 2011. The ecological causes of individual
 482 specialisation. Ecology Letters 14:948–958.
- 483 Baos, R., R. Jovani, D. Serrano, J. L. Tella, and F. Hiraldo. 2012. Developmental exposure to a
- 484 toxic spill compromises long-term reproductive performance in a wild, long-lived bird: The
 485 white stork (*Ciconia ciconia*). PloS ONE 7:e34716.
- Barbraud, C., J. Barbraud, and M. Barbraud. 1999. Population dynamics of the White Stork *Ciconia ciconia* in western France. Ibis 141:469–479.
- Blas, J., G. R. Bortolotti, J. L. Tella, R. Baos, and T. A. Marchant. 2007. Stress response during
 development predicts fitness in a wild, long lived vertebrate. Proceedings of the National
- 490 Academy of Sciences 104:8880–8884.
- 491 Bolnick, D. I., R. Svanbäck, J. A. Fordyce, L. H. Yang, J. M. Davis, C. D. Hulsey, and M. L.
- 492 Forister. 2003. The ecology of individuals: incidence and implications of individual
- 493 specialization. The American Naturalist 161:1–28.
- Burnham, K. P., and D. R. Anderson. 2002. Model selection and multi-model inference: a practical
 information-theoretic approach. Springer, New York, USA.
- Carey, M. P., B. L. Sanderson, K. A. Barnas, and J. D. Olden. 2012. Native invaders challenges
 for science, management, policy, and society. Frontiers in Ecology and the Environment
 - 23

498 10:373–381.

499	Carrascal, L.M., J.C. Alonso, and J.A. Alonso. 1990. Aggregation size and foraging behaviour of
500	White Storks Ciconia ciconia during the breeding season. Ardea 78:399-404.
501	Carrete, M., and J. L. Tella. 2011. Inter-individual variability in fear of humans and relative brain
502	size of the species are related to contemporary urban invasion in birds. PLoS One 6:e18859.
503	Carrete, M., and J. L. Tella. 2013. High individual consistency in fear of humans throughout the
504	adult lifespan of rural and urban burrowing owls. Scientific reports 3:3524.
505	Choquet, R., J. Lebreton, O. Gimenez, A. Reboulet, and R. Pradel. 2009a. U-CARE: Utilities for
506	performing goodness of fit tests and manipulating CApture-REcapture data. Ecography
507	32:1071–1074.
508	Choquet, R., L. Rouan, and R. Pradel. 2009b. Program E-SURGE: a software application for
509	fitting multievent models. Pages 845-865 in D. L. Thomson, E.G. Cooch, and M. J. Conroy,
510	editors. Modeling demographic processes in marked populations. Springer, Berlin, Germany.
511	Choquet, R., A. Sanz-Aguilar, B. Doligez, E. Nogué, R. Pradel, L. Gustafsson, and O Gimenez.
512	2013. Estimating demographic parameters from capture-recapture data with dependence
513	among individuals within clusters. Methods in Ecology and Evolution 4: 474–482.
514	Clutton-Brock, T., and B. C. Sheldon. 2010. Individuals and populations: the role of long-term,
515	individual-based studies of animals in ecology and evolutionary biology. Trends in Ecology &
516	Evolution 25:562–573.
517	Correia, A. M., and Ó. Ferreira. 1995. Burrowing behavior of the introduced red swamp crayfish
518	Procambarus clarkii (Decapoda: Cambaridae) in Portugal. Journal of Crustacean Biology
519	15:248–257.

520	Cortés-Avizanda, A., R. Jovani, M. Carrete, and J. A. Donázar. 2012. Resource unpredictability
521	promotes species diversity and coexistence in an avian scavenger guild: a field experiment.
522	Ecology 93:2570–2579.
523	Curio, E. 1983. Why de young birds reproduce less well? Ibis 125:400–404.
524	Dall, S. R., A. M. Bell, D. I. Bolnick, and F. L. Ratnieks. 2012. An evolutionary ecology of
525	individual differences. Ecology Letters 15:1189–1198.
526	Doligez, B., A. Van Noordwijk, and D. Thomson. 2004. Using large-scale data analysis to assess
527	life history and behavioural traits: the case of the reintroduced White Stork Ciconia ciconia
528	population in the Netherlands. Animal Biodiversity and Conservation 27:387–402.
529	Frederiksen, M., J. Lebreton, R. Pradel, R. Choquet, and O. Gimenez. 2013. Identifying links
530	between vital rates and environment: a toolbox for the applied ecologist. Journal of Applied
531	Ecology 51:71–81.
532	Giraldeau, L. A., and T. Caraco. 2000. Social Foraging Theory. 2000. Princeton University Press.
533	Gourlay Larour, M. L., R. Pradel, M. Guillemain, J. S. Guitton, M. L'Hostis, H. Santin-Janin, and
534	A. Caizergues. 2014. Movement patterns in a partial migrant: a multi-event capture-recapture
535	approach. PLOS One 9:e96478.
536	Granadeiro, J., P. Brickle, and P. Catry. 2013. Do individual seabirds specialize in fisheries'
537	waste? The case of black-browed albatrosses foraging over the Patagonian Shelf. Animal
538	Conservation 17:19–26.
539	Itonaga, N., U. Köppen, M. Plath, and D. Wallschläger. 2010. Breeding dispersal directions in the
540	white stork (Ciconia ciconia) are affected by spring migration routes. Journal of Ethology
541	28:393–397.

542	Jovani, R., and J. L. Tella. 2004. Age-related environmental sensitivity and weather mediated
543	nestling mortality in white storks Ciconia ciconia. Ecography 27:611-618.
544	Jovani, R., and J. L. Tella. 2007. Fractal bird nest distribution produces scale-free colony sizes.
545	Proceedings of the Royal Society B: Biological Sciences 274:2465-2469.
546	Kanyamibwa, S., A. Schierer, R. Pradel, and J. Lebreton. 1990. Changes in adult annual survival
547	rates in a western European population of the White Stork Ciconia ciconia. Ibis 132:27–35.
548	Marchetti, K., and T. Price. 1989. Differences in the foraging of juvenile and adult birds: the
549	importance of developmental constraints. Biological Reviews 64:51-70.
550	Massemin-Challet, S., J. Gendner, S. Samtmann, L. Pichegru, A. Wulgue, and Y. Le Maho. 2006.
551	The effect of migration strategy and food availability on White Stork Ciconia ciconia
552	breeding success. Ibis 148:503–508.
553	Millspaugh, J., and J. M. Marzluff. 2001. Radio tracking and animal populations. Academic Press.
554	Negro, J. J., J. L. Tella, G. Blanco, M. G. Forero, and J. Garrido-Fernández. 2000. Diet explains
555	interpopulation variation of plasma carotenoids and skin pigmentation in nestling white storks
556	Physiological and Biochemical Zoology 73:97–101.
557	Oro, D., M. Genovart, G. Tavecchia, M. S. Fowler, and A. Martínez-Abraín. 2013. Ecological and
558	evolutionary implications of food subsidies from humans. Ecology letters 16:1501–1514.
559	Peters D. P. C., O. E. Sala, C. D. Allen, A. Covich, and M. Brunson. 2007. Cascading events in
560	linked ecological and socioeconomic systems. Frontiers in Ecology and the Environment 5:
561	221–224.
562	Pledger, S. 2000. Unified maximum likelihood estimates for closed capture-recapture models

563 using mixtures. Biometrics 56:434–442.

- 564 Pradel, R. 2005. Multievent: an extension of multistate capture–recapture models to uncertain
 565 states. Biometrics 61:442–447.
- Pradel, R., O. Gimenez, and J. Lebreton. 2005. Principles and interest of GOF tests for multistate
 capture-recapture models. Animal Biodiversity and Conservation 28:189–204.
- Ramo, C., E. Aguilera, J. Figuerola, M. Máñez, and A. J. Green. 2013. Long-Term population
 trends of colonial wading birds breeding in Doñana (Sw Spain) in relation to environmental
 and anthropogenic factors. Ardeola 60: 305–326.
- 571 Rendón, M. A., A.J. Green, E. Aguilera, and P. Almaraz. 2008. Status, distribution and long-term
- 572 changes in the waterbird community wintering in Doñana, south-west Spain. Biological
- 573 Conservation 141:1371–1388.
- Robb, G. N., R. A. McDonald, D. E. Chamberlain, and S. Bearhop. 2008. Food for thought:
 supplementary feeding as a driver of ecological change in avian populations. Frontiers in
 Ecology and the Environment 6:476–484.
- 577 Sanz-Aguilar, A., A. Bechet, C. Germain, A. R. Johnson, and R. Pradel. 2012. To leave or not to
- 578 leave: survival trade-offs between different migratory strategies in the greater flamingo.
- 579 Journal of Animal Ecology 81:1171–1182.
- Schaub, M., W. Kania, and U. Köppen. 2005. Variation of primary production during winter
 induces synchrony in survival rates in migratory white storks *Ciconia ciconia*. Journal of
- 582 Animal Ecology 74:656–666.
- Schaub, M., R. Pradel, and J.-D. Lebreton. 2004. Is the reintroduced white stork (*Ciconia ciconia*)
 population in Switzerland self-sustainable? Biological Conservation 119:105–114.
- Tablado, Z., J. L. Tella, J. A. Sánchez-Zapata, and F. Hiraldo. 2010. The paradox of the long-term
 27

586 positive effects of a North American crayfish on a European community of predators.

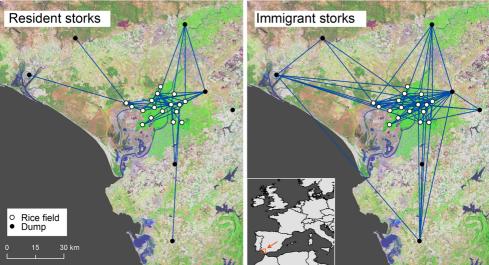
587 Conservation Biology 24:1230–1238.

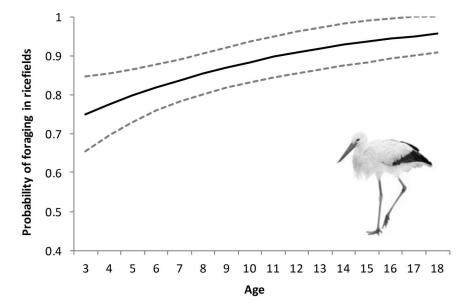
- 588 Thomsen, K., and H. Hötker. 2006. The sixth International white stork census: 2004–2005. Pages
- 589 493–495 in G. C. Boere, C. A. Galbraith, and D. A. Stroudm editors. Waterbirds around the
- 590 world. The Stationery Office, Edinburgh, UK.
- 591 Tortosa, F., J. Caballero, and J. Reyes-López. 2002. Effect of rubbish dumps on breeding success
 592 in the White Stork in southern Spain. Waterbirds 25:39–43.
- 593 Tortosa, F., M. Máñez, and M. Barcell. 1995. Wintering white storks (Ciconia ciconia) in South
- 594 West Spain in the years 1991 and 1992. Die Vogelwarte 38:41–45.
- 595 Votier, S. C., S. Bearhop, M. J. Witt, R. Inger, D. Thompson, and J. Newton. 2010. Individual
- 596 responses of seabirds to commercial fisheries revealed using GPS tracking, stable isotopes and
- 597 vessel monitoring systems. Journal of Applied Ecology 47:487–497.
- 598
- 599 Appendix A. Field work details.
- 600 Appendix B. Multievent analyses details.
- 601 Supplement SD1. Dataset: capture histories of all resident, immigrant and uncertain storks.
- 602 Supplement SD2. Dataset: capture histories of resident known-age storks.
- 603 Supplement SP1. Pattern files for the general model.
- 604 Supplement SP2. Pattern files for the simplified model for known-age residents.

Table 1. Multievent model constraints. Parameters fixed and/or constrained to be equal (=) or different (\neq). Notation: π is the probability that a newly encountered individual is a resident; β is the probability of adopting a foraging strategy by resident storks type 1 and 2 (β_1 , β_2) and immigrant storks type 1 and 2 (β_3 , β_4); α is the probability of foraging in ricefields of resident storks type 1, 2 and 3 (α_1 , α_2 , α_3) and immigrant storks type 1, 2 and 3 (α_4 , α_5 , α_6); group 1 and 2 correspond to storks recognized as residents and European immigrants, respectively.

Model	Initial State step 1	Initial State step 2	Event, step 1
Hypothesis 1	$\pi = 0$	$(\beta_1 = \beta_2 = \beta_3 = \beta_4) = 0$	$(\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = \alpha_5 = \alpha_6) = 0.5$
Hypothesis 2	$\pi = 0$	$(\beta_1 = \beta_2 = \beta_3 = \beta_4) = 0$	$\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = \alpha_5 = \alpha_6$
Hypothesis 3	π (group 1) = 1	$(\beta_1 = \beta_2 = \beta_3 = \beta_4) = 0$	$(\alpha_1=\alpha_2=\alpha_3)\neq(\alpha_4=\alpha_5=\alpha_6)$
	$\pi (\text{group } 2) = 0$		
Hypothesis 4	$\pi = 0$	$\beta_1 = \beta_3 \neq \beta_2 = \beta_4$	$(\alpha_1 = \alpha_4) = 1$
			$(\alpha_2 = \alpha_5) = 0$
			$(\alpha_3 \neq \alpha_6)$
Hypothesis 5	π (group 1) = 1	$\beta_1 {\neq} \ \beta_2 {\neq} \ \beta_3 {\neq} \ \beta_4$	$(\alpha_1 = \alpha_4) = 1$
	$\pi (\text{group } 2) = 0$		$(\alpha_2 = \alpha_5) = 0$
			$(\alpha_3 \neq \alpha_6)$

612 **Table 2**. Multievent capture-recapture modelling of white stork probabilities of foraging in


613 ricefields and dumps testing the effects of residency status and foraging strategy


- 614 (Hypotheses 1-5) and individual age (Hypotheses 6-7). Notation, np: number of estimable
- 615 parameters; QAICc: Akaike information criterion corrected for overdispersion and small
- 616 sample size; Δ QAICc: the QAICc difference between the current model and the one with
- 617 the lowest QAICc value; w_i: Akaike's weight.
- 618

Model	np	Deviance	QAICc	ΔQAICc	w _j
Hypothesis 1	74	14440.52	8596.51	258.13	0
Hypothesis 2	75	14402.66	8576.47	238.10	0
Hypothesis 3	78	14262.36	8500.74	162.36	0
Hypothesis 4	78	14051.93	8377.68	39.31	0
Hypothesis 5	82	13970.27	8338.37	0	1
Hypothesis 6	65	1127.96	1278.12	5.87	0.05
Hypothesis 7	66	1119.42	1272.25	0	0.95

- Figure 1. Study area in SW Spain (inset map, orange square and arrow) showing all
 localities where white storks were observed foraging in dumps and ricefields (white and
 black dots). Lines link pairs of localities sharing at least one individual stork.
 Figure 2. Probability of resident storks foraging in ricefields rather than in dumps during
 the 2003 wintering season in southern Spain (solid line) and CI (dashed line) related to
- 627 individual age.

