Coccolithophore productivity and surface water dynamics in the Alboran Sea during the last 25 kyr

B. Ausín^a; J-A. Flores^a; F-J. Sierro^a; M-A. Bárcena^a; I. Hernández-Almeida^b; G.

Francés^c; E. Gutiérrez-Arnillas^c; B. Martrat^d; J. O. Grimalt^d and I. Cacho^e

^aDepartment of Geology, University of Salamanca, La Merced, 37008 Salamanca, Spain.

^bInstitute of Geography and Oeschger Centre for Climate Change Research, University

of Bern, Erlachstrasse 9a, CH-3012 Bern, Switzerland.

^cDepartment of Marine Geosciences, University of Vigo, Campus As Lagoas –

Marcosende, 36310 Vigo, Spain.

^dDepartment of Environmental Chemistry. Institute of Environmental Assessment and

Water Research, Jordi Girona 18, 08034 Barcelona, Spain.

^eDepartment of Stratigraphy, Paleontology and Marine Geosciences, University of

Barcelona, Martí i Franquès, 08028 Barcelona, Spain.

Correspondence to: <u>b_ausin@usal.es</u>

Keywords: Coccolithophore productivity, SST, oxygen isotopes, Alboran Sea, Last Glacial Maximum, deglaciation.

1 Abstract

2 Coccolithophore productivity and surface water dynamics for the last 25 kyr in the Alboran 3 Sea (Western Mediterranean) are described in a study of high-resolution sedimentary records 4 from two cores, HER-GC-T1 and CEUTA10PC08, whose locations are currently characterized 5 by different hydrographic conditions. Fossil coccolithophore assemblages and oxygen isotopes and alkenone- and planktonic foraminifera-derived sea surface temperature (SST) records 6 7 allowed a reconstruction of the properties of the inflowing Atlantic Water (AW), which have 8 proved to be a primary control of the variations in productivity in the neighbourhood of the 9 Strait of Gibraltar. Other local factors, such as fluvial discharge, wind-induced and eddy-10 induced upwelling, are proposed to have influenced marine productivity in more distant areas. The entrance of cold and less saline AW during the stadials associated with Heinrich Events 2 11 12 and 1 prevented primary productivity, which increased along the Last Glacial Maximum, 13 probably due to a greater fluvial discharge. During Terminations 1a and 1b, the upper water column was affected by stratification, although wind-induced upwelling occurred locally. The 14 15 Bølling-Allerød was characterized by a gradual increase in productivity and the development of 16 the Organic-Rich Layer. Two phases of the Younger Dryas are recognized: a first phase, which was colder, followed by a second phase, which was warmer and wetter. Differences in 17 18 productivity between both locations during these two phases can be attributed to fluvial 19 discharge and the changing properties of the AW. Local hydrography, such as the dynamics of 20 the western anticyclonic gyre, gained greater importance in determining productivity and its 21 variations during the Holocene, which was the most productive period.

22

23 1. Introduction

The Alboran Sea is a transitional region where the Atlantic Water (AW) encounters the Mediterranean Sea. Within its small area, it exhibits most of the physical-biological interaction seen in the open ocean (García-Gorriz and Carr, 1999). Thus, current phytoplankton abundance and distribution in the Alboran Sea are governed directly by: (i) the physical, chemical and biological properties (rate of flow, SST, salinity content, nutrient concentration, etc.) of the AW
that enters the Strait of Gibraltar (Navarro et al., 2011), (ii) the hydrodynamic configurations
determined by the Atlantic Jet (AJ) and its two associated gyres, where vertical mixing is a
primary factor (Gómez et al., 2000; Echevarría et al., 2002; Navarro et al., 2011) and (iii)
upwelling processes determined by the westerly winds blowing along the south Iberian
continental shelf (Sarhan et al., 2000; Navarro et al., 2011).

In this study, the variations in primary productivity during the last 25 kyr are described byusing fossil coccolithophore assemblages and placing emphasis on local changes.

Because coccolithophores are strongly influenced by nutrient availability, SST and other environmental factors, fossil coccoliths are successfully used as a widespread proxy in paleoproductivity and paleoenvironmental reconstructions (Thierstein and Young, 2004). Apart from the specific biogeography of each species, coccolithophores are sensitive to coastal currents, gyres, eddies, river discharge, and upwelling (Baumann et al., 2005; Guerreiro et al., 2013) and hence their variability in the sedimentary records allows changes in the factors that determine their local production to be tracked over time.

We have studied material from two sites: core CEUTA10PC08, located at the entrance of the
Alboran Sea under the direct influence of the incoming AW, and core HER-GC-T1, located off
the coast of Malaga under the influence of the semi-permanent productive cell determined by
the geostrophic front of the Western Anticyclonic Gyre (WAG) (Ruiz et al., 2001) (Figure 1).

Along with the high-resolution fossil coccolithophore records from these two sites, SST reconstructions (derived from $U^{k'}_{37}$ and MAT- paleothermometers), oxygen isotopes, total concentration of C₃₇ alkenones and the *n*-hexacosan-1-ol index were used as tracers of the environment in which coccolithophores proliferated.

51 Our aim was to identify the local processes determining paleoproductivity in the western 52 Alboran basin for the last 25 kyr, together with the properties of surface (e.g. nutrient 53 availability, temperature and salinity variability) and deep waters (ventilation) in order to gain a 54 comprehensive understanding of the water column dynamics as a whole.

3

55

2. Study area and oceanographic setting

The Alboran Sea is the westernmost basin of the Mediterranean Sea, connected to the 56 57 Atlantic Ocean through the narrow Strait of Gibraltar (Figure 1a). The incoming surface flux of AW (the so-called Atlantic Jet (AJ)) describes two semi-permanent anticyclonic gyres (Figure 58 1): the Western and the Eastern Anticyclonic Gyres (WAG and EAG, respectively) (Heburn and 59 La Violette, 1990). The AW mixes with surface Mediterranean waters on its way to the east, 60 61 forming the Modified Atlantic Water (MAW) (0-200 m) (Figure 1b). At depth, Levantine 62 Intermediate Water (LIW) (200-800 m) flows along with Western Mediterranean Deep Water (WMDW) (800-3000 m) in the opposite direction, outflowing as the Mediterranean Outflowing 63 64 Water (MOW) (Figure 1b). At the northern edges of the anticyclonic gyres, the mixing of AW 65 and MAW produces a frontal system that favors vertical mixing and productive events, forming quasi-permanent areas of upwelling (García-Gorriz and Carr, 1999) (Figure 1a). 66

67

68

3. Materials and Methods

69 We analyzed two cores in the Alboran Sea: the gravity core HER-GC-T1 (36°22'12''N, 4°17'57''W; taken at 658.9 meters below sea level (mbsl)), and the piston core CEUTA10PC08 70 (36°1'22''N, 4°52'3''W; 914 mbsl) (Figure 1). Core HER-GC-T1 has a length of 374 cm and 71 72 consists of dark greenish-gray mud rich in calcareous oozes. Core CEUTA10PC08 is 648 cm 73 long and is mainly composed of brown silt-mudstone.

74 3.1. Age model

75 Fifteen radiocarbon ages for core CEUTA10PC08 (Table 1) and seven for core HER-GC-T1 76 (Table 2) were determined on picked for aminifera shells, using the accelerator mass 77 spectrometry (AMS) technique at the Poznan Radiocarbon Laboratory, the Center for Applied 78 Isotope Studies of University of Georgia, and the Woods Hole Oceanographic Institution. These ¹⁴C AMS ages were converted to calibrated calendar years using the OxCal 4.2 online software 79 (Bronk, 2008) and the curve of the calibration dataset Marine13 (Reimer et al., 2013), which 80 includes the correction of 400 yr for the global marine reservoir effect. The regional difference 81

82 from this global reservoir correction (ΔR) (Stuiver and Reimer, 1993) resulted in -22 ± 35 years (Siani et al., 2000) and was also considered. All dates reported here are given in calendar ages 83 84 BP. The age model for core CEUTA10PC08 was based on linear interpolation between these fifteen calendar ages (Table 1), performed with the AnalySeries Version 1.1 (Paillard et al., 85 1996). This age model covers from 25.5 to 4.5 ka (Figure 2). We assigned an age of 4.5 ka to 86 87 the core top (0 cm) since we assumed a constant sedimentation rate between the first dated 88 section and the core top. We are aware of the low accuracy of this assumption, but we consider 89 that this is more reliable than assuming an age of 0 ka at a depth of 0 cm. The resulting average sedimentation rate was found to be 37.4 cm kyr⁻¹. 90

The age model for HER-GC-T1 was also based on a linear interpolation between its respective seven calendar ages (Table 2). Three additional tie points (Table 2) were also considered. These were obtained by correlation between the oxygen isotopic records from this core and core CEUTA10PC08 (Figure 2), since the latter has a more accurate age model. The resulting age model covers from 23.5 to 0.09 ka (Figure 2) and the average sedimentation rate proved to be 16.6 cm kyr⁻¹.

97

3.2. Coccolithophore assemblage analysis

98 A total of 297 samples from core CEUTA10PC08 and 143 samples from core HER-GC-T1 99 were considered for coccolithophore analysis, respectively providing time resolutions of 65 and 100 165 yr, on average. Samples were prepared following the settling technique of Flores and Sierro 101 (1997). A minimum number of 500 specimens per sample were counted and identified using a 102 Nikon Eclipse 80-i petrographic microscope with a phase contrast device at 1000x 103 magnification. A second count of 20 fields of view was performed in order to accurately 104 estimate the abundance of rare species (those whose relative abundance was less than 1 % in the first count). The Relative abundance (%) and absolute abundance (number of coccoliths g⁻¹) of 105 106 each species were calculated for all samples. The total absolute abundance (total N) was also 107 calculated in each core as the sum of the absolute abundances of all the taxa in each sample

108 except reworked specimens. Total N was interpreted as an indicator of coccolithophore109 productivity.

All species identified and counted in this study have been reported previously in the study area (Weaver and Pujol, 1988; Colmenero-Hidalgo et al., 2004; Álvarez et al., 2010) and are listed in the Appendix. The species *Emiliania huxleyi*, *Gephyrocapsa aperta* and *Gephyrocapsa ericsonii* were lumped together as "small placoliths" (< 3 μm) in this study owing to their common ecological significance (Winter and Siesser, 1994). Reworked specimens were taxa pertaining to older stratigraphic levels (regularly older than the Pliocene in these records), and their abundance was studied via their percentages relative to the other taxa.

According to visual criteria (little or no evidence of dissolution; diagnostic characters fully
preserved) (Flores and Marino, 2002) the preservation of the coccoliths is good-to-moderate.
The distal shields of some specimens were seen to have been affected by a slight degree of
dissolution but this did not complicate their identification.

121 *3.3. Oxygen stable isotopes*

Up to 20 well-preserved specimens of the planktonic foraminifer *Globigerina bulloides* were picked from the >150 μ m size fraction in 315 samples from core CEUTA10PC08 and in 111 samples from core HER-GC-T1. Individuals were crushed, subjected to ultrasound, and cleaned with methanol before isotopic analyses were performed with a SIRA mass spectrometer at the University of Barcelona. Calibration to the Vienna Pee Dee Belemnite (VPDB) standard scale (Coplen, 1996) was accomplished using the NBS-19 standard, and analytical precision was better than 0.06 ‰ for δ^{18} O.

129 3.4. Planktonic foraminifera-based SST reconstruction

130 172 samples from core CEUTA10PC08 were selected and sampled every 4 cm for the 131 analysis of planktonic foraminifera. Samples were first wet-sieved through a 63- μ m mesh, and 132 then dry-sieved through a 150- μ m mesh. At least 350 specimens from a representative aliquot of 133 the >150 μ m sieved fraction were identified in each sample and the relative abundance (%) of 134 the species was calculated.

Multiple SST reconstructions using planktonic foraminifera census counts were performed in 135 order to determine the season and depth at which temperature variability appeared to be the 136 137 most important for the fossil assemblage from core CEUTA10PC08. On the basis of this 138 foraminifera census we performed a SST reconstruction using the modern analogue technique (MAT) (Prell, 1985). For the calibration we used the 862-site North Atlantic and Mediterranean 139 planktonic foraminifera census counts compiled by Kucera et al. (2005a). Summer, winter and 140 141 annual ocean temperatures for the calibration set sites were extracted at the 14 standard World Ocean Atlas (Locarnini et al., 2010) depths (between 10 and 500 m), using Ocean Data View 142 software (Schlitzer, 2008). The calculations for MAT were performed using C2 software 143 (Juggins, 2003). The statistical significance of the reconstructions at different depths was tested 144 145 following the procedure described by Telford et al. (2013) and performed using the palaeoSig 146 package v.1.1-1 (Telford, 2012) for R (R Development Core Team, 2011).

147

3.5. Molecular biomarkers and $U^{k'}_{37}$ -based SST

A set of 114 samples from core HER-GC-T1 was selected for the analysis of fossil organic 148 149 compounds (long chain alkenones, alcohols and hydrocarbons). A more detailed sampling was 150 carried on the first 2 m of the core, sampled every 2-3 cm, while the remaining 1.5 m of the core was sampled every 5 cm. The experimental procedures used are described in Villanueva et al. 151 152 (1997). Samples were analyzed with a Varian Gas Chromatograph model 450, a Cold On-153 Column Injector 1093 and a Flame Ionization Detector. The carrier gas was hydrogen (2.5 154 mL/min). The identification and quantification of the C₃₇ di- and tri-unsaturated alkenones, which are synthesized by coccolithophorid flora, allowed the calculation of the $U^{k'}_{37}$ index. In 155 156 order to measure SST, this index was calibrated using the equation proposed by Müller et al. (1998). The total concentration of C_{37} alkenones ([$C_{37:2}+C_{37:3}$]) was also calculated. The 157 158 resistance of vascular plant debris to degradation by oxygenation was examined via the relative 159 ratio between of *n*-hexacosan-1-ol ($C_{26}OH$) and the sum of ($C_{26}OH$) plus *n*-nonacosane (C_{29}) 160 (Martrat et al., 2007). The concentration of each compound was determined using n-161 hexatriacontane as internal standard.

162 **3.6.** Statistical analyses

The REDFIT spectral analysis method can be successfully used in unevenly sampled temporal data. PAST 3.01 software (Hammer et al., 2001) uses an implementation of the REDFIT procedure of Schulz and Mudelsee (2002). This method was applied to some of the proxies reported here in order to identify the dominant frequencies of their signals, as well as the red noise and the "false-alarm levels" (95% and 99%) based on parametric Chi-squared approximations at which periodicities are considered significant.

169 **4. Results**

170 *4.1. Coccolithophore assemblages*

171 Relative abundances were similar in both cores (Figure 3, 4). Small placoliths comprise up to 172 90 % of the fossil assemblage in some intervals while their relative abundance decreases to 40 173 % during the stadials associated with Heinrich Events 2 and 1 (H2 and H1). Gephyrocapsa 174 muellerae is relatively more abundant up to H1, while Gephyrocapsa oceanica and 175 Florisphaera profunda (Figure 3) begin an increasing trend from the Bølling-Allerød (B-A) 176 onwards up-core. The relative abundance of reworked specimens is higher up to the B-A (Figure 3i, j), showing two peaks of up to 25 % during H2 and H1 in core CEUTA10PC08. 177 *Emiliania huxleyi* (> 4 μ m), *Helicosphaera* spp., and *Syracosphaera* spp. show coeval peaks of 178 179 relative abundance during H2 and H1 (Figure 4). The relative abundance of *Oolithotus fragilis* 180 in both cores and of Umbellosphaera irregularis in core CEUTA10PC08 peaks during T1a (Figure 4g, h, i). These species undergo an increasing trend from the onset of the YD onwards 181 182 in both cores.

The absolute abundance of small placoliths increases up-core in both records (Figure 3a, b), except during H2 and H1, where they reach low values. *G. muellerae* shows an increasing trend from 9 ka up-core in core CEUTA10PC08 (Figure 3c), while in core HER-GC-T1, it shows several peaks of high values from 20 to 17.3 ka and from 16.2 to 12.8 ka. *G. oceanica* shows very low values until the onset of Termination 1a (T1a) in both cores (Figure 3e, f). From that time up-core, this species shows an increasing trend in core CEUTA10PC08 while several 189 peaks of lower values are seen in core HER-GC-T1. The values of F. profunda (Figure 3g, h) 190 are very low until the onset of T1b in both cores, showing an increasing trend from 11 ka up-191 core in core CEUTA10PC08 (Figure 3g) and an increasing trend and large oscillations from 7.7 192 ka up-core in core HER-GC-T1 (Figure 3h). The absolute abundance of *E. huxleyi* (> 4 µm) 193 peaks at the onset of H2 in core CEUTA10PC08 and shows higher values from 19.5 to 17.5 ka 194 in both cores and during H1 (Figure 4a, b). In core HER-GC-T1 this species also shows a peak 195 during the YD. In core CEUTA10PC08 the absolute abundance of Helicosphaera spp. and 196 Syracosphaera spp. (Figure 4c, e,) peaks during the H2 and the YD. From the onset of the T1b, 197 Syracosphaera spp. displays an increasing trend and high values, while *Helicosphaera* spp. 198 shows several peaks but no remarkable trend. In core HER-GC-T1, the profiles of both species 199 display low values (Figure 4d, f). In core CEUTA10PC08, O. fragilis and Umbellosphaera spp. 200 (Figure 4g, i) have higher absolute abundances during T1a and show an increasing trend from 201 12.5 ka up-core, with maximum values between 8.5 and 6.5 ka. In core HER-GC-T1, the 202 absolute abundance of O. fragilis shows an increasing trend and high variability from T1a up-203 core (Figure 4h), while Umbellosphaera spp. increases from 10 to 8.4 ka and follows a 204 decreasing trend from that time along the Holocene (Figure 4i).

The total N profiles of both cores (Figure 5d, e) show similar general trends: low values from 206 25 to 15 ka and a peak at 18.8 ka, an increasing trend and high variability from 15 to 7.5 ka, and 207 high values and marked variability from 7.5 ka up-core. It is worth noting that total N absolute 208 values in core CEUTA10PC08 are double those found in core HER-GC-T1.

209 4.2. Oxygen Isotope Record

Common overall patterns are observed in both records (Figure 5b): higher values from 23.5 to 17.5 ka, a trend to lower values from 23.5 to 10 ka, and lower values from 10 to 4.5 ka (minimum values being seen at 8 ka). The last 4.5 ka are only available in the oxygen isotopic profile of core HER-GC-T1, which is stabilized and shows no remarkable trend.

With regard to short-term changes, a fast depletion (0.9 ‰) is seen during H2, a period only
available in core CEUTA10PC08. In addition, both records are punctuated by depletions at 21

ka (1.6 %), at 19 ka (better seen in core CEUTA10PC08), at 16.2 ka during the H1 (0.5 ‰ in

217 core HER-GC-T1 and 0.9 % in core CEUTA10PC08), and at 15 ka during T1a (1.6 %).

218 *4.3. Sea Surface Temperature (SST)*

219 *4.3.1. Planktonic foraminifera-based SST reconstruction: calibration depth and significance*

Planktonic foraminifera live in a broad range of depths in the upper ocean. Therefore, the reconstruction that best explains the variability in the fossil record reflects the depth and season that most influenced the faunal composition. Telford et al. (2013) demonstrated that planktonic foraminifera-based SST reconstructions calibrated against a fixed depth may be biased if the thermal structure of the upper ocean changed over time. We assessed the most suitable calibration depth and season for use in the reconstruction by analysing the proportion of variance in the fossil data explained by reconstructions derived for each of them (Figure 6a).

227 In order to test the statistical significance of the SST reconstruction in core CEUTA10PC08 228 we used the method proposed by Telford and Birks (2011). This reconstruction is compared 229 with 999 alternative models trained with random environmental variables. Figure 6a shows that 230 the reconstruction of warm season temperatures at 10 m depth (Figure 6c) explains 39 % of the 231 down-core variance, and indeed explains more variance than the alternative models (95 % 232 significance level at 0.1) (Telford and Birks, 2011). These results may possibly reflect the 233 notion that shallow-dwelling taxa bearing photosynthetic symbionts that are constrained to the 234 upper photic-zone (e.g. G. bulloides and Globigerinoides ruber) are more abundant in the fossil 235 assemblage, and statistically more significant in the reconstruction. The amount of variance 236 explained by the reconstructions from core CEUTA10PC08 declines with depth (Figure 6a).

Squared chord distances between all modern assemblages were calculated to identify dissimilarities between modern and fossil assemblages. Figure 6b shows that most of the fossil assemblages are below the 5th percentile (minimum dissimilarity) and none are above the 10th percentile (square chord distance of 21.8; non-analogue assemblages) of all distances between calibration set assemblages (Overpeck et al., 1985), indicating good analogue quality for the reconstruction. The highest dissimilarity values are seen around 10 ka and 17 ka. 243 MAT-estimated summer-SST (Figure 5c) dropped during H2 from 15.2 °C to its minimum 244 value of 10 °C SST, and then increased and oscillated around 15.5 °C during the LGM. Lower 245 values are recorded during H1, while an increase of 6 °C is seen during T1a. SST fell by 2 °C at 246 the onset of both the B-A and YD and fell again by 4.7 °C at the onset of T1b followed by a 247 rise of 8 °C from 10.5 to 9.5 ka. During the Holocene, SST oscillated slightly around 22 °C.

248 4.3.2. Alkenone-based SST reconstruction

249 The $U_{37}^{k'}$ -estimated SST from core HER-GC-T1 (Figure 5c) shows low values from 23.5 ka to the onset of the T1a, its absolute minimum (11.1 °C) being seen at 21.2 ka. During T1a, SST 250 records a fast rise of 3.6 °C and plateaus during the first 1,000 yr of the B-A. SST drops by 2.5 251 °C at 13.5 ka and shows lower values during the YD followed by a rise of 5.2 °C down to 9 ka, 252 253 its maximum value being reached (20.1 °C) at that time. From 9 ka up-core, SST records a 254 decreasing, smooth and constant general trend.

255

4.4. Total concentration of C_{37} alkenones and the *n*-hexacosan-1-ol index

256 The total concentration of C_{37} alkenones (Figure 5f) drops from 23.5 to 22.5 ka and during 257 H1. A sharp increase is seen at 15 ka, peaking during the B-A, and showing high values until 258 9.5 ka. From that time up-core it shows several peaks of low values.

259 The general trend of the *n*-hexacosan-1-ol index from core HER-GC-T1 (Figure 5g) 260 decreases from 23.5 to 7.5 ka, interrupted by several peaks, such as that observed during the B-261 A. At 7.5 ka this profile reaches its lowest values, undergoing an increasing trend from that time 262 up-core.

263 4.5. Spectral analyses

264 Spectral analyses results are shown in Table 3, revealing several centennial and millennial 265 cyclicities significant at the 0.01 and 0.05 confidence levels. Common periodicities (~ 175 ± 5 266 yr) for the coccolithophore and the oxygen isotopic records are found in core CEUTA10PC08. 267 This periodicity is not seen in core HER-GC-T1, where SST, oxygen isotopes and some of the coccolithophore records show a different common cyclicity (~ $440\pm$ 50 yr). 268

5. Discussion 269

270 5.1. Stadials associated with Heinrich Events 2 and 1 (H2 and H1)

E. huxleyi (> 4 μ m) peaks during H2 (only recorded by core CEUTA10PC08) (Figure 4a), as well as during H1 in both cores (Figure 4a, b), pointing to colder conditions, since it is considered a cold SST paleoindicator (Colmenero-Hidalgo et al., 2002; Colmenero-Hidalgo et al., 2004). These peaks are concurrent with a drop of 5.2 °C during H2 (Figure 5c) and decreases of 2 °C and 1.3 °C in core CEUTA10PC08 and core HER-GC-T1, respectively, during H1 (Figure 5c), pointing to a colder SST during these events of northern ice surges.

Peaks of *E. huxleyi* (> 4 μ m) match negative excursions of δ^{18} O from both records (Figure 277 278 5b). These isotopic depletions, not expected from the drops in SST, have been extensively 279 explained as low-salinity surface waters entering the Alboran Sea, linked to massive North 280 Atlantic iceberg melting (Cacho et al., 1999; Sierro et al., 2005; Melki, 2011). Smaller peaks of 281 Syracosphaera spp. and Helicosphaera spp. are seen during these periods (Figure 4c, d, e, f). 282 The absolute abundance of Syracosphaera spp. has been reported as a fresh-water input 283 indicator (Bukry, 1974; Weaver and Pujol, 1988), while the isolated appearance of H. carteri 284 has been linked to high-productivity waters in other paleoceanographic works (Giraudeau, 285 1992; Flores et al., 1997), records from sediment traps (Hernández-Almeida et al., 2011) and surface sediment samples (Álvarez et al., 2010). However, this latter statement is at variance 286 287 with the scant absolute abundance of small placoliths (Figure 3a, b), well-established classic 288 indicators of high-nutrient availability (Okada and Honjo, 1973). We interpreted coeval peaks of 289 Syracosphaera spp. and Helicosphaera spp. as being linked to the low-salinity inflowing AW. 290 Simultaneous peaks of both species have been interpreted as less saline waters by other authors 291 in the study area (Flores et al., 1997; Colmenero-Hidalgo et al., 2004) and in other latitudes 292 (Álvarez et al., 2005; Flores and Sierro, 2007; Scherer et al., 2008; Maiorano et al., 2009). Thus, 293 it is reasonable to assume that E. huxleyi (> 4 μ m) would have also found optimal conditions for 294 its development not only in cold but also in low-salinity waters.

The total N from both cores (Figure 5d, e) shows its lowest values, revealing low productivity. This is in agreement with inflowing cold and less saline waters, which are expected to have promoted stratification of the upper layers and hampered upwelling. As a
consequence, only *E. huxleyi* (> 4 µm), *Syracosphaera* spp. and *Helicosphaera* spp. would have
bloomed.

300 The relative abundance of reworked nannofossils in core HER-GC-T1 shows several peaks 301 but low values between H2 and H1 (Figure 3j), while in core CEUTA10PC08 two striking 302 peaks are seen at the beginning of these stadials (Figure 3i). The different patterns mean that 303 near-bottom redistribution of the material between both locations can be discarded. Downward 304 transport from the exposed continental margin could account for the arrival of reworked 305 material to the HER-GC-T1 core location. This mechanism proved to be useful to explain 306 particle flux distribution in the Malaga area (Fabres et al., 2002; Masqué et al., 2003) and was 307 invoked by Flores et al. (1997) and Colmenero-Hidalgo et al. (2004) to explain the higher 308 relative abundance of reworked specimens during more arid periods in the study area. Although 309 the large peaks of reworked specimens found in core CEUTA10PC08 could be also explained 310 with this mechanism, transport and deposition by deep-water currents is another reasonable 311 interpretation. Located farther from the continental margin, core CEUTA10PC08 was retrieved 312 from an elongated-separated drift that is associated with a moat. Seismic stratigraphic sequences 313 studies show that the acceleration of the deep-water currents eroded the moat, depositing the 314 resuspended material over the core location (pers. com., Ercilla, 2014). In keeping with this 315 hypothesis, Frigola et al. (2008) found high thermohaline circulation during the stadials 316 associated with the Heinrich Events. Nevertheless, it is not possible to rule out downward 317 transport from the continental margin as another likely explanation.

The *n*-hexacosan-1-ol index from core HER-GC-T1 (Figure 5g) fell during H1, suggesting higher deep-water ventilation, probably due to high paleocurrent intensity during the early and late phases of the Heinrich Events (Frigola et al., 2008). From 16.2 ka this index underwent an increasing trend, pointing to a worsening of the deep-water ventilation, coeval with an isotopic depletion (Figure 5c), and in line with the slowdown of the thermohaline circulation reported by Sierro et al. (2005) and Frigola et al. (2008) for several Heinrich Events attributed to the entry of less saline waters. We conclude that these conditions would have affected productivity
strongly, encouraging upper water column stratification and preventing the upwelling of
nutrient-rich waters during H2 and H1 (Table 4).

327 5.2. Last Glacial Maximum (LGM)

During this period, defined between 23-19 ka following MARGO (Kucera et al., 2005b), the 328 329 SST was higher than in the previous H2 and the following H1 (Figure 5c). Productivity rose 330 along the interval at both locations, as shown by higher values of total N (Figure 5d, e). The 331 absolute abundance of G. muellerae increased substantially in both records between 21 and 18 332 ka (Figure 3c, d). Its relative abundance has been used as a cold-water indicator in the study 333 area (Weaver and Pujol, 1988). However, it should be noted that the use of percentages to 334 describe species variability over time must be taken with caution since they are only a relative 335 measure. The lack of agreement among the general patterns of the absolute abundance of G. 336 *muellerae* and SST profiles suggests that the former cannot be controlled only by the latter. 337 Studies from sediment trap samples in the study area (Bárcena et al., 2004; Hernández-Almeida 338 et al., 2011) have revealed the highest fluxes of G. muellerae during upwelling periods, 339 controlled directly by colder and highly fertilized waters, as we proposed here. In addition, in 340 core CEUTA10PC08 this rise is coeval with smaller peaks of small placoliths and H. carteri 341 (Figure 4c), pointing to productive waters.

342 From 19.5 to18 ka, peaks of *E. huxleyi* (> 4 μ m) are seen in both records (Figure 4a, b), 343 possibly indicating cold and less saline surface waters, as pointed out in section 5.1., via 344 inflowing AW and/or due to the pooling of water from fluvial discharges. Stanford et al. (2011) 345 deduced meltwater release events in northern latitudes at ~ 19 ka, although their effect in lower 346 latitudes remains unknown. With regard to cold conditions, some authors have found that the 347 Alboran Sea was several degrees colder than the Atlantic side of the Strait of Gibraltar and the 348 eastern Mediterranean basin during the LGM (Hayes et al., 2005; Essallami et al., 2007; 349 Kuhlemann et al., 2008). Owing to the local nature of this cooling, it seems unlikely that inflowing Atlantic waters could account for the bloom of cold and less saline water species, 350

351 river discharges being a reasonable explanation. This mechanism is a possible nutrient source in 352 keeping with the enhanced productivity at that time, since less saline waters are expected to 353 favor upper water column stability and hence to hinder the upwelling of deeper waters. We 354 therefore propose that an increase in river discharges would have occurred between 21 and 18 ka, favored by wetter conditions during the LGM (Table 4). This interpretation is in agreement 355 356 with studies of pollen records (Fletcher and Sánchez Goñi, 2008; Combourieu-Nebout et al., 357 2009; Fletcher et al., 2010) and model-data comparisons (Kageyama et al., 2005), where the authors report more humid conditions during the LGM in the Alboran Sea as compared with the 358 359 previous H2 and the following H1.

The C_{37} alkenone profile (Figure 5f) points to an increase in organic matter preservation between 21 and 18 ka, although the *n*-hexacosan-1-ol index (Figure 5g) shows a trend towards increasing deep-water ventilation along this time span. This discrepancy may be due to the aforementioned high productivity that, despite better ventilation of the deep basin, could have hindered the mineralization of organic matter.

365 *5.3. Termination 1a (T1a)*

366 Total N from both cores increases during T1a (Figure 5d, e), indicating increasing productivity, although absolute values are still low. Simultaneous prominent SST rise and 367 368 oxygen isotope depletion suggest warmer conditions (Figure 5c) coeval with a transition from cold-water coccolithophorid flora (E. huxleyi (> 4 µm)) to warm-water and oligotrophic flora: 369 370 O. fragilis and Umbellosphaera spp. (McIntyre and Bé, 1967; McIntyre et al., 1970; Okada and Honjo, 1973; Colmenero-Hidalgo et al., 2004) (Figure 4). Interestingly, this transition is more 371 visible in core CEUTA10PC08 (Figure 4a, g, i), where higher the SST matches increases in 372 373 warm-water taxa. By contrast, in core HER-GC-T1 the peaks of these taxa are smaller (Figure 374 4h, j) and G. muellerae shows a conspicuously increasing trend (Figure 3d), suggesting 375 enhanced productivity.

Two mutually exclusive scenarios are proposed to explain the discrepancies between theCEUTA10PC08 and HER-GC-T1 sites as regard coccolithophore production:

378 (I) Blowing westerly winds near the coast of Malaga would have induced local upwelling 379 of cold nutrient-rich waters, favoring the blooming of G. muellerae and hampering the 380 appearance of warm-water taxa. However, a relatively warm and poor-nutrient AW entering 381 through the Strait would have promoted the increase in oligotrophic and warm-water taxa at the 382 CEUTA10PC08 core location. This configuration is illustrated by the SST satellite images shown in figure 4 in Macías et al. (2008). Regarding this issue, it is worth mentioning that these 383 384 authors found a significant negative correlation between mean nutrients concentration and the SST. 385

(II) A northward migration of the AJ along the northern edge of the Alboran Sea would
have carried colder and nutrient-rich AW to the HER-GC-T1 core location. By contrast, at the
CEUTA10PC08 core location, the warmer and impoverished-nutrient MAW would have
allowed the development of warm-water and oligotrophic taxa. The satellite SST images shown
in figure 7 in Macías et al. (2008) illustrates this hypothesis.

It is widely accepted that the contemporary hydrographic conditions with distinct geostrophic fronts separating the AJ from ambient Mediterranean waters occurred at around 8 ka (Rohling et al., 1995; Pérez-Folgado et al., 2003; Colmenero-Hidalgo et al., 2004), when the AW inflow rate was close to its present value. Although hypothesis II cannot be discarded, we consider that hypothesis I is a more plausible scenario (Table 4).

396 The *n*-hexacosan-1-ol index increased until 15 ka (Figure 5g), indicating a weakening of the deep-water ventilation. From 15 ka, the total concentration of C₃₇ alkenones shifts to higher 397 398 values, determining the onset of the well-known organic-rich layer (ORL 1) (Sierro et al., 1998; 399 Cacho et al., 2002; Rogerson et al., 2008) that spans 5,500 yr in our records. Sierro et al., (1998) 400 and Colmenero et al., (2004) described T1a as an interval with a stratified water column due to 401 the input of deglacial waters during the sea-level rise. This scenario would have prevailed across 402 the basin, supporting the notion that the wind-induced upwelling in the HER-GC-T1 area was 403 local.

404 5.4. Bølling-Allerød (B-A)

16

405 Total N from both cores shows an increasing general trend, suggesting a rise in productivity 406 along this period (Figure 6d, e). In core CEUTA10PC08, G. oceanica, O. fragilis, and 407 Umbellosphaera spp. (Figure 3e, 4g, i) show higher absolute and relative abundances, while in 408 core HER-GC-T1 the absolute abundance of G. muellerae increases substantially (Figure 3d). In 409 the former core, the SST persisted at the same level from 13.5 to 13 ka, while it underwent a 410 decreasing trend in core HER-GC-T1 (Figure 5c). Local factors such as river discharge or local 411 upwelling likely promoted a SST decrease and a productivity rise at the HER-GC-T1 core 412 location off the coast of Malaga, while the CEUTA10PC08 core location conditions remained 413 steady.

414 The total concentration of C_{37} alkenones reached its maximum values along the B-A (Figure 415 5f), indicating the high content and good preservation of organic matter that characterizes the 416 ORL1 (Cacho et al., 2002). This interval corresponds to high insolation (Figure 5a), relatively 417 high SST (Figure 5c), and an impoverishment of the oxygen content in deep seawater as shown by the peak of *n*-hexacosan-1-ol index (Figure 5g) (Table 4). Several authors have reported a 418 419 similar scenario along with progressively humid conditions, higher river discharge, and a stable 420 water column (Bárcena et al., 2001; Frigola et al., 2008; Fletcher et al., 2010; Rodrigo-Gámiz et al., 2011). These combined conditions, together with increasing productivity along the period, 421 422 are sufficient to provide organic matter to the sediment and hamper mineralization. However, 423 the process of ORL formation might not necessarily be so simple. Rogerson et al., (2008) 424 studied multiproxy records from four cores in the Alboran Sea and concluded that ORL1 425 formation was due to a combination of reduced-density surface waters and a shoaling of the interface between intermediate and deep waters, while primary productivity was suggested to 426 427 act as a secondary control.

428 5.5. Younger Dryas (YD)

The cooling associated with this interval is marked by a SST drop of 2 °C in core CEUTA10PC08 and lower SST values in core HER-GC-T1 (Figure 5c). In general terms, the total N profiles from both cores show high values pointing to high productivity (Figure 5d, e), in 432 agreement with previous fossil diatom and coccolithophore records (Bárcena et al., 2001;433 Colmenero-Hidalgo et al., 2004).

434 In greater detail, the SST profiles point to the occurrence of two steps during the YD: a first 435 colder one (named here as YDa), from 13 to 12.5 ka, and a second warmer one (YDb), from 436 12.5 to 11.7 ka. Cool/arid and warm/humid conditions have been respectively invoked to describe the YD as a two-phase interval in the Mediterranean Sea (Cacho et al., 2002; Sbaffi et 437 438 al., 2004; Combourieu-Nebout et al., 2009; Rodrigo-Gámiz et al., 2011). Coccolithophore 439 abundances and variability also point to both phases, although differing from one core to the other, probably representing more local features than the general superimposed arid/dry and 440 441 warm/humid conditions.

During YDa, core CEUTA10PC08 reflects a drop in SST (Figure 5c) and in the total N profile (Figure 5d) and coeval peaks of the absolute abundance of *Syracosphaera* spp. and *Helicosphaera* spp. (Figure 4c, e). Such a scenario likely represents the entrance of colder and less saline AW, promoting a steady water column and hampering upwelling pulses. In core HER-GC-T1 total N values drop and then recover at the end of this phase (Figure 5e), while *G. muellerae* shows high absolute abundance (Figure 3d), pointing to a local productivity pulse in that area (Table 4).

449 During YDb, core CEUTA10PC08 shows higher SST values (Figure 5c), small peaks of 450 warm-water/oligotrophic taxa (Figure 4g, i), and a small drop in the total N profile, although the absolute values are still high (Figure 5d). This was probably due to the entrance of warmer and 451 452 relatively nutrient-poor AW. Core HER-GC-T1 shows an initial drop in the total N profile, followed by rising values during YDb (Figure 5e). Peaks of E. huxlevi (> 4 µm) (Figure 4b) 453 454 suggest local colder and less saline surface waters, expected to produce upper water column 455 stratification. Therefore, an external nutrient source is necessary to explain the increase in local 456 productivity. A feasible hypothesis would be the discharge of colder waters by rivers flowing 457 into the study area (Guadalfeo River and Guadalhorce River (Figure 1)). Rodrigo-Gámiz et al., (2011) described YDb as a wetter phase affected by an increase in local river discharge with 458

459 increased fluvial erosion. In this situation, rivers would account for the nutrient input into the 460 stratified upper water layer, as proposed by Bárcena et al. (2001) from the study of fossil diatom 461 assemblages.

462 Although the *n*-hexacosan-1-ol index plateaus (Figure 5g) indicate constant deep-water 463 ventilation, C₃₇ alkenones decrease gradually (Figure 5f), pointing to thermohaline reactivation, 464 as suggested by previous authors (Sierro et al., 1998; Rodrigo-Gámiz et al., 2011) (Table 4).

465

5.6. Termination 1b (T1b)

466 The SST reconstruction from both cores reveals opposite trends and points to a gradient of 5 °C between locations (Figure 5c). However, similar discrepancies have been found on 467 comparing the SST profiles obtained with both methods (alkenones and MAT) from the same 468 469 core (MD45-2043 in the Alboran Sea) for this period (Pérez-Folgado et al., 2003). Moreover, 470 comparison of δ^{18} O profiles (Figure 5b) does not reflect substantial offsets. These findings rule out geographical involvement and point to the different nature of the methods (i.e. ecological 471 472 repercussions from the different planktonic groups employed) used to account for these discrepancies. The isotopic profiles from both cores (Figure 5b) are in agreement with- $U^{k'_{37}}$ -473 474 estimated SST (Figure 5c), while the highest dissimilarity (although still good) between modern 475 and fossil assemblages is seen for the MAT-estimated SST during this period (Figure 6b). It 476 seems likely that the SST drop recorded by the MAT-estimated SST profile would be an 477 understimation inherent to the methodology used.

478 Nevertheless, total N profiles from both cores (Figure 5d, e) reveal high productivity. The post-glacial sea level rise (Bard et al., 1996) is expected to have prompted a deepening of the 479 480 nutricline (Colmenero-Hidalgo et al., 2004). Therefore, nutrient input from deeper water layers 481 (i.e. upwelling or vertical mixing) can be discounted as a process responsible for maintaining 482 primary productivity. Eutrophic conditions could have been promoted by a higher rate of inflow 483 of AW enriched in nutrients. The opportunistic and eurithermal small placoliths (Okada and 484 Wells, 1997) would bloom to the detriment of warm-water/oligotrophic taxa, despite the warmer SST (Figure 5c). River runoff is another possible nutrient source, but does not exclude 485

19

the previous one. Increased rainfall and more humid conditions during T1b were deduced from geochemical ratios by Frigola et al. (2008). We propose that fertilization by the inflowing AW and/or river discharge would have provided enough nutrients to maintain productivity in the photic zone despite of the stratification of the water column (Table 4).

490 In agreement with this scenario, the *n*-hexacosan-1-ol index (Figure 5g) increases slightly 491 and the total concentration of C_{37} alkenones levels off (Figure 5f), i.e., deep-water ventilation 492 declines while organic matter preservation remains steady, in keeping with the reduction of the 493 Mediterranean overturning during the T1b (Frigola et al., 2008).

494 *5.7. Holocene*

495 The short-term variability in core HER-GC-T1 for the proxies shown here is discussed in 496 detail in Ausín et al. (submitted for publication). In core CEUTA10PC08, the SST shows an 497 abrupt increase until 9.5 ka and a plateau of high values from that time onwards up-core (Figure 498 5c). In contrast, a general cooling trend has been reported for the HER-GC-T1 core for the 499 Holocene (Ausín et al., submitted for publication). The SST from CEUTA10PC08, which 500 corresponds to the summer MAT-estimated SST, does not support this cooling trend. These 501 differences may have been due to a more profound effect of seasonality during the Holocene, 502 meaning warmer summers and cooler winters. The MAT-estimated winter and annual SST 503 plotted in figure 6c for comparison, reveals a long-term cooling trend, supporting the notion of 504 an amplification of seasonality. However, this interpretation disagrees with those based on 505 pollen records, which point to cooler summers and warmer winters during this period (Fletcher 506 and Sánchez Goñi, 2008).

507 Despite the high resolution, none of the proxies from core CEUTA10PC08 shows any 508 striking variability associated with the cold and arid 8.2 ka Event (Alley et al., 1997), suggesting 509 that its repercussions were imperceptible in the Mediterranean context (Wiersma and Renssen, 510 2006; Zanchetta et al., 2007).

511 Coccolithophore productivity in core CEUTA10PC08 shows the highest values during the 512 Holocene (Figure 5d), this being the most productive period of the last 25 kyr. The absolute 513 abundance profiles of most taxa show the same pattern: maximum values between 7.5-6.5 ka 514 and a decreasing trend from then onwards up-core (Figure 3a, c, e and Figure 4e, g, i). In 515 contrast, F. profunda shows a constant increasing trend along the whole interval in core 516 CEUTA10PC08 (Figure 3g). This species inhabits the lower photic zone and blooms when the nutricline is located at a deeper position (Molfino and McIntyre, 1990; McIntyre and Molfino, 517 1996; Beaufort et al., 1997). Its gradual increasing trend along with decreasing values of other 518 519 taxa suggests a growing stratification of the upper water column close to the Strait of Gibraltar, 520 likely related to a northward migration of the AJ once in the Alboran Sea.

521 In terms of absolute values, coccolithophore absolute abundances show higher values in core 522 CEUTA10PC08 than in core HER-GC-T1, not only during the Holocene but also over the last 523 25 kyr (Figure 5d, e). Nevertheless, current productivity distribution in the Alboran Sea is 524 greater at the HER-GC-T1 core location since it is affected by a high-productive cell off the 525 coast of Malaga (Sarhan et al., 2000). This paradox could be explained if the increasing trend of 526 F. profunda and decreasing trend of the other taxa seen from 7 to 4.5 ka had persisted for the 527 last 4.5 kyr up-core, implying a more stratified water column characterized by low productivity 528 at the CEUTA10PC08 core location. However, the lack of the last 4.5 ka in core 529 CEUTA10PC08 prevents further interpretation.

530 During the Holocene, the patterns shown by coccolithophore absolute abundances differ 531 markedly between both locations (Figure 3, 4). The WAG, depicted by a well-defined AJ that 532 flows eastward, is one of the most notable features of the present hydrographic configuration of 533 the Alboran Sea (Figure 1), established at around 8 ka (e.g. Rohling et al., 1995). These surface dynamics entailed new factors influencing primary productivity, such as eddy-induced 534 535 upwelling at the northern edge of the WAG (Sarhan et al., 2000; Ruiz et al., 2001) where HER-536 GC-T1 is located. In turn, productivity at the CEUTA10PC08 core location would have been more influenced by the properties of the transitional AW due to its proximity to the Strait of 537 538 Gibraltar. This configuration was probably responsible for the different patterns of coccolithophore absolute abundances recorded for both cores (Table 4). 539

540 5.8. Periodicities

541 The SST and oxygen isotopes records from core HER-GC-T1 reveal a common periodicity 542 of around 740±20 yr, similar to that of 730± 40 yr observed in a SST record from the Alboran 543 Sea for the Holocene (Cacho et al., 2001). This cyclicity corresponds to the occurrence of short-544 term cooling events transmitted to the Mediterranean by Atlantic inflowing waters during the 545 Holocene. Nevertheless, CEUTA10PC08 does not show such periodicity, despite being located 546 closer to the Atlantic. Cacho et al. (2001) have reported an amplifying effect of these cooling 547 events eastwards along the Mediterranean due to intense winds, which could account for the 548 lack of such cyclicity in core CEUTA10PC08.

549 Spectral analyses do not reveal common periodicities between the two studied cores and, 550 except for that of 740±20 yr mentioned above, to our knowledge no similar cycles have been 551 found in nearby cores in the study area nor in the Atlantic Ocean for the last 25 kyr. Rodrigo-552 Gámiz et al. (2014) identified significant cycles of 1300, 1515, 2000, and 5000 yr and 553 secondary harmonics of 650, 1087, and 3000 yr in a core from the Western Mediterranean for 554 the last 20 kyr. These periodicities have been associated with solar activity, monsoonal regimes, 555 orbital forcing, oceanic-atmospheric processes related to North Atlantic climate variability and 556 African monsoon systems. Nevertheless, the authors stated that only periodicities between 500 557 and 7000 yr have been interpreted since cyclicities outside that range could be simply a 558 consequence of the method employed owing to the time span and the sampling interval 559 considered, similar to those considered here. None of the above periodicities match that of \sim 175 ± 5 yr frequently found in the records of core CEUTA10PC08 or of ~ 440± 50 yr in several 560 561 records of core HER-GC-T1, suggesting that the processes that took place at both locations 562 would have been affected by several not necessarily common forcing mechanisms, possibly of 563 local nature.

564

565 **6.** Conclusions

566 According to the results of the present work, coccolithophores are highly sensitive to local 567 hydrographic and environmental conditions. From the study of two oceanic cores, it may be 568 concluded that the Atlantic water entering the Alboran Sea would have exerted primary control 569 over productivity in the areas close to the entrance of the Strait of Gibraltar during the last 25 570 kyr. Their physical and biological properties (rate of inflow, nutrients, temperature and salinity) 571 are seen to have determined the stability of the upper water column as well as the environment 572 in which coccolithophores bloom. On its way to the east, this effect was partly diluted and hence productivity in more distant locations would also have been affected by nutrient input 573 from river discharges, wind-induced upwelling, and specific hydrographic configurations. 574

575 As summarized in Table 4, coccolithophore records in combination with other 576 paleoenvironmental proxies have allowed primary productivity variations and water column 577 dynamics to be determined for the last 25 kyr in the Alboran Sea:

578 During H2 and H1, entering cold and less saline waters prompted the stratification of the 579 water column and prevented primary productivity.

Increased river discharge is proposed from 21 to 18 ka to explain the cold and less salinewaters in the study area as well as the enhanced productivity.

582 Phases T1a and T1b of the deglaciation were characterized by a stratified upper water583 column, although this did not hamper local wind-induced upwelling.

584 The B-A is marked by a slight increase in productivity and the development of the ORL.

The YD had two phases: a colder first phase followed by a second, warmer and wetter phase. The properties of the inflowing AW and river discharges were responsible for the differences in productivity between both locations during these two phases.

Productivity increased markedly during the Holocene. The hydrographic configuration
during this period, which persists today, played an important role in its productivity and its
variations.

Table 1. Age model for core CEUTA-10-PC-08. ¹⁴ C AMS ages measured at Poznan
Radiocarbon Laboratory ^a . ¹⁴ C AMS ages measured at Center for Applied Isotope Studies of
University of Georgia ^b .

Laboratory code	Foram type	Depth (cm)	Radiocarbon age (a)	Calendar age (a cal BP)		
CEUTA10PC08_22/						
Poz-56516 ^a	G. inflata	22	5870 ± 40	6312 ± 56		
CEUTA10PC08_46/						
Poz-56517 ^a	N. pachyderma (r.c.)	46	7940 ± 40	8426 ± 56		
CEUTA10PC08_82/						
Poz-56518 ^a	<i>N. pachyderma</i> (r.c.)	82	9190 ± 50	10006 ± 100		
9977 ^b	N. pachyderma (r.c.)	122	9900 ± 30	10885 ± 91		
9552 ^b	G. bulloides	156	11410 ± 30	12890 ± 79		
10602 ^b	N. pachyderma (r.c.)	174	12240 ± 70	13717 ± 107		
9979 ^b	<i>N. pachyderma</i> (r.c.)	281.5	14270 ± 40	16818 ± 125		
9980 ^b	N. pachyderma (r.c.)	323.5	14920 ± 40	17720 ± 97		
9981 ^b	N. pachyderma (r.c.)	406	16910 ± 40	19936 ± 104		
9982 ^b	N. pachyderma (r.c.)	452	18110 ± 50	21462 ± 128		
9983 ^b	N. pachyderma (r.c.)	474	18360 ± 50	21773 ± 106		
9984 ^b	N. pachyderma (r.c.)	541.5	20170 ± 50	23820 ± 115		
10603 ^b	G. bulloides	579.5	20480 ± 60	24162 ± 113		
10604 ^b	G. bulloides	603.5	21100 ± 60	24967 ± 173		
10605 ^b	<i>N. pachyderma</i> (r.c.)	615.5	21540 ± 60	25500 ± 111		

Table 2. Age model for core HER-GC-T1. ¹⁴C AMS ages measured at Poznan Radiocarbon Laboratory^a. ¹⁴C AMS ages measured Woods Hole Oceanographic Institution^b. Tie points obtained from correlation of oxygen isotopic records^c.

(Sample/Laboratory		Depth	Radiocarbon	Calendar age		
code)	Foram Type	(cm)	age (a)	(a cal. BP)		
SEC1_2/ Poz-53233 ^a	G. inflata	2	440 ± 25	88 ± 62		
SEC1_21/OS-87586 ^b	G. inflata	21	1810 ± 25	1379 ± 54		
SEC1_63/ Poz-53234 ^a	G. inflata	4175 ± 35	4284 ± 76			
SEC2_17/ Poz-53235 ^a	G. inflata	107	6100 ± 40	6550 ± 68		
	G. inflata+N.					
SEC2_54/OS-87587 ^b	pachyderma (r.c.)	144	7350 ± 35	7834 ± 58		
SEC3_12/ Poz-53236 ^a	<i>N. pachyderma</i> (r.c.)	202	10400 ± 60	11539 ± 162		
SEC3_48 ^c		238		14582		
SEC3_67 ^c		257		15217		
SEC3_77°		267		16198		
SEC3_92/Poz-53237 ^a	<i>N. pachyderma</i> (r.c.)	282	15180 ± 80	18006 ± 121		
SEC4_36 ^c		326		21396		

Table 3. Periodicities (given in years and separated by semicolons) resulting from the spectral analyses showing statistical significance at the 95 and at 99 confidence levels (%) from core CEUTA10PC08 and core HER-GC-T1.

Record	Core CEUT	CA10PC08	Core HER-GC-T1			
	95%	99%	95%	99%		
small placoliths	10000	308; 185; 174	760	11700		
G. oceanica	185; 171	215; 148		341		
G. muellerae		5000; 179		5800; 428; 399		
F. profunda		10000; 176	3900	11000; 360; 346		
Syracosphaera spp.		10000; 183, 171	7800; 427; 341			
Helicosphaera spp.	5000	195	636	427; 412		
Oxygen isotopes	7000	180; 173	1000	725; 416		
SST		7000; 303; 275		758; 534; 489		

Table 4. Summary of the main results and general interpretation. H2 and H1: stadials associated with Heinrich events 2 and 1; LGM: Last Glacial Maximum; T1a: Termination 1a; B-A: Böling-Allerød; YD: Younger Dryas. AW: Atlantic Water. DW: Deep water.

Age (ka cal. BP)	- 25 - 23.8 17.5 15.5	23 19	15.5		14.0	13	1 2 1		L C/71 L	:		- 10
Interval	H2 and H1	LGM	Tla		B-A		YDa		YDb		T1b Holocene	
Specific location			Ceuta	Malaga	Ceuta	Malaga	Ceuta	Malaga	Ceuta	Malaga		
Total N	Drop (lowest values)	Rise but low values	Rise		Drop and rise	Rise	Drop	Drop and rise	Drop, but still high values	Drop and rise	Rise	Rise (highest values)
Coccolithophore species	Peaks of E. huxleyi (> 4 µm), Syracosphaera spp. and, Helicosphaera spp.	Peaks of G.muellerae and E.huxleyi (> 4 μm)	Peaks of O. fragilis and U. irregularis	Peaks of G. muellerae	Peaks of G. oceanica, O. fragilis, and U. irregularis	Peaks of G. muellerae	Peaks of Syracosphaera spp. and Helicosphaera spp.	Peaks of G. muellerae	Peaks of O.fragilis and U.irregularis	Peaks of E. huxleyi (>4µm)	Increase in all taxa	Peaks of all taxa Gradual increase in F. profunda
SST and $\delta^{18}\!O$	SST Drop δ ¹⁸ O depletion	SST rise but low values	SST rise		SST rise	SST steady and drop	SST drop		SST rise		SST rise	Long-term cooling trend
n-hexacosan-1-ol index	Drop	Drop	Rise		Rise Steady		Ý	Steady		Rise		
Total concentration of C37 alkenones		Rise	Rise		Rise (highest values)		Drop		Drop		Steady	
Interpretation	Less saline and cold AW Stratified upper water column hampers productivity High DW ventilation	Less saline surface waters: steady upper water column Nutrient input by fluvial dischages: enhanced productivity Good DW ventilation	Warmer AW Bloom of warm- water/oligot rophic taxa	Local wind- induced upwelling Onset of the ORL1	Warmer AW Bloom of warm- water/oligot rophic taxa Developme nt of the ORL1	Colder surface waters Local upwelling (by river discharge or wind-induced upwelling)	Less saline and colder AW hampers productivity	Colder surface waters Local productive pulse	Warmer and poor-nutrient AW Bloom of warm- water/oligotrop hic taxa Thermohaline reactivation	Colder and less saline surface water Stratified upper water column Productive pulse due to fluvial input	Warm conditions Productive events Reduction in thermohaline circulation	Gradual stratification of the water column close to the Strait and productive pulses influenced by hydrographic configuration

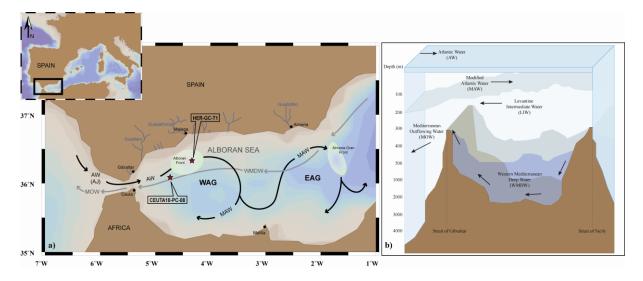


Figure 1. Current oceanographic setting in the Alboran Sea. a) Locations of cores CEUTA10PC08 and HER-GC-T1. Black arrows trace the general surface circulation. Grey arrows trace general deep circulation. b) Vertical distribution of the water masses in the Western Mediterranean. AW: Atlantic Water, entering the Alboran Sea as the Atlantic Jet: AJ. MAW: Modified Atlantic Water. WMDW: Western Mediterranean Deep Water. MOW: Mediterranean Outflowing Water. WAG: Western Anticyclonic Gyre. EAG: Eastern Anticyclonic Gyre.

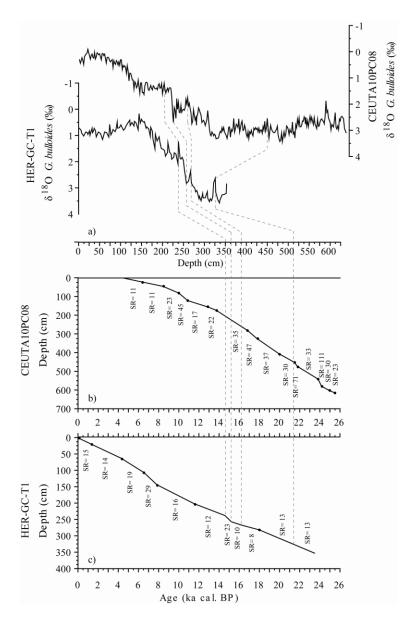


Figure 2. a) Oxygen isotope profiles from cores CEUTA10PC08 and HER-GC-T1. Dashed grey lines join tie points obtained from correlation of both profiles. Age-depth models from core CEUTA10PC08 (b) and core HER-GC-T1 (c). SR stands for sedimentation rate, given in cm kyr⁻¹.

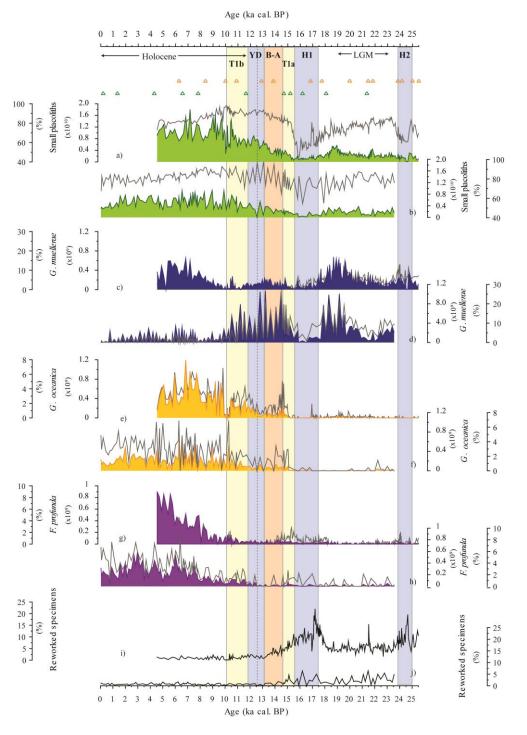
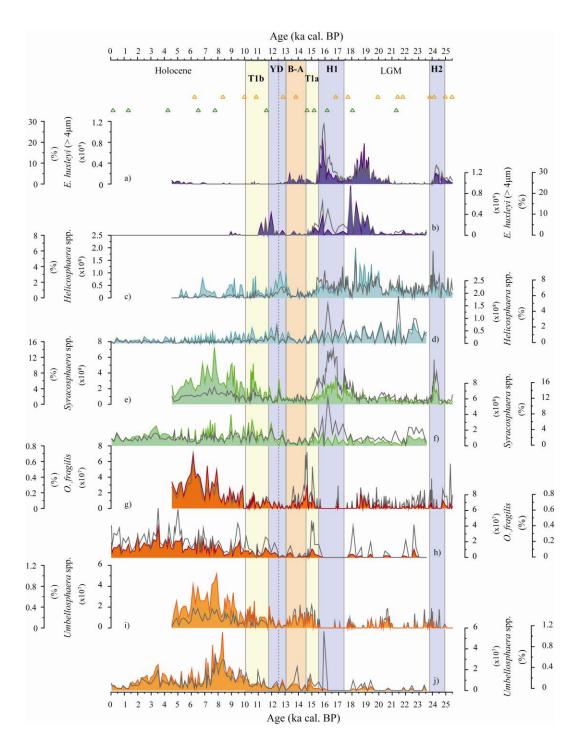



Figure 3. Colored logs represent absolute abundances of the main species (given in number of coccoliths g⁻¹) of the nannofossil assemblages from CEUTA10PC08 (left axes) and HER-GC-T1 (right axes). The relative abundances (given in %) of each species are represented by a dark grey solid line. H2 and H1: stadials associated with Heinrich events 2 and 1; LGM: Last Glacial Maximum; T1a: Termination 1a; B-A: Böling-Allerød; YD: Younger Dryas. The dashed grey

bar separates the YDa and YDb phases; T1b: Termination 1b. Triangles stand for age control points (kyr cal. BP) for core CEUTA10PC08 (orange) and core HER-GC-T1 (green).

Figure 4. Absolute abundances (colored logs) of the main nannofossil species (given in number of coccoliths g⁻¹) from CEUTA10PC08 (left axes) and HER-GC-T1 (right axes). The relative abundances (given in %) of each species are represented by a dark grey solid line. Triangles stand for age control points for core CEUTA10PC08 (orange) and core HER-GC-T1 (green).

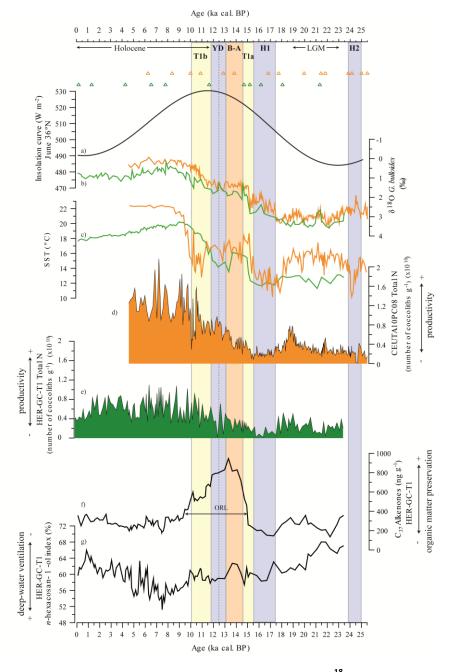


Figure 5. a) Insolation curve (June, 36°N) (Berger, 1978). b) δ^{18} O record from core CEUTA10PC08 (orange) and core HER-GC-T1 (green) (Note that the vertical axis is reversed). c) MAT-estimated SST (summer season, 10 m depth) of core CEUTA10PC08 (orange) and Uk'37-estimated SST from core HER-GC-T1 (green). d) Total N (total absolute abundance) from core CEUTA10PC08. e) Total N from core HER-GC-T1 f) Concentration of C37 alkenones ([C37:2+C37:3]) from core HER-GC-T1. g) *n*-hexacosan-1-ol index from core HER-GC-T1. ORL: Organic Rich Layer. Triangles stand for age control points for core CEUTA10PC08 (orange) and core HER-GC-T1 (green).

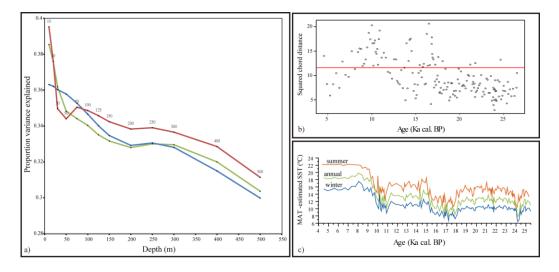


Figure 6. a) Proportion of variance in the fossil data explained by the reconstructions of summer (red), annual (green) and winter (blue) temperatures at different water depths. The 95 % significance level is assessed at 0.1 by finding the proportion of variance explained by reconstructions of random environmental data. b) Dissimilarity between modern and core CEUTA10PC08 fossil assemblages measured by squared chord distance, plotted against age (ka cal. BP). The red line represents the 5th percentile. c) Summer, annual and winter SST reconstructions at 10 m water depth.

Acknowledgements

B. Ausín is sincerely grateful to Y. González and B. Hortelano (Department of Environmental Chemistry, IDAEA-CSIC, Barcelona) for their guidance and supervision during the geochemical analyses. This study was supported by the FPU grant AP2010-2559 of the Ministry of Education of Spain awarded to B. Ausín and by the Consolider Ingenio "GRACCIE" program CSD 2007-00067, the program CGL2011-26493 and VACLIODP339, CTM2008-06399-C04/MAR and CTM2012-39599-03-01 projects of the Spanish Ministry of Science and Innovation.

References

- Álvarez, M.C., Amore, F.O., Cros, L., Alonso, B. and Alcántara-Carrió, J., 2010. Coccolithophore biogeography in the Mediterranean Iberian margin. Revista Española de Micropaleontología, 42: 359-372.
- Álvarez, M.C., Flores, J.A., Sierro, F.J., Diz, P., Francés, G., Pelejero, C. and Grimalt, J., 2005. Millennial surface water dynamics in the Ría de Vigo during the last 3000 years as revealed by coccoliths and molecular biomarkers. Palaeogeography, Palaeoclimatology, Palaeoecology, 218: 1-13.
- Alley, R.B., Mayewski, P.A., Sowers, T., Stuiver, M., Taylor, K.C. and Clark, P.U., 1997. Holocene climatic instability: A prominent, widespread event 8200 yr ago. Geology, 25: 483-486.
- Ausín, B., Flores, J.-A., Sierro, F.J., Cacho, I., Hernández-Almeida, I., Martrat, B. and Grimalt, J.O., 2014. Atmospheric patterns driving Holocene productivity in the Alboran Sea (Western Mediterranean): a multiproxy approach. Holocene. (Submitted for publication).
- Bárcena, M.A., Cacho, I., Abrantes, F., Sierro, F.J., Grimalt, J.O. and Flores, J.A., 2001. Paleoproductivity variations related to climatic conditions in the Alboran Sea (western Mediterranean) during the last glacial-interglacial transition: the diatom record. Palaeogeography, Palaeoclimatology, Palaeoecology, 167: 337-357.
- Bárcena, M.A., Flores, J.A., Sierro, F.J., Pérez-Folgado, M., Fabres, J., Calafat, A. and Canals, M., 2004. Planktonic response to main oceanographic changes in the Alboran Sea (Western Mediterranean) as documented in sediment traps and surface sediments. Marine Micropaleontology, 53: 423-445.
- Bard, E., Hamelin, B., Arnold, M., Montaggioni, L., Cabioch, G., Faure, G. and Rougerie, F., 1996. Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge. Nature, 382: 241-244.
- Baumann, K.H., Andruleit, H., Boeckel, B., Geisen, M. and Kinkel, H., 2005. The significance of extant coccolithophores as indicators of ocean water masses, surface water temperature, and palaeoproductivity: a review. Palaeontologische Zeitschrift, 79: 93-112.
- Beaufort, L., Lancelot, Y., Camberlin, P., Cayre, O., Vincent, E., Bassinot, F. and Labeyrie, L., 1997. Insolation Cycles as a Major Control of Equatorial Indian Ocean Primary Production. Science, 278: 1451-1454.
- Berger, A., 1978. Long-Term Variations of Daily Insolation and Quaternary Climatic Changes. Journal of the Atmospheric Sciences, 35: 2362-2367.
- Bronk, R.C., 2008. Deposition models for chronological records. Quaternary Science Reviews, 27: 42-60.
- Bukry, D., 1974. Coccoliths as paleosalinity indicators -evidence from the Black Sea. Memoirs of the America Association of Petroleum Geologists, 20: 353-363.
- Cacho, I., Grimalt, J.O. and Canals, M., 2002. Response of the Western Mediterranean Sea to rapid climatic variability during the last 50,000 years: a molecular biomarker approach. Journal of Marine Systems, 33-34: 253-272.
- Cacho, I., Grimalt, J.O., Canals, M., Sbaffi, L., Shackleton, N.J., Schönfeld, J. and Zahn, R., 2001. Variability of the western Mediterranean Sea surface temperature during the last 25,000 years and its connection with the Northern Hemisphere climatic changes. Paleoceanography, 16: 40-52.
- Cacho, I., Grimalt, J.O., Pelejero, C., Canals, M., Sierro, F.J., Flores, J.A. and Shackleton, N., 1999. Dansgaard-Oeschger and Heinrich Event Imprints in Alboran Sea Paleotemperatures. Paleoceanography, 14: 698-705.
- Colmenero-Hidalgo, E., Flores, J.-A. and Sierro, F.J., 2002. Biometry of Emiliania huxleyi and its biostratigraphic significance in the Eastern North Atlantic Ocean and Western Mediterranean Sea in the last 20,000 years. Marine Micropaleontology, 46: 247-263.
- Colmenero-Hidalgo, E., Flores, J.-A., Sierro, F.J., Bárcena, M.Á., Löwemark, L., Schönfeld, J. and Grimalt, J.O., 2004. Ocean surface water response to short-term climate changes revealed by coccolithophores from the Gulf of Cadiz (NE Atlantic)

and Alboran Sea (W Mediterranean). Palaeogeography, Palaeoclimatology, Palaeoecology, 205: 317-336.

- Combourieu-Nebout, N., Peyron, O., Dormoy, I., Desprat, S., Beaudouin, C., Kotthoff, U. and Marret, F., 2009. Rapid climatic variability in the west Mediterranean during the last 25 000 years from high resolution pollen data. Clim. Past, 5: 503-521.
- Coplen, T.B., 1996. Editorial: More uncertainty than necessary. Paleoceanography, 11: 369-370.
- Echevarría, F., García Lafuente, J., Bruno, M., Gorsky, G., Goutx, M., González, N., García, C.M., Gámez, F., Vargas, J.M., Picheral, M., Striby, L., Varela, M., Alonso, J.J., Reul, A., Cózar, A., Prieto, L., Sarhan, T., Plaza, F. and Jiménez-Gámez, F., 2002. Physical-biological coupling in the Strait of Gibraltar. Deep Sea Research Part II: Topical Studies in Oceanography, 49: 4115-4130.
- Essallami, L., Sicre, M.A., Kallel, N., Labeyrie, L. and Siani, G., 2007. Hydrological changes in the Mediterranean Sea over the last 30,000 years. Geochemistry, Geophysics, Geosystems, 8: Q07002.
- Fabres, J., Calafat, A., Sanchez-Vidal, A., Canals, M. and Heussner, S., 2002. Composition and spatio-temporal variability of particle fluxes in the Western Alboran Gyre, Mediterranean Sea. Journal of Marine Systems, 33-34: 431-456.
- Fletcher, W.J. and Sánchez Goñi, M.F., 2008. Orbital- and sub-orbital-scale climate impacts on vegetation of the western Mediterranean basin over the last 48,000 yr. Quaternary Research, 70: 451-464.
- Fletcher, W.J., Sánchez Goñi, M.F., Allen, J.R.M., Cheddadi, R., Combourieu-Nebout, N., Huntley, B., Lawson, I., Londeix, L., Magri, D., Margari, V., Müller, U.C., Naughton, F., Novenko, E., Roucoux, K. and Tzedakis, P.C., 2010. Millennial-scale variability during the last glacial in vegetation records from Europe. Quaternary Science Reviews, 29: 2839-2864.
- Flores, J.A. and Marino, M., 2002. Pleistocene calcareous nannofossil stratigraphy for ODP Leg 177 (Atlantic sector of the Southern Ocean) Marine Micropaleontology, 45: 191-224.
- Flores, J.A. and Sierro, F.J., 1997. Revised technique for calculation of calcareous nannofossil accumulation rates. Micropaleontology, 43: 321-324.
- Flores, J.A. and Sierro, F.J., 2007. Pronounced mid-Pleistocene southward shift of the Polar Front in the Atlantic sector of the Southern Ocean. Deep Sea Research II, 54: 2432–2442.
- Flores, J.A., Sierro, F.J., Frances, G., Vazquez, A. and Zamarreno, I., 1997. The last 100,000 years in the western Mediterranean: sea surface water and frontal dynamics as revealed by coccolithophores. Marine Micropaleontology, 29: 351–366.
- Frigola, J., Moreno, A., Cacho, I., Canals, M., Sierro, F.J., Flores, J.A. and Grimalt, J.O., 2008. Evidence of abrupt changes in Western Mediterranean Deep Water circulation during the last 50 kyr: A high-resolution marine record from the Balearic Sea. Quaternary International, 181: 88–104.
- García-Gorriz, E. and Carr, M.E., 1999. The climatological annual cycle of satellitederived phytoplankton pigments in the Alboran Sea: a physical interpretation. Geophysical Research Letters, 26: 2985-2988.
- Giraudeau, J., 1992. Distribution of Recent nannofossils beneath the Benguela system: Southwest African continental margin. Marine Geology, 108: 219-237.
- Gómez, F., Echevarría, F., García, C.M., Prieto, L., Ruiz, J., Reul, A., Jiménez-Gómez, F. and Varela, M., 2000. Microplankton distribution in the Strait of Gibraltar: coupling between organisms and hydrodynamic structures. Journal of Plankton Research, 22: 603-617.
- Guerreiro, C., Oliveira, A., de Stigter, H., Cachão, M., Sá, C., Borges, C., Cros, L., Santos, A., Fortuño, J.-M. and Rodrigues, A., 2013. Late winter coccolithophore bloom off central Portugal in response to river discharge and upwelling. Continental Shelf Research, 59: 65-83.

- Hammer, Ø., Harper, D.A.T. and Ryan, P.D., 2001. PAST: Paleontological statistics software 656 package for education and data analysis. Palaeontologia Electronica, 4: 9.
- Hayes, A., Kucera, M., Kallel, N., Sbaffi, L. and Rohling, E.J., 2005. Glacial Mediterranean sea surface temperatures based on planktonic foraminiferal assemblages. Quaternary Science Reviews, 24: 999-1016.
- Heburn, G.W. and La Violette, P.E., 1990. Variations in the Structure of the Anticyclonic Gyres Found in the Alboran Sea. Journal of Geophysical Research, 95: 1599-1613.
- Hernández-Almeida, I., Bárcena, M.A., Flores, J.A., Sierro, F.J., Sanchez-Vidal, A. and Calafat, A., 2011. Microplankton response to environmental conditions in the Alboran Sea (Western Mediterranean): One year sediment trap record. Marine Micropaleontology, 78: 14-24.
- Juggins, S., 2003. C2 User guide. Software for ecological and palaeoecological data analysis and visualisation. University of Newcastle, Newcastle upon Tyne, UK, 69.
- Kageyama, M., Nebout, N.C., Sepulchre, P., Peyron, O., Krinner, G., Ramstein, G. and Cazet, J.-P., 2005. The Last Glacial Maximum and Heinrich Event 1 in terms of climate and vegetation around the Alboran Sea: a preliminary model-data comparison. Comptes Rendus Geoscience, 337: 983-992.
- Kucera, M., Rosell-Melé, A., Schneider, R., Waelbroeck, C. and Weinelt, M., 2005b. Multiproxy approach for the reconstruction of the glacial ocean surface (MARGO). Quaternary Science Reviews, 24: 813–819
- Kucera, M., Weinelt, M., Kiefer, T., Pflaumann, U., Hayes, A., Weinelt, M., Chen, M.-T., Mix, A.C., Barrows, T.T., Cortijo, E., Duprat, J., Juggins, S. and Waelbroeck, C., 2005a. Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera: multi-technique approach based on geographically constrained calibration data sets and its application to glacial Atlantic and Pacific Oceans. Quaternary Science Reviews, 24: 951-998.
- Kuhlemann, J., Rohling, E., Krumrei, I., Kubik, P., Ivy-Ochs, S. and Kucera, M., 2008. Regional synthesis of Mediterranean atmospheric circulation during the Last Glacial Maximum. Science, 321: 1338–1340.
- Locarnini, R., Mishonov, A., Antonov, J., Boyer, T., Garcia, H., Baranova, O., Zweng, M. and Johnson, D., 2010. World Ocean Atlas 2009, vol. 1, Temperature, edited by S. Levitus, 184 pp. US Gov. Print. Off., Washington, DC.
- Macías, D., Bruno, M., Echevarría, F., Vázquez, A. and García, C.M., 2008. Meteorologically-induced mesoscale variability of the North-western Alboran Sea (southern Spain) and related biological patterns. Estuarine, Coastal and Shelf Science, 78: 250-266.
- Maiorano, P., Marino, M. and Flores, J.A., 2009. The warm interglacial Marine Isotope Stage 31: Evidences from the calcareous nannofossil assemblages at Site 1090 (Southern Ocean). Marine Micropaleontology, 71 166-175.
- Martrat, B., Grimalt, J.O., Shackleton, N.J., Abreu, L., Hutterli, M.A. and Stocker, T.F., 2007. Four climate cycles of recurring deep and surface water destabilizations on the Iberian margin. Science, 317: 502 507.
- Masqué, P., Fabres, J., Canals, M., Sanchez-Cabeza, J.A., Sanchez-Vidal, A., Cacho, I., Calafat, A.M. and Bruach, J.M., 2003. Accumulation rates of major constituents of hemipelagic sediments in the deep Alboran Sea: a centennial perspective of sedimentary dynamics. Marine Geology, 193: 207-233.
- McIntyre, A. and Bé, A.W.H., 1967. Modern coccolithophoridae of the Atlantic Ocean. Placoliths and cyrtoliths. Deep Sea Research and Oceanographic Abstracts, 14: 561-597.
- McIntyre, A., Bé, A.W.H. and Roche, M.B., 1970. Modern Pacific coccolithophorida: a paleoontological thermometer Transactions of the New York Academy of Sciences, 32: 720-731.

- McIntyre, A. and Molfino, B., 1996. Forcing of Atlantic Equatorial and Subpolar Millennial Cycles by Precession. Science, 274: 1867-1870.
- Melki, T., 2011. Variation of deepwater convection in the western Mediterranean Sea (Gulf of Lion) during the last 28 ka. Quaternary International, 241: 160-168.
- Molfino, B. and McIntyre, A., 1990. Precessional forcing of nutricline dynamics in the equatorial Atlantic. Science, 249: 766-769.
- Müller, P.J., Kirst, G., Ruhland, G., von Storch, I. and Rosell-Melé, A., 1998. Calibration of the alkenone paleotemperature index $U_{37}^{K'}$ based on core-tops from the eastern South Atlantic and the global ocean (60°N-60°S). Geochimica et Cosmochimica Acta, 62: 1757-1772.
- Navarro, G., Vázquez, Á., Macías, D., Bruno, M. and Ruiz, J., 2011. Understanding the patterns of biological response to physical forcing in the Alborán Sea (western Mediterranean). Geophysical Research Letters, 38.
- Okada, H. and Honjo, S., 1973. The distribution of oceanic coccolithophorids in the Pacific. Deep Sea Research and Oceanographic Abstracts, 20: 355-374.
- Okada, H. and Wells, P., 1997. Late Quaternary nannofossil indicators of climate change in two deep-sea cores associated with the Leeuwin Current off Western Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 131: 413-432.
- Overpeck, J., Webb III, T. and Prentice, I., 1985. Quantitative interpretation of fossil pollen spectra: dissimilarity coefficients and the method of modern analogs. Quaternary Research, 23: 87-108.
- Paillard, D., Labeyrie, L. and Yiou, P., 1996. Macintosh program performs time-series analysis. Eos Transactions American Geophysical Union, 77: 379.
- Pérez-Folgado, M., Sierro, F.J., Flores, J.A., Cacho, I., Grimalt, J.O., Zahn, R. and Shackleton, N., 2003. Western Mediterranean planktonic foraminifera events and millennial climatic variability during the last 70 kyr. Marine Micropaleontology, 48: 49-70.
- Prell, W.L., 1985. Stability of low-latitude sea-surface temperatures: an evaluation of the CLIMAP reconstruction with emphasis on the positive SST anomalies. Technical Report 25. DOE/ER/60167-1; Other: ON: DE85016190 United StatesOther: ON: DE85016190Wed Feb 06 21:52:10 EST 2008NTIS, PC A04/MF A01; 1.ERA-10-042946; EDB-85-134447English, Washington D.C.
- R Development Core Team, 2011. R: A language and environment for statistical computing. R Foundation for Statistical Computing.
- Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Grootes, P.M., Guilderson, T.P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T.J., Hoffmann, D.L., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Staff, R.A., Turney, C.S.M. and van der Plicht, J., 2013. IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0-50,000 Years cal BP. Radiocarbon, 55: 1869-1887.
- Rodrigo-Gámiz, M., Martínez-Ruiz, F., Jiménez-Espejo, F.J., Gallego-Torres, D., Nieto-Moreno, V., Romero, O. and Ariztegui, D., 2011. Impact of climate variability in the western Mediterranean during the last 20,000 years: oceanic and atmospheric responses. Quaternary Science Reviews, 30: 2018-2034.
- Rodrigo-Gámiz, M., Martínez-Ruiz, F., Rodríguez-Tovar, F.J., Jiménez-Espejo, F.J. and Pardo-Igúzquiza, E., 2014. Millennial- to centennial-scale climate periodicities and forcing mechanisms in the westernmost Mediterranean for the past 20,000 yr. Quaternary Research, 81: 78-93.
- Rogerson, M., Cacho, I., Jimenez-Espejo, F., Reguera, M.I., Sierro, F.J., Martinez-Ruiz, F., Frigola, J. and Canals, M., 2008. A dynamic explanation for the origin of the western Mediterranean organic-rich layers. Geochemistry, Geophysics, Geosystems, 9: Q07U01.
- Rohling, E.J., Den Dulk, M., Pujol, C. and Vergnaud-Grazzini, C., 1995. Abrupt hydrographic change in the Alboran Sea (western Mediterranean) around 8000

yrs BP. Deep Sea Research Part I: Oceanographic Research Papers, 42: 1609-1619.

- Ruiz, J., Echevarría, F., Font, J., Ruiz, S., García, E., Blanco, J.M., Jiménez-Gómez, F., Prieto, L., González-Alaminos, A., García, C.M., Cipollini, P., Snaith, H., Bartual, A., Reul, A. and Rodríguez, V., 2001. Surface distribution of chlorophyll, particles and gelbstoff in the Atlantic jet of the Alborán Sea: from submesoscale to subinertial scales of variability. Journal of Marine Systems, 29: 277-292.
- Sarhan, T., García Lafuente, J., Vargas, M., Vargas, J.M. and Plaza, F., 2000. Upwelling mechanisms in the northwestern Alboran Sea. Journal of Marine Systems, 23: 317-331.
- Sbaffi, L., Wezel, F.C., Curzi, G. and Zoppi, U., 2004. Millennial- to centennial-scale palaeoclimatic variations during Termination I and the Holocene in the central Mediterranean Sea. Global and Planetary Change, 40: 201-217.
- Scherer, R.P., Bohaty, S.M., Dunbar, R.B., Esper, O., Flores, J.A., Gersonde, R., Harwood, D.M., Roberts, A.P. and Taviani, M., 2008. Antarctic records of precession-paced insolation driven warming during early Pleistocene Marine Isotope Stage 31. Geophysical Research Letters, 35: L03505.
- Schlitzer, R., 2008. Ocean Data View, http://odv.awi.de.
- Schulz, M. and Mudelsee, M., 2002. REDFIT: estimating red-noise spectra directly from 768 unevenly spaced paleoclimatic time series. Computers & Geosciences, 28: 421-426.
- Siani, G., Paterne, M., Arnold, M., Bard E, Métivier, B., Tisnerat, N. and Bassinot, F., 2000. Radiocarbon reservoir ages in the Mediterranean Sea and Black Sea. Radiocarbon, 42: 271-280.
- Sierro, F.J., Bárcena, M.Á., Flores J. A, Cacho, I., Pelejero, C., Grimalt, J. and Shackleton, N., 1998. Origin of the youngest western Mediterranean organic-rich layer: productivity or stagnation. In: F. Abrantes (Editor), Reconstructing Ocean History, A Window Into the Future. 6th International Conference on Paleoceanography, Lisbon, pp. 211.
- Sierro, F.J., Hodell, D.A., Curtis, J.H., Flores, J.A., Reguera, I., Colmenero-Hidalgo, E., Bárcena, M.A., Grimalt, J.O., Cacho, I., Frigola, J. and Canals, M., 2005. Impact of iceberg melting on Mediterranean thermohaline circulation during Heinrich events. Paleoceanography, 20: PA2019.
- Stanford, J.D., Rohling, E.J., Bacon, S., Roberts, A.P., Grousset, F.E. and Bolshaw, M., 2011. A new concept for the paleoceanographic evolution of Heinrich event 1 in the North Atlantic. Quaternary Science Reviews, 30: 1047-1066.
- Stuiver, M. and Reimer, P.J., 1993. Extended 14C data base and revised CALIB 3.0 14C Age calibration program. Radiocarbon, 35: 215–230.
- Telford, R., 2012. palaeoSig: significance tests of quantitative palaeoenvironmental reconstructions. R package version, 1.1-1.
- Telford, R.J. and Birks, H.J.B., 2011. A novel method for assessing the statistical significance of quantitative reconstructions inferred from biotic assemblages. Quaternary Science Reviews, 30: 1272-1278.
- Telford, R.J., Li, C. and Kucera, M., 2013. Mismatch between the depth habitat of planktonic foraminifera and the calibration depth of SST transfer functions may bias reconstructions. Clim. Past, 9: 859-870.
- Thierstein, H.R. and Young, J.R. (Editors), 2004. Coccolithophores: from molecular processes to global impact. Springer, Berlin, 565 pp.
- Villanueva, J., Pelejero, C. and Grimalt, J.O., 1997. Clean-up procedures for the unbiased estimation of C37 alkenone sea surface temperatures and terrigenous n-alkane inputs in paleoceanography. Journal of Chromatography A, 757: 145-151.
- Weaver, P.P.E. and Pujol, C., 1988. History of the last deglaciation in the Alboran Sea (western Mediterranean) and adjacent north Atlantic as revealed by coccolith floras. Palaeogeography, Palaeoclimatology, Palaeoecology, 64: 35-42.

- Wiersma, A.P. and Renssen, H., 2006. Model-data comparison for the 8.2 ka BP event: confirmation of a forcing mechanism by catastrophic drainage of Laurentide Lakes. Quaternary Science Reviews, 25: 63-88.
- Winter, A. and Siesser, W.G. (Editors), 1994. Coccolithophores. Cambridge Univ. Press, Cambridge, U. K., 242 pp.
- Zanchetta, G., Drysdale, R.N., Hellstrom, J.C., Fallick, A.E., Isola, I., Gagan, M.K. and Pareschi, M.T., 2007. Enhanced rainfall in the Western Mediterranean during deposition of sapropel S1: stalagmite evidence from Corchia cave (Central Italy). Quaternary Science Reviews, 26: 279-286.

APPENDIX. Taxonomic appendix

The list below includes the taxa of calcareous nannoplankton in alphabetical order identified

and counted in this study. Some taxa were lumped together as described in the text.

Braarudosphaera bigelowii (Gran & Braarud 1935)

Calcidiscus leptoporus (Murray & Blackman 1898)

Calciosolenia murrayi Gran 1912

Coccolithus pelagicus ssp. braarudii (Gaarder 1962)

Coccolithus pelagicus (Wallich 1877) Schiller 1930 ssp. pelagicus

Discosphaera tubifera (Murray & Blackman, 1898)

Emiliania huxleyi (Lohmann 1902)

Emiliania huxleyi Type B (*pujosiae*) (> 4 µm)

Florisphaera profunda (Okada & Honjo 1973)

Gephyrocapsa aperta Kamptner 1963

Gephyrocapsa caribbeanica Boudreaux & Hay, in Hay et al. 1967

Gephyrocapsa ericsonii McIntyre & Bé 1967

Gephyrocapsa muellerae Bréhéret 1978

Gephyrocapsa oceanica Kamptner 1943

Helicosphaera spp., (mainly H. carteri (Wallich 1877))

Oolithotus fragilis (Lohmann 1912)

Pontosphaera spp. Schiller 1925

Rhabdospahera clavigera Murray & Blackman 1898

Syracosphaera spp. (mainly *S. pulchra*, Lohmann 1902)

Umbellosphaera spp., (mainly U. tenuis (Kamptner 1937))

Umbilicosphaera sibogae (Weber-van Bosse 1901)