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Abstract

Aging societies suffer from an increasing incidence of bone fractures. Bone strength de-
pends on the amount of mineral measured by clinical densitometry, but also on the mi-
cromechanical properties of the bone hierarchical organization. A good understanding has
been reached for elastic properties on several length scales, but up to now there is a lack of
reliable postyield data on the lower length scales.
In order to be able to describe the behavior of bone at the microscale, an anisotropic

elastic-viscoplastic damage model was developed using an eccentric generalized Hill criterion
and nonlinear isotropic hardening. The model was implemented as a user subroutine in
Abaqus and verified using single element tests. A FE simulation of microindentation in
lamellar bone was finally performed showing that the new constitutive model can capture
the main characteristics of the indentation response of bone.
As the generalized Hill criterion is limited to elliptical and cylindrical yield surfaces and

the correct shape for bone is not known, a new yield surface was developed that takes any
convex quadratic shape. The main advantage is that in the case of material identification
the shape of the yield surface does not have to be anticipated but a minimization results
in the optimal shape among all convex quadrics. The generality of the formulation was
demonstrated by showing its degeneration to classical yield surfaces. Also, existing yield
criteria for bone at multiple length scales were converted to the quadric formulation.
Then, a computational study to determine the influence of yield surface shape and damage

on the indentation response of bone using spherical and conical tips was performed. The
constitutive model was adapted to the quadric criterion and yield surface shape and critical
damage were varied. They were shown to have a major impact on the indentation curves.
Their influence on indentation modulus, hardness, their ratio as well as the elastic to total
work ratio were found to be very well described by multilinear regressions for both tip
shapes. For conical tips, indentation depth was not a significant factor, while for spherical
tips damage was insignificant.
All inverse methods based on microindentation suffer from a lack of uniqueness of the

found material properties in the case of nonlinear material behavior. Therefore, mono-
tonic and cyclic micropillar compression tests in a scanning electron microscope allowing a
straightforward interpretation complemented by microindentation and macroscopic uniaxial
compression tests were performed on dry ovine bone to identify modulus, yield stress, plas-
tic deformation, damage accumulation and failure mechanisms. While the elastic properties
were highly consistent, the postyield deformation and failure mechanisms differed between
the two length scales. A majority of the micropillars showed a ductile behavior with strain
hardening until failure by localization in a slip plane, while the macroscopic samples failed
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in a quasi-brittle fashion with microcracks coalescing into macroscopic failure surfaces. In
agreement with a proposed rheological model, these experiments illustrate a transition from
a ductile mechanical behavior of bone at the microscale to a quasi-brittle response driven by
the growth of preexisting cracks along interfaces or in the vicinity of pores at the macroscale.
Subsequently, a study was undertaken to quantify the topological variability of indenta-

tions in bone and examine its relationship with mechanical properties. Indentations were
performed in dry human and ovine bone in axial and transverse directions and their to-
pography measured by AFM. Statistical shape modeling of the residual imprint allowed to
define a mean shape and describe the variability with 21 principal components related to
imprint depth, surface curvature and roughness. The indentation profile of bone was highly
consistent and free of any pile up. A few of the topological parameters, in particular depth,
showed significant correlations to variations in mechanical properties, but the correlations
were not very strong or consistent. We could thus verify that bone is rather homogeneous
in its micromechanical properties and that indentation results are not strongly influenced
by small deviations from the ideal case.
As the uniaxial properties measured by micropillar compression are in conflict with the

current literature on bone indentation, another dissipative mechanism has to be present.
The elastic-viscoplastic damage model was therefore extended to viscoelasticity. The vis-
coelastic properties were identified from macroscopic experiments, while the quasistatic
postelastic properties were extracted from micropillar data. It was found that viscoelastic-
ity governed by macroscale properties has very little influence on the indentation curve and
results in a clear underestimation of the creep deformation. Adding viscoplasticity leads
to increased creep, but hardness is still highly overestimated. It was possible to obtain a
reasonable fit with experimental indentation curves for both Berkovich and spherical inden-
tation when abandoning the assumption of shear strength being governed by an isotropy
condition. These results remain to be verified by independent tests probing the microme-
chanical strength properties in tension and shear.
In conclusion, in this thesis several tools were developed to describe the complex be-

havior of bone on the microscale and experiments were performed to identify its material
properties. Micropillar compression highlighted a size effect in bone due to the presence
of preexisting cracks and pores or interfaces like cement lines. It was possible to get a
reasonable fit between experimental indentation curves using different tips and simulations
using the constitutive model and uniaxial properties measured by micropillar compression.
Additional experimental work is necessary to identify the exact nature of the size effect
and the mechanical role of interfaces in bone. Deciphering the micromechanical behavior of
lamellar bone and its evolution with age, disease and treatment and its failure mechanisms
on several length scales will help preventing fractures in the elderly in the future.
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1.1 Motivation

Aging societies suffer from an increasing incidence of bone fractures. Bone strength depends
on the mineral density measured by clinical densitometry, but also on the micromechanical
properties of bone’s hierarchical organization. Contemporary prevention and treatment
strategies of metabolic conditions like osteoporosis benefit from a better understanding of
the micromechanical behavior of bone and its relation to cell- and drug-mediated adaptation
processes [Bajaj et al., 2014].
The mechanical properties of bone have been subject to intensive research since the first

half of the 20th century, when modern medicine started to demand a more scientific ap-
proach on muskoloskeletal mechanics. However, many challenges remain, mostly due to
spatial, inter-subject, age, and disease variation of mechanical properties [Cowin, 2001,
Keaveny et al., 2003]. Analysis of bone as a hierarchical composite is an important field in
biomechanics [Fratzl and Weinkamer, 2007, Wagner and Weiner, 1992, Weiner and Wagner,
1998] trying to better understand and predict whole bone properties based on knowledge of
composition, microstructure, and properties on the lower length scales.
While considerable progress has been made in the prediction and understanding of elastic

properties on several length scales [Crolet et al., 1993, Fritsch and Hellmich, 2007, Grimal
et al., 2008, Hellmich et al., 2011, Reisinger et al., 2010], up to now there is a lack of reliable
postyield data on the lower length scales [Choi and Goldstein, 1992]. The aim of this thesis
is therefore to obtain a more thorough understanding of the deformation mechanisms and
the postelastic mechanical properties on the microscale.

1.2 Bone

1.2.1 Hierarchical structure

Bone is a hierarchical composite material featuring a cell-seeded mineralized collagen matrix
with a hierarchical structure. Its main constituents are mineral (50-60 wt. %), collagen (30-
40 wt. %) and water (10-20 wt. %, both bound and free) [Rho et al., 1998]. It is designed for
mechanical support, metabolizing minerals and storing bone marrow [Fratzl andWeinkamer,
2007, Weiner et al., 1999] and mostly loaded in compression in everyday activities [Currey,
2002]. The hierarchical structure of bone is described in the following paragraphs and
illustrated in Fig. 1.1.
The collagen molecules self-assemble into fibrils which are periodically reinforced by min-

eral platelets [Fratzl and Weinkamer, 2007, Weiner and Wagner, 1998], empty pore space is
filled with water and non-collageneous proteins. The mineralized collagen fibrils surrounded
by extrafibrillar mineral particles [Currey, 1969, 2002, Lees et al., 1990] combine into fibril
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Figure 1.1: The hierarchical structure of bone [Reisinger, 2011, Varga, 2009].

arrays. In lamellar bone, parallel fibril arrays form lamellae in a rotated plywood pattern
[Giraud-Guille, 1988, Reznikov et al., 2014, Varga et al., 2013, Weiner et al., 1997].
Osteocytes and their processes inhabit the lacuno-canalicular network which makes up for

about 1 % of whole bone porosity [Martin, 1984]. The outer compact shell of bones is called
cortex, which in humans consists of lamellae arranged concentrically around blood vessels
forming osteons [Fratzl and Weinkamer, 2007]. It features a porosity of around 5-15 %,
mainly made up of Haversian and Volkmann channels, which contain blood vessels and
are oriented in and perpendicular to the main osteon direction (Fig. 1.2). Osteons result
from a continuous remodeling process that counteracts the development of microcracks
and decrease in mechanical properties over time due to fatigue and are separated from
the surrounding tissue by a cement interface [Burr et al., 1988]. Old bone is resorbed
by osteoclasts forming a resorption cavity, which is subsequently filled with new tissue by
osteoblast cells. During this process, some of the osteoblasts get trapped in the newly formed
tissue thus becoming osteocytes. Freshly deposited tissue has a lower mineral content and is
mineralized over time [Currey, 2002]. A schematic drawing of the microstructure of osteonal
bone may be seen in Fig. 1.2.
In large, fast growing animals an alternative tissue type, the so called fibrolamellar bone,

is laid out first and converted to osteonal bone through a remodeling process [Currey, 2002].
In this bone type, fast-growing and weak woven bone is filled with stronger and more slowly
deposited lamellar bone resulting in a layered structure.
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Haversian channel
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Osteon with lamellar ultrastructure

Figure 1.2: Cortical bone structure in humans [Kristic, 1991]

The inside of epiphyses of long bones and vertebral bodies is filled with a spongy bone
structure called trabecular bone, which features porosities ranging from 50% to > 95%. It is
made of lamellar bone organized into a network of connected plate- and beam-like structures
called trabeculae (Fig. 1.1,1.2). The pores of trabecular bone are filled with bone marrow,
which plays an important role in hematopoiesis and the production of lymphocytes. This
work mainly focuses on the micromechanical properties of cortical bone.

1.2.2 Mechanical behavior

Mechanical tests have been performed on bone for more than a century. It has been shown
to exhibit anisotropy, i.e. direction-dependence of material properties on several length
scales [Currey, 2002, Franzoso and Zysset, 2009, Reisinger et al., 2011]. Also, it features a
rate-and time-dependent behavior in both the elastic [Bargren et al., 1974, Eberhardsteiner
et al., 2014, Lakes et al., 1979, Lakes and Katz, 1979] and the postyield regime [Caler and
Carter, 1989, Fondrk et al., 1988] as well as poroelastic effects [Cowin, 1999]. When loaded
quasistatically past the yield point on the macroscale, there is evidence that bone shows
two simultaneous mechanisms of energy dissipation [Garcia, 2006, Zysset, 1994]: inelastic
deformation and damage, i.e. reduction of stiffness due to the formation of microcracks
[O’Brien et al., 2002, Sun et al., 2010, Zioupos et al., 2008]. Negative fibril strains fol-
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lowing macroscopic tensile yielding [Gupta et al., 2006] could be interpreted as a sign of
decohesion or damage on a lower length scale. Cracking in bone has been shown to be
strongly associated to microstructural interfaces such as cement lines [Carter and Hayes,
1977, Diab and Vashishth, 2007, Ebacher et al., 2012, Martin and Burr, 1989, Nalla et al.,
2003], which is why it may be considered as quasi-brittle [Bažant, 2004]. Materials of this
class exhibit failure by developments of cracks, but the size of the plastic process zone at
the crack tips is similar to the characteristic length of the microstructure. While the elastic
properties of bone have been shown to be very consistent over several length scales [Hengs-
berger et al., 2003, Spiesz et al., 2011, Wolfram et al., 2010b], the postelastic behavior could
be scale-dependent [Bažant, 2004, Bigley et al., 2007, 2008]. Evidence has been presented
[Tai et al., 2006] that bone behaves like a cohesive-frictional material on the lower length
scales due to its nanogranular structure. It was suggested that the increased yield proper-
ties in compression compared to tension reported in the literature [Yeni et al., 2004] may
be explained by nanogranular friction between mineral particles and cohesion originating
from the organic phase [Tai et al., 2006]. Other proposed nanoscale mechanisms are dissi-
pation at the interface between mineral platelets and the organic phase [Mercer et al., 2006,
Gupta et al., 2013], dilatational bands of unfolding proteins between adjacent mineral ag-
gregates [Poundarik et al., 2012], or ductile sliding of mineral platelets followed by rupture
of collagen crosslinks [Fritsch et al., 2009]. Finite element simulations of nanoindentation
experiments using coupled plasticity and damage models have shown that the presence of
damage may explain some of the experimental findings for mineralized tissues like reduced
unloading stiffness [Zhang et al., 2010, Lucchini et al., 2011]. Fig. 1.3 shows the response of
macroscopic bone samples to quasistatic loading [Gibson and Ashby, 1999] and creep tests
[Fondrk et al., 1988].
For brittle materials, failure is associated with the growth of cracks originating from pores,

surface scratches, or other preexisting defects and exhibits a size effect. When testing smaller
specimens, the probability that a defect of a certain critical size is present in the material
decreases, which leads to an increased failure stress [Griffith, 1921]. When reaching very
small sample sizes, no defects of critical size may be present and alternative dissipative
processes like dislocation based plasticity dominate even in ceramics [Michler et al., 2007].
In bone, the hierarchical structure leads to a macroscopically quasi-brittle behavior where
plasticity and cracking both play a significant role and size effects have been reported in
the past [Bigley et al., 2007, 2008]. However, the associated scaling laws spanning several
levels of hierarchy remain to be investigated. Therefore, assessment of the micromechanical
postelastic properties is important for understanding the nature of the size effect in bone.
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Figure 1.3: Quasistatic uniaxial (left) [Gibson and Ashby, 1999] and creep behavior (right) [Fondrk
et al., 1988] of bone on the macroscale

1.3 Nanoindentation

Nanoindentation is an experimental technique allowing to assess the micromechanical prop-
erties of thin films and materials. The method originates in hardness testing, which was
developed in the 19th century. In traditional mechanical testing, specimens of macroscopic
dimensions and standardized shape are fixed to a testing device and subsequently loaded. In
this case, the size of the tested volume is similar to the specimen size and the stress state is
mostly homogeneous. In nanoindentation a diamond tip with a known geometry is pushed
onto a flat surface and tip displacement as well as reaction force are measured. In this case
the tested volume is much smaller than the sample and a heterogeneous stress state governed
by contact mechanics develops. Therefore, local micromechanical properties are measured
in contrast to properties homogenized over a large volume. A typical nanoindentation tester
consists of four main components: x-y-z-table, microscope, measurement head and indenter
tip. Fig. 1.4 shows a scheme of the measurement head of the Ultra Nanohardness Tester
(CSM Instruments SA, Peseux, Switzerland) in use at the biomechanics laboratory of the
Institute for Surgical Technology and Biomechanics of the University of Bern.
In order to make accurate measurements of indentation depth, the position of the sample

surface needs to be known during the test. Therefore, the UNHT features an additional tip
that acts as a reference by lowering it onto the sample surface and applying a small force to
ensure continuous contact throughout the whole measurement. Tip displacements are mea-
sured differentially between reference and indenter thus minimizing load frame compliance
and measurement artefacts due to piezo drift or thermal expansion.
Sneddon first published a solution for the Boussinesq problem of an axisymmetric body
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Figure 1.4: Schematic drawing of the measurement head of the UNHT nanoindentation system
featuring a second tip for surface referencing. Figure adapted from CSM UNHT user
manual.

in contact with an elastic halfspace in 1948 [Sneddon, 1948, 1965], which can be used to
determine the elastic modulus from indentation curves provided that the contact is strictly
elastic and the material’s Poisson’s ratio is known. However, most materials do not deform in
a purely elastic way when indented. Therefore experimental techniques had to be developed
that allow to extract elastic properties from real indentation experiments involving plasticity
and other dissipative processes.
For elasto-plastic materials, permanent deformation takes place during the loading phase,

the extent of which depends on the shape of the indenter. For sharp indenters like Berkovich
or Vickers indenters, the onset of plasticity is immediate. Therefore there is a superposition
of local elastic and plastic deformation making it difficult to interpret the resulting load-
displacement curve. However, at the beginning of the unloading curve the behavior can
be assumed to be purely elastic making it possible to extract elastic properties based on
the methodology first proposed by Oliver and Pharr [Oliver and Pharr, 1992]. A typical
indentation curve for bone is shown in Fig. 1.5.
The response can be divided into three parts: An elasto-plastic loading (A) followed by

creep deformation at constant load (B-C) and finally elastic unloading (C-D). The method
of Oliver and Pharr [Oliver and Pharr, 1992, 2004] allows to measure elastic properties
based on the unloading curve and was later extended to anisotropic media [Swadener and
Pharr, 2001]. A power law function is fitted to the upper 60 % of the unloading curve and
its derivative S = dP

dh computed at the maximum depth. The reduced modulus Er may then
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Figure 1.5: Typical load-displacement curve of an indentation experiment. Elasto-plastic loading
(A) followed by creep at a constant force (B-C) and elastic unloading (C-D).

be determined using the general relation [Oliver and Pharr, 1992, Herbert et al., 2001]

Er =
√
π

2 S
1√
Ac

(1.1)

with the slope of the unloading curve at maximum depth S, and the projected contact area
Ac. Measuring the indentation depth at a high accuracy gives the possibility to approximate
the actual contact area at a given depth with the help of the indenter shape function. This
method is much more precise than the optical measurement of the residual imprint used
in classical hardness testing. A calibration of the system determining the shape function
and system compliance is done by indenting fused silica specimens with a known plain
strain modulus. The indentation modulus may be recovered from the reduced modulus Er
[Herbert et al., 2001, Oliver and Pharr, 1992, 2004] by the equation

E∗ =
(

1
Er
− 1− ν2

i

Ei

)−1

(1.2)

for known isotropic constants Ei and νi of the indenter tip. The indentation hardness Hind

is defined as the maximum force divided by the contact area at maximum depth:

Hind = Pmax
Ac,max

(1.3)
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The elastic and total energies are defined as

Welast =
∫ hres

hmax
Pdh, Wtot =

∫ hmax

0
Pdh (1.4)

with the maximum depth hmax and the residual depth hres. It should be noted that in-
dentation modulus is a material property, while hardness and energies strongly depend on
indenter shape and indentation depth.
Nanoindentation may also be used to extract nonlinear properties. However, it is very

difficult to find a unique set of nonlinear material parameters based on one indentation
curve. For materials featuring dissipative mechanisms, several inverse methods to back-
calculate mechanical properties based on nanoindentations have been developed in the past
[Bocciarelli et al., 2005, Bolzon et al., 2004, Bucaille et al., 2003, Ganneau et al., 2006].
These methods have been shown to provide a good estimation of the yield envelope of
a material provided that the underlying dissipative mechanism is known a priori and well
understood in terms of its mathematical description. However, there are additional problems
when several dissipative mechanisms are at work simultaneously or their nature is not fully
understood. Indentations in materials with different behaviors can result in very similar
force-depth curves [Chen et al., 2007] and can thus not be used to find a unique set of
nonlinear material properties. Therefore, it has been proposed in the past to increase the
reliability of the obtained results by assessing mechanical properties extracted from force-
depth curves of indentations with several different indenters complemented by information
on the residual imprint [Bocciarelli et al., 2005, Bolzon et al., 2004, Bucaille et al., 2003,
Mullins et al., 2009].
Indentation in bone with depths up to 1 µm mainly aims at characterizing the anisotropic

mechanical properties on the level of single to multiple lamellae, which have a thickness of 3-
7 µm [Franzoso and Zysset, 2009, Hengsberger et al., 2002, Lewis and Nyman, 2008, Olesiak
et al., 2010, Oyen and Ko, 2008, Reisinger et al., 2011, Spiesz et al., 2013, Ulm et al.,
2007, Zysset et al., 1999, Zysset, 2009]. Inverse methods based on conical yield surfaces
have been used to extract yield properties of bone in the past [Carnelli et al., 2010, 2011,
Mullins et al., 2009, Tai et al., 2006, Wang et al., 2008]. Also, finite element calculations
of indentations using constitutive models coupling plasticity and damage have shown that
damage could explain some of the experimental findings for bone like a reduced unloading
stiffness [Lucchini et al., 2011, Zhang et al., 2010]. Nanoindentation has been used as part of
validation strategies involving elastic µFE models of trabecular bone [Wolfram et al., 2010b]
and mineralized tendon [Spiesz et al., 2011] and micromechanical homogenization schemes
explaining the scale-dependent elastic properties of bone [Reisinger et al., 2011]. In general,
it was shown that the elastic properties measured by nanoindentation are rather robust
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with standard deviations around 10 % of the mean value [Zysset, 2009]. The variation
may most probably be explained by inhomogeneous fiber orientation, mineralization and
porosity. However, correlation of indentation modulus with respect to fiber orientation and
mineral mass fraction have been reported to be rather weak [Spiesz et al., 2013].

1.4 Micropillar compression

A complementary experimental setup for micromechanical testing that has emerged in the
past years is micropillar compression [Dubach et al., 2009, Michler et al., 2007, Östlund
et al., 2009, Uchic and Dimiduk, 2005]. Micron sized pillars are produced by erosion of
material using a focused ion beam (FIB) and compressed by a flat punch indenter. Fig. 1.6
shows scanning electron microscope (SEM) images of a micropillar and a flat punch indenter
from Uchic and Dimiduk [2005].

Figure 1.6: SEM images of a micropillar machined with a focused ion beam into a Ni3(Al, Hf)
single crystal (left) and a flat punch indenter used for the compression tests (right).
Both figures are taken from Uchic and Dimiduk [2005].

The compression of individual pillars leads to a predominantly uniaxial stress state, which
allows a straightforward interpretation of the force-displacement data similar to macroscopic
uniaxial tests on dogbone-shaped specimens. This technique is ideal for studying the effects
of sample size in quasi-brittle materials [Bažant, 2004] in terms of determining the postyield
properties and deformation mechanisms without premature fracture [Howie et al., 2012,
Michler et al., 2007, Östlund et al., 2009, 2011]. As the pillar is usually eroded from a bulk
specimen, it is supported by the same material and sinks in during the test. Therefore, the
solution of Sneddon for the contact of a flat punch on an elastic half space [Sneddon, 1965]
was modified to include the effect of a finite fillet radius at the bottom of the pillar [Zhang
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et al., 2006], which may be used in order to obtain reasonably reliable strain data from
the indenter displacement signal. An unwanted side effect of the focused ion beam erosion
is that the impinging ions disrupt the atomic order in the sample not only by sputtering
atoms, but also by displacing atoms from their original position (known as FIB damage),
and Gallium implantation. These are common problems in micropillar compression studies
leading to changes in the apparent properties of the tested material [El-Awady et al., 2009]
and their extent may be assessed by Monte Carlo simulations [Ziegler and Biersack, 1985].
For pillars with a diameter that is considerably larger than the afflicted zone, the effect
on the measured mechanical properties is negligible [Michler et al., 2007]. For mineralized
tissues, this effect seems to be minor, as no significant FIB damage was reported in TEM
lamellae of human dentin [Nalla et al., 2005].

1.5 Aims and Outline

The aim of this thesis was to investigate the nonlinear behavior of bone on the microscale.
It focused on anisotropy, time- and rate-effects, yield and postyield properties, the presence
of a damage mechanism, and the shape of the yield envelope for bone on the microscale. In
order to investigate these questions, six studies were performed, three of them of a mostly
theoretical nature, one numerical, and two experimental.
Chapter 2 of the thesis describes a three-dimensional material model featuring anisotropy,

elasto-viscoplasticity, and damage based on a Tsai-Wu like criterion in strain space. This
material model features most of the characteristics of bone that we originally aimed to
investigate in this thesis.
In chapter 3, a new yield surface was proposed that may take the form of any convex

quadric including ellipsoids, paraboloids, half hyperboloids and cones. Implementation of
the new formulation allows to vary the yield surface shape in order to find the correct
behavior for bone on the microscale instead of hypothesizing about the nature of the yield
envelope a priori.
Chapter 4 deals with the influence of the yield surface shape and the presence of damage on

the response of bone to indentations using Berkovich and spherical indenters in a numerical
parameter study. Yield surface shape and maximum damage were varied while keeping the
uniaxial yield properties constant allowing to identify the influence of the tested parameters.
Chapter 5 descibes an experimental campaign that aimed at measuring the uniaxial poste-

lastic properties of bone on the microscale by means of in situ micropillar compression. The
experiments allowed to determine the yield and ultimate points, postyield behavior, and
to test for the presence of a damage mechanism on this length scale. The results were
compared to macroscopic experiments in order to highlight the influence of microstructure
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as well as defects and interfaces such as preexisting cracks, pores and cement lines on the
postelastic properties of bone.
In chapter 6 the residual imprint of Berkovich indentations in bone were assessed in

a quantitative fashion. Mean shapes of residual imprints for dry human and ovine bone
in axial and transverse direction were determined and the variability of the datasets was
described by a set of principal components. Finally, the variation of the imprint shape was
correlated to the measured mechanical properties in order to investigate the influence of
geometry on the experimental results.
In chapter 7 the existing material model was extended to include viscoelasticity in order

to test whether the discrepancies found between the micropillar compression experiments
and the properties reported based on nanoindentation in the literature could be overcome
by inclusion of a dissipative mechanism in the elastic regime.
The last chapter presents concluding remarks on the six studies of this thesis and an

outlook on possible future work.
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2.1 Abstract

A new anisotropic elastic-viscoplastic damage constitutive model for bone is proposed using
an eccentric elliptical yield criterion and nonlinear isotropic hardening. A micromechanics-
based multiscale homogenization scheme proposed by Reisinger et al. is used to obtain the
effective elastic properties of lamellar bone. The dissipative process in bone is modeled as
viscoplastic deformation coupled to damage. An eccentric elliptical isotropic yield surface
was defined in strain space, which is transformed to a stress based criterion by means of
the damaged compliance tensor. Viscoplasticity is implemented by means of the continuous
Perzyna formulation. Damage is modeled by a scalar function of the accumulated plastic
strain D(κ), reducing all elements of the stiffness matrix. A polynomial flow rule is proposed
in order to capture the rate-dependent post-yield behavior of lamellar bone. A numerical
algorithm to perform the backprojection on the rate-dependent yield surface has been de-
veloped and implemented in the commercial Finite Element solver Abaqus/Standard as a
user subroutine UMAT. A consistent tangent operator has been derived and implemented
in order to ensure quadratic convergence. Correct implementation of the algorithm, conver-
gence and accuracy of the tangent operator were tested by means of strain- and stress-based
single element tests. A finite element simulation of nanoindentation in lamellar bone was
finally performed in order to show the abilities of the newly developed constitutive model.

2.2 Introduction

Bone is a biomaterial exhibiting complex mechanical behavior, especially in the post-yield
regime. In order to be able to make quantitative predictions of bone stiffness and failure,
realistic constitutive models of its mechanical behavior are needed. Due to the hierar-
chical nature of bone, the apparent mechanical properties at different length scales vary.
Micromechanical approaches have been applied in the past to predict elastic and strength
properties of bone on several length scales. Many of the nonlinear constitutive models pro-
posed so far have concentrated on bone at the macroscopic organ level [Charlebois et al.,
2010, Fondrk et al., 1999, Garcia et al., 2009, Keyak and Rossi, 2000, Natali et al., 2008,
Zysset, 1994]. Recently, several models have been proposed that describe the behavior of
bone during nanoindentation [Carnelli et al., 2010, Lucchini et al., 2011, Tai et al., 2006,
Zhang et al., 2008, 2010]. Most of these models have been restricted to rate-independent
post-yield behavior. It has been shown, though, that bone exhibits a strong strain-rate
dependency after yielding [Gupta et al., 2007, Gupta and Zioupos, 2008], a phenomenon
also seen during nanoindentation experiments at the ultrastructural level where creep be-
havior may be observed during holding periods [Bushby et al., 2004, Wolfram et al., 2010a,
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Zysset et al., 1999]. In this work, a constitutive model for bone has been developed that
has the potential to be used on different length scales ranging from the ultrastructural to
the macroscopic level. A micromechanical approach to assess the elastic properties was
combined with a phenomenological constitutive law describing the viscoplastic and damage
post-yield behavior of bone. It features anisotropic elasticity, an eccentric elliptical yield
surface, viscoplasticity and damage, i.e. progressive degradation of the stiffness tensor. The
purpose of this model is to be able to predict experimental force-displacement curves on
several length scales from the ultrastructural to the macroscopical level by using finite ele-
ment simulation and appropriate material properties. The mathematical formulation of the
model is performed within the framework of thermodynamics of irreversible processes. The
proposed model uses the internal state variable approach common in continuum mechanics
and allows a straightforward interpretation of the constitutive behavior of cortical bone in
terms of plastic deformation and damage. It does not account for the damage and inelastic
deformation mechanisms in the molecular regime. Instead, several assumptions are made
on the shape of the yield surface and the validity of the theory of plasticity and continuum
damage mechanics. These assumptions will be listed and justified during the course of this
article.
Bone is a hierarchical material with three main constituents: Collagen, mineral and water.

Collagen molecules self-assemble into fibrils which are periodically reinforced by mineral
platelets [Fratzl and Weinkamer, 2007, Weiner and Wagner, 1998], the empty pore space is
filled with water. This basic unit forms fibril arrays, bundles of parallel mineralized fibrils
embedded in a extra-fibrillar mineral matrix with a foam-like structure [Hellmich and Ulm,
2002, Reisinger et al., 2010]. In lamellar bone, parallel fibril arrays form lamellae in a
rotated-plywood-like manner [Weiner et al., 1997, 1999]. Multiple bone lamellae arranged
around a blood vessel make up an osteon, which features microporosity of up to 10%, mainly
of the lacunar-canalicular network [Sugawara et al., 2005]. Cortical bone consists mainly of
parallel arrays of osteons going in the axial direction of the bone with blood vessels making
up for a macroporosity of about 6% [Fratzl and Weinkamer, 2007]. For a more thorough
description, see e.g. Fratzl and Weinkamer [2007].
As shown in the previous paragraph, there is a considerable amount of porosity present on

every hierarchical level of bone from the nano- to the macro-scale. Tai et al. [Tai et al., 2006]
showed evidence that bone behaves as a cohesive-frictional material due to its nanogranular
structure. They proposed that the increased yield properties reported in the literature [Yeni
et al., 2004] in compression compared to tension may be explained by nanogranular friction
between mineral particles and cohesion that originates from within the organic phase itself.
Finite element simulations using plasticity models featuring a Drucker-Prager type yield
surface were able to capture some of the characteristics of nanoindentation experiments on
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bone [Carnelli et al., 2010, Tai et al., 2006]. Micromechanical considerations by Maghous et
al. [Maghous et al., 2009] on strength of porous geomaterials showed that the yield surface
of cohesive-frictional materials featuring porosity takes an eccentric elliptical shape. This
is also consistent with findings on the macroscopic level, where Cowin proposed a Tsai-Wu
yield surface for cortical bone [Cowin, 1979]. Due to the considerable amount of porosity
present on every hierarchical level in bone, we chose to base the model on an eccentric
elliptical yield surface in order to make it compatible with multiple length scales from the
ultrastructural to the macroscopic level. This is consistent with the notion of bone consisting
of a porous mineral nanogranular matrix with organic glue reinforced by collagen fibers.
When loaded past the yield point, bone shows two mechanisms of energy dissipation:

inelastic deformation and damage, i.e. reduction of the elastic properties. The formation
of plastic and damage behavior is well documented on the macroscopic scale [Garcia et al.,
2009]. Furthermore, it has been shown that bone exhibits a strong strain rate dependency
after yielding on the macroscale [Gupta et al., 2007, Gupta and Zioupos, 2008] that may
be captured by a viscoplastic approach. However, there is evidence that these mechanisms
exist from the nanoscale upwards [Gupta et al., 2005, 2006, Hansma et al., 2005]. Gupta et
al proposed a model where inelastic deformation at the fibril level takes place by viscous flow
of the interfibrillar matrix past the fibrils transmitting shear flow stresses, once a certain
strain level is reached. This process may be described by viscoplasticity taking into account
the time- and rate-dependency of the post yield process and a strain-based yield criterion.
One possible approach is the continuous Perzyna formulation, first proposed by Ponthot
[Ponthot, 1995] allowing for a smooth transition from rate-independent elasto-plasticity to
viscoplasticity. Gupta et al also interpreted their findings of negative fibril strains after
macroscopical inelastic strains in tension as a sign for additional internal decohesion taking
place between the mineral and the collagen molecules [Gupta et al., 2006] which may be
interpreted as a formation of damage from a continuum mechanics point of view. Another
experimental finding supporting the notion of damage mechanisms present at the ultrastruc-
tural level is the decrease of indentation modulus with increasing indentation depth reported
in instrumented nanoindentation experiments performed on bone [Hengsberger et al., 2002,
Voyiadjis and Peters, 2010, Zhang et al., 2008] and the presence of transverse microcracks
around the indentation site reported by Hengsberger et al. [Hengsberger et al., 2002]. Finite
element simulations of nanoindentation experiments using coupled plasticity and damage
models have shown that the presence of damage may explain some of the experimental
findings for mineralized tissues like size-effects [Lucchini et al., 2011, Zhang et al., 2010].
Therefore both dissipative mechanisms were included in the model by means of a plastic
strain tensor and a scalar damage variable reducing all elements of the stiffness tensor as a
function of accumulated plastic strain.
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A strain-based formulation that is isotropic in strain space was formulated as an approx-
imation of the yield surface of cortical bone. The advantage of this approach is the ability
of the model to deal with general anisotropy and the low number of material constants
needed. Experimental findings of Gupta et al support the hypothesis that the yield prop-
erties of bone can be described by a surface in strain space on the ultrastructural as well as
the macroscopic level [Gupta et al., 2006]. Due to the current lack of reliable experimen-
tal data on strength properties of lamellar bone on several length scales that would allow
us to refine the model, an isotropic eccentric criterion in strain space was postulated that
is transformed to stress space using the damaged compliance tensor for use in the stress
integration algorithm.

2.3 Constitutive model

The rheological model is a damageable elastic spring in series with a plastic pad and a
dashpot element in parallel. In the purely elastic regime, the model behaves independently
of the strain rate. The plastic strains are accumulating viscously using a Perzyna-type
viscoplasticity formulation. The model is based on the internal variables Ep and κ. The
state variable Ep is a 2nd order tensor including the inelastic strains, κ is the accumulated
plastic strain. Damage accumulation is assumed to be coupled to the plasticity using a
damage function D(κ) reducing all elements of the stiffnes tensor. D is limited between
0 (no damage) and 1 (failure). Fig. 2.1 shows the rheological model for the implemented
constitutive law.

Figure 2.1: Rheological model of an elasto-viscoplastic solid with damage

2.3.1 Free energy potential and dissipation

In the notation used in the following chapters, scalars are written as X, 2nd order tensors
as X, and 4th order tensors as X, ’:’ denotes the double contraction operation. In case
of compositions of two 4th order tensors (Xijkl = YijmnZmnkl) and of transformations of
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a 2nd order tensor with a 4th order tensor (Xij = YijklZkl), the ’:’ sign is not written.
The operator ⊗ denotes the dyadic product Xijkl = YijZkl, ⊗ the symmetric product
Xijkl = 1

2(YikZjl + YilZjk).
The finite total strain tensor is split additively into an elastic and a plastic part using the

Green-Naghdi decomposition [Green and Naghdi, 1965]:

E = Ee +Ep (2.1)

The cumulated plastic strain κ is defined as:

κ =
∫ t

0
||Ėp||dτ (2.2)

In this model, damage is modeled as a scalar D reducing all components of the stiffness
tensor. Damage is assumed to be dependent on the history of permanent deformation and
therefore defined as a function of the accumulated plastic strain κ [Charlebois et al., 2010,
Zysset, 1994]:

D(κ) = 1− e−kpκ (2.3)

The constant kp was set to 10.5 following the findings of Zysset [Zysset, 1994]. The free
energy potential for this material model was defined as:

Ψ(E,Ep, κ) = 1
2(1−D(κ))(E −Ep) : S(E −Ep) (2.4)

with the stiffness tensor S, the total strains E and the plastic strains Ep. The corresponding
state laws become:

SΨ = ∇EΨ = (1−D(κ))S(E −Ep) (2.5)

and

SpΨ = −∇EpΨ = (1−D(κ))S(E −Ep) (2.6)

and

W κ
Ψ = −∇κΨ =


1
2D
′(κ)(E −Ep) : S(E −Ep) if κ ∈ ]0,∞[,

0 if κ = 0.
(2.7)

where S is the stress tensor. The conjugate variables are S and E, Sp and Ep as well as
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W κ and κ. For the model to be thermodynamically admissible, the dissipation Φ needs
to be positive at all times. The dissipation can be expressed as the difference between the
stress power density and the rate of the free energy density:

Φ = S : Ė − Ψ̇ (2.8)

The dissipation becomes therefore:

Φ = S : Ė − S : Ė + Sp : Ėp +W κκ̇ (2.9)

The first two terms cancel each other out and the dissipation becomes

Φ = (1−D(κ))S(E −Ep) : Ėp + 1
2D
′(κ)(E −Ep) : S(E −Ep)κ̇ (2.10)

with a plastic and a damage contribution to the overall dissipation.

2.3.2 Viscoplastic formulation

Similar to the governing equations of the flow theory in rate-independent plasticity, the
constitutive relations of an elastic-viscoplastic material of the Perzyna type can be written
as [Etse and Carosio, 1999, Perzyna, 1966]:

S = (1−D(κ))S(E −Ep) (2.11)

Ėp = 1
η
〈ψ(Y )〉Mp (2.12)

Mp = ∇SY (2.13)

with the yield function Y = Y (S, κ). The 〈〉 are the McAuley brackets in their usual meaning
〈f(x)〉 = 1

2(f(x)+|f(x)|). Following the suggestion of Ponthot [Ponthot, 1995], a viscoplastic
consistency parameter λ̇ is introduced. This approach is known as the continuous Perzyna
formulation.

λ̇ = 1
η
〈ψ(Y )〉 (2.14)
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ψ(Y ) is a monotonously increasing, invertible function. By substituting the consistency pa-
rameter into the viscoplastic flow rules, they take a form well known from rate-independent
plasticity:

Ėp = λ̇Mp (2.15)

For viscoplastic materials of the Perzyna type, the stress state can lie outside of the rate-
independent yield surface during viscoplastic flow. In the inelastic regime (Y ≥ 0), the
overstress function ψ(Y ) is invertible and the yield function follows its inverse:

Y = ψ−1(λ̇η) (2.16)

Therefore, we can define a new condition constraining the viscoplastic flow:

Ȳ = Y − ψ−1(λ̇η) = 0 (2.17)

According to Etse and Carrosio [Carosio et al., 2000, Etse and Carosio, 1999], this condition
represents a generalization of the rate-independent yield condition Y = 0 for viscoplastic
materials of the Perzyna type. It allows the use of generalized Kuhn-Tucker conditions
[Kuhn and Tucker, 1951] for viscoplastic flow in the form of

Ȳ ≤ 0, λ̇ ≥ 0, λ̇Ȳ = 0 (2.18)

which assure that the inelastic process satisfies Ȳ = 0 during viscoplastic deformation
and that no permanent deformation occurs in the elastic regime. This means that during
viscoplastic deformation the generalized consistency condition [Chaboche, 2008, Simo and
Ju, 1987] holds true:

˙̄Y = 0 (2.19)

It should be noted that in this approach for η → 0 the rate-dependent yield surface Ȳ
degenerates to the rate-independent Y , transforming the elasto-viscoplastic model to an
elastoplastic one.
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2.3.3 Continuum tangent operator

The continuum tangent stiffness operator gives the relation between the stress rate Ṡ and
the strain rate Ė in the continuum rate equation:

Ṡ = SCĖ (2.20)

In the elastic case (Ȳ < 0), the continuum tangent has the form

SC,el = (1−D(κ))S (2.21)

Differentiation of (1), (11), (14) and (17) with respect to time provides the following set
of equations to evaluate the tangent in the case Ȳ = 0:

Ė = Ėe + Ėp (2.22)

Ṡ = −D′(κ)S(E −Ep)κ̇+ (1−D(κ))S(Ė − Ėp) (2.23)

˙̄Y = Ẏ − ψ̇−1 = (∇SY )Ṡ + ∂Y

∂κ
κ̇− ∂ψ−1

∂λ̇
λ̈ = 0 (2.24)

λ̈ = 1
η
ψ′(Y )Ẏ = 1

η
ψ′(Y )

(
(∇SY )Ṡ + ∂Y

∂κ
κ̇
)

(2.25)

For the exact form of the gradients and derivatives, see the appendix. By combining (22)
and (23) with (11) and substituting λ̇ = κ̇

||∇SY || , we get:

Ė = EṠ
1−D(κ) + ES

(1−D(κ))2D
′(κ)κ̇+ κ̇Np (2.26)
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with the compliance tensor E = S−1 and

Np = ∇SY
||∇SY ||

(2.27)

Combining (24) and (25) provides the following equation:

(
∇SY Ṡ + ∂Y

∂κ
κ̇
)(

1− 1
η

∂ψ−1

∂λ̇

∂ψ

∂Y

)
= 0 (2.28)

For η → 0, the first expression has to vanish due to the consistency condition Ẏ = 0 for
rate-independent materials. This provides a relationship between κ̇ and Ṡ. Substituting
this into (26) and accounting for (11) leads to:

Ė =
( E
1−D(κ) −

(
Np ⊗Np + D′(κ)

1−D(κ)(E −E
p)⊗Np) ||∇SY ||

∂Y
∂κ

)
Ṡ (2.29)

The continuum tangent operator for the rate-independent material is therefore given by:

SC =
( E
1−D(κ) −

(
Np ⊗Np + D′(κ)

1−D(κ)(E −E
p)⊗Np) ||∇SY ||

∂Y
∂κ

)−1
(2.30)

It features a damaged elastic stiffness, a rank one correction term connected to the associ-
ated plasticity and a second correction term accounting for the damage accumulation. The
presence of damage makes the problem non-associated, the tangent operator loses major
symmetry. By applying the Sherman-Morrison formula, a straightforward expression for
the continuum tangent stiffness of the rate-independent case may be obtained:

SC = (1−D(κ))S−
(1−D(κ))2S(Np + D′(κ)

1−D(κ)(E −E
p))⊗NpS

(1−D(κ))NpS(Np + D′(κ)
1−D(κ)(E −Ep))− 1

||∇SY ||
∂Y
∂κ

(2.31)

If damage and isotropic hardening are turned off, the tangent degenerates to:

SC,ep = S− SNp ⊗NpS
NpSNp

(2.32)

which is equivalent to the classical tangent elastoplastic tensor [Rakatomanana et al.,
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1991, Zinkiewicz et al., 1969]. For the viscoplastic material (η 6= 0), the first expression of
(27) does not vanish and therefore the second one has to be equal to 0. This leads to a
differential equation that can be solved for special cases as demonstrated by Carrosio and
Etse [Carosio et al., 2000]. A general solution for this problem is beyond the scope of this
article. However, an algorithmic tangent will be presented for the rate-dependent case later
in this article.

2.3.4 Elastic stiffness

The proposed constitutive model can handle elastic tensors with material symmetries rang-
ing from isotropy to general anisotropy. In this work, we based the elastic properties on a
multiscale homogenization scheme for lamellar bone proposed by Reisinger et al [Reisinger
et al., 2010, 2011]. The scheme starts by modeling the mineralized fibrils as a collagen
matrix reinforced by ellipsoid mineral inclusions and the extrafibrillar matrix as a mineral
matrix with spherical pores. In a second homogenization step the fibril array is modeled
as an extra-fibrillar matrix reinforced by mineralized collagen fibrils. Both homogenization
steps are performed using a Mori-Tanaka scheme [Nemat-Nassar and Mori, 1993]. The re-
sulting stiffness tensor for a single fibril array is transversely isotropic. In a third step, a
laminate unit cell describing a single bone lamella is built and periodic boundary conditions
are applied. The stiffness tensor of the unit cell is determined by applying 6 independent
load cases. The resulting stiffness operator can have material symmetries ranging from
isotropy to general anisotropy depending on the sublamellar arrangement of fibril arrays.
For further details see Reisinger et al. [Reisinger et al., 2010, 2011]. Recently, an attempt
has been made to validate the fibril array model experimentally on mineralized turkey leg
tendon by Spiesz et al [Spiesz, 2011, Spiesz et al., 2011]. Comparison to experimental results
on two length scales obtained through nanoindentation and comparison of macroscopical
tension tests to µFE simulations showed that the model is able to predict the anisotropic
stiffness of uniaxially aligned fibril arrays if the needed parameters are obtained locally at
a sufficient accuracy.

2.3.5 Yield criterion

The model is based on an eccentric elliptical criterion in stress space featuring isotropic
hardening and a back stress A. It takes the form of:

Y (S, κ) :=
√

(S − r(κ)A) : A(S − r(κ)A)− r(κ) (2.33)

The fourth order tensor A and the back stress A can be determined from an equivalent
orthotropic Tsai-Wu Criterion using a transformation introduced by Shih [Shih and Lee,
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1978]:

A = F
1 +AFA

(2.34)

A = −1
2F−1F (2.35)

The general forms of the tensors F and F defining the Tsai-Wu criterion are:

F =
3∑
i=1

1
σ+
i σ
−
i

Mi ⊗Mi +
3∑

i,j=1;i 6=j

ζij

σ+
i σ
−
i

Mi ⊗Mj +
3∑

i,j=1;i 6=j

1
2τ2
ij

Mi⊗Mj (2.36)

and

F =
3∑
i=1

(
1
σ+
i

− 1
σ−i

)
Mi (2.37)

with

Mi = mi ⊗mi (2.38)

The mi are the vectors describing the material orientation. Twelve orthotropic constants
are needed to define the criterion: σ+

1 , σ−1 , σ+
2 , σ−2 , σ+

3 , σ−1 , ζ12, ζ23, ζ31, τ12, τ23 and τ31. It
shows isotropic hardening with respect to the midpoint of the ellipse rather than the origin
of stress space . This is done in order to ensure that the tension/compression yield stress
ratio is not altered by the isotropic hardening. In this formulation, the hardening function
is hypothesized to be an explicit function of the accumulated plastic strain.

r(κ) := 1 + (yr − 1)g(κ) (2.39)

with g(κ) being an arbitrary (nonlinear) function of κ. The scalar yr describes the ratio of
the yield and ultimate properties. In the case of exponential hardening, g(κ) takes the form
of:

g(κ) := 1− e−ksκ (2.40)

In order to simplify material identification, it was hypothesized that an eccentric isotropic
elliptical yield surface in strain space can describe the yield limit of cortical behavior accu-
rately. It features an offset between the isotropic tensile and compressive yield strains. The
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criterion is given by:

Y Strain
TW (Ee) := (1−D(κ))P : Ee +Ee : (1−D(κ))2PEe − 1 (2.41)

The general form of the fourth order tensor P is:

P =
3∑
i=1

1
ε+0 ε
−
0
Mi ⊗Mi +

3∑
i,j=1;i 6=j

ξ0

ε+0 ε
−
0
Mi ⊗Mj +

3∑
i,j=1;i 6=j

2
γ2

0
Mi⊗Mj (2.42)

The general form of the second order tensor P is:

P =
3∑
i=1

(
1
ε+0
− 1
ε−0

)
Mi (2.43)

The constants defining the elliptical strain-based criterion for cortical bone were estimated
from the experimental findings of Garcia [Garcia, 2006]. The isotropy condition P1122 =

Table 2.1: Yield constants for lamellar bone

ε+0 ε−0 ξ0

0.006 0.009 0.25

P1111 − P1212 [Cowin and Mehrabadi, 1995] yields:

γ0 =
√

2ε+0 ε−0
1− ξ0

(2.44)

The resulting yield surface for lamellar bone in strain space is shown in Fig. 2.2. The yield
criterion is then transformed to stress space using the damaged compliance tensor:

Y Stress
TW (S) = P : ES + S : EPES − 1 (2.45)

Clearly, the shape of the criterion in stress space is highly dependent on the elasticity
tensor. Fig. 2.3 shows an example of a yield surface in stress space for lamellar bone.
The formulation of the elliptical criterion in stress space is similar to the Tsai-Wu criterion,
which is originally a failure criterion for composite materials. It is therefore transformed to
the Hill criterion defined in (33) by an adaption of the methodology proposed by Shih [Shih
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Figure 2.2: Elliptical yield criterion for lamellar bone in strain space

Figure 2.3: Elliptical failure criterion for lamellar bone in stress space

and Lee, 1978]:

A = EPE
1 +A : EPEA

(2.46)

A = −1
2(EPE)−1PE (2.47)

2.3.6 Numerical algorithm

In the following chapter, the local iteration number will be called i and should not be
mistaken with the increment number n. For the sake of simplicity, all state variables at
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the end of the increment Xn+1 will be called X and state variables at the beginning of
the increment Xn will be called X0 from now on. The commercial finite element solver
Abaqus uses an updated Lagrangian mapping technique with the Cauchy stress tensor and
an approximation of the integral of the rate of deformation

∫
Ddt as the conjugate strain

tensor for simulations involving large deformations and rotations. These stress and strain
measures were therefore used in this implementation. In principle, the model is consistent
for any conjugate pair of stress and strain measures, though.
First, the elastic trial stress is calculated:

ST = (1−D(κ0))S(E −Ep
0) (2.48)

If the yield criterion evaluated using the elastic trial stress and the old damage state is
Y (ST ;κ0) < 0, the stress increment is purely elastic and no further damage is taking place.
Therefore the state variables are updated as follows:

κ = κ0

Ep = Ep
0

S = ST

The tangent stiffness operator in the elastic case is given by:

SCA,el = ∇ES = (1−D(κ))S (2.49)

If the yield criterion Y (ST ;κ0) ≥ 0, an implicit backprojection on the rate-dependent yield
surface Ȳ (S, κ; λ̇) is performed. The following set of nonlinear equations needs to be solved
using the Newton-Raphson algorithm:

S = (1−D(κ))S(E −Ep)

Ȳ (S, κ, λ̇) = Y (S, κ)− ψ−1(λ̇η) = 0

Ėp = λ̇Mp(S, κ), Mp(S, κ) = ∇SȲ
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κ̇ = h(S, κ)λ̇, h(S, κ) = ||Mp||

constrained by the generalized Kuhn-Tucker conditions

Ȳ ≤ 0, λ̇ ≥ 0, λ̇Ȳ = 0.

The gradients and derivatives can be found in the appendix. The viscoplastic consistency
parameter λ̇ is discretized and approximated by λ̇ = ∆λ

∆t . The incremental consistency
parameter can be written in terms of the incremental change of cumulated plastic strain:

∆λ = ∆κ
h(S, κ0 + ∆κ) (2.50)

The total strains can be rewritten as:

E = E0 + ∆E (2.51)

The stress is linearized and expressed in incremental form as:

S = (1−D(κ0)− (D(κ)−D(κ0)))S(E0 + ∆E −Ep
0 −∆Ep)

= ST − (D(κ)−D(κ0))S(E −Ep
0)− (1−D(κ))S∆κNp (2.52)

By bringing all expressions onto one side and multiplying with −E
1−D , a tensor function

expressing the residual error of elastic strains is introduced:

R(S,∆κ) = E
1−D(κ0 + ∆κ)(S

T −S)−D(κ0 + ∆κ)−D(κ0)
1−D(κ0 + ∆κ) (E−Ep

0)−∆κNp (2.53)

The rate-dependent yield function Ȳ is approximated by

Ȳ (S,∆κ) = Y (S, κ0 + ∆κ)−Ψ−1
( ∆κ
h(S, κ0 + ∆κ)∆t

)
= 0 (2.54)

The discretized equations for Ȳ , R are linearized with respect to their variables S and ∆κ.
The total strain at the end of the increment E is known a priori. This provides a linearized
system of equations for the Newton-Raphson algorithm:

Ri+1 = Ri +∇SRi : δS + ∂Ri

∂∆κδ∆κ = 0 (2.55)
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Ȳi+1 = Ȳi +∇SȲiδS + ∂Ȳi
∂∆κδ∆κ = 0 (2.56)

The set of equations is solved by determining

δ∆κ = −
1

||∇S Ȳi||
Ȳi +Np

i SaRi

Np
i SEa ∂Ri

∂∆κ + 1
||∇S Ȳi||

∂Ȳi
∂∆κ

(2.57)

δS = Sa(Ri +
∂Ri

∂∆κδ∆κ) (2.58)

with the algorithmic stiffness tensor

Sa = −(∇SR)−1 (2.59)

in an iterative fashion until the norm of the residual in elastic strains R and the rate
dependent yield function Ȳ are smaller than a predefined tolerance. After each iteration,
the following update is performed:

Si+1 = Si + δS (2.60)

∆κi+1 = ∆κi + δ∆κ (2.61)

This algorithm corresponds to a normal projection on the rate-dependent yield criterion
Ȳ . Fig. 2.4 shows a schematic sketch of the implemented stress return algorithm. After
convergence of the algorithm, the state variables at the end of the increment are obtained:

S = Si+1

κ = κ0 + ∆κi+1

Ep = E − ES
1−D(κ)
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Figure 2.4: Schematic sketch of the stress return algorithm

2.3.7 Algorithmic tangent operator

The algorithmic stiffness tensor Sa relates infinitesimal changes of the strain increment δ∆E
to corresponding infinitesimal changes in the stress increment δ∆S. In order to find the
tangent, a linearization of the stress-strain relationship has to be performed around the
current solution. In this case, the consistency condition has to be applied to the algorithmic
form of the rate equations. This was already done during the stress integration and does
not need to be repeated. After convergence of the Newton scheme, the rate-dependent
yield function Ȳ is equal to 0 and the residual strain tensor R may be interpreted as an
infinitesimal change in strain. Therefore the tensor relating infinitesimal changes of strain
δR = δ∆E to infinitesimal changes of the stress increment δ∆S is the sought algorithmic
tangent stiffness tensor. In order to find it, the solution for δ∆κ|Ȳ=0 has to be substituted
into the equation for δS. The resulting algorithmic tangent stiffness operator is:

SCA = Sa −
Sa( ∂R

∂∆κ ⊗N
p)Sa

NpSa ∂R
∂∆κ −

1
||∇S Ȳi||

∂Ȳi
∂∆κ

(2.62)
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The gradients and derivatives appearing in this expression can be found in the appendix.
For η

∆t → 0, the inverse overstress function ψ−1(λ̇η) = 0 and the rate-dependent yield
surface Ȳ degenerates to the rate-independent Y . In this case, the tangent stiffness tensor
degenerates to the rate-independent one:

SCA| η∆t→0 = Sa −
Sa( ∂R

∂∆κ ⊗N
p)Sa

Np : Sa ∂R
∂∆κ −

1
||∇SYi||

∂Yi
∂∆κ

(2.63)

The difference between the algorithmic and the continuum tangent should vanish when the
plastic increment ∆κ→ 0. In the case of η

∆t → 0, the following relations hold:

∇SȲ | η∆t→0,∆κ→0 = ∇SY (2.64)

∂Ȳ

∂∆κ |
η
∆t→0,∆κ→0 = ∂Y

∂κ
(2.65)

∂R

∂∆κ |
η
∆t→0,∆κ→0 = Np + D′(κ)

1−D(κ)(E −E
p) (2.66)

Therefore, as expected, the algorithmic tangent degenerates to the continuum operator for
a rate-independent material and infinitesimal plastic strain increments.

SCA|∆κ→0 = SC (2.67)

For η
∆t →∞, the expression 1

||∇S Ȳi||
∂Ȳi
∂∆κ →∞. In this case, the tangent operator degenerates

to the elastic one:

SCA| η∆t→∞ = −(∇SR)−1| η
∆t→∞

= ( E
1−D )−1 = (1−D)S (2.68)

The implemented material model therefore shows a smooth transition from rate-independent
plasticity to viscoplasticity and ultimately elasticity.

2.4 Verification

2.4.1 Single Element Tests

Different boundary conditions were imposed in strain- and stress-controlled single element
tests using an orthotropic elasticity tensor and an exponential hardening function. Uniaxial
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tension and compression in all main directions as well as triaxial compression and shear were
tested. The strain/stress was increased at a linear rate until a maximum, followed by linear
unloading. Stiffness and yield point were checked to verify the correct implementation of
the algorithm. The post-yield behavior was checked qualitatively. The model showed the
expected behavior. The tests converged up to large strains for all load cases in strain control.
Also, the algorithmic tangent operator was checked by running tests in stress control. The
solution converged in one iteration in elastic increments and two to four iterations after the
yield point.

2.4.2 Indentation in Bone

In order to show the abilities of the new constitutive model, a nanoindentation experiment
using a Berkovich tip in cortical bone was simulated and compared to experimental re-
sults from a previous indentation study on cortical shell of human vertebral bone by Mazza
[Mazza, 2008]. The tip geometry was modeled by an equivalent conical tip with a semiver-
tical angle of 70,3°. The tip of the cone was rounded with a radius of 100nm. This coincides
with a realistic tip geometry of common indenters. Only one quarter of the bone halfspace
was modeled by a sufficiently large hexahedron with the dimensions 100µm×100µm×100µm
following the suggestions of Poon [Poon et al., 2008b] and symmetry boundary conditions
were applied in the y-z and x-z planes. The bottom nodes were constrained in the testing
direction (z). The conical indenter is modeled as an analytical rigid body of revolution.
Contact was defined between the conical tip and the surface of the tested bone specimen.
The rigid tip acts as master surface, the bone surface as slave. In direction normal to the
surfaces, hard contact was implemented using a penalty method. No friction was defined in
the tangential direction.
The halfspace was meshed using linear hexahedral elements with reduced integration and

enhanced hourglass control. As large deformations and rotations were anticipated to appear
in the vicinity of the nanoindentation, geometrically nonlinear analysis was activated. In
order to avoid numerical problems due to element distortion, arbitrary lagrangean eulerian
(ALE) remeshing was activated. In this technique, the displacement is mapped in the
lagrangean, the eulerian and the ALE domain. The displacement increments take place in
the lagrangean configuration. In order to avoid excessive mesh distortion, the nodes are
allowed to move with respect to the material during mesh sweeps. An advection step is
then performed in the eulerian domain to map the solution from the old to the new mesh.
The model contains approximately 9250 elements. As the gradients of the field variables

are comparatively large near the indentation and low with increasing distance to the tip,
the edges of the cube were seeded with a bias towards the indentation. This allowed to have
a finer mesh near the indenter tip while maintaining a relatively small number of elements.
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Fig. 4.2 shows the setup of the indentation model.

Material block

Rigid indenter

Figure 2.5: Finite element indentation model

The simulations were run in load control with the same parameters as the experimen-
tal setup. The load in z-direction on the conical tip was increased linearly at a rate of
60mN/min until the holding force was reached. The linear loading was followed by a hold-
ing time of 60s and a linear unloading at the same rate. An average orthotropic stiffness
tensor for cortical bone measured during the experimental indentation study [Mazza, 2008]
was used as stiffness input for the model. The rate-dependent yield criterion was imple-
mented using a polynomial flow rule (see appendix for details). Fig. 4.3 compares the
resulting force-depth curve for the simulation of a nanoindentation in bone using the newly
proposed constitutive model with the experimental results of Mazza [Mazza, 2008].
The simulation was able to reach indentation depths of 2.5 µm with convergence of the

solution after two to six equilibrium iterations in increments where plastic deformation oc-
curred. Large deformations were handled by the model without the occurrence of instabili-
ties. Table 2.2 compares the experimentally measured indentation modulus EIT , maximum
depth hmax, residual depth hres, elastic work Welast and the ratio of elastic to plastic work
Welast/Wplast for cortical bone with the numerical results.
The resulting force-displacement curve is consistent with the experimental findings on

bone showing inelastic deformation, creep and reduced unloading stiffness. Indentation
modulus, residual depth, elastic work and the ratio of elastic to plastic work of the simulated
indentation were within the experimental range reported by Mazza [Mazza, 2008]. Maximum
depth was slightly underestimated. No pile-up occurred around the indentation site in the
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Figure 2.6: Indentation curve for the tested material model

Table 2.2: Comparison of experimental [Mazza, 2008] with numerical results

Measurement Exp. Median Exp. Min. Exp. Max. Model

EIT [GPa] 15.79 8.76 21.79 14.88
hmax [µm] 2.68 2.61 2.77 2.58
hres [µm] 1.94 0.85 2.21 2.08
Welast 13664 6100 23807 9652
Welast/Wplast 0.256 0.16 0.44 0.232

model, which is also consistent with the behavior of bone seen in nanoindentation. The
polynomial viscoplasticity proved to be a fast and stable constitutive model.

2.5 Discussion

An new anisotropic constitutive model for bone has been proposed that is able to cap-
ture both the elastic and the post-yield mechanical behavior of lamellar bone. It features
anisotropic elasticity based on a multiscale homogenization scheme, viscoplasticity and dam-
age. After yielding, bone shows two mechanisms of energy dissipation: rate-dependent in-
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elastic deformation and damage. There is evidence that these mechanisms exist already at
the fibril level [Gupta et al., 2005, 2006, Hansma et al., 2005]. Therefore we believe that the
proposed phenomenological model can potentially capture the post-yield behavior of bone
at length scales from the fibril array to the organ level. It was hypothesized that, due to
the nanogranular nature of the mineral matrix, the cohesive behavior caused by the organic
phase [Tai et al., 2006] and the porosity present at all length scales [Fratzl and Weinkamer,
2007], an eccentric elliptical yield criterion [Maghous et al., 2009] is the best choice for bone.
Nonlinear isotropic hardening was implemented in order to capture the post-yield behavior.
This is a reasonable choice as long as the applied loads are proportional. A micromechanics-
based multiscale homogenization scheme proposed by Reisinger et al. [Reisinger et al., 2010,
2011] has been used to obtain the elastic properties. Viscoplasticity was implemented by
means of the continuous Perzyna formulation [Ponthot, 1995] allowing for a smooth tran-
sition from rate-independent elasto-plasticity to viscoplasticity. Damage is modeled by a
scalar function coupled to the plastic loading history. A polynomial flow rule was proposed
in order to describe the rate-dependent post-yield behavior of lamellar bone. A numerical
algorithm to perform the backprojection on the rate-dependent yield surface was developed
and implemented in the commercial Finite Element solver Abaqus/Standard as a user sub-
routine UMAT. A consistent tangent operator has been derived and implemented in order
to assure rapid convergence.
The correct implementation of the algorithm as well as the convergence of the model

were tested by means of strain- and stress-based single element tests. The model showed
the expected stress-strain behavior and converged up to large strains for all applied load
cases. A finite element simulation of a Berkovich indentation in bone was performed in order
to show the abilities of the newly developed constitutive model. Comparison to experimental
results [Mazza, 2008] verified that the model is able to capture the behavior of bone during
indentation experiments.
Advantages of the model include: The presented formulation is very general. Due to the

introduction of an isotropic yield surface in strain space, only three independent material
properties are needed in addition to the elastic properties to define an anisotropic yield
surface for bone thus simplifying material identification. The combination of anisotropic
elasticity with viscoplasticity and damage based on an elliptical yield surface makes the
model feasible for use at multiple levels of bone hierarchy reaching from the fibril to the
macroscopic level. By coupling a phenomenological post-yield model to a multiscale ho-
mogenization approach predicting elastic properties, an efficient and powerful tool has been
proposed to assess the mechanical behavior of bone at several length scales. The inclusion
of viscoplasticity makes it possible to account for strain rate effects as reported by Gupta et
al [Gupta et al., 2007, Gupta and Zioupos, 2008] and to assess creep or relaxation behavior
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as seen during nanoindentation experiments.
Limitations of the model include the modeling of damage by a scalar function. As the

model is supposed to work on several length scales that show different mechanisms reducing
the elastic stiffness tensor most of which are not completely understood, this seemed to
be a reasonable approach. Also, the model describes the post-yield behavior of bone in
a continuum mechanics framework, it does not account for the exact mechanisms at the
submicron scale. However, as the activated volume of the dissipative processes in bone was
reported in the range from 0.64nm3 to 1.0nm3 by Gupta et al. [Gupta et al., 2007] and the
model is supposed to reflect the mechanical behavior of bone starting at the fibril array level
with representative volumes several orders of magnitude larger, this approach is justified.
The assumption of an isotropic yield surface in strain space is very strong, however given
the lack of reliable data at several length scales it is a reasonable starting point. A second
limitation is the use of isotropic hardening that might not be able to catch some effects,
especially during cyclic testing combining tension and compression. This limits the model’s
predictive capabilities to proportional loading, which are however the most common types
of loading encountered in the body. Introduction of mixed hardening in the future would
be desirable.
Both cortical and trabecular bone show inelastic deformation and a reduction of the elas-

tic stiffness tensor after the yield point as well as pressure dependent yield properties that
differ in tension and compression [Yeni et al., 2004]. The porosity in trabecular bone is
considerably higher than in cortical bone, however the underlying dissipative mechanisms
remain similar. There is evidence that the yield strains for trabecular bone can be cap-
tured rather well by an eccentric isotropic elliptical yield criterion in strain space [Gross,
2010]. Therefore the proposed model may be expanded to describe the homogenized re-
sponse of trabecular bone in the future using fabric elasticity relationships [Zysset and
Curnier, 1995] and a different set of parameters for the yield surface and post-yield prop-
erties. Since a general nonlinear hardening function may be implemented in the model,
hardening/softening behavior characteristic of the mechanical response of trabecular bone
to compression [Charlebois et al., 2010] may be implemented in the current model.

2.6 Gradients and derivatives

2.6.1 Polynomial flow rule

λ̇ = 1
η

(
Y 2 +mY

)
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ψ−1(ηλ̇) = −m2 +
(m2

4 + ηλ̇
) 1

2

2.6.2 Residual of elastic strains

R(S,∆κ) = E
1−D(κ0 + ∆κ)(S

T − S)− D(κ0 + ∆κ)−D(κ0)
1−D(κ0 + ∆κ) (E −Ep

0)−∆κNp

∇SR = − E
1−D −∆κ∇SNp

∂R

∂∆κ = D′

(1−D)2
(
E(ST − S)− (1−D0)(E −Ep

0)
)
−Np −∆κ∂N

p

∂∆κ

2.6.3 Direction of plastic flow

Np(S,∆κ) = A(S − r(κ0 + ∆κ)A)
||A(S − r(κ0 + ∆κ)A)||

∇SNp = A−Np ⊗ ANp

||A(S −A)||

∂Np

∂∆κ = −r
′AA−Np(r′AA : N)
||A(S − rA)||

2.6.4 Continuum rate-independent yield surface

Y (S, κ) =
√

(S − r(κ)A) : F(S − r(κ)A)− r(κ)

∇SY = A(S − rA)√
(S − rA) : A(S − rA)

∂Y

∂κ
= − r′SAA− rr′AAA√

(S − rA) : A(S − rA)
− r′
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2.6.5 Algorithmic rate-dependent yield surface

Ȳ (S,∆κ) = Y (S, κ0 + ∆κ) + m

2 −
(m2

4 + η

∆t
∆κ
h

) 1
2

∇SȲ = A(S − rA)√
(S − rA) : A(S − rA)

+ 1
2
η

∆t
∆κ
h2 ∇Sh

(m2

4 + η

∆t
∆κ
h

)− 1
2

∂Ȳ

∂∆κ = − r′SAA− rr′AAA√
(S − rA) : A(S − rA)

− r′ − 1
2
η

∆t
h−∆κ ∂h

∂∆κ
h2

(m2

4 + η

∆t
∆κ
h

)− 1
2

2.6.6 Norm of the gradient on the yield surface

h(S,∆κ) = ||A(S − r(κ0 + ∆κ)A)||√
(S − r(κ0 + ∆κ)A)A(S − r(κ0 + ∆κ)A)

∇Sh = ANp√
(S − rA)A(S − rA)

−
||F(S − rA)||

(
A(S − rA)

)
(
(S − rA) : A(S − rA)

) 3
2

∂h

∂∆κ = −r′AA : Np√
(S − rA)A(S − rA)

−
||F(S − rA)||

(
r′SAA− rr′AAA)

)
(
(S − rA) : A(S − rA)

) 3
2
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3.1 Abstract

Nonlinear computational analysis of materials showing elasto-plasticity or damage rely on
knowledge of their yield behavior and strength under complex stress states. In this work, a
generalized anisotropic quadric yield criterion is proposed that is homogeneous of degree one
and takes a convex quadric shape with a smooth transition from ellipsoidal to cylindrical
or conical surfaces. If in the case of material identification the shape of the yield function
is not known a priori, a minimization using the quadric criterion will result in the optimal
shape among the convex quadrics. The convexity limits of the criterion and the transition
points between the different shapes are identified. Several special cases of the criterion
for distinct material symmetries such as isotropy, cubic symmetry, fabric-based orthotropy
and general orthotropy are presented and discussed. The generality of the formulation is
demonstrated by showing its degeneration to several classical yield surfaces like the von
Mises, Drucker-Prager, Tsai-Wu, Liu, generalized Hill and classical Hill criteria under ap-
propriate conditions. Applicability of the formulation for micromechanical analyses was
shown by transformation of a criterion for porous cohesive-frictional materials by Maghous
et al. In order to demonstrate the advantages of the generalized formulation, bone is chosen
as an example material, since it features yield envelopes with different shapes depending
on the considered length scale. A fabric- and density-based quadric criterion for the de-
scription of homogenized material behavior of trabecular bone is identified from uniaxial,
multiaxial and torsional experimental data. Also, a fabric- and density-based Tsai-Wu yield
criterion for homogenized trabecular bone from in silico data is converted to an equivalent
quadric criterion by introduction of a transformation of the interaction parameters. Finally,
a quadric yield criterion for lamellar bone at the microscale is identified from a nanoindenta-
tion study reported in the literature thus demonstrating the applicability of the generalized
formulation to the description of the yield envelope of bone at multiple length scales.

3.2 Introduction

Nonlinear computational analysis of materials showing elasto-plasticity or damage behavior
rely on knowledge of their yield behavior and strength under complex stress states. The yield
or failure criterion of a material is usually described by a convex function taking into account
the influence of the shear and normal stresses as well as their interactions. Many criteria have
been proposed in the past like the von Mises [von Mises, 1913] or Hill [Hill, 1951] criteria for
plastically incompressible materials, especially metals, or the Drucker-Prager criterion for
dilatant cohesive-frictional materials [Prager and Drucker, 1952]. These functions, although
of phenomenological nature, have proven to be valuable tools in mechanics of irreversible
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processes, as they can often be used as closed-form approximations of the complex material
strength behavior. The criteria are formulated as explicit functions of the components of the
stress tensor and a set of material constants that may be identified by independent tests.
When solving mechanical problems using numerical methods, it is often desirable to use
smooth functions as yield surfaces as standard backprojection procedures may be used in
this case [Curnier, 1994]. However, some classical criteria like the one proposed by Drucker
and Prager [Prager and Drucker, 1952] feature singular points where the normal on the
yield surface is non-unique. In this case, it is often desirable to use smooth approximations
of the actual yield function in order to avoid the implementation of special algorithms
and/or numerical instabilities. In the framework of computational mechanics, strength
criteria are frequently combined with dissipation mechanisms like damage or plasticity,
i.e. the accumulation of inelastic strains. These formulations often make use of hardening
mechanisms such as dilatation and translation of the yield surface as a function of scalar
or tensorial hardening variables. Especially in the case of isotropic hardening, the use of
functions that are homogeneous of degree one as a yield criterion is beneficial, since it
simplifies the implementation of numerical algorithms like implicit backprojections.
One obstacle when dealing with elasto-plasticity in a computational mechanics framework

is the choice of the correct yield surface. Since the formulations are usually valid for a certain
group of materials and not of a general nature, care must be taken to identify the right one
for the given application. This is especially the case when strength data is available for
given load directions and a yield function needs to be identified by means of minimization
procedures. In this sense it would be desirable to use a formulation that describes a wide
range of materials while retaining a simple and explicit form in order to obtain the optimal
shape of the yield surface with respect to the data points without severe restrictions due to
the formulation used.
One class of surfaces that combines simplicity of the underlying function with the ability

to take a large variety of shapes is the set of convex quadrics. It spans from parallel planes
to ellipsoids, paraboloids, (half) hyperboloids of two sheets, cylinders, and cones, which
are popular choices for yield functions of materials like metals, geomaterials, porous foams,
bone, etc. Especially in the case of bone tissue, a general formulation is desirable. Its yield
envelope changes its shape drastically depending on the length scale considered and has
been approximated by quadric surfaces in the past [Carnelli et al., 2011, Cowin, 1986, 2001,
Wolfram et al., 2012]. Therefore it was chosen as an example material in this work.
Bone is a hierarchical material with collagen, mineral and water as well as non-collagenous

proteins [Rho et al., 1998, Fratzl and Weinkamer, 2007, Wang and Gupta, 2011] as the main
constituents. The collagen molecules self-assemble into fibrils which are periodically rein-
forced by mineral platelets [Fratzl and Weinkamer, 2007, Weiner and Wagner, 1998]. Empty
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pore space is filled with water and non-collageneous proteins. This basic unit then forms
bundles of parallel mineralized fibrils embedded in an extra-fibrillar mineral matrix with a
foam-like structure [Hellmich and Ulm, 2002, Reisinger et al., 2010] that are called fibril
arrays. There is a considerable amount of porosity present on every hierarchical level from
the nano- to the macro-scale [Smith et al., 2008]. Tai et al. [2006] showed some evidence
that bone behaves like a cohesive-frictional material at the nanolevel due to its nanogranular
structure. They suggested that increased yield properties in compression compared to ten-
sion reported in the literature [Yeni et al., 2004] may be explained by nanogranular friction
between mineral particles and cohesion originating from the organic phase. Finite element
simulations using plasticity and damage models featuring a conical yield surface were able
to capture some of the characteristics reported from nanoindentation experiments on bone
[Carnelli et al., 2010, 2011, Tai et al., 2006]. Micromechanical considerations by Maghous
et al. showed that the introduction of porosity into a cohesive-frictional material leads to
a decrease in uniaxial strength properties as well as a change of the shape of the criterion
from a conical to an eccentric elliptical surface [Maghous et al., 2009].
When looking at bone at the macroscale, one distinguishes between two types of bone,

i.e. compact and trabecular. In compact bone, parallel fibril arrays form lamellae. These
lamellae are arranged in layers around blood vessels (Haversian channels) forming cylindrical
structures called osteons. Arrays of parallel osteons connected by interstitial bone regions
make up the cortical bone structure. Cortical bone features microporosity of up to 10%,
mainly due to an interconnected network of cells and cell processes, the so called lacunar-
canalicular network [Kristic, 1991, Weiner and Wagner, 1998]. On the macroscopic level,
it has been proposed by Cowin [Cowin, 1979, 1986, 2001] in the past that an eccentric
elliptical, i.e. a Tsai-Wu yield surface is suitable for cortical bone.
Trabecular bone is an anisotropic and highly porous mineralized tissue enclosed in com-

pact bone in the cores of flat and small bones and the epiphyses of long bones [Kristic,
1991]. Plate- and rod-like structures of bone form an open-cell foam [Gibson, 1985]. Large
efforts have been undertaken in the past to identify the mechanical properties and mor-
phology of this highly heterogeneous tissue and their underlying relationships [Gupta and
Zioupos, 2008, Keaveny et al., 2001, Zysset, 2003]. Historically, morphological parameters
like volume fraction, surface density, trabecular thickness, spacing and number have been
identified using quantitative stereology [Parfitt, 1984]. In order to assess the anisotropy
of the trabecular structure, the mean intercept length (MIL) method was introduced by
Whitehouse [Whitehouse, 1974]. Within the last 20 years, the investigation of trabecular
morphology has been facilitated by the development of new technologies like micro com-
puted tomography (µCT). Hildebrand et al. [1999] proposed a methodology to measure
morphological parameters directly from 3D µCT data. The three-dimensional distribution
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function of trabecular orientations is then mathematically modeled by means of a second
order fabric tensor [Harrigan and Mann, 1984, Kanatani, 1984].
Cowin first established a relationship between volume fraction, fabric tensor and the ho-

mogenized anisotropic elasticity tensor and strength criterion for highly porous materials
such as trabecular bone [Cowin, 1985, 1986, 2001]. An alternative model for anisotropic
elasticity of cancellous bone based on fabric tensors was proposed by Zysset and Curnier
[1995], which reduced the number of material parameters and a priori satisfied thermody-
namic admissibility. For further information on fabric-based models, see e.g. the review by
Zysset [2003]. The model was extended towards yield and strength properties leading to the
introduction of a halfspacewise defined fabric- and density based generalized Hill criterion
[Zysset and Rincón, 2006], which was later identified by Rincón-Kohli and Zysset [2009].
Arramon et al. [2000] proposed an anisotropic criterion for bone in stress space based on
Kelvin modes, while other authors introduced strain-based formulations [Bayraktar et al.,
2004, Cowin and He, 2005]. Recently, a fabric- and density-based Tsai-Wu criterion has
been proposed and successfully identified for trabecular bone using nonlinear µFE and ho-
mogenization techniques [Wolfram et al., 2012].
As part of this paper, the quadric yield criterion will be presented in a general anisotropic

formulation and special cases of material symmetry will be discussed. This includes the case
of a fabric- and density based orthotropic formulation that has been proven useful in the
past in the description of anisotropic mechanical behavior of bone [Wolfram et al., 2012,
Zysset and Rincón, 2006]. Additionally, it will be shown that material properties may be
obtained from a known Tsai-Wu criterion by means of a straightforward transformation
of the interaction coefficients. The generality of the formulation will be demonstrated by
showing that the quadric criterion degenerates to several classical yield criteria including the
ones of Drucker and Prager [Prager and Drucker, 1952], von Mises [von Mises, 1913], Tsai
and Wu [Tsai and Wu, 1971], Liu et al. [Liu et al., 1997] and Hill [Hill, 1951] when the right
conditions are met. Applicability of the formulation for micromechanical analyses will be
demonstrated by identification of a quadric yield surface from a criterion for porous cohesive-
frictional materials [Maghous et al., 2009], which is also applicable for the description of
bone at the microscale as a cohesive-frictional material [Tai et al., 2006] in interaction with
nanoporosity. Finally, the suitability of the formulation to describe the yield surface of bone
at several length scales will be presented by identification of material constants for criteria
of bovine lamellar bone at the microscale as well as homogenized human trabecular bone
at the macroscale.
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3.3 General formulation

In the notation used in the following chapter, scalars are written asX, vectors as x, 2nd order
tensors asX, 4th order tensors as X, and tensor spaces as X . The sign ’:’ denotes the double
contraction operation. In case of compositions of two 4th order tensors (Xijkl = YijmnZmnkl)
and of transformations of a 2nd order tensor with a 4th order tensor (Xij = YijklZkl), the
sign ’:’ is not written. The operator ⊗ denotes the dyadic product Xijkl = YijZkl, ⊗ the
tensorial product Xijkl = YikZjl, and ⊗ the symmetric product Xijkl = 1

2(YikZjl +YilZjk).
We postulate an anisotropic quadric yield criterion in stress space S:

Y (S) :=
√
S : FS + F : S − 1 = 0 (3.1)

It contains a fourth order tensor F and a second order tensor F defining the origin, orien-
tation and shape of the criterion. Its surface normal is given by:

∇SY = (S : FS)−
1
2 FS + F (3.2)

See Fig. 3.3.1 for a visualization of the possible shapes of the criterion. It is a homogeneous
function of degree one (Y (λS) = λY (S), ∀λ ∈ R), which allows for a straightforward
introduction of isotropic hardening, i.e. a dilatation of the yield surface with respect to the
origin of stress space, in the form of

Y (S, κ) :=
√
S : FS + F : S − r(κ) = 0 (3.3)

with an isotropic hardening function r(κ) of a scalar hardening variable κ. For tensorial
hardening with a tensor function K(κ), the criterion takes the form

Y (S, κ) :=
√
S : K(κ)FK(κ)S + K(κ)F : S − 1 = 0, (3.4)

where K(κ) features the same symmetries as F. In order for (3.1) to be real, the fourth
order tensor F needs to be positive semidefinite, which may be expressed as:

S : FS ≥ 0, ∀S ∈ S (3.5)

F has major symmetry (Fijkl = Fklij) and both minor symmetries (Fijkl = Fjikl = Fijlk =
Fjilk), which allows to project the associated space defined on (R3 × R3) × (R3 × R3)
onto a symmetric matrix space defined on R6 × R6. This is a standard procedure in
continuum mechanics [Mehrabadi and Cowin, 1990, Zysset and Curnier, 1995] and simplifies
the mathematical discussion of the problem. In this case, positive semidefiniteness of the
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fourth order tensor F is given if the determinants of all principal minors of its projection
onto the symmetric matrix space are positive. Positive semidefiniteness as defined in (3.5)
requires that

1− F : S ≥ 0, (3.6)

which defines a half hyperspace, in order for (3.1) to hold true. In order for (3.1) to describe
a convex surface, its Hessian needs to be positive semidefinite, i.e.

S : ∇2
SY S ≥ 0, ∀S ∈ S (3.7)

with the Hessian

∇2
SY = (S : FS)−

1
2 F− (S : FS)−

3
2 FS ⊗ FS. (3.8)

Substituting (3.8) into (3.7) leads to the requirement
√
S : FS −

√
S : FS ≥ 0, (3.9)

which is true for all S in S and any positive semidefinite F. Therefore positive semidefinite-
ness of the fourth order tensor F as required in (3.5) is a necessary and sufficient requirement
for the convexity of the criterion (3.1). If the requirements (3.5) and (3.6) are met, (3.1) is
convex and may be squared without loss of information.

S : FS − (F : S)2 + 2F : S − 1 = 0, (F : S)2 = S : (F ⊗ F )S. (3.10)

The mathematical discussion of the criterion within the boundaries given by (3.5) and (3.6)
is therefore equivalent to the discussion of the quadratic form

S : (F− F ⊗ F )S + 2F : S − 1 = 0 (3.11)

within the same boundaries. In order to find the midpoint of the criterion, the quadratic
form (3.11) may be rewritten as proposed by Shih and Lee [Shih and Lee, 1978]:

(S −A) : A(S −A)− 1 = 0 (3.12)

with a fourth order tensor A describing the shape and orientation

A = F− F ⊗ F
1 +A : (F− F ⊗ F )A (3.13)
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and the second order tensor A describing the shift of the quadric with respect of the origin
of S,

A = −(F− F ⊗ F )−1F . (3.14)

The shape of the criterion is determined by the nature of the eigenvalues of the fourth order
tensor F − F ⊗ F . If all six eigenvalues are positive, the quadratic form (3.11) takes an
hyperellipsoidal shape. When the eigenvalue whose eigentensor points in the main direction
of the quadric vanishes it becomes a hyperparaboloid. If this eigenvalue becomes negative
and the others stay positive, F− F ⊗ F becomes negative definite and the shift A changes
its sign. In this case, the quadratic form (3.11) describes an elliptical hyperboloid of two
sheets with the extreme case of a double hypercone. The negative eigenvalue results from
the ambiguity of the quadratic form (3.11) and does not lead to a loss of convexity of the
criterion (3.1), as it is defined in the half hyperspace (3.6) only. The boundary hyperplane
of (3.6) separates the hyperboloid of two sheets described by (3.11) into two halfspace-wise
convex surfaces. The criterion (3.1) then takes a hyperboloidal or hyperconical shape. The
transition from hyperellipsoidal to hyperboloidal shape is a hyperparaboloid and may be
found by requiring

Det(F− F ⊗ F ) = 0. (3.15)

The multidimensional determinant of a fourth order tensor may be evaluated as shown in,
e.g. Gelfand et al. [1994]. However, the calculations may be largely simplified by requiring
the determinant of the projection of F − F ⊗ F onto the symmetric matrix space defined
on R6 × R6 to vanish. The hypercone is a limit case of the possible convex shapes of the
criterion that is found when requiring

Det(F) = 0. (3.16)

Several special cases of material symmetry ranging from isotropy to orthotropy will be
discussed in the following subsections.

3.3.1 Isotropy

In the case of isotropy, the tensors F and F defining (3.1) are given by

F = −ζ0F 2
0 (I ⊗ I) + (ζ0 + 1)F 2

0 (I⊗I) (3.17)
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and

F = f0I. (3.18)

For a uniaxial test to failure in tension, the yield criterion reads:

F0σ
+
0 + f0σ

+
0 − 1 = 0 (3.19)

For a uniaxial test in compression, the criterion yields

F0σ
−
0 − f0σ

−
0 − 1 = 0 (3.20)

By combining these equations, we find

F0 = σ+
0 + σ−0
2σ+

0 σ
−
0

(3.21)

and

f0 = 1
2
( 1
σ+

0
− 1
σ−0

)
(3.22)

The criterion has three independent parameters: σ+
0 , σ−0 and ζ0. The shear strength is given

by

τ0 =
√

2
1 + ζ0

σ+
0 σ
−
0

σ−0 + σ+
0

(3.23)

For isotropic material symmetry, the stress space may be decomposed into two independent
parts, shear and normal stress space. The second order tensor F is proportional to iden-
tity. The tensor F may be decomposed in a hydrostatic and a deviatoric part by spectral
decomposition, which means that one of its eigentensors is pointing in the direction of the
hydrostatic axis. Therefore, the rank-1 correction F − F ⊗ F corresponds to a translation
in the direction of the dyad I ⊗ I together with an isotropic dilatation and does not lead
to a rotation of the eigensystem irrespective of the parameters governing F and F . The
shape of the surface in the direction of the hydrostatic axis is determined by the interaction
parameter ζ0. This may be seen in Fig. 3.3.1. Convexity of the quadric surface requires
(3.5) and (3.6) to be fulfilled, which leads to the following conditions:

σ±0 ≥ 0, τ0 ≥ 0, −1 ≤ ζ0 ≤ 0.5. (3.24)
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After finding the convexity criterion, it is interesting to examine the criterion in normal
stress space in the extreme cases ζ0 = 0.5 and ζ0 = −1. Firstly, the solutions of the
criterion on the trisectrix are determined by solving equation (3.11) for isotropic material
symmetry and a hydrostatic stress state Shydro. This yields the following result:

S±hydro =
σ−0
(
3σ−0 σ+

0 − 3(σ−0 )2 ±
√

(σ+
0 )2(σ−0 + σ+

0 )2(12− 24ζ0)
)

(σ−0 + σ+
0 )2(3 + 3ζ0)− 18σ+

0 σ
−
0

I (3.25)

In the case ζ0 = 0.5 the square root in the enumerator of (3.25) vanishes, i.e. the two
solutions of equation (3.25) degenerate to one. This means that the quadric yield surface
takes a conical shape in this case as shown in Fig. 3.3.1. If ζ0 > 0.5, no real solution exists
on the hydrostatic axis, confirming the requirements for convexity of the yield surface stated
in (3.24). For ζ0 = −1, the criterion (3.1) degenerates to

|F0trS| − f0trS − 1 = 0 (3.26)

which describes two parallel planes defined by the uniaxial yield points in tension and
compression, respectively (see Fig. 3.3.1).
In between those extreme values, the criterion takes an elliptical, paraboloidal or hyper-

boloidal shape. When ζ0 < 0.5, more than one solutions exist. For ζ = ζ0,crit, the criterion
takes the shape of a spheroidal paraboloid. For ζ0,crit < ζ0 < 0.5, it becomes one sheet of a
hyperboloid because of (3.6). A prolate spheroid in normalized stress space is obtained for
0 ≤ ζ0 < ζ0,crit. For −1 < ζ0 < 0, the criterion has the shape of an oblate spheroid. The
variety of possible shapes in normal stress space are shown in Fig. 3.3.1.
In order to find the critical value ζ0,crit at which the yield surface changes its form from

ellipsoidal to hyperboloidal, equation (3.15) is considered in the case of isotropy. Solving
Det(F− F ⊗ F )|ζ0=ζ0,crit = 0 for ζ0,crit provides the sought value of ζ0,crit:

ζ0,crit = −(σ−0 )2 + 4σ−0 σ+
0 − (σ+

0 )2

(σ+
0 + σ−0 )2

. (3.27)

In shear stress space, the isotropic criterion has the shape of a sphere with radius τ0
(Fig. 3.3.1).
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Fig. 3.3.1: Shape of the isotropic quadric yield surface in normal stress space for a) ζ0 = −1, b)
ζ0 = −0.5, c) ζ0 = 0.0, d) 0 < ζ0 < ζ0,crit, e) ζ0,crit < ζ0 < 0.5, and f) ζ0 = 0.5 as well as g) in shear

stress space.

3.3.2 Cubic symmetry

In the case of cubic symmetry, the tensors F and F defining (3.1) are given by

F =
3∑
i=1

F 2
0Mi ⊗Mi −

3∑
i,j=1;i 6=j

ζ0F
2
0Mi ⊗Mj +

3∑
i,j=1;i 6=j

F 2
ij

2 Mi⊗Mj (3.28)
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and

F =
3∑
i=1

f0Mi (3.29)

with

Mi = mi ⊗mi (3.30)

defining the main axes of the cubic symmetry. In analogy to the isotropic case, we find:

F0 = σ+
0 + σ−0
2σ+

0 σ
−
0

(3.31)

and

f0 = 1
2
( 1
σ+

0
− 1
σ−0

)
. (3.32)

When a shear test is performed to failure with shear stresses acting on plane i in direction
j, the yield criterion in the case of cubic symmetry reads:

Fijτ0 − 1 = 0. (3.33)

Therefore we get

Fij = 1
τ0
. (3.34)

The criterion has four independent parameters: σ+
0 , σ−0 and ζ0 and τ0. The mathematical

discussion of the criterion with cubic symmetry with respect to convexity and shape of the
criterion yields the same results as in the isotropic case and will not be repeated at this
point.

3.3.3 Fabric-based orthotropy

When modeling a material with an internal microstructure, it is of high importance to
account for its morphology. Trabecular bone may be characterized by bone volume fraction
ρ and a fabric tensor M [Matsuura et al., 2008, Rincón-Kohli and Zysset, 2009, Zysset
and Rincón, 2006] emerging from an approximation of its orientation distribution function
by spherical harmonics [Kanatani, 1984] or by an ellipsoid [Harrigan and Mann, 1984]. In
the particular case of the Zysset-Curnier model [Zysset and Curnier, 1995], the influence of
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these two factors on its homogenized mechanical properties is governed by two exponents p
and q that need to be determined experimentally [Matsuura et al., 2008, Rincón-Kohli and
Zysset, 2009, Wolfram et al., 2012, Zysset and Rincón, 2006]. The number of independent
material parameters for the fabric-based orthotropy is 5 in the case of an isotropic base
material (σ+

0 , σ−0 , χ0, p and q) or 6 in the case of cubic symmetry (σ+
0 , σ−0 , χ0, τ0, p and q).

Inhomogeneity and anisotropy of material properties may in this case be interpreted as a
stretch of the original stress space with eigenvalues mi and eigenvectorsmi [Wolfram et al.,
2012]. The stress tensor can therefore be normalised with respect to fabric and density by
an inversion of the stretch operation:

Ŝ = M−qSM−q

ρp
(3.35)

with

M =
3∑
i=1

mi(mi ⊗mi). (3.36)

Themi are the vectors describing the material orientation. M q is determined analogously to
(3.36) with the same eigenvectorsmi and the eigenvalues mq

i . M is symmetric (M = MT )
and normalized so that

trM = 3. (3.37)

The criterion may then be rewritten in normalized stress space featuring at least cubic
symmetry:

Y (Ŝ) :=
√
Ŝ : F̂Ŝ + F̂ : Ŝ − 1 = 0. (3.38)

The tensors F̂ and F̂ are given by

F̂ =
3∑
i=1

F 2
0Mi ⊗Mi −

3∑
i,j=1;i 6=j

ζ0F
2
0Mi ⊗Mj +

3∑
i,j=1;i 6=j

1
2τ2

0
Mi⊗Mj (3.39)

and

F̂ =
3∑
i=1

f0Mi (3.40)
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The tensors F and F defining the criterion (3.1) in original stress space are obtained by:

F = ρ2p(M q⊗M q)F̂(M q⊗M q) (3.41)

F = ρp(M q⊗M q)F̂ = ρpM qF̂M q. (3.42)

Since the fabric tensor M is strictly positive definite, the discussion of the orthotropic
fabric-based criterion in stress space is equivalent to the discussion of the cubic criterion in
fabric-normalized stress space. The discussion with respect to convexity and shape of the
criterion is then analogous to the isotropic case and is not repeated in detail here.
In the following paragraphs, some important aspects of the fabric-based orthotropic cri-

terion in stress space will be discussed. In the case of orthotropic material symmetry, stress
space may be divided into a normal and a shear stress space. The uniaxial strengths in the
main material directions are given by

σ+
ii = σ+

0 ρ
pm2q

i , σ−ii = σ−0 ρ
pm2q

i , (3.43)

the interaction parameters of F and the shear strengths by

ζij = ζ0
m2q
i

m2q
j

, τij = τ0ρ
pmq

im
q
j . (3.44)

The solutions of the criterion in stress space collinear to M2q, S±ma, may be obtained by
backtransformation of the hydrostatic solutions in normalized stress space Ŝhydro, which are
equivalent to the solutions presented in (3.25):

S±ma = ρpM qŜ±hydroM
q (3.45)

a) For ζ0 = 0.5, The two solutions S±ma and A degenerate to one solution, the apex of the
generalized cone. The coordinates of the apex may be obtained by:

Sapex = ρpM qŜhydro|ζ0=0.5M
q. (3.46)

It lies on the plane F : S = 1 and therefore, according to requirement (3.6), the anisotropic
generalized cone is a limiting case of the possible convex shapes of the yield function.
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The only eigentensor of the dyad F ⊗ F is always collinear to M2q irrespective of the
value of ζ0 as seen in (3.40) and (3.42). The eigensystem of F, however, changes. For
ζ0 = 0.5, one eigenvalue of F vanishes and the corresponding eigentensor is aligned with
M2q. Therefore, M2q is also an eigentensor of F − F ⊗ F and determines the orientation
of the hypercone in stress space.
b) In the case of ζ0 = −1, two eigenvalues of F with eigentensors in normal stress space

vanish and M2q is an eigentensor of F with a positive eigenvalue. The criterion therefore
degenerates to two parallel hyperplanes with the hypersurface normalM2q (see Fig. 3.3.3).
c) For ζ0 = 0, however, the eigensystem of F is aligned with the material axes themselves.

Therefore, the main orientation of the quadric surface rotates from M2q at ζ0 = 0.5 to
a perpendicular direction for ζ0 = −1. For −1 < ζ0 < 0.5, the orientation is changing
continuously with the parameter ζ0.
The mid point of the equivalent quadratic form (3.11) may be determined using equation

(3.14). If ζ0,crit < ζ0 < 0.5, A lies outside of the convex surface, as the quadratic form
(3.11) of the criterion from which the midpoint A is derived describes a hyperboloid of two
sheets in this case.
The change of the shape, midpoint and main orientation of the criterion as a function of

the parameter ζ0 in the case of fabric-based orthotropy is illustrated in Fig. 3.3.3. The main
orientation of the criterion is the eigentensor of F− F ⊗ F with the largest eigenvalue.

3.3.4 General orthotropy

In the case of general orthotropy, the fourth order tensor F is given by:

F =
3∑
i=1

F 2
iiMi ⊗Mi −

3∑
i,j=1;i 6=j

ζijF
2
iiMi ⊗Mj +

3∑
i,j=1;i 6=j

F 2
ij

2 Mi⊗Mj (3.47)

The general form of the second order tensor F is in this case:

F =
3∑
i=1

fiMi (3.48)

For a uniaxial test to failure in tension in the direction i, the yield criterion reads:

Fiiσ
+
ii + fiσ

+
ii − 1 = 0, i = 1, 2, 3 (3.49)

For a uniaxial test in compression, the criterion yields

Fiiσ
−
ii − fiσ

−
ii − 1 = 0, i = 1, 2, 3. (3.50)
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Fig. 3.3.3: Midpoint, orientation and shape of the fabric-based orthotropic quadric yield surface
in normal stress space for a) ζ0 = −1, b) ζ0 = −0.5, c) ζ0 = 0.0, d) 0 < ζ0 < ζ0,crit, e)

ζ0,crit < ζ0 < 0.5, and f) ζ0 = 0.5.

By combining equations (3.49) and (3.50), we find that

Fii = σ+
ii + σ−ii
2σ+

iiσ
−
ii

(3.51)
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and

fi = 1
2
( 1
σ+
ii

− 1
σ−ii

)
. (3.52)

When a shear test is performed to failure with shear stresses acting on plane i in direction
j, the yield criterion reads:

Fijτij − 1 = 0 (3.53)

Therefore we get

Fij = 1
τij
. (3.54)

Twelve orthotropic constants are needed to define the criterion: the uniaxial yield stresses
σ+

11, σ−11, σ+
22, σ−22, σ+

33 and σ−33, the shear yield stesses τ12, τ23 and τ13 as well as interaction
coefficients ζ12, ζ23 and ζ13. For a homogeneous material, the criterion may be identified
by a set of 6 uniaxial tests in the 3 main material directions in tension and compression
providing the uniaxial yield stresses σ−ii and σ+

ii . Three additional shear tests in 23, 13 and
12 provide the shear yield strains τij . The interaction parameters may be determined by
independent biaxial tests in the 12, 13 and 23 planes as discussed by Tsai and Wu [Tsai and
Wu, 1971] or triaxial tests as done, e.g., in silico by Wolfram et al. [Wolfram et al., 2012].
The requirements for convexity of the quadric are obtained from (3.5):

σ±ii ≥ 0, τij ≥ 0, |ζij | ≤
∣∣∣Fjj
Fii

∣∣∣ (3.55)

as well as

F 2
22F

2
33 − F 2

11F
2
33ζ

2
12 − F 2

11F
2
22ζ

2
13 + 2F 2

11F
2
22ζ12ζ13ζ23 − F 4

22ζ
2
23 ≥ 0. (3.56)

The transition from ellipsoidal to paraboloidal shape in normal stress space is taking place
at any triplets {ζ12, ζ13, ζ23} satisfying (3.15). In general, there is no analytical form for the
roots of a cubic equation. However, a solution may be found numerically.

3.4 Degeneration to classical yield criteria

In the subsequent sections, the generality of the formulation is demonstrated by showing
its degeneration to several classical yield envelopes under appropriate conditions like the
von Mises [von Mises, 1913], Drucker-Prager [Prager and Drucker, 1952], Tsai-Wu [Tsai and
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Wu, 1971], Liu [Liu et al., 1997], generalized Hill [Zysset and Rincón, 2006] and classical
Hill [Hill, 1951] criteria.

3.4.1 Isotropic Drucker-Prager criterion

When setting ζ0 = 0.5 in the isotropic case, the criterion (3.1) degenerates to

F0

√
3
2S : IdS + f0trS − 1 = 0 (3.57)

with the deviatoric tensor

Id = I⊗I − 1
3I ⊗ I, (3.58)

which descibes a cone oriented in the direction of the hydrostatic axis and is identical to
the criterion first proposed by Drucker and Prager [Prager and Drucker, 1952]. In this case,
the cohesion h would be given by h = 1

F0
and the friction coefficient T by T = 3f0

F0
.

3.4.2 Isotropic von Mises criterion

When setting ζ0 = 0.5 and considering yield stresses that are symmetric around the origin
(σ+

0 = σ−0 = σ0) in the isotropic case, then f0 = 0 and the second order tensor F vanishes.
In this case, the criterion (3.1) degenerates to

1
σ0

√
3
2S : IdS − 1 = 0, (3.59)

which is the classical von Mises yield criterion [von Mises, 1913].

3.4.3 Orthotropic Tsai-Wu criterion

When considering the equivalent quadratic form (3.11), there is an obvious similarity to
the polynomial Tsai-Wu criterion [Cowin, 1986, Tsai and Wu, 1971, Wolfram et al., 2012],
which has the form

Y TW (S) := S : PS + PS − 1 = 0 (3.60)

with

P =
3∑
i=1

1
σ−iiσ

+
ii

Mi ⊗Mi −
3∑

i,j=1;i 6=j

χij

σ−iiσ
+
ii

Mi ⊗Mj +
3∑

i,j=1;i 6=j

1
2τ2
ij

Mi⊗Mj (3.61)
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and

P =
3∑
i=1

( 1
σ+
ii

− 1
σ−ii

)
Mi. (3.62)

Comparison of the two criteria shows that a straightforward transformation exists from the
Tsai-Wu to the quadric criterion. For known tensors P and P , the tensors F and F defining
the quadric surface are given by:

F = P

2 (3.63)

F = P + P ⊗ P
4 (3.64)

The 6 uniaxial and 3 shear yield stresses are not altered by this transformation. Elementwise
comparison of the tensors P and (F− F ⊗ F ) shows that the interaction parameters ζij of
the quadric criterion may be determined from the known χij of the Tsai-Wu criterion by:

ζij = 1
F 2
ii

( χij

σ+
iiσ
−
ii

− fifj
)

(3.65)

3.4.4 Orthotropic Liu criterion

If the interaction coefficients ζij are determined by a specific coupling:

ζij = 1
2F 2

ii

(F 2
ii + F 2

jj − F 2
kk) ∀ i, j, k ∈ N , i, j, k ≤ 3, i 6= j 6= k, (3.66)

where no summation should be performed on repeated indices, Liu’s criterion [Liu et al.,
1997] is obtained, which is a generalization of the Drucker-Prager criterion to plastically
orthotropic materials, i.e. a generalized cone in normal stress space aligned with the hydro-
static axis.

3.4.5 Orthotropic Hill criterion

If the yield stresses are symmetric around the origin (σ+
i = σ−i ), the second order tensor F

vanishes and (3.1) degenerates to
√
S : FS − 1 = 0, (3.67)
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which is a generalized Hill criterion as described by e.g. Zysset and Rincon [Zysset and
Rincón, 2006]. After transformation of the interaction coefficients ζij according to (3.66),
equation (3.67) describes the classical Hill criterion for plastically orthotropic materials [Hill,
1951], which is a generalized cylinder in normal stress space aligned with the hydrostatic
axis.

3.5 Application to a micromechanical yield criterion for porous
solids

In the following section, the applicability of the yield criterion (3.1) to micromechani-
cal analyses will be demonstrated by identifying a quadric criterion based of an existing
micromechanics-based formulation. Maghous et al. [Maghous et al., 2009] proposed a mi-
cromechanical yield criterion for isotropic porous cohesive-frictional solids based on nonlin-
ear homogenization techniques. The matrix material is governed by a Drucker-Prager yield
surface with cohesion h and friction coefficient T , φ denotes the pore volume fraction. This
criterion is to some extend applicable to bone, which may be described at the microscale
as a cohesive-frictional material [Tai et al., 2006] interacting with nanoporosity. It has the
form [Maghous et al., 2009]:

Yp(S, φ) =
1 + 2

3φ

T 2 Σ2
d + ( 3φ

2T 2 − 1)Σ2
m + 2(1− φ)hΣm − (1− φ)2h2 = 0, (3.68)

with

Σm = trS

3 , Σd =
√

(S − ΣmI) : (S − ΣmI), (3.69)

and predicts an elliptical criterion above a critical porosity φcrit = 4T 2

3 . Below the critical
porosity, the criterion descibes a hyperboloid or a double cone and is nonconvex. It may be
rewritten in the following form:

S :
( 1 + 2

3φ

(1− φ)2h2T 2 Id +
3φ
2T 2 − 1

9(1− φ)2h2 I ⊗ I
)
S + 2

3(1− φ)hI : S − 1 = 0. (3.70)

This is a quadratic polynomial in S and therefore the isotropic tensors Fp and Fp defining
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(3.1) may be determined by comparison to the quadratic form (3.11). They are:

Fp =
1 + 2

3φ

(1− φ)2h2T 2 (I⊗I)−
1
3 + 1

18φ

(1− φ)2h2T 2 (I ⊗ I) (3.71)

and

Fp = 1
3(1− φ)hI. (3.72)

The criterion rewritten in the form of (3.1) then predicts the same elliptical criteria for
overcritical porosities and a conical one for the solid matrix. However, it predicts convex
(half) hyperboloidal criteria for undercritical porosities, which extends the validity of the
existing micromechanical formulation as presented by Maghous et al. [Maghous et al., 2009]
as a yield criterion to undercritical states of pore volume fraction. Thus, a smooth transition
is found from a conical criterion for the solid matrix to elliptical criteria for φ > φcrit through
convex (half) hyperboloids. This is illustrated in Fig. 3.5.
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Φ>Φcrit
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Fig. 3.5: Quadric yield surface for isotropic porous cohesive-frictional materials [Maghous et al.,
2009] for friction coefficient T = 0.4 and cohesion h = 150 MPa as a function of pore volume
fraction φ in the Σd-Σm plane showing a smooth transition from conical to elliptical surfaces.
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3.6 Identification of yield criteria for bone

In the following section, the advantage in using a very general formulation like the one pro-
posed in this work when describing a hierarchical material like bone will be demonstrated
by describing the varying yield envelopes of bone at several length scales. Elliptical criteria
describing the yield envelope of homogenized trabecular bone at the macroscale from ex-
perimental data and numerical homogenization techniques as well as a conical criterion for
lamellar bone at the microscale will be identified.

3.6.1 Trabecular bone

A fabric- and density-based orthotropic quadric yield and strength criterion for trabecular
bone was fitted to the multiaxial experimental data obtained by Rincon et al. [Rincón-
Kohli and Zysset, 2009]. In this study, a multi-axial loading chamber was used to determine
the compressive multi-axial yield and strength properties of cancellous bone from several
anatomical locations. Cylindrical cancellous bone samples were disected from fresh frozen
bones of 12 donors (5male , 7 female) with a mean age of 73.5 years (30 – 89 years). Their
morphology was assessed by means of µCT scans. Then, different mechanical tests were
performed such as torsion, uni-axial traction, uni-axial compression and multi-axial com-
pression. A total of 128 bone samples were tested to failure. The yield point was determined
according to the 0.2 % offset criterion, strength was defined as ultimate force before fail-
ure divided by mean area. A fabric- and density based quadric criterion was then fitted
to the experimental data by means of the optimization routine Nminimize (Mathematica,
Wolfram Research Inc.). The resulting constants for trabecular bone as well as the number
of observations (N), standard error of the estimate (SEE) and R2 are shown in Tables 6.1
and 6.2 for the yield and strength criteria, respectively.

Table 3.1: Tensile yield stress σ+
0 , compressive yield stress σ−0 , interaction parameter ζ0, shear

yield stress τ0, exponents p and q as well as number of load cases N , standard error of
the estimate SEE and R2 of a yield criterion for trabecular bone in MPa obtained from
experimental data [Rincón-Kohli and Zysset, 2009].

σ+
0 σ−0 ζ0 τ0 p q N SEE R2

32.7 47.8 0.220 11.1 1.28 0.503 110 0.26 0.94

The quadric strength criterion is illustrated in normalized stress space in Fig. 3.6.1.
It is worth noting that even though the yield and strength criteria have a similar shape

in both the normal and the shear stress space, the strength criterion is not an isotropic
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Table 3.2: Tensile strength σu+
0 , compressive strength σu−0 , interaction parameter ζu0 , shear

strength τu0 , exponents pu and qu as well as number of load cases N , standard er-
ror of the estimate SEE and R2 of a strength criterion for trabecular bone in MPa
obtained from experimental data [Rincón-Kohli and Zysset, 2009].

σu+0 σu−0 ζu0 τu0 pu qu N SEE R2

39.7 53.2 0.226 22.9 1.29 0.593 95 0.259 0.933

Fig. 3.6.1: Quadric strength surface for trabecular bone and experimental data [Rincón-Kohli and
Zysset, 2009] in a) normalized normal stress space and b) the Ŝ33-Ŝ12 plane.

expansion of the yield criterion as defined in eq. (3.3). It may, however, be described by
an expansion of the yield criterion with distinct hardening ratios rn = 1.1 in normal and
rs = 2.1 in shear stress space. This might be accomplished by using the yield data presented
in Tab. 6.1 in a criterion with a tensorial hardening rule as introduced in eq. (3.4) with a
tensor function K(κ) of the form

K(κ) =
3∑
i=1

Mi ⊗Mi

1 + (rn − 1)fn(κ)
+

3∑
i,j=1;i 6=j

Mi⊗Mj

1 + (rs − 1)fs(κ)
, (3.73)

where fn(κ) and fs(κ) are appropriate scalar hardening evolution functions bounded by
0 ≤ fn(κ), fs(κ) ≤ 1 and the Mi are defined by (3.30). This would allow to describe both
the experimental yield and strength data by one criterion.
Alternatively, a fabric- and density-based orthotropic yield criterion for trabecular bone
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was obtained by conversion of the Tsai-Wu criterion proposed by Wolfram et al [Wolfram
et al., 2012]. In this particular study, nonlinear µFE models with cancellous bone cubes of
5.62mm edge length were generated from µCT scans. Kinematic boundary conditions were
imposed testing the specimen in force control in 17 different load cases (six uniaxial, three
shear and eight multiaxial) beyond yield. The yield point was determined according to the
0.2% offset rule. The study included 16 fresh frozen vertebrae (T6 to L2) from 10 donors (7
male, 3 female) with a median age of 51 y (37 – 84 y). The fabric- and density based Tsai-
Wu criterion was fitted to the resulting yield data using the optimization routine Nminimize
(Mathematica, Wolfram Research Inc.). The interaction parameters were then transformed
using eq. (3.65). The resulting constants of the quadric yield criterion for trabecular bone
as well as N, SEE and R2 are given in Table 3.3.

Table 3.3: Tensile yield stress σ+
0 , compressive yield stress σ−0 , interaction parameter ζ0, shear

yield stress τ0, exponents p and q as well as number of load cases N , standard error of
the estimate SEE and R2 of a yield criterion for trabecular bone in MPa obtained by
numerical homogenization techniques [Wolfram et al., 2012].

σ+
0 σ−0 ζ0 τ0 p q N SEE R2

74.589 111.724 0.2182 47.3314 1.686 1.02 391 0.1358 0.93

The quadric yield criterion for trabecular bone is shown in normalized stress space in
Fig. 3.6.1.

Fig. 3.6.1: Quadric yield surface for trabecular bone and in silico data [Wolfram et al., 2012] in
normalized a) normal and b) shear stress space.
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3.6.2 Lamellar bone

It has been proposed that lamellar bone behaves as a cohesive-frictional material at the
nanoscale due to its nanogranular structure [Carnelli et al., 2010, Tai et al., 2006, Wang
et al., 2008]. Here, the parameters of the quadric yield surface for bone tissue at the
nanoscale were identified based on the work presented by Carnelli et al. [Carnelli et al.,
2010, 2011]. In this particular study, transversely isotropic yield properties of bovine bone
tissue were determined by means of a combination of nanoindentation experiments in axial
and transverse direction with a numerical sensitivity study. Carnelli et al. [Carnelli et al.,
2011] reported an axial compressive yield strength σ−33 = 150 MPa, a transverse to axial
ratio RTA = 0.86 and a cone opening angle β = 25° of an underlying fictitious isotropic
material. Using the relations σ−ii = σ−0 ρ

pm2q
i , RTA = m2q

1
m2q

3
, m1 = m2 = 3−m3

2 for transverse

isotropy, tanβ = 3f0
F0

and (3.23), and setting p = 0.0, q = 1.0, as well as ζ0 = 0.5, the yield
constants provided by Carnelli et al. [Carnelli et al., 2011] were converted to a fabric-based
quadric criterion. The resulting properties are shown in Table 3.4.

Table 3.4: Tensile yield stress σ+
0 , compressive yield stress σ−0 , interaction parameter ζ0, shear yield

stress τ0, exponents p and q as well as the eigenvalues of the fabric tensor m1, m2 and
m3 of a yield criterion for bovine lamellar bone in MPa from a nanoindentation study
[Carnelli et al., 2011].

σ+
0 σ−0 ζ0 τ0 p q m1=m2 m3

100.0 136.0 0.5 66.6 0.0 1.0 0.975 1.05

The yield surface for lamellar bone is presented in Fig. 3.6.2.

Fig. 3.6.2: Conical yield surface for lamellar bone from nanoindentation study [Carnelli et al.,
2011] in normal stress space.
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3.7 Discussion

In this work, a generalized anisotropic quadric yield criterion was proposed and discussed
in stress space. The convexity limits of the criterion and the transition points between the
different shapes were identified. The criterion was discussed for special cases of material
symmetry such as isotropy, cubic symmetry, fabric-based orthotropy and general orthotropy.
It was shown that the criterion degenerates to several classical yield criteria under appro-
priate conditions like the ones proposed by von Mises [von Mises, 1913], Drucker-Prager
[Prager and Drucker, 1952], Tsai-Wu [Tsai and Wu, 1971], Liu [Liu et al., 1997], general-
ized Hill [Zysset and Rincón, 2006] and classical Hill [Hill, 1951] criteria. Applicability of
the formulation for micromechanical analyses was shown by the identification of a quadric
yield surface from a micromechanics based criterion for porous cohesive-frictional materials
[Maghous et al., 2009]. This is particularly interesting for the description of bone, as it may
be described on the micro-level as a cohesive-frictional material [Tai et al., 2006] interacting
with nanoporosity. It was shown that the formulation as a quadric criterion extends the
convexity of the original criterion [Maghous et al., 2009] to undercritical porosities. Thus,
a smooth transition from the conical yield surface of the solid matrix material to an ellip-
tical criterion of the porous composite is found. Also, a fabric- and density-based quadric
strength criterion was identified for trabecular bone from multiaxial experimental data of
Rincon et al. [Rincón-Kohli and Zysset, 2009]. A tensorial hardening rule was proposed
allowing to fit both the experimental yield and strength data of Rincon et al. [Rincón-Kohli
and Zysset, 2009] by a single criterion. Additionally, the fabric- and density-based Tsai-Wu
yield criterion for trabecular bone identified by Wolfram et al [Wolfram et al., 2012] from in
silico data was converted to an equivalent quadric criterion by a transformation of the inter-
action parameter. Finally, a conical yield criterion for bovine lamellar bone was identified
from a nanoindentation study by Carnelli et al. [Carnelli et al., 2011].
Bone features a varying amount of porosity on every hierarchical level and a nanogranular

ultrastructure. Therefore, the quadric yield criterion with its ability to take different convex
quadric shapes is suitable to approximate the yield envelope at every hierarchical level
starting from the extracellular matrix to the macroscopic bone tissue.
The formulation allows material symmetries ranging from isotropy to general anisotropy.

It may take different convex quadratic shapes with a smooth transition from ellipsoidal
to conical or cylindrical ones, making it a suitable candidate for use with a wide range of
different materials such as metals, geomaterials, porous foams, bone, etc. The generality
of the formulation is also beneficial in the case of material identification. If the shape of
the yield function is not known a priori, a minimization using the quadric criterion will
result in the optimal shape among the convex quadrics eliminating the need for several
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trial identifications using different formulations. It might prove especially interesting in
combination with multiscale homogenization techniques in the future, as it may be used for
the homogenized material description at several length scales as long as the failure envelope
of the material can be approximated by a quadric surface.
The proposed criterion is a homogeneous function of degree one, which is beneficial for

implementation of isotropic hardening rules in a computational mechanics framework. For
isotropic hardening (3.3), its gradients with respect to stress and the hardening variable
are independent of each other thus simplifying the implementation of e.g. backprojection
algorithms. Also, it allows to make conservative approximations of the elastic domain of
cohesive-frictional materials governed by a Drucker-Prager type conical yield surface by a
smooth hyperboloid. This solves the common problem of non-uniqueness of the normal of
the surface at the cone apex and allows the use of standard backprojection algorithms. The
quadric criterion proved to be an effective tool in the description of bone strength at several
length scales. Due to its generality and simple structure, it is well suited for the use in
computational inelasticity of materials and structures.
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4.1 Abstract

Prevention and treatment of osteoporosis rely on understanding of the micromechanical
behavior of bone and its influence on fracture toughness and cell-mediated adaptation pro-
cesses. Postyield properties may be assessed by nonlinear finite element simulations of
nanoindentation using elastoplastic and damage models. This computational study aims at
determining the influence of yield surface shape and damage on the depth dependent re-
sponse of bone to nanoindentation using spherical and conical tips. Yield surface shape and
damage were shown to have a major impact on the indentation curves. Their influence on
indentation modulus, hardness, their ratio as well as the elastic to total work ratio are well
described by multilinear regressions for both tip shapes. For conical tips, indentation depth
was not statistically significant (p < 0.01). For spherical tips, damage was not a significant
parameter (p < 0.01). The gained knowledge can be used for developing an inverse method
for identification of postelastic properties of bone from nanoindentation.

4.2 Introduction

With modern societies ageing rapidly, the increasing number of fractures and falls poses a
major challenge for health care systems all over the world. Modern preventive and therapeu-
tic methods for metabolic diseases like osteoporosis rely on the results of the research on the
micro-mechanical behavior of bone and its influence on fracture toughness and cell-mediated
adaptation processes.
Bone is a composite material consisting of a cell seeded mineralized collagen matrix with

a hierarchical structure. It is designed to provide mechanical support, store bone marrow
and metabolize calcium [Fratzl and Weinkamer, 2007, Weiner et al., 1999, Zysset, 2009].
Parallel mineralized collagen fibrils surrounded by extra-fibrillar mineral particles [Currey,
1969, Lees et al., 1990, Reisinger et al., 2010] form fibril arrays. In lamellar bone, bundles
of parallel fibril arrays form lamellae in a rotated-plywood-like manner [Weiner et al., 1997,
1999]. Osteocytes and their cell processes reside in the lacuno-canalicular system making
up for 10 % of microporosity [Sugawara et al., 2005]. For a more thorough description, see
e.g. [Fratzl and Weinkamer, 2007].
While biomechanical testing of bone has been performed on the macroscale for more

than a century, there are still many challenges due to spatial, inter-subject, disease and age
variation of mechanical properties [Keaveny et al., 2001]. Micromechanical analysis of bone
as a hierarchical composite is a new and rapidly developing field in biomechanics [Hellmich
et al., 2011] with a high clinical relevance. In order to understand and predict bone fracture
more accurately, it is important to consider the yield behavior of bone on small length scales.
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Nanoindentation is a micromechanical testing technique routinely used to extract me-
chanical properties at a high spatial resolution. A small diamond probe with a known
geometry is pressed onto a flat surface and force and tip displacement are recorded. The
work of Sneddon [Sneddon, 1948], Oliver and Pharr [Oliver and Pharr, 1992, 2004] and
Swadener and Pharr for anisotropic media [Swadener and Pharr, 2001] allows us to extract
elastic properties from the indentation curve. However, certain assumptions like an intact
unloading stiffness and homogeneity of the material are made. The method has proven to
be very robust for many ductile engineering materials like metals [Oliver and Pharr, 1992,
2004]. Nanoindentation in bone aims at characterizing the mechanical properties on the
lamellar (2-7 µm) or the bone structural unit (BSU, 60 µm) level [Lewis and Nyman, 2008,
Zysset, 2009] depending on the indentation depth [Hoffler et al., 2005]. Yield behavior may
be determined from the indentation curves using inverse methods [Bolzon et al., 2004, Car-
nelli et al., 2010, Ganneau et al., 2006, Herbert et al., 2001], if the underlying dissipative
processes are well understood. In the past, several groups have proposed experimental pro-
tocols that allow to extract yield strength [Ganneau et al., 2006, Herbert et al., 2001], if
plasticity is the dominating dissipative process and the shape of the governing yield surface
is known a priori. Great care must be taken when designing such a method, as it is difficult
to extract unique postelastic mechanical properties from indentation curves using only one
indenter shape. The reason for this is that indentation in multiple materials with signifi-
cantly different properties might result in very similar curves [Chen et al., 2007]. Therefore
a simultaneous analysis of indentations using different indenter geometries becomes neces-
sary in order to be confident about the validity and uniqueness of the found parameters.
Also, the method has to be designed for a specific expected behavior making it important
to understand the underlying mechanics and the response of the model first.
When loaded past the yield point, bone shows two simultaneous mechanisms of energy dis-

sipation: inelastic deformation and damage, i.e. reduction of the elastic properties through
the formation of microcracks [Hengsberger et al., 2002, O’Brien et al., 2002, Zioupos et al.,
2008]. The formation of plastic and damage behavior is well documented on the macroscopic
scale [Garcia et al., 2009, O’Brien et al., 2002, Sun et al., 2010, Zioupos et al., 2008]. Recent
studies seem to indicate that the effect of damage may also be seen on the microscale [Gupta
et al., 2006, Hengsberger et al., 2002]. The assumptions of an unloading phase with intact
elasticity needed for the Oliver and Pharr analysis seems not to hold true for the testing of
bone tissue. Also, the question arises what mechanisms dominate yielding of the material
and how the yield envelope influences the indentation curve.
Tai et al. [Tai et al., 2006] showed evidence that bone behaves as a cohesive-frictional

material due to its sub-microscopic structure. They proposed that increased strength prop-
erties in compression compared to tension reported in the literature [Yeni et al., 2004] may
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be explained by friction between mineral particles and cohesion originating from the or-
ganic phase. Micromechanical considerations by Maghous et al. [Maghous et al., 2009] on
strength of porous geomaterials showed that the yield surface of cohesive-frictional materials
featuring porosity takes a hyperboloidal or elliptical shape, which would seem appropriate
for bone given the nanogranular structure and the inherent porosity at all length scales.
This is also consistent with findings on the macroscopic level, where Cowin proposed a
Tsai-Wu yield surface for cortical bone [Cowin, 1979, 2001]. Therefore, it seems reasonable
to hypothesize that the yield criterion of bone under nanoindentation loading might be of
a conical, hyperboloidal or ellipsoidal shape depending on the amount of porosity. Due to
the complex mechanical problem arising in the context of nanoindentation featuring both
material and geometric nonlinearities combined with contact mechanics, many recent stud-
ies rely on numerical simulations and discretization of the mechanical problem instead of
using analytical solutions for a simplified system [Carnelli et al., 2010, Chen et al., 2007,
Mullins et al., 2009, Zhang et al., 2008, 2010]. Finite element simulations using plasticity
models featuring a conical Drucker-Prager yield surface were able to capture some of the
characteristics of nanoindentation experiments on bone [Carnelli et al., 2010, Tai et al.,
2006]. Finite element simulations of nanoindentation experiments using coupled plasticity
and damage models have shown that the presence of damage may explain some of the ex-
perimental findings for mineralized tissues like reduced unloading stiffness [Lucchini et al.,
2011, Zhang et al., 2010].
Most studies trying to extract postelastic properties of bone from indentation curves so far

assumed a certain shape of the yield surface and subsequently determined yield parameters
like von Mises yield stress or cohesion and friction angle depending on the used formulation.
However, the appropriate shape of the yield surface of bone at the microlevel is not known
for certain at the moment.
Therefore, the main aim of this study is to determine the influence of the material con-

stitutive behavior, in particular the shape of the yield surface and presence of a damage
mechanism, on the depth dependent response of bone to nanoindentation using spherical
and conical tips and to identify measures that would be best suited for use in an inverse
method to identify yield and damage parameters of bone.

4.3 Materials and methods

4.3.1 Constitutive Model

A recently proposed elastoplastic damage model for bone tissue [Schwiedrzik and Zysset,
2013a] was implemented as a user subroutine UMAT in the commercial finite element solver
ABAQUS (Dassault Systems, Vélizy-Villacoublay, France) and adapted for use in this study.
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The rheological model is a damageable elastic spring in series with a plastic pad. The free
energy potential is given by:

Ψ(E,Ep, κ) = 1
2(1−D(κ))(E −Ep) : S(E −Ep) (4.1)

with the fourth order stiffness tensor S, the total and plastic strain tensors E and Ep and the
accumulated plastic strain κ. The commercial finite element solver Abaqus uses an updated
Lagrangian mapping technique with the Cauchy stress tensor and an approximation of
the integral of the rate of deformation

∫
Ddt as its conjugate strain tensor for simulations

involving finite deformations and rotations. These stress and strain measures were therefore
used in this implementation. The evolution of plastic strains is associated to the yield surface
and damage accumulation is assumed to be coupled to the plasticity using a damage function
D(κ) reducing all elements of the stiffness tensor:

D(κ) = Dc(1− e−kpκ) (4.2)

The inverse damage rate 1
kp

was set to 9.53 % as suggested earlier [Schwiedrzik and Zysset,
2013a, Zysset, 1994]. Since the exact damage evolution is not known for bone on the mi-
croscale, the maximum damage Dc was treated as an unknown parameter in this study. Dc

was varied from 0.0 to 0.6 in order to show its influence on the indentation curve and to
assure that continuum damage mechanics is applicable. The primal closest point projection
algorithm proposed by Perez-Foguet et al. [Armero and Pérez-Foguet, 2002, Pérez-Foguet
and Armero, 2002] was implemented using a line search algorithm for constrained problems
as a fail safe for the Newton algorithm used by Schwiedrzik and Zysset [2013a] in order to
enlarge the region of convergence of the model. In order to verify the correct implementa-
tion of the material model, single element tests were performed and stiffness and strength
compared to analytical solutions.

Elastic stiffness

A transversely isotropic stiffness tensor S for dry trabecular bone measured in a nanoinden-
tation study by Wolfram et al. [Wolfram et al., 2010a] and computed using the methodology
of Franzoso and Zysset [Franzoso and Zysset, 2009] was chosen as the elastic input for this
study. Using a fabric elasticity model [Zysset and Curnier, 1995] with an isotropic base
material, the following constants were obtained to define the stiffness tensor:
E0 is the elastic modulus, ν0 the Poisson ratio, and µ0 the shear modulus of the base

material. The parameter ρ is the volume fraction, the mi are the eigenvalues of the fabric
tensor describing the anisotropy of the material and k and l are exponents of the fabric-
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Table 4.1: Constants for fabric-based elasticity [Zysset and Curnier, 1995] of bone tissue identified
from Wolfram et al [Wolfram et al., 2010a].

E0 [GPa] ν0 µ0 [GPa] ρ m1 = m2 m3 k l
13.846 0.32 5.245 0.9 0.971 1.058 1.0 1.0

based model. For further details see Zysset and Curnier [1995]. Due to the isotropy of the
base material, the relation µ0 = E0

2(1+ν0) holds true. Theoretical indentation moduli for the
given stiffness tensor were determined using the method of Swadener and Pharr [Swadener
and Pharr, 2001] in axial and transverse direction as 14.9 GPa and 13.4 GPa, respectively.

Yield criterion

A recently proposed fabric-based orthotropic quadric yield criterion [Schwiedrzik et al., 2013]
was used to define the yield surface of bone. It allows strength differences in tension and
compression and may take an ellipsoidal, hyperboloidal or conical shape depending on the
chosen interaction parameters (see Fig. 4.1). The material model [Schwiedrzik and Zysset,
2013a] was adapted to accomodate the new yield function. The criterion is defined in stress
space as

Y (S) :=
√
S : FS + FS − 1. (4.3)

It features no postyield hardening/softening behavior in this study. The general form of the
fourth order tensor F is

F =
3∑
i=1

F 2
iMi ⊗Mi −

3∑
i,j=1;i 6=j

ζijF
2
iMi ⊗Mj +

3∑
i,j=1;i 6=j

1
2τ2
ij

Mi⊗Mj (4.4)

with

Fi = σ−i + σ+
i

2σ+
i σ
−
i

(4.5)

and

Mi = mi ⊗mi. (4.6)
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In this case, the general form of the second order tensor F is

F =
3∑
i=1

1
2

(
1
σ+
ii

− 1
σ−ii

)
Mi. (4.7)

The mi are the vectors describing the material orientation. Twelve orthotropic constants
are needed to define the criterion: The uniaxial yield stresses σ+

1 , σ−1 , σ+
2 , σ−2 , σ+

3 , σ−3 ,
interaction coefficients ζ12, ζ23, ζ13, and the shear yield stresses τ12, τ23 and τ13. When
using a fabric based model [Schwiedrzik et al., 2013, Wolfram et al., 2012, Zysset and
Rincón, 2006], the orthotropic constants are given by

σ+
ii = σ+

0 ρ
pm2q

i , σ−ii = σ−0 ρ
pm2q

i , (4.8)

ζij = ζ0
m2q
i

m2q
j

, τij = τ0ρ
pmq

im
q
j . (4.9)

In the case of an isotropic base material, the number of independent constants thus reduces
to five: σ+

0 , σ−0 , ζ0 as well as two exponents p and q. The parameter ζ0 is an interaction
parameter and determines the shape of the criterion in normal stress space. As for the
elastic domain, an isotropic base material was defined. The yield strength in tension and
compression of the base material were determined by

σ+
0 = E0ε

+
0 , (4.10)

σ−0 = E0ε
−
0 , (4.11)

using the modulus of the base material E0. The principal yield strains for the base material
were taken from Bayrakthar et al. [Bayraktar et al., 2004] to be 0.41 % in tension and
0.83 % in compression. The shear strength was determined using the isotropy condition
F1122 = F1111 − F1212 for the base material:

τ0 =
√

2
1 + ζ0

σ+
0 σ
−
0

σ−0 + σ+
0

(4.12)

It was assumed that the influence of the fabric eigenvalues on the yield surface is similar to its
influence on the elastic properties, which is consistent with previous studies of indentation on
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bone conducted by other groups [Carnelli et al., 2010, 2011, Lucchini et al., 2011]. Therefore
q was set equal to l. The constants defining the fabric-based yield surface of bone are given
in Table 4.2.

Table 4.2: Yield constants for bone tissue, stresses in GPa.

Name σ+
0 σ−0 ζ0 p q

Mat1 0.057 0.115 0.30 1.0 1.0
Mat2 0.057 0.115 0.35 1.0 1.0
Mat3 0.057 0.115 0.49 1.0 1.0

It is important to note that the yield surface is defined in stress space and not effective
stress space, as is sometimes the case in continuum damage mechanics. Therefore, damage
will not lead to softening in this model. Instead, a constant yield surface was used for
both the purely elasto-plastic and the elasto-plastic case with damage leading to an ideal
plasticity or ideal plasticity and damage model in order to guarantee that the changes in
the indentation response originate from the dissipative mechanisms themselves and not the
resulting postyield hardening/softening curve. Fig. 4.1 illustrates the yield surfaces for
ζ0 = 0.30 (ellipsoidal, left), ζ0 = 0.35 (hyperboloidal, middle) and ζ0 = 0.49 (conical, right)
in normal stress space.

Figure 4.1: Quadric yield surfaces for ζ0 = 0.30 (ellipsoidal, left), ζ0 = 0.35 (hyperboloidal, middle)
and ζ0 = 0.49 (conical, right) in normal stress space.
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4.3.2 Finite Element Model

The tip geometry of the Berkovich indenter was modeled by a rigid cone with a semivertical
angle of 70,3°. The tip was not blunted, since this has been shown to have an effect only for
indentations smaller than 200 nm [Lucchini et al., 2011]. The spherical indenter was modeled
as rigid with a radius R = 50µm. Only one quarter of the bone halfspace was meshed by a
sufficiently large cube with a side length of 100µm following the suggestions of Poon [Poon
et al., 2008b] and symmetry boundary conditions were applied. The bottom nodes were
constrained in the testing direction. Hard, frictionless contact was defined between the
conical tip and the surface of the tested bone specimen.
The halfspace was meshed using linear fully integrated hexahedral elements. As large

deformations and rotations were anticipated to appear in the vicinity of the nanoindentation,
geometrically nonlinear analysis was activated. In order to avoid numerical problems due
to element distortion, reduced integration with enhanced hourglass control and arbitrary
lagrangean eulerian (ALE) remeshing was activated for the elements within 5 µm of the
contact surface.
The model contains 36474 elements. As the gradients of the field variables are compar-

atively large near the indentation and low with increasing distance to the tip, the edges of
the cube were seeded with a bias towards the indentation allowing to have a fine mesh near
the indenter tip while maintaining a relatively small number of elements. Fig. 4.2 shows
the setup of the indentation model using a conical indenter.
In order to validate the finite element mesh, it was verified that the influence of the dis-

cretization on the indentation simulation is negligible for the range of indentation depths
used in this study. Conical and spherical indentations into an elastic halfspace were sim-
ulated to a maximum depth of 2.5 µm and compared to analytical and empirical solutions
[Hertz, 1881, Poon et al., 2008a, Sneddon, 1965, Swadener and Pharr, 2001] using isotropic
materials with varying Poisson’s ratio as well as transversely isotropic materials. As ex-
pected, the indentation curve was close to the analytical solution and the measured inden-
tation modulus was independent of the indentation depth for indentation depths larger than
300 nm. Additionally, a mesh convergence study (h-refinement) was performed for conical
indentations into an isotropic elastoplastic halfspace governed by a von Mises yield surface
to depths of 1µm and 2.5µm. This showed that the mesh has also converged in the case of
material nonlinearity.

4.3.3 Parameter study and data analysis

Simulations of conical indentations to depths of 0.5, 1.0, 1.5, 2.0 and 2.5µm as well as
spherical indentations to 0.5, 0.75 and 1.0 µm were run in displacement control for each



4 The influence of yield surface shape and damage on the response of bone to nanoindentation 75

1Figure 4.2: Finite element indentation model using a conical indenter.

yield surface (ζ0 = 0.3, 0.35, 0.49). In order to show the influence of damage on the
indentation curve, each simulation was run with different values of Dc (0.0, 0.4, 0.6). A
total of 90 conical and 54 spherical indentations were performed in axial and transverse
direction. The force-depth (P − h) curves were extracted and analyzed according to the
Oliver and Pharr method [Oliver and Pharr, 1992]. A power law function was fitted to the
upper 60 % of the unloading curve and its derivative S = dP

dh computed at the maximum
depth. Then, the indentation modulus was determined using the general relation [Herbert
et al., 2001, Oliver and Pharr, 1992]

Eind =
√
π

2 S
1√
Ac

(4.13)

with the indentation modulus Eind and the projected contact area Ac. The contact area
was determined using

Ac = 24.5h2
c (4.14)

in the case of conical indenters [Oliver and Pharr, 1992] and

Ac = (Rhc − h2
c)π (4.15)
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for spherical indenters [Herbert et al., 2001] with the sphere radius R and the contact depth
hc. Contact depth was found using the relation

hc = h− βP
S

(4.16)

with an empirical factor β, which is 0.72 for conical and 0.75 for spherical indenters [Herbert
et al., 2001, Oliver and Pharr, 1992]. The indentation hardness Hind is defined as the
maximum force divided by the contact area at maximum depth:

Hind = Pmax
Ac,max

(4.17)

The elastic and total energies are defined as

Welast =
∫ hres

hmax
Pdh, Wtot =

∫ hmax

0
Pdh (4.18)

with the maximum depth hmax and the residual depth hres. A pair of dimensionless pa-
rameters, Hind/Eind and Welast/Wtot, was defined to characterize the indentation curves.
Indentation modulus, hardness, elastic and total energy were analyzed as a function of ζ0,
i.e. yield surface shape, maximum damage Dc, and indentation depth h. For both inden-
ters, trilinear regressions describing the influence of h, ζ0 and Dc on Eind and Hind were
fitted separately to the axial and the transverse data and regressions for the dimensionless
measures Hind/Eind andWelast/Wtot to the pooled axial and transverse data. Subsequently,
the regressions were reduced to the significant parameters.

4.4 Results

A total of 90 conical and 54 spherical indentations were performed in axial and transverse
direction. Indentation curves of conical and spherical indentations with ζ = 0.3, 0.35 and
0.49 for elasto-plasticity (Dc = 0) and for elasto-plasticity with damage (Dc = 0.6) may be
seen in Fig. 4.3. The extracted Eind, Hind and Welast/Wtot for the axial indentations may
be seen in Fig. 4.4. The extracted depth profiles are shown in Fig. 4.5.
The indentations for the conical yield surface (ζ0 = 0.49) are the most elastic. Pile-up is

visible, but very broad around conical indentations in Fig. 5, leading to an overestimation
of the indentation modulus. Measured indentation modulus is not significantly dependent
on depth for both indenters, while hardness and elastic to plastic work ratio change within
the assessed depth range for the spherical indentations.
The hyperboloidal yield surface (ζ0 = 0.35) leads to a lower elastic to total work ratio.
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Figure 4.3: Axial indentation curves with ζ0 = 0.3, 0.35 and 0.49 using a) conical and b) spherical
indenters to a depth of 1µm for elasto-plasticity (Dc = 0, left) and elasto-plasticity
with damage (Dc = 0.6, right).

Hardness reduces compared to the conical surface. Pile-up forms near the conical inden-
tations leading to an overestimation of the measured indentation modulus. The amount
of pile-up around the conical indentation is decreasing monotonously with increased Dc.
For spherical indentations, no pile-up is visible, indentation modulus is constant, hardness
increases and elastic to total work ratio decrease with depth.
For the ellipsoidal yield surface (ζ0 = 0.3), the indentations are even more dissipative.

Hardness is substantially reduced in comparison to the other yield surfaces for both conical
and spherical indenters. Pile-up around the conical indentation leads to an overestimation
of the indentation modulus in the case of Dc = 0. The amount of pile-up seen in the conical
indentations decreases monotonously with growing Dc. For spherical indentations, there
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was no pile-up. The trends for hardness and elastic to total work ratio are similar to the
other yield surfaces.
For conical indentations, indentation depth h was not a significant parameter. Table

4.3 shows the significant parameters of bilinear regressions describing the influence of the
parameters ζ0 and Dc on indentation modulus Eind and hardness Hind for axial indentations
(N=45) and transverse indentations (N=45) as well as the dimensionless measuresHind/Eind

and Welast/Wtot for pooled axial and transverse indentations (N=90) using a conical tip.
As table 4.3 shows, the bilinear regressions for the conical indentations are significant for

both the absolute as well as the dimensionless measures and have a high predictability.

Table 4.3: Significant parameters of bilinear regressions describing the influence of ζ0 and Dc on in-
dentation modulus Eind and hardness Hind for axial indentations (N=45) and transverse
indentations (N=45) as well as Hind/Eind and elastic to total work ratioWelast/Wtot for
pooled axial and transverse indentations (N=90) using a conical tip. Absolute measures
in GPa.

Measurement Intercept Slope ζ0 Slope Dc Slope ζ0Dc p-value Adj. R2 N
Eind,ax 24.796 -11.0864 -9.3162 – < 0.0001 0.939 45
Hind,ax −0.780 4.875 0.746 -2.663 < 0.0001 0.986 45
Eind,tv 20.4934 -6.1804 -9.0019 - < 0.0001 0.950 45
Hind,tv −0.638 3.996 0.550 -2.003 < 0.0001 0.989 45
Hind/Eind −0.048 0.257 0.019 – < 0.0001 0.990 90
Welast/Wtot −0.181 1.355 – 0.384 < 0.0001 0.988 90

Table 4.4: Significant parameters of bilinear regressions describing the influence of ζ0 and h/R on
hardness Hind for axial indentations (N=27) and transverse indentations (N=27) as well
as Hind/Eind and elastic to total work ratio Welast/Wtot for pooled axial and transverse
indentations (N=54) using a spherical tip. Absolute measures in GPa.

Measurement Intercept Slope h/R Slope ζ0 Slope ζ0h/R p-value Adj. R2 N
Hind,ax 0.366 -12960 – 61610 < 0.0001 0.981 27
Hind,tv 0.313 -13090 – 56430 < 0.0001 0.982 27
Hind/Eind 0.023 -975.9 – 4056 < 0.0001 0.951 54
Welast/Wtot 0.343 -986.9 1.221 – < 0.0001 0.946 54

For spherical indentations, the critical damage Dc was not a significant parameter. The
indentation modulus Eind showed an intercept but no significant slope (p < 0.0001). Hind

had significant slopes in the directions h/R and ζ0h/R only. Hind/Eind andWelast/Wtot were
also not significantly affected by Dc. Therefore, only bilinear models of Hind, Hind/Eind and
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Welast/Wtot as a function of h/R and ζ0 are reported here. Table 4.4 shows the significant
parameters of bilinear models describing the influence of h/R and ζ0 on indentation modulus
Eind and hardness Hind for axial indentations (N=45) and transverse indentations (N=45)
hardness Hind for axial indentations (N=27) and transverse indentations (N=27) and for the
dimensionless measures Hind/Eind and Welast/Wtot for spherical indentations using pooled
axial and transverse data (N=54).

4.5 Discussion

The main aim of this study was to determine the influence of the material constitutive
behavior, in particular the shape of the yield surface and presence of a damage mechanism
on the depth dependent indentation behavior by means of a parametric study using conical
and spherical indenters and to identify suitable measures on which to base an inverse method
for identification of yield and damage properties.
The results of the parameter study showed that the shape of the yield surface has a major

impact on pile-up and the indentation curve. Both conical and spherical indentations be-
came more plastic with decreasing ζ0. In the absence of damage, elastoplastic indentations
using a conical tip showed considerable pile-up leading to an overestimation of indenta-
tion modulus and hardness when using the Oliver-Pharr method [Oliver and Pharr, 1992],
which is consistent with the literature [Bolshakov and Pharr, 1998, Hay et al., 1999]. The
introduction of damage consistently lead to a reduction of pile-up and thus the measured
indentation modulus and hardness as well as an increase in the elastic to total work ratio.
The scalar damage mechanics approach used in this study allows higher volume changes

in the vicinity of the indent than a pure elastoplastic model thus reducing the formation
of pile-up around conical indentations. The damaged region itself is very localized around
the indentation and much smaller than the elastic stress field limiting its influence on the
measurement of the elastic properties of the tested volume. However, interpretation of
elastic measurements from conical indentations in the presence of damage and plasticity
is problematic, as the measured modulus, which should in theory be an elastic material
property and thus constant, was shown to be a function of the critical damage and the
yield surface shape. On the other hand, spherical indents showed no pile-up and constant
indentation moduli. From the results of this study, it may be concluded that elastic moduli
measured by spherical indentation give correct results irrespective of the presence of a
damage mechanism or the yield surface shape, which makes them an interesting alternative
to the current practice.
As expected, conical indentations were self-similar. The introduction of damage leads

to reduced unloading stiffness, a reduced residual imprint, realistic values of indentation
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modulus and a clear reduction of pile-up, which is consistent with experimental findings in
nanoindentation on bone [Mullins et al., 2009, Zhang et al., 2010, Wolfram et al., 2010a].
For Dc = 0.6, all measured indentation moduli were within 10 % to the theoretical value
of 14.9 GPa in the axial and 13.4 GPa in the transverse direction for all implemented yield
surface shapes. The consistency of the elastic properties with the experimental results of
Wolfram et al. [Wolfram et al., 2010a], the reduced plastic imprint and the absence of
pile-up suggest that a damage mechanism is present and Dc = 0.6 is a realistic value for
bone tissue. This is consistent with the findings of Gupta et al. [Gupta et al., 2006], who
reported negative fibril strains after macroscopic tests in tension past the yield point as a
sign of internal decohesion between mineral platelets and collagen molecules as well as the
presence of transverse microcracks around the indentation site reported by Hengsberger et
al. [Hengsberger et al., 2002]. Wolfram et al. reported indentation hardness values for
Berkovich indentations of dry trabecular bone to 2.5 µm of 0.527±0.078 GPa in axial and
0.459±0.057 GPa in transverse direction. The pooled elastic to total work ratioWelast/Wtot

was 0.232±0.025, Hind/Eind was 0.037±0.004. A qualitative comparison ignoring the effects
of creep and other time-dependent effects seen in experiments on bone with the results of
this study suggests that a Dc of 0.6 and a ζ0 of 0.3 gives a reasonable correspondence with
the experimental indentation data for dry human trabecular bone, which would suggest
that damage is present and the yield surface of bone could be of an elliptical shape. This
needs to be investigated further by a rigorous quantitative comparison using several tips and
indentation depths as well as time-dependent material behavior in the constitutive model.
In general, pile-up, hardness and Welast/Wtot varied significantly with Dc and ζ0 and are

well suited for use in an identification strategy. Bilinear regressions were fitted highlighting
the influence of Dc and ζ0 for conical and h/R and ζ0 for spherical indentation on Eind and
Hind as well as the dimensionless parameters Hind/Eind and Welast/Wtot. It was found that
linear regressions are describing the observables very well, with the regressions showing a
high significance (p < 0.0001) and adjusted coefficient of determination (R2 > 0.93). While
the linear regressions of the absolute and relative measures with respect to the studied
parameters are equally predictive, the main advantage of Hind/Eind and Welast/Wtot com-
pared to the absolute measures is that they are normalized and dimensionless and thus may
be computed on pooled data if the anisotropy of the yield surface and the elastic stiffness
is the same. The linear relationships can be inverted easily. This makes them usable in
an identification strategy with sought parameters Dc and ζ0 and experimental observables
Hind/Eind and Welast/Wtot of the conical and their evolution with depth for the spherical
indenter. It may be therefore concluded that these measures are well suited for identification
of the yield surface shape and critical damage using different indenter geometries. The fact
that two different indenter types are used and that the spherical indenter is not self-similar
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increases the number of observables substantially, which improves the robustness of the final
identification scheme.
The formation of pile-up in combination with a FE mesh with finite characteristic element

lengths lead to a slight depth-dependence of the results in the case of conical indentation
and elastoplasticity (Dc = 0). However, the induced variability was small enough that
statistically significant changes could be detected as a function of the studied parameters.
Self-similarity of the conical indentations was confirmed for all yield surfaces, as indentation
depth was found not to be a significant parameter in the linear models fitted to the data. As
expected, the spherical tip showed a clear depth dependence for both hardness and elastic
to total work ratio. The lack of self similarity makes it an interesting tip geometry for an
inverse method to identify postelastic properties, as indentations to different depths may be
treated as independent experiments.
There are several limitations to this study: Bone was modeled as a homogeneous material

with constant anisotropic material properties. The lamellar structure, differences in miner-
alization, fibril orientation as well as the lacuno-canalicular system, which are of the same
length scale as the indentation, were not included explicitly in the model, but modeled in
a homogenized, average way. Therefore, these results are only valid for average properties
and may not be used for explaining the variability of reported experimental results. Fric-
tionless, hard contact was assumed between the rigid indenter and the surface. Also, the
material was modeled using time- and rate-independent constitutive behavior and damage
was described using a scalar variable reducing all elements of the stiffness tensor. These
modeling assumptions were necessary to keep the computational costs at a reasonable level
and to highlight the influence of the two parameters studied in this work, i.e. the shape of
the yield surface and the presence of a damage mechanism. Therefore they were justified
in this case. No quantitative comparison to experimental data was performed with respect
to hardness, work or pile-up. The modeling assumptions like rate-independent material
behavior needed to highlight the influence of the chosen parameters did not allow to do a
rigorous quantitative comparison to experimental data, which shows strong time-dependent
behavior. A qualitative comparison of indentation modulus, hardness and elastic to total
work ratio of the conical indentations to the experimental data of Wolfram et al. [Wolfram
et al., 2010a] of Berkovich indentations in dry human trabecular bone was performed. The
significance of these findings is limited by the missing time-dependency of the model and
the fact that the comparison was done using only one indenter shape.
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4.6 Conclusion

It was shown in this work that pile-up, measured indentation modulus Eind, hardness Hind,
the dimensionless parameters Hind/Eind and Welast/Wtot of conical indentations are highly
sensitive to both yield surface shape and critical damage. For the spherical indenter, no
pile-up occurs and the other measures are not significantly correlated to Dc, but to h/R.
These measures are well suited for use in the identification process.
The indentation modulus Eind extracted using the Oliver-Pharr method, which should

be an elastic material constant in theory, was found to be a function of yield surface shape
and damage for conical indentations while being constant for spherical indentations. This
means that the interpretation of indentation moduli extracted from sharp indentations by
the Oliver-Pharr method as virgin elastic material properties is problematic, at least for the
material descriptions used in this study. On the other hand, the use of spherical indenters
is a good alternative since they do not suffer from the same shortcomings.
The major advantages of Hind/Eind and Welast/Wtot over their absolute counterparts lies

in their normalization and nondimensionality allowing the evaluation of pooled data from
several directions if the anisotropy of the elastic and plastic properties are similar. The
advantage of using an additional indenter that is not self-similar lies in the increase of
independent observables, which will help to improve the robustness and uniqueness of the
identified parameters. A qualitative comparison of experimental data to the results of this
study ignoring the effects of creep suggests the presence of a damage mechanism and an
elliptical shape of the yield surface, which needs to be further investigated. The knowledge
on the influence of the yield surface shape and the presence of damage gained from this
parametric study may subsequently be used for the development of an identification strategy
for the yield surface of bone tissue at the microlevel based on indentation with sharp and
spherical indenters.
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1Figure 4.4: Indentation modulus Eind (top), hardness Hind (middle) and elastic to total work ratio
Welast/Wtot (bottom) in axial direction as a function of indentation depth using conical
(left) and spherical indenters (right) for varying ζ0 and Dc. The symbol shape depends
on ζ0, the color coding on Dc.
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1Figure 4.5: Depth profile at maximum load for conical (left) and spherical indentation (right) in
axial direction for ζ0 = 0.3 (top), ζ0 = 0.35 (middle) and ζ0 = 0.49 (bottom) and
varying Dc.
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1Figure 4.6: Indentation modulus Eind (top), hardness Hind (middle) and Welast/Wtot (bottom) in
transverse direction as a function of indentation depth using conical (left) and spherical
indenters (right) for varying ζ0 and Dc.
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1Figure 4.7: Depth profile at maximum load for conical (left) and spherical indentation (right) in
transverse direction for ζ0 = 0.3 (top), ζ0 = 0.35 (middle) and ζ0 = 0.49 (bottom) and
varying Dc.
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5.1 Abstract

Aging societies suffer from an increasing incidence of bone fractures. Bone strength de-
pends on the amount of mineral measured by clinical densitometry, but also on the mi-
cromechanical properties of the bone hierarchical organization. Here, we investigated the
mechanical response under monotonic and cyclic compression of both single osteonal lamel-
lae and macroscopic samples containing numerous osteons. Micropillar compression tests in
a scanning electron microscope, microindentation and macroscopic compression tests were
performed on dry ovine bone to identify elastic modulus, yield stress, plastic deformation,
damage accumulation and failure mechanisms. We found that isolated lamellae exhibit a
plastic behavior with higher yield stress and ductility but no damage. In agreement with
a proposed rheological model, these experiments illustrate a transition from a ductile me-
chanical behavior of bone at the microscale to a quasi-brittle response driven by the growth
of cracks along interfaces or in the vicinity of pores at the macroscale.

5.2 Introduction

Bone is a hierarchical composite material featuring a cell-seeded mineralized collagen matrix.
It is designed for mechanical support, metabolizing minerals and storing bone marrow [Fratzl
and Weinkamer, 2007, Weiner et al., 1999] and mostly loaded in compression in everyday
activities [Currey, 2002]. Mineralized collagen fibrils surrounded by extrafibrillar mineral
particles [Currey, 1969, 2002, Lees et al., 1990] combine into fibril arrays. In lamellar
bone, parallel fibril arrays form lamellae in a rotated plywood pattern [Giraud-Guille, 1988,
Weiner et al., 1997]. Osteocytes and their processes inhabit the lacuno-canalicular network
which makes up for about 1 % of whole bone porosity [Martin, 1984]. Human compact
bone consists of lamellae arranged concentrically around blood vessels forming osteons with
a porosity of around 6 % [Fratzl and Weinkamer, 2007]. In large, fast growing animals an
alternative tissue type, the so called fibrolamellar bone, is laid out first and converted to
osteonal bone through a remodeling process [Currey, 2002].
Biomechanical testing of bone on the macroscale has been performed for more than a

century. However, many challenges remain, mostly due to spatial, inter-subject, age, and
disease variation of mechanical properties [Cowin, 2001, Keaveny et al., 2003]. Analy-
sis of bone as a hierarchical composite is an important field in biomechanics [Fratzl and
Weinkamer, 2007, Hellmich et al., 2011, Rho et al., 1998] trying to understand and predict
whole bone properties more accurately by considering its mechanical behavior on the lower
length scales. However, so far it suffers from a lack of direct measurements of postyield
properties on the microscale.
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There is evidence on the continuum level that bone shows two simultaneous mechanisms
of energy dissipation on the macroscale when loaded quasi-statically past the yield point:
inelastic deformation of the material and damage (i.e. reduction of stiffness through the
formation of microcracks) [O’Brien et al., 2002, Sun et al., 2010, Zioupos et al., 2008].
Negative fibril strains following macroscopic tensile yielding found by Gupta et al. [Gupta
et al., 2006] hint at damage as a dissipation mechanism on a lower length scale. However,
these findings on the microscale were reported following macroscopic tests and are therefore
influenced by the microstructure of the tested specimens. Therefore, it is necessary to
perform tests directly on the microscale in order to decouple material and structural effects.
Indentation is a mechanical testing technique in which a tip with known geometry is

pressed into a flat sample surface and force and tip displacement are recorded. The pioneer-
ing work of Oliver and Pharr [Oliver and Pharr, 1992] allows us to extract elastic properties
from the unloading part of the indentation curve. Indentation in bone with depths up to
1 µm mainly aims at characterizing the mechanical properties on the lamellar (3-7 µm) level
[Lewis and Nyman, 2008, Zysset et al., 1999]. Finite element simulations of indentations
using coupled plasticity and damage models have shown that damage may explain some
of the experimental findings for bone like a reduced unloading stiffness [Lucchini et al.,
2011, Zhang et al., 2010] and that strength on the microlevel seems to be similar to the
macroscopic values. However, it is very difficult to uniquely interpret such experimental
data in materials featuring dissipative processes, as indentations in materials with differ-
ent behaviors can result in very similar curves [Chen et al., 2007]. Therefore, independent
experiments allowing a straightforward interpretation are necessary in order to assess the
deformation mechanisms and postyield behavior of bone at the microscale.
Such an experimental setup for micromechanical testing is micropillar compression. Mi-

cron sized pillars are produced by erosion of material using a focused ion beam (FIB) and
used to extract mechanical properties of all classes of materials [Howie et al., 2012, Michler
et al., 2007]. Due to the uniaxial loading conditions as opposed to the complex stress states
during indentations, the setup allows a straightforward interpretation of the data. Also, this
technique is ideal for studying the effects of size in quasi-brittle materials [Bažant, 2004]
in terms of determining the postyield properties and deformation mechanisms by circum-
venting premature fracture [Howie et al., 2012, Michler et al., 2007, Östlund et al., 2009,
2011].
For brittle materials like ceramics failure is associated with the growth of cracks orig-

inating from pores, surface scratches or other preexisting defects. When testing smaller
specimens, the probability that a defect of a certain critical size is present in the mate-
rial decreases, which leads to an increased failure stress [Griffith, 1921]. When reaching
very small sample sizes, no defects of critical size may be present and alternative dissi-
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pative processes like dislocation based plasticity dominate [Michler et al., 2007]. In bone,
the hierarchical structure leads to a macroscopically quasi-brittle behavior where plastic-
ity and cracking both play a significant role and the associated scaling law remains to be
investigated.
The aim of this study was therefore to investigate: what is the anisotropic uniaxial com-

pressive strength of lamellar bone at the microscale; what are the dominating deformation
and failure mechanisms under compression in the postyield regime on the microscale; and
how do these properties compare to the macroscopic response? Based on the reviewed lit-
erature [Carnelli et al., 2011, Gupta et al., 2006, Hengsberger et al., 2002, Lucchini et al.,
2011, Zhang et al., 2010], we intend to test two hypotheses: 1. The compressive strength of
bone is similar on the lamellar and macroscopic level. 2. Under compression, bone deforms
inelastically in a quasi-brittle fashion by formation of cracks on several length scales, which
lead to a reduction of stiffness at both levels.
In order to test these hypotheses, in situ micropillar compression tests using monotonic

and cyclic loading protocols and microindentation tests were performed on dry ovine osteonal
bone in axial and transverse direction and compared to macroscopic uniaxial compression
tests using the same sample geometry and loading protocol.

5.3 Materials and Methods

Sheep tibiae were acquired from a local butcher shop. Ovine bone is mostly primary, features
less porosity and a more homogeneous but similar mineralization to human bone [Pearce
et al., 2007, Ravaglioli et al., 1996], making it an attractive model for human bone on the mi-
crolevel. Axial and transverse specimens were cut from the diaphyses with a diamond-coated
band saw (Exact, Germany). They were embedded in, but not infiltrated by, polymethyl-
methacrylate (PMMA) and subsequently air-dried [Wolfram et al., 2010a] for more than
48 h. Finally, they were ultramilled (Polycut E, Reichert-Jung, Germany) to obtain a flat
surface for the Raman, microindentation and micropillar compression experiments.
Raman spectroscopy was performed on a transverse control sample in dry condition using

an upright Raman microscope (Nova Spectra, ND-MDT, Russia) featuring a laser source
with a wavelength of 633 nm, 5 mW power and a 100x objective with a numerical aperture
of 0.95. Spectra were recorded at a spectral resolution of 3 cm−1. The exposure time was
1 s.
The Raman spectra corresponded well to the literature [Morris and Mandair, 2011] and

all characteristic peaks could be identified. Based on previous work on bone quality assess-
ment using vibrational spectroscopy [Akkus et al., 2004, Yerramshetty et al., 2006], three
physicochemical properties of the tissue were investigated: mineralization, i.e. the ratio
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Figure 5.1: Raman spectrum of ovine cortical bone. Representative spectrum from an osteonal
region with identified peaks.

of mineral to organic components, substitution of carbonate ions in phosphate positions,
and mineral cristallinity, i.e. the orderliness of the crystal lattice. The calculation of these
properties is explained in Fig. 5.2. Mineralization was found to be 11.0 ± 1.1, carbonate
substitution 7.6± 0.8, and crystallinity 19.6± 0.4 cm−1 (N=10). This is reasonably similar
to the results of Yerramshetty et al. [Yerramshetty et al., 2006], who found a mineralization
of 8.0 to 10.0, carbonation of 4.5 to 5.3 and crystallinity of 16.7 to 19.2 cm−1 in hydrated
human femoral bone. It can therefore be concluded that the chemical composition of the
tested samples was in the expected range and that ovine bone is indeed a reasonable model
for human bone on the microscale.
Microindentations were performed in dry and wet state in osteonal regions with an Ultra

Nano Hardness Tester (UNHT, CSM Instruments, Switzerland). For the wet nanoindenta-
tions, control samples were rehydrated for at least 1.5 h in Hank’s balanced saline solution
(HBSS) following the protocol of Wolfram et al. [Wolfram et al., 2010a] and subsequently
indented in a HBSS submersion. A trapezoidal protocol in load control up to a maximum
depth of 1 µm with a loading rate of 100 mN/min, holding time of 30 s [Wolfram et al.,
2010a] and unloading rate of 400 mN/min was chosen to minimize the effects of creep.
Indentation modulus and hardness, elastic and total work were extracted using standard
methods [Oliver and Pharr, 1992, Reisinger et al., 2011, Wolfram et al., 2010a]. Indentation
modulus is recovered from the reduced modulus Er [Oliver and Pharr, 1992] by the equation



5 In situ micropillar compression of bone reveals superior strength and ductility but no damage 92

Figure 5.2: Measurements on Raman spectrum of ovine cortical bone in order to measure miner-
alization, carbonate substitution and crystallinity based on [Akkus et al., 2004]. Min-
eralization=AB/EF, Substitution=AB/CD, Crystallinity=GH.

E∗ =
(

1
Er
− 1− ν2

i

Ei

)−1

(5.1)

for known isotropic constants Ei and νi of the indenter tip. Indentation hardness is defined
as the maximum load divided by the contact area at maximum depth, elastic and total work
as the area under the unloading curve and the loading and holding curves. A transversely
isotropic stiffness tensor was fitted to the indentation moduli using the method of Franzoso
et al. [Franzoso and Zysset, 2009] to obtain estimates for apparent moduli. For the wet
indentations in transverse direction, a swelling effect similar to the one reported in [Spiesz
et al., 2012] was found that increases surface roughness and affects the experimental curves.
This data was therefore not used for further analysis.
After indentation, the samples were extracted from the embedding material and glued

on SEM stubs using silver adhesive. A 50 nm thick Au-Pd film was sputtered on the
specimens to minimize drift due to charging. A dual beam FIB workstation (Tescan Lyra,
Czech Republic) operated at 30 kV was used to machine micropillars of 5 µm diameter and
aspect ratio of 2 in osteonal regions, and to section them after testing. Micropillars were
aligned with the longitudinal and circumferential directions of the respective osteons. The
micropillars were machined to the desired dimensions in three major steps: First, circular
trenches of 50 µm diameter were machined with 6000 pA to obtain 10 µm diameter posts,



5 In situ micropillar compression of bone reveals superior strength and ductility but no damage 93

which were milled down to 6 µm with 1000 pA and polished to 5 µm with 300 pA.

Figure 5.3: SEM micrographs showing the micropillar machining process. a) Micropillar after
trench milling with 6000 pA, b) after intermediate step with 1000 pA, c) after final
polishing step with 300 pA.

FIB induced damage and Gallium implantation at the surface are common problems in
micropillar compression studies. In order to assess these effects, Monte Carlo simulations
using the software SRIM [Ziegler and Biersack, 1985] with an incidence angle of 3°, 30 keV
Ga+ ions, and the material composition for cortical bone ICRU-119 from the software’s
compound library were performed. They showed that damage on the side of the pillars
are confined to a layer of 25 nm and can therefore be neglected [Michler et al., 2007] from
a mechanical point of view. The calculated ion range is 8.7 ± 5.9 nm and therefore also
neglectable. These results are in line with the study of Nalla et al. [Nalla et al., 2005], who
report no significant FIB damage for mineralized tissues.
A total of 60 micropillars were fabricated, out of which 40 were used for quasi-static,

monotonic tests and 10 for cyclic loading tests. Micropillars were compressed using an in
situ indenter (Alemnis, Switzerland) [Rabe et al., 2004] inside a SEM (Zeiss, Germany)
operated at 5 kV, allowing precise alignment and tracking of the deformation. A diamond
flat punch (Synton-MDP, Switzerland) of 10 µm diameter and cone angle of 45° was used
to compress the micropillars in displacement control at a rate of 5 nm/s, corresponding to
a strain rate of ∼ 5 × 10−4 s−1. A schematic drawing of the experimental setup is shown
below.
Post-failure micrographs were taken using a HRSEM (Hitachi, Japan) operated at 3 kV

and 55° specimen tilt. The displacement data was corrected for instrument frame compliance
and sink-in of the micropillar using the so called Sneddon approach proposed by Zhang et
al. [Zhang et al., 2006] with a fillet radius of 300 nm.
Engineering stress-strain data was obtained by dividing force by the average cross sectional

area and compliance-corrected displacement by the height of each micropillar and converted
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Figure 5.4: FIB damage distribution determined by means of a Monte Carlo simulation using the
software SRIM. Atomar displacements/nm/ion due to ion bombardment and damage
cascade as a function of radial distance from the surface/nm.

Bone
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F,d

Figure 5.5: Sketch of the experimental setup of the micropillar compression experiments. A flat
punch indenter is placed on top of the micropillar that is surrounded by a trench. The
indenter is then moved downward and tip displacement as well as the axial force are
recorded.
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to true stress-strain measures, i.e. Cauchy stress σ and logarithmic stretch lnU , using the
assumption of negligible volume change [Ashby and Jones, 1980].

σ = σEng(1 + εEng) (5.2)

lnU = ln(1 + εEng) (5.3)

For the monotonic tests, samples were loaded in displacement control until failure. Yield
stress was determined using the 0.2 % offset rule, ultimate stress is the maximum stress in
the true stress-strain curve. For cyclic loading, samples were loaded in displacement control
with 5 intermittent cycles with an amplitude of 100 nm after every 200 nm of loading until
failure. The apparent modulus Eapp was determined by fitting a line to the last of each
5 cycles. Modulus was normalized with respect to the one measured during the second
cycle to minimize the influence of the toe region. A schematic drawing explaining the cyclic
micropillar compression analysis is shown below.

E1

σ

lnU

E2 E3

Figure 5.6: Sketch depicting the analysis of cyclic experiments. Monotonic loading phases are
drawn in black, intermittent cycles in blue. Apparent moduli Ei were measured during
every cycle and divided by the apparent modulus of the intermittent cycle in the elastic
phase E1.
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Plastic strains were determined using

lnUp33 = lnU33 −
σ33
Eapp

. (5.4)

For the macroscopic tests, samples were cut from the diaphyses of ovine tibiae using
a diamond-coated bandsaw and subsequently lathed to a dumbbell-shaped form with a
diameter of 3 mm and an aspect ratio of 2 for the reduced section using a desktop lathe.
The samples were dried for more than 48 h and subsequently tested in a servo-hydraulic
testing device (858 Mini Bionix, MTS, USA). The machine was operated displacement
controlled at a rate of 18 µm/s (strain rate ≈ 5 × 10−4 s−1) with 5 intermittent cycles
with an amplitude of 0.125 % after every 0.25 % of strain until failure. An extensometer
(Epsilon Tech., USA) was attached to the reduced section with an initial gauge length of
6 mm. True stress-strain data and moduli were obtained the same way as described for the
cyclic micropillar experiments.

0.2mm

Organ Level, 
e. g. Tibia 

Osteonal Structure 

5μm

Macrosample Micropillar 

4mm

Figure 5.7: Tested samples and relevant bone structures. Dumb-bell shaped macrosamples ex-
tracted from the diaphysis of ovine tibiae and micropillars on the length scale of os-
teonal lamellae.

All data manipulations and statistical analysis were performed using R [R Development
Core Team, 2008]. Normality of distributions was tested by visual inspection of normalized
quantile-quantile plots against the standard normal distribution and the Shapiro-Wilk nor-
mality test [R Development Core Team, 2008, Shapiro and Wilk, 1965]. Measurements are
reported as mean ± standard deviation. Significant differences were tested using two-tailed
t-tests. Influence of measured parameters on the data was tested by ANOVA and linear
regressions using dummy coding for categorical variables. The significance threshold was
chosen as p = 0.01.
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5.4 Rheological model

The rheological model consists of an elastic spring in series with a plastic slider that breaks
beyond a given ultimate plastic strain. The series arrangement leads to an additive decom-
position of the elastic and plastic strains

E

lnU

e
lnU

p
lnU

p,ult
lnU

y
lnUE +Hα

Figure 5.8: Underlying rheological model and constitutive law. Elasto-plastic material with linear
hardening and brittle failure when the slider quits the support after passing lnUp,ult.

lnU = lnU e + lnUp (5.5)

The spring represents a proportional relationship between the stress and the elastic strain
and leads to the free energy:

ψ(lnU, lnUp) = (1−H(− lnUp − lnUp,ult))12E(lnU − lnUp)2

−H(lnUp − lnUp,ult)12E(lnU − lnUp)2 (5.6)

where E is Young’s modulus, lnUp,ult is the ultimate or failure strain of the plastic slider
and H is the Heaviside unit step function.

Remark 1. This formulation of the free energy corresponds to a discontinuous damage
model with

D = H(− lnUp − lnUp,ult) +H(lnUp − lnUp,ult)
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The total stress is given by the derivative of the free energy with respect to the total strain:

σ(lnU, lnUp) = ∂ψ

∂ lnU
= (1−H(− lnUp − lnUp,ult))E(lnU − lnUp)
−H(lnUp − lnUp,ult)E(lnU − lnUp) (5.7)

The plastic stress is the derivative of the free energy with respect to plastic strain:

σp(lnU, lnUp) = − ∂ψ

∂ lnUp

= δ(− lnUp − lnUp,ult)12E(lnU − lnUp)2

+δ(lnUp − lnUp,ult)12E(lnU − lnUp)2 + σ (5.8)

where δ is the Dirac delta function.
The behavior of the plastic slider is described by a yield function for the plastic stress,

f(σp) = |σp| − E lnUy −Hα (5.9)

with the classical Kuhn-Tucker conditions for f and λ̇ = | ˙lnUp|

f ≤ 0 λ̇ ≥ 0 fλ̇ = 0 (5.10)

where lnUy is the yield strain, H is the hardening modulus and the accumulated plastic
strain α is expressed by:

α =
∫ t

0
| ˙lnUp|dτ (5.11)

The plastic stress is finally given by

σp =


−E lnUy −Hα if ˙lnUp < 0
[−E lnUy −Hα;E lnUy +Hα] if ˙lnUp = 0
E lnUy +Hα if ˙lnUp > 0

(5.12)

From an algorithmic point of view, computation of the plastic strain flow for a new total
strain lnUn+1 can be initiated with a trial stress based on the plastic strain of the previous
step n:

σpt = E(lnUn+1 − lnUpn) (5.13)
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If the yield criterion is respected for that plastic state

f(σpt ) ≤ 0 (5.14)

then the total stress reduces to

σn+1 = σpt (5.15)

If the yield criterion is violated

f(σpt ) > 0 (5.16)

then the implicit projection of the plastic stress on the yield criterion provides an equation
for lnUpn+1

f(σp(lnUn+1, lnUpn+1)) = 0 (5.17)

The solution of the above equation is:

lnUpn+1 = lnUpn + sign(σpt )
|σpt | − (E lnUy +Hαn)

E +H
(5.18)

and the total stress is updated with

σn+1 = E(lnUn+1 − lnUpn+1) (5.19)

In case of failure of the plastic slider, i.e. | lnUpn+1| ≥ lnUp,ult, the total stress vanishes
abruptly

σn+1 = 0 (5.20)

The dissipation of the model is the usual dissipation of the plastic slider plus the elastic
energy of the spring released by breakage of the slider when | lnUp| = lnUp,ult,

φ( ˙lnUp) = σp ˙lnUp

= σ ˙lnUp + δ(lnUp + lnUp,ult)12E(lnU − lnUp)2

+δ(lnUp − lnUp,ult)12E(lnU − lnUp)2 (5.21)

and vanishes beyond failure of the plastic slider.

Remark 2. The model degenerates into an elastic material for lnUy → ∞, a perfectly
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elasto-plastic material for lnUp,ult →∞ or into an elastic and perfectly brittle material for
lnUp,ult = 0. In the case of lnUp,ult = 0, the damage model of Krajcinovic [Krajcinovic
et al., 1987] is obtained for a homogeneous distribution governing the yield stress.

Ε
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Η

lnU
e

lnU
y

lnU

p
lnU
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lnU

Ε
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lnU

Figure 5.9: Stress-strain behavior. Elasto-plastic material response with linear hardening and sub-
sequent failure.

The model consists of a parallel array of 100 parallel elements. The total response is
given by the summation over all elements. For the micropillars, all material properties
are governed by the experimentally measured normal distributions. On the other hand,
a macroscopic bone sample will contain bone structural units with a distribution of mi-
crocracks along cement lines, at the vicinity of lacunae, vascular pores or other defects.
Since micro-cracks develop continuously with fatigue loading of the bone tissue, uniform
distributions of yield strain and ultimate plastic strain up to the mean values observed in
micro-pillar compression tests were assumed, which is in line with the argument made by
Krajcinovic [Krajcinovic et al., 1987] in a damage model for bone under tension.
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Table 5.1: Material constants of extracellular bone matrix.

E/GPa H/GPa lnUy lnUp,ult

Axial 31.2± 3.12 0.0312± 0.0031 0.0241± 0.0019 0.08± 0.008
Transv. 16.5± 1.65 3.5± 0.35 0.0182± 0.0015 0.1± 0.01

Figure 5.10: Distributions of material properties for a macroscopic sample. Distributions of elastic
modulus, hardening modulus, yield strain and ultimate plastic strain for the axial
direction of bone structural units.

5.5 Results

Micropillar diameter and aspect ratio before testing were determined by scanning electron
microscopy (SEM) to be 5.21±0.14 µm (mean ± standard deviation) and 2.13±0.10. Based
on the in situ observation of the micropillar compression tests in a SEM and high resolution
SEM (HRSEM) pictures taken after testing (Fig. 5.11), the failure modes were classified
into three groups: shearing, mushrooming, and axial splitting. Under axial compression,
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55 % of the pillars failed by development of shear planes, 25 % by mushrooming, i.e. failure
on the top of the pillar leading to localized cracking and delamination, and 15 % by an axial
split. One pillar failed by compression of a relatively large pore and was removed from the
study. All of the pillars oriented in transverse direction failed by shearing.

Figure 5.11: Observed failure modes of bone on the micro- and macroscale. HRSEM micrographs
taken after testing, FIB cross-sections and photographs showing failure modes en-
countered in compression tests a) of micropillars in axial and b) transverse directions
as well as c) of macroscopic specimens. Micropillars mostly deformed homogeneously
and failed by development of slip planes (a1, b1-b3). A minority of the axial pillars
failed by mushrooming (a2) or axial splitting (a3), which is a brittle failure mode.
Scale bars for a1-a3 and b1-b3 represent 2 µm, for c1-c4 4 mm.

The true stress-strain curves resulting from the analysis of the quasi-static micropillar
compression as well as normalized postyield behavior may be seen in Fig. 5.12. For the mi-
cropillars, yield stress was found to be 0.49±0.1 GPa in axial (N = 19) and 0.30±0.02 GPa
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in transverse direction (N = 20), strength was 0.75±0.06 GPa and 0.59±0.04 GPa, respec-
tively. The postyield behavior depended on the failure mode. Strain hardening/softening
behavior was observed in the case of mushrooming and splitting, continuous hardening un-
til failure in the case of shearing (Fig. 5.12 bottom). A linear regression model showed
that testing direction was a significant parameter (p = 9× 10−10) and could explain 71.9 %
of the variation of strength and 63.8 % of the yield stresses, while failure mode was not
a significant parameter (p = 0.1). When assessing the pillars that showed shear failure
only, direction alone accounts for 84 % of the variation of strength and 74.8 % of the yield
stresses. For 22 out of the 31 pillars that failed by localization in a single shear plane, the
inclination angle could be measured and was found to have a mean of 46.63 ± 8.94°, with
no significant difference between axial and transverse directions (p = 0.63). For this data
subset, the critical shear stress along the plane of failure was computed and analyzed using
analysis of variance (ANOVA). It was found that only loading direction was a significant
parameter (p = 2 × 10−6) with critical shear stresses of 0.356 ± 0.028 GPa in axial and
0.280 ± 0.026 GPa in the transverse direction. HRSEM micrographs of the slip planes of
micropillars failed by shearing revealed three main toughening mechanisms of bone: isolated
fibril bridging as well as ligament bridging and crack deflection. Fibril bridging was almost
exclusively observed in axial micropillars.
The apparent modulus measured during the cyclic micropillar compression (Fig. 5.13)

was found to be 31.16 ± 6.46 GPa in axial (N = 5) and 16.5 ± 1.50 GPa in transverse
direction (N = 5). Analysis of the normalized apparent modulus as a function of plastic
strain showed that the stiffness is not reduced after overloading of the sample to up to 8 %
plastic strain (Fig. 5.13). A linear regression showed no significant change of normalized
apparent modulus as a function of plastic strain (p = 0.188, RMS error = 0.032, N = 50)
for the pillars that failed by development of a slip plane. When fitting only the axial pillars
that failed in shear, a non-significant slope was found (p = 0.026) predicting a 5 % modulus
reduction at 8 % of plastic strain, which is 20 times smaller than for the macroscopic data
reported later in this manuscript.
Microindentation showed also a clear anisotropy of mechanical properties. The measured

values for indentation modulus, hardness and work in wet and dry state may be seen in
Tab. 5.2 and are in accordance with values for dry human osteonal bone of Reisinger et al.
[Reisinger et al., 2011], who reported indentation moduli of 27.6±3.3 GPa and 20.5±1.9 GPa
in the axial and transverse directions. A mean stiffness tensor was fitted to the average dry
indentation moduli using the methodology of Franzoso and Zysset [Franzoso and Zysset,
2009]. The resulting predicted apparent moduli were found to be 28.97 GPa in axial and
16.07 GPa in transverse direction, respectively.
Visual inspection of 2 cross sections in 15 of the macroscopic samples showed that ∼ 50%
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Figure 5.12: Experimental curves and postyield behavior of monotonic micropillar compression
tests. True stress-strain (σ33-lnU33) curves (top) and postyield behavior normalized
with ultimate stress as a function of plastic strain (bottom) of monotonic micropil-
lar compression in a) axial and b) transverse direction. Observed yield points are
indicated by hollow circles and ultimate points by full circles.

Table 5.2: Mean ± standard deviation of the indentation modulus E∗, indentation hardness HIT ,
elastic Wel and total Work Wtot as well as number of experiments N for wet and dry
indentations in axial and transverse directions.

Hydr. Direct. E∗/GPa HIT /GPa Wel/pJ Wtot/pJ N

Dry Axial 27.5± 2.2 1.01± 0.13 1837 ± 258 8069± 1012 50
Dry Transv. 19.0± 1.8 0.67 ± 0.08 1636± 214 6482± 745 72
Wet Axial 22.8± 1.6 0.60± 0.11 1083± 249 4849± 907 67
Wet Transv. 14.5± 1.6 0.51± 0.08 1313± 204 4125± 756 83
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of them were entirely secondary osteonal, the others showed a mixture of fibrolamellar and
osteonal bone. During the macroscopic cyclic tests apparent moduli of 25.74 ± 3.71 GPa
and strength of 0.314 ± 0.043 GPa were measured (N = 26). The stress-strain curves
and normalized modulus evolution as a function of plastic strain are shown in Fig. 5.13.
The macroscopic samples showed a significantly lower strength than the micropillars (p <
2×10−16) and a much more brittle behavior. The samples failed mostly at less than 1.2 % of
plastic strain, which is 6 times less than on the microscale and consistent with the literature
[Chamay, 1970]. Ductility of the osteonal samples was not higher than for the rest of the
group. It was found that modulus was significantly reduced as a function of plastic strain
(Fig. 5.13, p = 2.4 × 10−10, adj. R2 = 0.3, N = 116), which is consistent with reports for
tension [Keaveny et al., 2003, Zioupos et al., 2008].

Figure 5.13: Model predictions, experimental curves and normalized apparent modulus evolution
of cyclic compression tests on the micro- and macroscale. a) Model predictions,
experimental true stress-strain curves in b) axial and c) transverse direction and
d) normalized apparent modulus evolution as a function of plastic strain of cyclic
micropillar (top) and macroscopic (bottom) compression.

A one dimensional rheological model based on elasto-plasticity with failure (Fig. 5.8, 5.9,
5.14) representing bone at the microscale was fed with the means and standard deviations
of the elastic modulus, yield stress and maximal plastic strain measured in the micropillar
experiments (Tab. 5.1). Using an appropriate plastic hardening law, the resulting stress-
strain curves match the experimental data in both axial and transverse directions very well
(Fig. 5.13) and no stiffness reduction is observed below 8 % of plastic strain. In order to
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account for the existing cracks and defects between bone structural units in the macroscopic
samples, the rheological model was fed with a homogenous distribution of yield stress and
maximum plastic strain bounded by microscale properties (Fig. 5.10). With this single
assumption that is in line with the argument made by Krajcinovic [Krajcinovic et al., 1987]
in a damage model for bone under tension, the model predicted a strength of 0.3 GPa and
a modulus reduction of 11.5 % at a plastic strain of 1.2 %. Also, the predicted stress-strain
curve matched the experimental data very well (Fig. 5.13).

5.6 Discussion

The microindentation measurements were in very good agreement with the results reported
by Reisinger et al. [Reisinger et al., 2011] for dry human osteonal bone. This confirms
that ovine bone is an acceptable model for human tissue at the lamellar level as indicated
by [Pearce et al., 2007, Ravaglioli et al., 1996]. The macroscopic strength measured in
this study was slightly higher than the 0.272± 0.003 GPa reported by Reilly and Burstein
[Reilly and Burstein, 1975] for Haversian bovine bone. This is in line with the fact that
Haversian systems tend to reduce the strength of primary bone [Currey, 2002]. The depth
of the microindentations and the dimensions of the micropillars were chosen to be consistent
with the average lamellar thickness of 3-7 µm. Consequently, the apparent modulus of the
cyclic tests after correction using the Sneddon approach [Zhang et al., 2006] corresponded
very well to the apparent moduli predicted from the microindentation data. Also, the high
consistency of the micropillar compressions demonstrated the homogeneity of ovine bone at
this length scale in the absence of interfaces such as cement lines. The macroscopic tests
were designed with the same aspect ratio and strain rate as the micropillar tests, which
allowed to do a direct comparison of the two length scales.
Three distinct failure modes could be identified on the microlevel from the in situ obser-

vation and post-failure HRSEM micrographs: shearing, mushrooming, and axial splitting.
The dominating failure mode was shearing with almost 80 % of the samples showing a highly
ductile behavior with continuous hardening until failure by localization in a slip plane. This
observed behavior is consistent with oblique or cross-hatched slip lines reported for compres-
sive yielding of compact bone on the macroscale [Chamay, 1970, Currey, 2002]. A minority
of the axial micropillars failed by mushrooming associated with boundary effects such as
indenter-sample friction or axial splitting, which is a brittle failure mode [Östlund et al.,
2011].
The observed postyield behavior of the sheared micropillars was anisotropic: axial pil-

lars had a higher yield to ultimate stress ratio and reached their strength at lower strains
than transverse pillars, but failed less rapidly after the maximum stress had been passed.
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Figure 5.14: Rheological model describing the mechanical response of bone under compression. A
parallel array of elastic springs in series with plastic pads failing at a ultimate plastic
strain (Fig. 5.8 and 5.9). On the microscale, heterogeneity is governed by Gaussian
distributions of the material properties modulus, yield strain, hardening modulus and
ultimate plastic strain (Tab. 5.1) identified from the micropillar compression tests.
For the macroscale, the presence of cracks, defects and interfaces increases tissue
heterogeneity leading to a reduction of strength and ductility. Therefore, uniform
distributions between 0 and the microscopic properties are used (Fig. 5.10) to describe
variability in strength and ultimate plastic strain corresponding to the pre-existence
of defects and microcracks with different lengths from 0 to a critical length.
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HRSEM pictures revealed failure planes with ligament bridging, crack deflection, and, al-
most exclusively for axial pillars, isolated fibril bridging. These phenomena act as tough-
ening mechanisms and are consistent with similar findings of other groups [Fantner et al.,
2006, Koester et al., 2008, Peterlik et al., 2006, Poundarik et al., 2012]. Measurement of
the inclination angles showed that on average the failure occurred in the plane of maximum
shear stress. The critical shear stress in the slip plane was significantly anisotropic. The
direction-dependence of the observed postyield behavior and the critical shear stress hints
at a difference in the failure mechanism and may be explained by a nonlinear rotated ply-
wood model: For the axial pillars, the majority of the fibrils are oriented at small angles
to the loading direction. The observed slip planes are a result of a combined fibril and
extra-fibrillar mineral failure. In this case, isolated fibrils that have not yet failed act as a
toughening mechanism leading to an increased post strength ductility. For the transverse
micropillars, most of the fibrils are oriented at angles close to 90° to the loading direction.
Therefore, one orientation exists for which the number of fibers going across the plane is
minimal. In this case, a slip plane may form by failure of the extra-fibrillar mineral only,
which explains the absence of fibrils spanning the gap and the rapid failure once strength
had been passed in most of the transverse micropillars (Fig. 5.15). It was found that an
elastoplastic model with failure (Fig. 5.14) is able to represent the microscale data very
accurately (Fig. 5.13). The observed plasticity could be explained by different nanoscale
mechanisms, e.g. nanogranular friction between mineral particles [Tai et al., 2006] or dissi-
pation at the interface between mineral platelets and the organic phase [Gupta et al., 2013,
Mercer et al., 2006].
When comparing the two length scales, only a small difference in stiffness of ∼ 10 %

was found. When applying an equal strain model, this difference could be explained by a
porosity of 10 %, which is in the range of the lacunar-canalicular and Haversian porosity
[Fratzl and Weinkamer, 2007]. On the other hand, the strength and failure behavior differed
strongly at the two length scales. The response on the microlevel was highly ductile with
maximum plastic strains in the order of 8 %, while the dry macroscopic samples failed
mostly in a quasi-brittle fashion with plastic strains below 1.2 %. The measured strength
on the microscale was higher by a factor of 2.4 than the macroscopic tests. When applying
the quadratic relationship between strength and porosity proposed by Carter and Hayes
[Hayes and Carter, 1976], a change in strength by a factor of only 1.23 would be expected,
therefore the first hypothesis that ultimate stresses are similar on the micro- and macroscale
was falsified. The unaccounted difference in strength and ductility is attributed to a size
effect, more specifically to the existing cracks and defects located between osteons [Schaffler
et al., 1995], and is in line with the scaling theory of quasi-brittle failure [Bažant, 2004].
The yield stress and ultimate plastic strain associated with the growth of pre-existing cracks
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Figure 5.15: Dominant failure mechanism observed on the microscale. Overlay of SEM micro-
graphs of micropillars in axial (top, left) and in transverse (top, right) direction failed
by shearing with HR images of the slip planes and schematical drawings (bottom)
depicting the distinct failure mechanisms depending on the fibrillar orientation. Scale
bars on the top represent 2 µm, on the bottom 0.5 µm.

near interfaces [Carter and Hayes, 1977, Martin and Burr, 1989] or pores [Currey, 1962] on
the macroscale are substantially lower than the ones necessary to initiate and propagate a
new crack through a micropillar made of a single osteonal lamella (Fig. 5.7). The proposed
rheological model (Fig. 5.14) illustrates this difference very well as it was found to be in
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excellent agreement with the experimental data at both length scales (Fig. 5.13). The
model is thus able to build a bridge between the newly observed ductile behavior on the
lamellar level and the well-documented quasi-brittle behavior of bone on the macroscale
characterized by a reduction of stiffness that increases with plastic deformation [Zysset,
1994]. Similar size effects are known for other material like ceramics [Griffith, 1921], which
show brittle failure due to crack growth near preexisting defects that are homogeneously
distributed in the material. In the case of bone, these defects are concentrated in interstitial
tissue and near cement lines [Schaffler et al., 1995], which causes the macroscopic response
to be a combination of plastic deformation and cracking, while isolated osteonal lamellae
show plasticity only.
Due to the setup of the in situ indenter in a conventional SEM and the preparation of the

micropillars using a FIB, the tests were performed in a vacuum environment. Therefore,
the specimens had to be dried before testing, which affects the mechanical properties of
the organic phase and the surface chemistry of the mineral platelets. Raman spectroscopy
confirmed that the composition was not significantly different from hydrated human samples
reported in the literature (Fig. 5.1 and 5.2). To assess the mechanical influence of hydration
on the microscale, microindentations were performed in wet and dry condition. Indentation
modulus increased by 20 % in the axial direction, hardness and work by as much as 65 %
after drying. Hardness has been shown to scale with yield strength [Fischer-Cripps, 2002],
which implies that stiffness and strength of hydrated micropillars would be reduced as
compared to the dry setup. This is consistent with findings on the macroscale [Nyman et al.,
2006] . However, the ratio of plastic to total indentation work did not change significantly
(p = 0.23), which is consistent with data for human bone [Wolfram et al., 2010a] and
suggests that the underlying dissipative mechanism remains the same after dehydration.
Macroscopically, it has been reported that toughness is reduced by dehydration [Nyman
et al., 2006]. Nevertheless, the micropillars showed a highly ductile behavior up to failure.
Therefore it might be argued that reduced toughness after drying is caused by its influence
on interfaces and preexisting defects rather than on the bone matrix itself. This effect needs
further investigation.
The yield and ultimate properties on the lamellar level reported in this study were also

significantly higher than values reported in previous studies based on microindentation [Car-
nelli et al., 2011]. However, these studies had to rely on assumptions regarding the nonlinear
material behavior and inverse methods to back-calculate material properties, while the data
of the micropillar compression tests may be interpreted in a straightforward manner due
to the uniaxial stress state. Finally, previous indentation studies suggested that a damage
mechanism at the ultrastructural level might be responsible for some of the characteristics
of indentation experiments in bone such as a reduced unloading stiffness [Lucchini et al.,
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2011, Zhang et al., 2010]. However, most of the monotonic tests did not show the strain
softening behavior that is characteristic of a mechanical damage process. Additionally, un-
like those performed on the macroscale, the cyclic micropillar compression tests did not
show a significant reduction of apparent modulus following overloading of the sample. This
is an indication that no diffuse cracks were opening inside the micropillars until failure and
falsifies the second hypothesis that bone deforms inelastically by formation of microcracks
reducing its stiffness at both length scales.
This study showed that unlike the consistent elastic properties, the postyield properties

and failure mechanisms of bone under compression differ significantly at the two length
scales. Isolated bone lamellae show a high strength and ductility but no damage and fail
mostly by development of shear planes, while the response of macroscopic specimens con-
taining numerous osteons is quasi-brittle with low strength and ductility, substantial damage
and longitudinal cracks. The data supports the thesis that, under compressive loading, mul-
tiple slip planes emerging at the weak interfaces or in the vicinity of pores in the interstitial
bone coalesce into microcracks, the statistical distribution and growth of which lead to a
quasi-brittle failure at the macroscopic level. These findings highlight the importance of
studying interface properties of cement lines and the stress concentration effect of pores in
the interstitial tissue more closely. Also, they remain to be extended to human lamellar
bone tissue, physiological testing conditions and further loading modes. Deciphering the
micromechanical behavior of lamellar bone and its evolution with age, disease and treatment
will help preventing bone fractures in the elderly.
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6.1 Abstract

Microindentation in bone is a micromechanical testing technique routinely used to extract
material properties related to bone quality. As the analysis of microindentation data is based
on assumptions about the contact between sample and surface, the aim of this study was to
quantify the topological variability of indentations in bone and examine its relationship with
mechanical properties. Indentations were performed in dry human and ovine bone in axial
and transverse directions and their topography was measured by atomic force microscopy.
Statistical shape modelling of the residual imprint allowed to define a mean shape and to
describe the variability in terms of 21 principal components related to imprint depth, surface
curvature and roughness. The indentation profile of bone was found to be highly consistent
and free of any pile up while differing mostly by depth between species and direction. A few
of the topological parameters, in particular depth, showed significant but rather weak and
inconsistent correlations to variations in mechanical properties. The mechanical response of
bone as well as the residual imprint shape were highly consistent within each category. We
could thus verify that bone is rather homogeneous in its micromechanical properties and
that indentation results are not strongly influenced by small deviations from an ideally flat
surface.

6.2 Introduction

Bone is a hierarchical material that features a cell-seeded mineralized collagen matrix and
provides mechanical support, metabolizes minerals and stores bone marrow [Fratzl and
Weinkamer, 2007, Weiner et al., 1999] for hematopoiesis. Fibril arrays form by combination
of parallel mineralized collagen fibrils surrounded by extrafibrillar mineral particles [Currey,
1969, 2002, Lees et al., 1990]. Parallel fibril arrays group into lamellae in a rotated plywood
pattern [Giraud-Guille, 1988, Weiner et al., 1997] in lamellar bone. Osteocytes and their cell
processes reside in the lacuno-canalicular network which makes up for about 1 % of macro-
scopic bone porosity [Martin, 1984]. Human compact bone consists of lamellae arranged
concentrically around blood vessels forming osteons with a porosity of approximately 6 %
[Fratzl and Weinkamer, 2007]. Fibrolamellar bone is an alternative tissue type that is laid
out in large, fast growing animals and converted later to osteonal bone through a remodeling
process [Currey, 2002]. Bone sections lying outside of secondary osteons are usually older
than the newly remodeled osteonal bone and referred to as interstitial bone [Cowin, 2001,
Currey, 2002].
Biomechanical testing of macroscopic bone samples has been performed for more than a

century. Up to now many challenges remain, mostly due to spatial, inter-subject, age, and
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disease variation of mechanical properties [Cowin, 2001, Keaveny et al., 2003]. Analysis of
bone as a hierarchical composite material is therefore an important area of research [Fratzl
and Weinkamer, 2007, Fritsch and Hellmich, 2007, Fritsch et al., 2009, Rho et al., 1998]
aiming to understand and predict whole bone properties by considering its hierarchical
microstructure and mechanical behavior on the lower length scales.
Indentation is a micromechanical testing technique in which a well defined diamond tip

is pressed onto a flat sample surface and force and tip displacement are recorded simultane-
ously. Based on the pioneering work of Oliver and Pharr [Oliver and Pharr, 1992, Swadener
and Pharr, 2001] elastic properties may be extracted from the unloading part of the force-
depth curve. Indentation in bone with depths up to 1 µm mainly aims at characterizing
the mechanical properties on the level of single to multiple lamellae, which have a thickness
of 3-7 µm [Hengsberger et al., 2002, Lewis and Nyman, 2008, Oyen and Ko, 2008, Zysset
et al., 1999, Zysset, 2009]. Finite element calculations of indentations using constitutive
models coupling plasticity and damage have shown that damage can explain some of the
experimental findings for bone like the reduced unloading stiffness [Lucchini et al., 2011,
Zhang et al., 2010]. However, it is very difficult to find a unique set of material parameters
for complex materials based on such data [Bocciarelli et al., 2005, Bolzon et al., 2004, Bu-
caille et al., 2003, Ganneau et al., 2006], as indentations in materials with different behavior
can result in very similar force-depth curves [Chen et al., 2007]. Therefore, it is of high
interest to increase the reliability of the obtained results by assessing not only mechanical
properties extracted from force-depth curves, but also the residual imprint in a quantitative
way [Bocciarelli et al., 2005, Bolzon et al., 2004, Bucaille et al., 2003, Mullins et al., 2009,
Schwiedrzik and Zysset, 2013b].
As the extraction of material properties from indentation curves is based on the assump-

tion of a flat sample surface, deviations of the real surface topography from this ideal shape
will lead to a variability in the data that does not reflect the heterogeneity of the underlying
tissue. Quantitative analysis of the residual imprint shape and the surrounding bone surface
can help to separate these two effects thereby allowing to quantify the inherent heterogeneity
in bone more accurately.
Atomic force microscopy (AFM) is a method combining the principles of scanning tun-

neling microscopy (STM) and profilometry [Binnig et al., 1986] that is routinely used to
determine surface topography [Jalili and Laxminarayana, 2004] and has been used to vi-
sualize the residual imprints of microindentations in bone in the past [Hengsberger et al.,
2001, 2002]. However, the raw AFM data is not suitable for a direct quantitative anal-
ysis, while the usual measurements such as pile-up, residual depth and surface roughness
[Fischer-Cripps, 2002] do not capture the full geometrical information. A powerful tool for
mathematical description of the variability of surface shapes is statistical shape modeling
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(SSM) [Goodall, 1991, Lüthi et al., 2012] using principal components analysis (PCA) [Pear-
son, 1901]. This method, routinely used in image analysis [Blanc et al., 2009, Heimann and
Meinzer, 2009, Lüthi et al., 2012], allows to define a mean shape and to describe variation
in shape of a dataset by variations of principal components or eigenmodes. This reduces
the amount of variables defining the shape substantially while retaining a high accuracy of
the description.
The aim of this work was to quantify the topography of indents in bone and its variability

using PCA in order to analyze the shape as a function of direction and species and to
explore its correlation with mechanical data. This information can be used to define mean
imprint shapes for use as additional observables in inverse methods as well as a more precise
quantification of the inherent heterogeneity of bone.

6.3 Materials and Methods

Ovine femora were acquired from a local butcher shop and human samples from a 73 yrs
old female were provided by the Department of Applied Anatomy of the Medical University
of Vienna. Ethics approval (175/2011) based on informed consent of the donors has been
obtained. Axial and transverse samples were cut using a diamond-coated bandsaw (Ex-
akt, Norderstedt, Germany), air-dried following the protocol of Wolfram et al. [Wolfram
et al., 2010a], and embedded in, but not infiltrated by polymethylmethacrylate (PMMA).
Samples were then ultramilled (Polycut E, Reichert-Jung, Germany) to obtain flat and par-
allel surfaces. Microindentations were performed in interstitial and osteonal tissue using a
Berkovich tip on a Ultra Nano Hardness Tester (UNHT, CSM Instruments, Switzerland)
in force control up to a depth of to 1µm. A trapezoidal loading protocol was used with a
loading rate of 100 mN/min, 30 s holding time at maximum force, and an unloading rate of
400 mN/min in order to minimize effects of creep on the measured properties. The indenter
tip was cleaned using 99 % ethanol as well as by indentations in copper and calibrated using
a fused silica reference specimen before starting the measurements. Before each test, it was
confirmed by focusing a light microscope with a 100× objective (NA = 0.95) underneath
the surface that no lacuna was present within a radius of 40 µm from the indentation site
in order to minimize the effect of lacunar porosity on the measurements. The force-depth
(P − h) curves were analyzed using the Oliver and Pharr method [Oliver and Pharr, 1992].
The reduced modulus Er is given by [Oliver and Pharr, 1992, Reisinger et al., 2011]:

Er =
√
π

2 S
1√
Ac
. (6.1)
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The indentation modulus takes into account the elastic deformation of the indenter tip
[Reisinger et al., 2011]:

E∗ =
( 1
Er
−

1− ν2
tip

Etip

)−1
. (6.2)

The indentation hardness HIT is defined as the maximum force divided by the contact area
at maximum depth:

HIT = Pmax
Ac

(6.3)

The total and plastic energies are defined as [Wolfram et al., 2010a]

Wtot =
∫ hm

0
Pdh, Wplast =

∫ hm

0
Pdh−

∫ hp

hm
Pdh (6.4)

with the maximum depth hm and the residual depth hp.
Following each indentation the residual imprint topography was measured using an AFM

(CSM Instruments, Switzerland) in static force contact mode using a silicon tip. The
misalignment between the sample and the AFM reference frames was determined to be
0.788° in x- and 0.188° in y-direction on a reference sample and subsequently corrected. An
image size of 512×512 pixels was chosen with a pixel spacing of 25 nm resulting in an image
size of 12.8µm× 12.8 µm. The image was convoluted with a Gauss kernel with a standard
deviation of 25 nm to filter high frequency noise. Afterwards, the image data was converted
to a 3D point cloud, rigidly registered by moving the tip apex for all indents to (0,0,0) and
cropped to a size of 10µm × 10µm. A surface mesh was created using the VTK Delauney
2D triangulation algorithm and saved as VTK polydata.
Principal component analysis (PCA) and statistical shape modeling on the registered

datasets was performed using STATISMO [Lüthi et al., 2012]. STATISMO determines
eigenvalues that are normalized by their standard deviations, which ensures that there are
no large numerical differences in the data. The eigenvalues were extracted for all bone sam-
ples and statistical analysis of the eigenvalues as well as the measured mechanical properties
was performed using R [R Development Core Team, 2008]. Normality was tested using the
Shapiro-Wilk normality test [Shapiro and Wilk, 1965] and visual inspection of normalized
quantile-quantile (Q-Q) plots [R Development Core Team, 2008] against the standard nor-
mal distribution. Experimental data is reported as mean ± standard deviation. Differences
between groups were tested using two-sided t-tests. The significance level was chosen as
p = 0.01. Categorical variables were handled using dummy coding. All multilinear re-
gressions using the eigenmodes as predictor variables did not include interaction terms, as
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the eigenmodes determined by PCA are by definition orthogonal. The isolated influence
of groups of eigenmodes was reported as adjusted R2 of linear regressions using only the
significant eigenmodes in the group as predictor variables.

6.4 Results

First, the mechanical properties were analyzed by analysis of variance (ANOVA) as a func-
tion of direction, tissue type and species. It was found that direction and species are
significant factors (p < 0.01). The properties measured by microindentation are therefore
reported in Tab. 1 and mean imprint shapes in Fig. 6.1 separately for human and ovine bone
in axial and transverse direction. Fig. 6.1 also shows mean indent shapes for indentations
in copper (N=10) and PMMA (N=10) for comparison.

Table 6.1: Mean ± standard deviation of the indentation modulus E∗, indentation hardness HIT ,
plastic Wpl and total Work Wtot, and residual depth hp determined by the method
of Oliver and Pharr [Oliver and Pharr, 1992], the dimensionless measures hp/hm,
Wpl/Wtot, and HIT /E

∗, as well as eigenvalue λ1 and number of experiments N for
microindentations in ovine and human tissue and axial and transverse direction. The
other eigenmodes were not significantly different for direction alone and are not reported
here.

E∗/GPa HIT /GPa Wpl/pJ Wtot/pJ hp/nm N

Ov. Ax. 25.92± 1.73 0.815± 0.067 6139± 404 7722± 489 810.1± 22.5 50
Hu. Ax. 24.64± 1.56 0.771± 0.086 5876± 554 7439± 731 785.7 ± 19.0 21
Ov. Tv. 15.82± 0.93 0.545± 0.038 4097 ± 336 5509± 442 493.0± 60.0 24
Hu. Tv. 17.03± 1.88 0.540± 0.091 4479± 581 5759± 804 685.2± 64.3 12

hp/hm Wpl/Wtot HIT /E
∗ λ1 N

Ov. Ax. 0.759± 0.017 0.795± 0.011 0.0315± 0.0016 0.817 ± 0.259 50
Hu. Ax. 0.732± 0.017 0.790± 0.007 0.0312± 0.0020 0.220± 0.397 21
Ov. Tv. 0.453± 0.055 0.744± 0.009 0.0345± 0.0015 −1.534± 0.252 24
Hu. Tv. 0.624± 0.055 0.779± 0.021 0.0316± 0.0028 −0.720± 0.303 12

The complexity of the shape model was reduced from 107 to 21 eigenmodes λi by set-
ting the represented variance to 99%. Independence of the eigenvalues was confirmed by
calculation of the correlation matrix for the complete dataset, which showed off-diagonal
correlation coefficients that were < 10−4. Next, samples were drawn from the model show-
ing 3 standard deviations in positive and negative direction for each eigenmode in order to
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B

B

A A

Figure 6.1: Mean residual imprint shape for ovine bone in axial direction (N=50, top) and extracted
mean depth profiles along an axis of symmetry (Profile A, middle) and perpendicular
to it (Profile B, bottom) for human and ovine bone in axial and transverse direction
as well as copper and PMMA as reference materials.
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Table 6.2: Interpretation of the first 21 eigenmodes of the statistical shape model.

Eigenmode Interpretation

1 Depth
2-7 1st and 2nd order warping
8-21 Higher order warping, Roughness

identify the meaning of the remaining eigenmodes. The interpretation based on a visual
inspection of the resulting surfaces for each eigenmode (see Fig. 6.2) is given in Tab. 2.
Based on the interpretation shown in Tab. 2, the eigenmodes were divided into three

main groups: imprint depth (λ1), surface curvature (λ2 to λ7), and roughness (λ8 to λ21).
STATISMO sorts the eigenmodes in decending order for the included variance, which means
that eigenmode λi reflects a higher percentage of shape variation than λi+1. All individual
datasets were tested for normality using the Shapiro-Wilk normality test. In those cases
where the Shapiro-Wilk normality test showed a significant deviation from a normal distri-
bution, a visual inspection of normalized Q-Q plots against the standard normal distribution
showed a mostly linear dependence with some outliers. It was therefore concluded that all
variables may be regarded as normally distributed.
As expected, correlation of the plastic depth hp obtained from the indentation curve

with λ1 representing the imprint depth in the AFM data yielded a significant positive slope
(p < 0.01) with an R2 of 0.83. Regression of the mechanical properties with respect to the
significant factors direction and species explained 89% of the variation of E∗, 76% for HIT ,
80% for Wpl and 73% for Wtot. In order to test whether the residual shape can be used
to account for these differences as well, the pooled data of both species, tissue types and
directions was regressed as a function of the shape model only and subsequently reduced
to the significant eigenmodes. It was found that the residual imprint shape alone explains
88% of the variation of E∗, 84% for HIT , 84% for Wpl and 80% for Wtot, which is in the
same range as the regression with respect to direction and species.
ANOVA of the imprint shape showed that for λ1, direction and species were significant

(p < 0.01), while for the other eigenvalues direction alone was not. Apart from λ3, λ4, λ5

and λ19, for which either species or the interaction of direction and species were significant
(p < 0.01), the other eigenvalues did not differ signifficantly between directions or species.
Fig. 6.1 shows the mean imprint profiles as a function of direction and species that differ
mainly in the depth of the imprint. However, some subtle differences in surface curvature
are visible due to eigenvalues 3 to 5. As significant differences were found for the mechan-
ical properties between the two directions, the correlation analysis was performed for each
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1Figure 6.2: Mean ± 3 standard deviations for profiles A and B (Fig. 6.1) of selected eigenmodes for
the ovine axial dataset. For a representation of all eigenmodes, the reader is referred
to the supplementary material.
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direction separately.

6.4.1 Axial data

For the axial indentations, the area surface roughness Ra was measured by AFM in the
vicinity of each indent and found to be 10.7±3.2 nm for ovine and 15.6±4.5 nm for human
tissue, which is similar to values for samples prepared by polishing or microtoming [Lewis
and Nyman, 2008, Mullins et al., 2009]. A line roughness measurement on a control scan
of an area of 51.2×51.2 µm in the ovine sample with the same lateral resolution yielded an
average surface roughness Ra of 4.8 nm. T-test of the mechanical properties and eigenmodes
for osteonal/interstitial differences were not significant (p < 0.01). However, t-tests between
human and ovine tissue showed significant differences (p < 0.01) for the measurements
E∗, hp/hm, as well as the major eigenmodes λ1 and λ3 representing indent depth and
surface warping. The mean imprint profiles of human and ovine bone are shown in Fig.
6.1. Therefore, the correlation was performed on the ovine data only, but both indents in
interstitial and osteonal tissue were included. After reduction to the significant eigenmodes
(p < 0.01), the following correlations were obtained:

E∗ = 22.87 + 3.73λ1, adj.R
2 = 0.30, SEE = 1.45 GPa

HIT = 0.680 + 0.167λ1 + 0.034λ11, adj.R
2 = 0.53, SEE = 0.046 GPa

Wpl = 5294.1 + 1032.9λ1 + 189.0λ21, adj.R
2 = 0.50, SEE = 286.1 pJ

Wtot = 6643.9 + 1319.6λ1, adj.R
2 = 0.48, SEE = 352.9 pJ

Analysis of the dimensionless parameters yielded the following regressions:

hp/hm = 0.762− 0.007λ3 + 0.006λ8 − 0.012λ20, adj.R
2 = 0.28, SEE = 0.014

Wpl/Wtot = 0.794 + 0.005λ8 + 0.005λ18, adj.R
2 = 0.31, SEE = 0.009
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HIT /E
∗ = 0.0315− 0.0007λ8 − 0.0009λ16 − 0.0009λ18, adj.R

2 = 0.43, SEE = 0.001

All dimensionless parameters were not significantly correlated to imprint depth.

6.4.2 Transverse data

For the transverse indentations, area surface roughness Ra was found to be 14.5 ± 2.4 nm
for ovine and 32.7 ± 11.1 nm for human tissue, which is considerably smaller than 5% of
the indentation depth and should therefore not influence the results significantly [Fischer-
Cripps, 2002]. A line roughness measurement on a control scan of an area of 51.2×51.2 µm
in the transverse ovine sample with the same lateral resolution yielded an average surface
roughness Ra of 19.9 nm. The mean indent shapes for the human and ovine transverse
datasets are shown in Fig. 6.1. T-test for human/ovine differences were not significant
(p < 0.01) for all mechanical properties and eigenmodes except for hp, the dimensionless
measures Wpl/Wtot and hp/hm as well as λ1. The residual imprints in human tissue were
significantly deeper by 86 nm, even though the fraction of dissipated to total work was
significantly smaller. The mean imprint profiles of human and ovine bone are shown in Fig.
6.1. After reduction to the significant eigenmodes (p < 0.01), the following correlations
were obtained for the transverse microindentations in ovine bone:

E∗ = 19.04 + 2.10λ1, adj.R
2 = 0.29, SEE = 0.78 GPa

HIT = 0.647 + 0.066λ1, adj.R
2 = 0.15, SEE = 0.035 GPa

Wpl = 4191.3 + 293.2λ5 − 203.3λ8, adj.R
2 = 0.25, SEE = 290.9 pJ

Wtot = 5637.0 + 399.6λ5 − 273.0λ8, adj.R
2 = 0.27, SEE = 377.1 pJ

The regressions for HIT andWpl were only just insignificant (p=0.034 and p=0.018) and are
therefore still reported here. Analysis of the dimensionless parameters yielded the following
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regressions:

hp/hm = 0.473− 0.060λ2 − 0.048λ3, adj.R
2 = 0.53, SEE = 0.038

Wpl/Wtot = 0.771 + 0.016λ1 + 0.006λ4 − 0.005λ7, adj.R
2 = 0.56, SEE = 0.006

HIT /E
∗ = 0.0303− 0.0031λ1 + 0.0013λ5 − 0.0011λ8

− 0.0010λ14 − 0.0005λ15, adj.R
2 = 0.37, SEE = 0.001

The regression for HIT /E
∗ was only just insignificant (p = 0.018) and is therefore still

reported here.

6.5 Discussion

The aim of the study was to quantify the topological variability of indentations in bone and
examine its relationship with mechanical parameters extracted from the indentation curve.
The indentation profile of bone was situated between the ones of copper and PMMA

and was found to be free of any pile up. This represents a quantitative confirmation of
an argument made in the bone indentation literature [Mullins et al., 2009]. In the PCA,
three types of topological eigenvalues were identified: depth, warping and roughness of
the surface. Indentation shape in bone was found to be highly consistent and differed
mostly by depth among species (ovine/human) and direction (axial/transverse). Some of
the eigenmodes representing surface warping, which is a result of the sample preparation,
also differed between the two species. No significant differences in mechanical properties or
imprint shape were found between osteonal and interstitial tissue for both ovine and human
tissue in axial direction. As expected, the residual depth extracted from the indentation
curve correlated well with the associated eigenvalue.
The mechanical properties derived from bone indentation differed also with species and

direction and exhibited a rather low standard deviation within these categories. This was
aided by avoiding indentations near lacunae. The data of this study suggests that bone
tissue is in fact remarkably homogeneous with respect to its inherent indentation properties
when the influence of porosity is limited to canaliculi, which are much smaller and more
homogeneously distributed than lacunae [Kerschnitzki et al., 2011]. This is in line with
the study of Spiesz et al. [Spiesz et al., 2013], who reported a lack of correlation of a
micromechanical model based on the fibril angle and mineralization with the indentation
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modulus measured by microindentation in human bone and concluded that other factors
like porosity might dominate the variability in the indentation data.
A higher elastic and post-yield anisotropy was found in ovine bone than human bone.

This may be related to the underlying fibril architecture. A recent study reported a strongly
oriented fibrillar ultrastructure in ovine bone [Schwiedrzik et al., 2014], while the fibrillar
orientation pattern in human bone is believed to follow a rotated plywood pattern [Giraud-
Guille, 1988], which results in a less anisotropic response. The fact that HIT , which has
been shown to scale with yield stress [Fischer-Cripps, 2002], as well as hp/hm and Wpl/Wtot

of ovine bone were significantly lower in transverse than in axial direction suggests that
the fibril orientation pattern leads to a direction-dependent dissipative mechanism at the
microscale. It seems that the material is storing a higher fraction of energy elastically when
tested in transverse direction, even though the yield stress is reduced. This is highly consis-
tent with the fact that bone lamellae have a lower yield and maximum stress in transverse
direction but a more pronounced hardening behavior compared to the axial direction as
recently shown in micropillar compression tests [Schwiedrzik et al., 2014].
A few topological parameters, in particular depth in the axial direction, showed significant

associations with variations in mechanical properties, but the correlations were not very
strong (adj. R2 0.15 to 0.56) or consistent and the standard errors were quite low. In
principle, only depth could be exploited by a direct inverse method to identify differences in
material properties, but this variable is related to the plastic depth that can be extracted
from the indentation curve. However, the high consistency of the extracted mean shapes
suggests that they may be used as an additional observable for identification of material
properties based on comparison of both indentation curves and imprint shape with Finite
Element calculations [Bocciarelli et al., 2005, Bolzon et al., 2004, Bucaille et al., 2003,
Mullins et al., 2009, Schwiedrzik and Zysset, 2013b] in order to increase the reliability of
the found parameters.
A limitation of this work is that it was performed on dry bone, as no AFM was available

at the time of the study that could be used under liquid immersion and also be mounted
on the indenter frame. Dehydration of bone has been shown to influence the properties
of human and ovine bone measured by indentation significantly [Schwiedrzik et al., 2014,
Wolfram et al., 2010a]. Indentation modulus was reported to increase by about 20 % in
axial direction, hardness and work by as much as 65 % [Schwiedrzik et al., 2014]. However,
the ratio of plastic to total indentation work was shown to remain constant after drying for
both ovine [Schwiedrzik et al., 2014] and human bone [Wolfram et al., 2010a] suggesting
that the underlying dissipative mechanisms could remain the same. This effect needs further
investigation. The main strength of this study is that a large number of high precision
measurements using an AFM were performed on two species and in two directions allowing
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a rigorous quantitative analysis of the shape as well as the mechanical data.
In conclusion, we show a highly consistent imprint shape upon indentation in bone and

the absence of pile up. Except depth, the principal component eigenvalues are dominated
by warping and roughness of the bone surface that are essentially independent of bone
material properties. An inverse method based on indentation shape alone appears to be a
difficult pathway to identify subtle differences in post-yield properties. However the residual
imprint shape is well suited as an additional observable in an identification strategy com-
bining mechanical data and residual imprint shape [Bolzon et al., 2004, Mullins et al., 2009]
to circumvent problems regarding uniqueness of the found parameters [Chen et al., 2007].
Also, we could verify that if the surface is prepared well with roughness values comparable
to the existing literature [Lewis and Nyman, 2008, Mullins et al., 2009], slight deviations
hardly affect the indentation measurements. The study highlighted the value of using sta-
tistical shape models and exploratory data analysis to analyze geometry and its effects on
mechanical measurements. This could be also interesting in other fields of biomechanics in
the future such as macroscopic testing of whole bones or soft tissues, where the variabil-
ity in both shape and measured properties is much more pronounced than in the case of
microindentations in bone.
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7.1 Introduction

As the uniaxial strength values for dry bone measured by micropillar compression presented
in Chapter 5 of this dissertation [Schwiedrzik et al., 2014] were considerably higher than the
values reported based on inverse methods and microindentations in the literature [Mullins
et al., 2009, Carnelli et al., 2010, 2011, Lucchini et al., 2011], the current models are not able
to capture all of the characteristics of bone on the microscale. It could be that this is due to
the fact that there is another dissipative mechanism at work affecting the indentation curves.
Indentation tests performed at the Institute for Surgical Technology and Biomechanics
showed that if a holding time is included in the indentation protocol during the unloading
phase, an elastic recovery takes place (Fig. 7.1).
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Figure 7.1: Mean curve of cyclic indentation experiments in the axial direction of an ovine tibia
using a Berkovich tip (N = 45).

This can be interpreted as an indication of a viscoelastic process, which is also consis-
tent with reports for microindentation in bone [Olesiak et al., 2010, Spampatti, 2013] and
the presence of viscoelastic effects reported on the macroscale [Bargren et al., 1974, Lakes
et al., 1979, Lakes and Katz, 1979, Sasaki et al., 1993, Iyo et al., 2004]. Analytical so-
lutions exist for indentations of cones and spheres [Cheng et al., 2005, Spampatti, 2013,
Vandamme and Ulm, 2006] into linear viscoelastic materials, but these do not incorporate
other dissipative mechanisms such as plasticity or damage. Therefore, linear viscoelasticity
was added to the existing viscoplastic damage model. Viscoelastic parameters were identi-
fied using macroscopic experiments, postelastic properties based on the uniaxial properties
reported in Chapter 5. Then, simulations of microindentations using both Berkovich and
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spherical indenters were performed and compared to experiments. The hypothesis tested
in this chapter was that with the addition of viscoelasticity to the constitutive model it
should be possible to reconcile the differences between the predicted indentation responses
using spherical and Berkovich indenters and the uniaxial strength properties measured by
micropillar compression.

7.2 Constitutive model

The rheological model is a linear spring in series with a finite number of viscoelastic Kelvin
elements in series followed by a viscoplastic Kelvin element, i.e. a plastic slider and a
nonlinear damper in parallel. In the elastic regime, it shows a viscoelastic response by
combination of the instantaneous response and creep of the Kelvin elements. Damage and
plastic strains are accumulating viscously as well. The model is based on the internal
variables Ep, Ev, and κ. Ep is a 2nd order tensor of plastic strains, Ev the viscous strains,
κ the accumulated plastic strain. The rheological model is illustrated in Fig. 7.2 for the
case of a single viscous Kelvin element.

Plastic Pad

Dashpot

𝕊0

𝕊v

Figure 7.2: Rheological model of a viscoelastic-viscoplastic solid with damage in case of a single
viscous Kelvin element

7.2.1 Free energy potential and dissipation

In the notation used in the following chapter, scalars are written as X, 2nd order tensors as
X, and 4th order tensors as X. The sign ’:’ denotes the double contraction operation. In case
of compositions of two 4th order tensors (Xijkl = YijmnZmnkl) and of transformations of a 2nd

order tensor with a 4th order tensor (Xij = YijklZkl), the sign ’:’ is omitted. The operator
⊗ denotes the dyadic product Xijkl = YijZkl, ⊗ the tensorial product Xijkl = YikZjl, and
⊗ the symmetric product Xijkl = 1

2(YikZjl + YilZjk).
The finite total strain tensor is split additively into an elastic, plastic and a viscous part

following the Green-Naghdi [Green and Naghdi, 1965] decomposition:

E = Ee +Ev +Ep (7.1)
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The viscous strains tensor is split additively into m parts corresponding to the viscoelastic
Kelvin elements in the model.

Ev =
n∑

m=1
Ev
m (7.2)

The accumulated plastic strain κ is defined as:

κ =
∫ t

0
||Ėp||dτ (7.3)

The rate of the accumulated plastic strain is equal to the norm of the rate of the plastic
strain tensor:

κ̇ = ||Ėp|| (7.4)

This way the rates of the two variables are coupled while the variables itself are independent
of each other. In this model, damage is defined as a scalar function D of the cumulated
plastic strain κ (compare Charlebois et al. [2010], Lucchini et al. [2011], Schwiedrzik and
Zysset [2013a], Zysset [1994]):

D(κ) = Dc(1− e−kpκ) (7.5)

The free energy potential for this material model was therefore defined as:

Ψ(E,Ev
m,E

p, κ) = 1
2(1−D(κ))

(
(E−Ev−Ep) : S0(E−Ev−Ep)+

n∑
m=1

Ev
mSv,mEv

m

)
(7.6)

The corresponding state laws become:

S = ∇EΨ = (1−D(κ))S0(E −Ev −Ep),

Sp = −∇EpΨ = (1−D(κ))S0(E −Ev −Ep),

Svm = −∇EvmΨ = (1−D(κ))
(
S0(E −Ev −Ep) + Sv,mEv

m

)
,
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W κ =


1
2D
′(κ)

(
(E −Ev −Ep) : S0(E −Ev −Ep) +∑

Ev
mSv,mEv

m

)
∀κ ∈ ]0,∞[

0 ∀κ = 0

The conjugate variables are S and E, Sp and Ep, Svm and Ev
m as well as W κ and κ. For

the model to be thermodynamically admissible, the dissipation rate Φ needs to be positive
at all times. The dissipation can be expressed as the difference of the stress power density
and the rate of the free energy density

Φ = S : Ė − Ψ̇, (7.7)

which gives

Φ = S : Ė − S : Ė + S : Ėp +
n∑

m=1
Svm : Ėv

m +W κκ̇. (7.8)

The first two terms cancel each other out and the dissipation is therefore equal to

Φ = Φp + Φv + Φκ (7.9)

with the plastic dissipation Φp:

Φp = (1−D(κ))S0(E −Ev −Ep) : Ėp, (7.10)

the viscoelastic dissipation Φv

Φv =
n∑

m=1
(1−D(κ))

(
S0(E −Ev −Ep)− Sv,mEv

m

)
: Ėv

m, (7.11)

and the damage dissipation Φκ

Φκ = 1
2D
′(κ)

(
(E −Ev −Ep) : S0(E −Ev −Ep) +

n∑
m=1

Ev
mSv,mEv

m

)
κ̇. (7.12)

7.2.2 Elasticity and viscoelastic formulation

The instantaneous stiffness tensor S0 may in principle be of general anisotropy in this model.
In this implementation, a fabric-based stiffness tensor was chosen [Zysset and Curnier, 1995].
The elastic constants were identified based on the indentation results presented in Chapter
5 using the methodology of Franzoso [Franzoso and Zysset, 2009].
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Table 7.1: Constants for fabric-based elasticity [Zysset and Curnier, 1995] of ovine cortical bone.

E0 [GPa] ν0 µ0 [GPa] ρ m1 = m2 m3 k l
19.951 0.3 7.67 1.0 0.898 1.205 1.0 1.0

The total stress in each Kelvin element is composed of an elastic and a viscous part:

S = (1−D(κ))Sv,mEv
m + VmĖv

m (7.13)

with an anisotropic stiffness tensor Sv,m and an anisotropic fourth order tensor Vm describing
the direction-dependent behavior of the viscous damper of the mth Kelvin element. A flow
rule for the viscous strains Ev

m in each Kelvin element may be determined from this relation:

Ėv
m = V−1

m

(
S − (1−D(κ))Sv,mEv

m

)
(7.14)

The flow rule for the total viscous strains is then given by:

Ėv =
n∑

m=1
Ėv
m (7.15)

The characteristic times τm and stiffness ratios λm were identified by relaxation tests of dry
cylindrical ovine bone specimens under uniaxial compression (Fig. 7.3) in a servohydraulic
testing device (858 Mini Bionix, MTS, USA). A total of 14 dry ovine samples with a diameter
of 3 mm were loaded uniaxially to three different strain levels in the elastic range and stress
relaxation curves were recorded for 300 s followed by a pause of 600 s before reloading. The
one-dimensional creep function for the rheological model presented in Fig. 7.2 for n Kelvin
elements can be determined analytically and is given by:

J(t) = 1
E0

+
n∑

m=1

1− e−
t
τm

λmE0
(7.16)

The 1D relaxation function is related to the creep function by

G(t) = L−1{L{J(t)}−1(s)} (7.17)
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with the Laplace transform L and may be determined analytically for n ≤ 2. The
analytical form is rather long and therefore not reported here. The relaxation function
was fitted to the uniaxial experimental data (Fig. 7.3, Tab. 7.2). The found behavior
corresponds well to results of Fondrk et al. [1988] on bovine cortical bone and Rincón et al.
[2001] for bovine trabecular bone, who reported a stress relaxation of ∼ 10%.

Table 7.2: Viscoelastic constants for dry ovine bone from macroscopic relaxation experiments.

τ1 λ1 τ2 λ2

2.0± 1.5 s 30.5± 19.9 69.4± 30.1 14.7 ± 5.0

Figure 7.3: Stress over time during a macroscopic relaxation experiment on dry ovine cortical bone.

In the three-dimensional implementation, two Kelvin elements were included and it was
hypothesized that the tensors governing the Kelvin elements Sv,m and Vm are proportional
to the initial stiffness tensor S0 and may be determined by multiplication with the respective
uniaxial constants.

Vm = τmSv,m = τmλmS0, Sv,m = λmS0.

7.2.3 Yield criterion, damage and viscoplastic formulation

A recently proposed fabric-based orthotropic quadric failure criterion [Schwiedrzik et al.,
2013] was used to define the yield surface of bone. It allows strength differences in tension
and compression and may take an ellipsoidal, hyperboloidal or conical shape depending on
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the chosen interaction parameters. The yield function is defined in stress space as:

Y (S) :=
√
S : FS + F : S − 1 (7.18)

The general form of the fourth order tensor F is then:

F =
3∑
i=1

S2
iMi ⊗Mi −

3∑
i,j=1;i 6=j

ζijS
2
iMi ⊗Mj +

3∑
i,j=1;i 6=j

1
2τ2
ij

Mi⊗Mj (7.19)

with

Si = 1
2

(
1
σ+
ii

+ 1
σ−ii

)
(7.20)

In this case, the general form of the second order tensor F is:

F =
3∑
i=1

1
2

(
1
σ+
ii

− 1
σ−ii

)
Mi (7.21)

The criterion may be formulated based on fabric and density information. In this case, the
number of independent constants reduces to six: σ+

0 , σ−0 , ζ0, τ0, p and q. The orthotropic
constants are then given by:

σ+
ii = σ+

0 ρ
pm2q

i σ−ii = σ−0 ρ
pm2q

i

ζij = ζ0
m2q
i

m2q
j

τij = τ0ρ
pmq

im
q
j

In this case, the parameter ζ0 determines the shape of the criterion, which may be cylindrical,
ellipsoidal, hyperboloidal or conical. The uniaxial parameters governing the surface and
hardening were identified using the micropillar tests reported in Chapter 5. The tensile
yield stress was approximated using the tensile/compression ratio of 1.5 reported by Gross
[Gross, 2014]. Interaction parameter ζ0 and shear strength τ0 were regarded as unknown
variables and determined by fitting the simulated curves to the experimental data of the
Berkovich indentations. In the case of m1 = m2 6= m3 and an independent shear strength
τ0, the material features tetragonal symmetry. Isotropic hardening was introduced as a
function of the cumulated plastic strain κ and the equivalent viscous strain rate ε̇v. The
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criterion then reads:

Y (S, κ, ε̇v) :=
√
S : FS + F : S − r(κ)− rv(ε̇v). (7.22)

In this implementation, viscoelastic hardening and damage were turned off and plastic hard-
ening was approximated using an exponential function based on the experimental results
of the micropillar compression experiments reported in Chapter 5. The final constants de-
termining the strength and postyield behaviour are reported in the results section of this
chapter.
Similar to the governing equations of the flow theory in rate-independent plasticity, the

constitutive relations of a viscoplastic material may be written as [Etse and Carosio, 1999,
Heeres et al., 2002, Perzyna, 1966]:

S = (1−D(κ))S0(E −Ev −Ep)

Ėp = 1
η
〈ψ(Y )〉 M

p

||Mp||

Mp = ∇SG

κ̇ = 1
η
〈ψ(Y )〉

with a plastic potential G. In this implementation, the plastic potential G was set equal to
the yield surface Y , therefore the plastic flow is associated when no hardening is present. The
〈〉 are the Macauley brackets in their usual meaning 〈f(x)〉 = 1

2(f(x)+|f(x)|). Following the
suggestion of Ponthot [Ponthot, 1995], a viscoplastic consistency parameter λ̇ is introduced
as known from the continuous Perzyna formulation.

λ̇ = 1
η
〈ψ(Y )〉 1

||Mp||
(7.23)

By substituting the consistency parameter into the viscoplastic flow rules, they take a form
well known from rate-independent plasticity [Hill, 1951]:

Ėp = λ̇Mp (7.24)
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κ̇ = λ̇||Mp|| (7.25)

For viscoplastic materials of the Perzyna type, the stress state can lie outside of the original
yield surface [Perzyna, 1966]. In the inelastic regime (Y ≥ 0), the overstress function ψ(Y )
is uniquely invertible. The yield function follows the inverse of the overstress function:

Y = ψ−1(λ̇||Mp||η) = ψ−1(κ̇η) (7.26)

Therefore we can define a new condition constraining the viscoplastic flow:

Ȳ (S, κ, κ̇, ε̇v) = Y (S, κ, ε̇v)− ψ−1(κ̇η) = 0 (7.27)

This condition represents a generalization of the yield condition Y = 0 for viscoplastic
materials of the Perzyna type [Etse and Carosio, 1999, Carosio et al., 2000]. The approach
is analogous to the so called consistent viscoplasticity [Wang et al., 1997] or the continuous
Perzyna approach [Etse and Carosio, 1999, Ponthot, 1995] used in an earlier model for bone
[Schwiedrzik and Zysset, 2013a]. It allows the use of generalized Kuhn-Tucker conditions
for viscoplastic flow in the form of

Ȳ ≤ 0, κ̇ ≥ 0, κ̇Ȳ = 0

which assure that the inelastic process satisfies Ȳ = 0 during viscoplastic deformation
[Wang et al., 1997, Etse and Carosio, 1999]. It should be noted that in this approach the
viscoplastic surface Ȳ degenerates to the original yield surface Y for η → 0 transforming
the viscoplastic model to a rate-independent plastic one.

7.2.4 Algorithmic treatment

For simplicity’s sake, all state variables at the end of the increment Xn+1 will be called
X and state variables at the beginning of the increment Xn will be called X0 from now
on. The commercial finite element solver Abaqus uses an updated Lagrangian mapping
technique with the Cauchy stress tensor and an approximation of the integral of the rate of
deformation

∫
Ddt in a local corotational coordinate system as the conjugate strain tensor

for simulations involving anisotropy, large deformations and rotations. These stress and
strain measures were therefore used in this implementation. In principle, the algorithm is
consistent for any conjugate pair of stress and strain measures, though.
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Stress integration

In order to find the new state of the material, first the elastic trial stress is determined:

Se,T = (1−D(κ0))S0(E −Ev
0 −E

p
0) (7.28)

Since viscous strains develop in both the elastic and the inelastic domain, a viscoelastic
trial stress Sv,T is calculated by numerical time integration of the evolution equations of
the viscous strains in each Kelvin element using an implicit Euler scheme. The viscous
strains may then be written in incremental form as:

Ev
m = Ev

0,m + ∆Ev
m = Ev

0,m + V−1
m

(
S − (1−D(κ))Sv,m(Ev

0,m + ∆Ev
m)
)
∆t (7.29)

When isolating ∆Ev
m, the viscous strain increment in each Kelvin element is given by

∆Ev
m = (I+(1−D(κ0+∆κ))∆tV−1

m Sv,m)−1V−1
m

(
S−(1−D(κ0+∆κ))Sv,mEv

0,m
)
∆t (7.30)

The total viscous strain increment is then

∆Ev(S,∆κ) =
n∑

m=1
∆Ev

m(S,∆κ) (7.31)

The stress is linearized and expressed in incremental form as:

S = (1−D(κ0)− (D(κ)−D(κ0)))S(E0 + ∆E −Ev
0 −∆Ev −Ep

0 −∆Ep)
= ST − (D(κ)−D(κ0))S(E −Ev

0 −E
p
0)− (1−D(κ))S(∆Ev + ∆κNp) (7.32)

In order to solve for the viscoelastic trial state, a tensorial residual function R(S,∆κ) is
introduced. It is found by multiplication of the linearized incremental form of stress with
−E and may be interpreted as a residuum of strains multiplied by 1−D(κ).

R(S,∆κ) = E0(Se,T−S)−(D(κ)−D(κ0))(E−Ev
0−E

p
0)−(1−D(κ))(∆Ev+∆κNp) (7.33)

For computation of the viscoelastic trial stress and more generally in the absence of plasticity
∆κ = 0 and the nonlinear system of equations is linearized with respect to its remaining
variable S

Ri+1 = Ri +∇SRi : δS = 0 (7.34)
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and solved using a Newton scheme, which gives the recursive equation:

δS = Sa,veRi (7.35)

with the incremental stiffness

Sa,ve = −∇SR−1
i (7.36)

After convergence of the algorithm, the viscoelastic trial state is obtained. Next, the yield
criterion is evaluated using the viscoelastic trial stress Sv,T and the previous plastic state
κ0. If Y (Sv,T , κ0, ε̇

v,T ) < 0, the stress increment is purely viscoelastic and no further
inelastic deformation is taking place. If the yield criterion Y (Sv,T , κ0, ε̇

v,T ) ≥ 0, an implicit
backprojection on the rate-dependent yield surface Ȳ (S, κ, κ̇, ε̇v), coupled to the evolution of
the viscous strains through the viscous flow rule is performed. In this case, κ̇ is approximated
by κ̇ = ∆κ

∆t and ε̇v = ||∆Ev ||
∆t . An incremental form of Ȳ is added to the original system of

equations R(S,∆κ):

Ȳ (S,∆κ) = Y (S, κ0 + ∆κ, ε̇v)− ψ−1(∆κ) (7.37)

The system of equations is linearized with respect to its variables S and ∆κ analogously
to Schwiedrzik and Zysset [2013a] and solved using a Newton algorithm. The resulting
recursive functions giving the state variable updates are:

δ∆κ = − Ȳi +∇SȲi : SaRi

∇SȲi : SEa ∂Ri
∂∆κ + ∂Ȳi

∂∆κ

(7.38)

δS = Sa(Ri +
∂Ri

∂∆κδ∆κ) (7.39)

with the incremental stiffness

Sa,vp = −(∇SRi)−1 (7.40)

The gradients and derivatives used in this implementation are given in explicit form in
the appendix of this chapter. After convergence of the algorithm, the coupled viscoelastic-
viscoplastic damage state is obtained. In order to enlarge the region of convergence of the
model, the primal Closest Point Projection Algorithm (CPPA) of Armero et al. [Armero
and Pérez-Foguet, 2002, Pérez-Foguet and Armero, 2002] was implemented as a fail-safe
algorithm after the standard Newton scheme in the UMAT subroutine.
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Algorithmic tangent operator

The algorithmic tangent operator St relates infinitesimal changes of the strain increment
δ∆E to corresponding infinitesimal changes in the stress increment δ∆S. In order to find
the tangent, a linearization of the stress-strain relationship has to be performed around the
current solution. In this case, the consistency condition has to be applied to the algorithmic
form of the rate equations. This was already done during the stress integration and does
not need to be repeated. After convergence of the Newton scheme, the yield function Ȳ ≤ 0
and the tensorial residual function R may be interpreted as an infinitesimal variation in
strain multiplied by 1−D(κ):

R|conv = (1−D(κ))δE (7.41)

Therefore the tensor relating infinitesimal changes of strain δR
1−D(κ) = δ∆E to infinitesimal

changes of the stress increment δ∆S is the sought algorithmic tangent stiffness tensor. The
algorithmic tangent stiffness operator in the case of viscoelasticity is:

St,ve = (1−D(κ))Sa,ve (7.42)

In the case of viscoelastic-viscoplastic deformation and damage accumulation, the algorith-
mic tangent operator takes the form:

St,vp = (1−D(κ))Sa,vp −
(1−D(κ))Sa,vp( ∂R

∂∆κ ⊗N
p)Sa,vp

NpSa,vp ∂R
∂∆κ −

1
||∇

S
Ȳi||

∂Ȳi
∂∆κ

(7.43)

If viscoelasticity is turned off, the viscoelastic tangent degenerates to the damaged elastic
stiffness (1−D(κ))S0 and the viscoelastic-viscoplastic damage tangent operator degenerates
to an elasto-viscoplastic damage one. If the viscosity of the inelastic processes is also re-
moved, a rate-independent elasto-plastic damage tangent is obtained (see, e.g. Schwiedrzik
and Zysset [2013a]).

7.3 Verification

First, the correct implementation of the model was tested using single element tests. The
viscoelastic behavior was tested using a relaxation test as shown in Fig 7.4.
The ratio of relaxed to instantaneous stiffness was found to be 0.908, which was expected

and corresponds well to the experimental findings reported earlier as well as values reported
in the literature [Fondrk et al., 1988, Zysset, 1994, Rincón et al., 2001]. Next, correct
implementation of the yield surface and backprojection algorithm was tested. The result of
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Figure 7.4: Single Element Test of a relaxation under unconfined compression in the 3-direction
with an initial strain step and a 300 s holding period.

a uniaxial compression test of a linear hexahedral element at a strain rate of 0.0005s−1 with
a holding period at 20% nominal strain of 300 s is shown in Fig. 7.5.
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Figure 7.5: Single Element Test of a unconfined compression test in the 3-direction at 0.0005s−1

followed by a 300 s holding period and unloading using the model presented above with
viscoelasticity only (Model 1) and both viscoelasticity and viscoplasticity (Model 2).

The loading part of the single element test shows a behavior that corresponds well to
the average response measured in the micropillar compression tests reported in Chapter
5. Almost no viscoelastic relaxation is observed for model 1, as the material has time to
relax during the loading period due to the low strain rate. When introducing viscoplasticity
(Model 2), a clear relaxation process becomes visible during the holding period.
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7.4 Simulation of Berkovich and spherical indentations in bone

Using the above described model, indentations in bone using Berkovich and spherical inden-
ters were simulated and the results were compared to experimental results on dry ovine bone.
The finite element mesh described in detail in Chapter 3 was used and the boundary con-
ditions of the experimental protocol (100 mN/min loading, 30 s hold period, 400 mN/min
unloading) were applied on the indenter. The friction coefficient between indenter and
sample was set to 0.2 following Carnelli et al. [2010]. Indentations were stopped at 1 µm
depth for Berkovich indentations and 0.5 µm for spherical indentations consistent with the
experimental data or alternatively at the maximum force measured during the experiments.
The resulting indentation curves were greatly overestimating the hardness by a factor > 2
for both indenters when an isotropy condition was used for the shear yield strength τ0.
Therefore, both the interaction parameter and shear strength were regarded as unknown
parameters. It was found that a reasonable fit could be achieved for the Berkovich indenter
with ζ0 = 0.3 and τ0 = 0.05 GPa. The resulting indentation curves were analyzed using
the method of Oliver and Pharr and indentation modulus, hardness, plastic and total work
were compared to the experimental results.
As the creep depth using the macroscopic viscoelastic constants (Model 1) was only a

small fraction of what was observed experimentally, viscoplasticity was added to the model
(see Fig. 7.6, Model 2) and identified by comparison of the micropillar data with single
element tests (Fig. 7.5). It was found that a reduction of the quasistatic yield properties
by 10 % compensated by viscoplastic rate-dependent hardening leads to a correct uniaxial
compressive strength at a strain rate of 0.0005s−1 (Fig. 7.5) and to realistic creep depths
in Berkovich indentations (Fig. 7.6, Model 2).
However, when comparing the simulated indentation curves of the spherical indenter

with a mean radius of 48 µm with the experimental ones, large differences were found (Fig.
7.6). Interestingly, the experimental moduli measured using the spherical indenter were also
consistently lower compared to the measurements using the Berkovich indenter. A possible
explanation for this phenomenon is that the nominal radius of the spherical indenter and the
local curvature determining the indentation response at small depths can be very different
[Constantinides et al., 2007]. Therefore, an effective radius of the indenter at small depths
of R = 28 µm was determined for which the elastic moduli in transverse and axial direction
correspond well to the measurements using the Berkovich tip. When using this indenter size
in the Finite Element model, it was possible to obtain a reasonable correspondence of the
simulated and experimental indentation curves for both Berkovich and spherical indenters
in axial and transverse direction (Fig. 7.6). Tab. 7.5 summarizes the postelastic material
constants used in this chapter. The identified yield surface in normal and shear stress space
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Figure 7.6: Experimental indentation curves (full grey lines) of Berkovich (left) and spherical
(right) indentations in ovine bone in axial direction and FE simulations using model 1
or model 2.

is shown in Fig. 7.7.
The plastic zones under the conical and spherical indenters are shown in Fig. 7.8. Note

that the maximum plastic strain under a spherical tip is an order of magnitude smaller than
for the conical one. As expected [Mullins et al., 2009], no pile-up is visible in the vicinity
of the indents.
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Table 7.3: Comparison of experimental measurements on dry ovine bone with numerical results
using viscoelasticity only (Model 1) and a combination of viscoelasticity and viscoplas-
ticity (Model 2) using a Berkovich and a spherical (nominal radius 50µm, mean radius
48µm, effective radius 28µm) tip in axial direction.

Ind. Dir. Meas. Exp. Med. Exp. Min. Exp. Max. Model 1 Model 2

Berk. Ax. E∗/GPa 27.6 22.5 30.9 29.3 29.2
Berk. Ax. HIT /GPa 1.025 0.768 1.182 0.828 0.839
Berk. Ax. hcreep/nm 66.8 56.3 77.6 6.8 94.1
Berk. Ax. hres/nm 789.5 697.1 846.0 0.818 903.8
Berk. Ax. Welast/pJ 1885.5 1173.4 2156.8 1355.45 1656.84
Berk. Ax. Wtotal/pJ 8332.6 5488.9 9248.9 6284.27 9496.04

Sph. 48µm Ax. E∗/GPa 20.4 16.8 22.7 29.8 29.6
Sph. 48µm Ax. HIT /GPa 0.297 0.209 0.350 0.489 0.470
Sph. 48µm Ax. hcreep/nm 28.0 17.7 39.4 3.3 15.7
Sph. 48µm Ax. hres/nm 217.3 173.1 283.0 160.5 176.4
Sph. 48µm Ax. Welast/pJ 3960.2 2520.3 4747.2 3416.48 3344.46
Sph. 48µm Ax. Wtotal/pJ 8232.3 5757.9 9565.0 6635.26 7137.90

Sph. 28µm Ax. E∗/GPa 26.7 22.1 30.0 29.6 29.5
Sph. 28µm Ax. HIT /GPa 0.511 0.360 0.602 0.622 0.598
Sph. 28µm Ax. hcreep/nm 28.0 17.7 39.4 4.1 23.1
Sph. 28µm Ax. hres/nm 217.3 173.1 283.0 249.0 271.0
Sph. 28µm Ax. Welast/pJ 3960.2 2520.3 4747.2 3885.03 3772.67
Sph. 28µm Ax. Wtotal/pJ 8232.3 5757.9 9565.0 8636.73 9409.12

7.5 Discussion

In this chapter, the elastic-viscoplastic damage model proposed in Chapter 2 was extended
to linear viscoelasticity. The hypothesis was tested that in the presence of a dissipative
process in the elastic regime it would be possible to obtain realistic indentation curves for
bone when using the constitutive model governed by the uniaxial yield properties from the
micropillar data. It was found that viscoelasticity alone governed by properties measured
on the macroscale has very little influence on the indentation curve and results in a clear
underestimation of the creep deformation. Adding viscoplasticity to the model leads to an
increase in creep deformation during the hold time. However, the hardness of the material
was highly overestimated when using an isotropy condition to determine the unknown shear
yield strength.
In order to obtain realistic indentation curves including plasticity for both Berkovich and
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Table 7.4: Comparison of experimental measurements on dry ovine bone with numerical results
using viscoelasticity only (Model 1) and a combination of viscoelasticity and viscoplas-
ticity (Model 2) using a Berkovich and a spherical (nominal radius 50µm, mean radius
48µm, effective radius 28µm) tip in transverse directions.

Ind. Dir. Meas. Exp. Med. Exp. Min. Exp. Max. Model 1 Model 2

Berk. Tv. E∗/GPa 18.9 15.5 23.1 20.5 20.0
Berk. Tv. HIT /GPa 0.675 0.494 0.817 0.672 0.642
Berk. Tv. hcreep/nm 79.8 54.4 101.4 8.3 90.7
Berk. Tv. hres/nm 618.3 550.4 795.8 777.7 886.1
Berk. Tv. Welast/pJ 1647.6 1112.5 2028.7 1204.51 1312.79
Berk. Tv. Wtotal/pJ 6532.1 4569.6 8210.4 4746.04 6841.10

Sph. 48µm Tv. E∗/GPa 15.1 9.8 17.9 20.2 20.1
Sph. 48µm Tv. HIT /GPa 0.171 0.092 0.221 0.346 0.333
Sph. 48µm Tv. hcreep/nm 38.6 25.3 55.0 4.0 17.1
Sph. 48µm Tv. hres/nm 192.0 - 252.7 145.3 158.6
Sph. 48µm Tv. Welast/pJ 2344.1 1402.4 3072.5 2320.79 2280.68
Sph. 48µm Tv. Wtotal/pJ 5385.4 3535.6 6856.8 4308.56 4658.61

Sph. 28µm Tv. E∗/GPa 19.9 12.9 23.5 20.3 20.1
Sph. 28µm Tv. HIT /GPa 0.294 0.158 0.380 0.438 0.421
Sph. 28µm Tv. hcreep/nm 38.6 25.3 55.0 4.8 26.1
Sph. 28µm Tv. hres/nm 192.0 - 252.7 228.18 247.2
Sph. 28µm Tv. Welast/pJ 2344.1 1402.4 3072.5 2623.24 2562.36
Sph. 28µm Tv. Wtotal/pJ 5385.4 3535.6 6856.8 5652.86 6163.44

Table 7.5: Postelastic constants for dry ovine bone on the microscale for the viscoelastic (Model 1,
top) and the viscoelastic-viscoplastic (Model 2, bottom) case.

Model σ+
0 σ−0 ζ0 τ0 q ry η m

1 0.644 0.429 0.3 0.05 0.407 0.6 0 0.001
2 0.580 0.386 0.3 0.045 0.407 0.6 12.0 0.001

spherical indents using the uniaxial strengths of the micropillar compressions, the assump-
tion that shear strength is governed by an isotropy condition of the base material had to be
abandoned. A set of parameters was identified that yields a reasonable fit between simulated
and experimental curves. The found values for shear strength and interaction parameters of
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Figure 7.7: Quadric yield surface in normal (left) and shear (right) stress space governed by pa-
rameters presented in Tab. 7.5.
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Figure 7.8: Accumulated plastic strain map of Finite Element simulations of Berkovich (left)
and spherical (R = 28 µm, right) indentation in axial direction for the viscoelastic-
viscoplastic material model (Model 2) at maximum indentation depth.

τ0 = 0.05 GPa and ζ0 = 0.3 remain to be verified by independent experiments. Difficulties
were encountered to fit both the spherical and the Berkovich indentations. This is at least
partly related to the increased uncertainty in boundary conditions for the spherical indenter.
The spherical indenter had a nominal radius of 50 µm, the best fitted sphere determined from
optical micrographs of the whole tip had an average radius of 48 µm. However, the exact
shape function could not be determined by calibration using a fused silica sample, as Hertz
indentations in brittle materials induce cone-shaped cracks that would destroy the reference
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sample. Therefore, the local curvature at small indentation depths was not known and was
most probably understimated, as the measured indentation moduli were consistently lower
than the ones measured using a Berkovich tip (Tab. 7.3,7.4). Therefore, an effective ra-
dius of the indenter at small depths of R = 28 µm was determined for which the measured
elastic moduli in transverse and axial direction correspond well to the measurements using
the Berkovich tip. Simulations using the effective indenter radius resulted in a reasonably
good fit of the simulated and experimental indentation curves (Fig. 7.6, Tab. 7.3,7.4). It
remains to be verified if the determined effective radius is indeed representative of the real
indenter geometry. This issue could be clarified in the future by directly measuring the tip
topography of the spherical indenter with an AFM as proposed by Constantinides et al.
[2007].

Figure 7.9: Segmented porosity from a FIB/SEM tomography of a volume of 3.5µm×5µm×10µm
from a bovine cortical bone sample (by courtesy of Joan Rovira, PhD).

As Fig. 7.9 illustrates, canaliculi are present in bone with a spacing of 2 to 3 microns.
It is highly probable that most of the variation in microindentation properties is related to
the lacuna-canalicular porosity, as it was shown previously that neither site-matched mea-
surements of mineralization and fibril angle [Spiesz et al., 2013] nor residual imprint shape
and surface roughness (Chapter 6 of this thesis) are strongly correlated to experimental
indentation results. With their diameter of 100− 200 nm canaliculi are small compared to
the homogeneously tested volume of a micropillar or the elastically tested volume of an in-
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dentation and may be homogenized. However, they are not necessarily negligible compared
to the plastically deformed volume directly under the indenter tip for microindentations
to depths of 500 − 1000 nm (Fig. 7.8). These canaliculi lead to stress concentations and
may be compressed locally near the indenter tip, which would result in a lower apparent
resistance of the material to plastic flow. As these structures were not modeled explicitly
in the FE mesh in this study, this missing effect has to be compensated by the material
model. Therefore, the plasticity of the material could be overestimated. It seems therefore
reasonable to fit the stiffest curves instead of the mean ones in order to circumvent this
problem. Also, it could be beneficial to clarify this issue by modeling canaliculi explicitly
or using statistics based material properties when trying to identify postelastic properties
of bone using microindentation in the future.
It is very probable that the response to indentation is strongly influenced by time-

dependent processes near the indenter tip where the material is yielding. These are not
known in detail for the microscale at the moment and not easy to identify using indentation
experiments due to the heterogeneous stress state resulting in a coupled response featuring
both global viscoelastic and local viscoplastic deformation. Further work is necessary to
better understand the time-dependent processes governing bone at the microscale before
a unique set of dissipative processes and their governing parameters can be determined
from indentation curves. Especially more thorough identification strategies of the viscoelas-
tic and viscoplastic properties on the microscale are needed in order to achieve this goal,
e.g. by performing micropillar compression tests to different stress levels (both elastic and
postyield) at different loading rates.
Additionally, the tensile and shear postelastic properties were not known and had to be

assumed in this study. This is a severe limitation and needs to be remedied by independent
experiments in the future. Another limitation of this study is that the friction coefficient be-
tween diamond and bone that has a non-negligible influence on the indentation response was
taken from a microindentation study in the literature [Carnelli et al., 2010]. The reliability
of the results would be greatly enhanced if nanotribologic experiments were conducted to
measure the friction coefficient independently. Finally, all experiments used for the material
identification were performed in dry condition, which is not the physiological state of bone.
The existing methods need to be adapted to test bone in its native hydrated state in the
future. While this has been achieved for microindentation, other micromechanical methods
like micropillar compression have not been performed on hydrated bone yet.
In conclusion it was possible to remedy the discrepancies between indentation and mi-

cropillar data in this study by abandoning the assumption of shear strength being governed
by an isotropy condition. However, additional independent measurements and a better
understanding of the underlying dissipative processes and their mathematical description
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as well as very well defined boundary conditions regarding indenter and ultrastructure are
necessary in order to verify this finding and to uniquely identify the nonlinear behaviour of
bone on the microscale in the future.

7.6 Gradients and Derivatives

7.6.1 Residual of total strains

R(S,∆κ) = E0(Se,T −S)− (D(κ)−D(κ0))(E−Ev
0 −E

p
0)− (1−D(κ))(∆Ev +∆κNp)

∇SR = −E0 − (1−D)(∇S∆Ev + ∆κ∇SNp)

∂R

∂∆κ = −D′(E −Ev
0 −∆Ev −Ep

0 −∆κNp)− (1−D)(∂∆Ev

∂∆κ +Np)

7.6.2 Viscous strain increment

General formulation

∆Ev
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Proportional viscoelasticity: Vm = τmλmS0, Sv,m = λmS0
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∂∆Ev
m

∂∆κ =
D′ 1
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∆t(Ev

0,m(1 + (1−D) 1
τm

∆t) + ∆t( 1
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E0S − (1−D) 1
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(1 + (1−D) 1
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7.6.3 Equivalent viscous strain rate

ε̇v(S,∆κ) = ||∆E
v||

∆t

∇S ε̇v = ∆Ev

||∆Ev||
∇S∆Ev

∆t

∂ε̇v
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7.6.4 Yield surface

Y (S, ε̇v, κ) =
√
S : FS + F : S − r(κ)− rv(εv)

∇SY = (S : FS)−
1
2 FS + F − r′v(ε̇v)∇S ε̇v
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∂κ

7.6.5 Rate-dependent algorithmic Yield surface
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∂Ȳ
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7.6.6 Overstress functions

• Linear: Ψ−1(∆κ) = η∆κ
∆t ,
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• Exponential: Ψ−1(∆κ) = ln(1+η∆κ
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7.6.7 Plastic potential
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7.6.8 Norm of the gradient on the yield surface
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7.6.9 Direction of plastic flow
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An increase in bone fractures due to the progressive aging of societies poses a severe
challenge for health care systems all over the world. As bone strength is determined by both
bone mass and quality, today’s treatments for osteoporosis rely on a better understanding of
the mechanical behavior of bone at the microscale and its relation to adaptation processes
[Bajaj et al., 2014]. A high level of predictability has been reached for elastic properties on
several length scales [Fritsch and Hellmich, 2007, Reisinger et al., 2010, Spiesz et al., 2011].
However, up to now there is a lack of reliable postyield data, especially on the lower length
scales. The aim of this thesis was to find the dominating deformation mechanisms and the
postelastic mechanical properties on the microscale.
A common approach for identifying microscale yield properties are inverse methods based

on comparison of microindentations and Finite Element simulations. In order to be able
to describe the behavior of bone at the microscale, as a first step an anisotropic elastic-
viscoplastic damage model was developed using an eccentric generalized Hill criterion and
nonlinear isotropic hardening. Viscoplasticity was implemented using the continuous Perzyna
formulation [Carosio et al., 2000, Wang et al., 1997], damage was modeled by a scalar func-
tion of the accumulated plastic strain [Charlebois et al., 2010, Zysset, 1994]. The model was
implemented as a user subroutine in the commercial FE code Abaqus and correct imple-
mentation of the algorithm, convergence and accuracy of the tangent operator were tested
by means of single element tests. A FE simulation of microindentation in lamellar bone
showed that the constitutive model is able to reproduce the main features of force-depth
curves of Berkovich indentations in bone including creep deformation at constant force.
As the generalized Hill criterion is limited to elliptical and cylindrical yield surfaces and

micromechanical considerations by Maghous et al. [2009] showed that the introduction of
porosity into a cohesive-frictional material like bone would lead to both a decrease in uniaxial
strength properties as well as a change of the shape of the criterion from conical to elliptical,
a new yield surface was proposed that can take any convex quadratic shape and that is easy
to implement. The main advantage of the new formulation is that in the case of material
identification the shape of the yield surface does not have to be anticipated. Instead, a
minimization using the quadric criterion would result in the optimal shape among all convex
quadrics. Also, the proposed criterion is a homogeneous function of degree one, which is
beneficial for implementation of isotropic hardening rules in a computational mechanics
framework. The convexity limits of the criterion and the transition points between the
different shapes were identified. The criterion was discussed for general anisotropy as well as
special cases of material symmetry such as isotropy, cubic symmetry, fabric-based orthotropy
and general orthotropy. The generality of the formulation was demonstrated by showing its
degeneration to several classical yield surfaces [Hill, 1951, Liu et al., 1997, von Mises, 1913,
Tsai and Wu, 1971]. Finally, several existing yield criteria [Carnelli et al., 2010, Rincón-
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Kohli and Zysset, 2009, Wolfram et al., 2012] were converted to the quadric formulation thus
demonstrating the applicability of the new criterion to the description of bone at multiple
length scales.
Postyield properties of bone may be assessed by comparison of nonlinear Finite Element

simulations of microindentations using elastoplastic damage models [Lucchini et al., 2011].
So far, most of the studies assumed that bone can be approximated by a conical yield sur-
face on the microscale [Carnelli et al., 2010, Lucchini et al., 2011, Mullins et al., 2009, Wang
et al., 2008]. However, due to the presence of nanoporosity this is not verified [Maghous
et al., 2009]. Therefore, a computational study was undertaken aiming at determining the
influence of yield surface shape and damage on the depth dependent response of bone to
microindentation using spherical and conical tips. The constitutive model developed in
Chapter 2 was modified to make use of the yield criterion proposed in Chapter 3. Yield
surface shape and critical damage were varied and shown to have a major impact on the
indentation curves. Their influence on indentation modulus, hardness, their ratio as well as
the elastic to total work ratio were found to be well described by multilinear regressions for
both tip shapes. For conical tips, indentation depth was not a significant factor, while for
spherical tips damage was insignificant. On the one hand, this verified the self-similarity
of conical indentations in the presence of plasticity and damage. On the other hand, the
fact that damage was not significantly affecting the response to spherical indentations can
help to identify the two effects of plasticity and damage independently by choice of a proper
identification strategy. The yield properties could be mainly identified by spherical indenta-
tions in different directions and ideally using different indentation depth to indenter radius
ratios, while Berkovich indentations could serve to identify the amount of damage present
under the indenter.
However, inverse methods based on microindentation suffer from a lack of uniqueness

of the found material properties in the case of nonlinear material behavior. This can be
overcome by using several different indenter shapes [Bocciarelli et al., 2005, Bolzon et al.,
2004, Bucaille et al., 2003, Ganneau et al., 2006] if the underlying dissipative mechanisms and
their mathematical description are well understood. However, some uncertainty with respect
to the identified parameters remains due to the inherent non-uniqueness of parameters found
using inverse methods, the necessity to choose the main dissipative mechanisms a priori,
and the inhomogeneous and mostly compressive loading conditions imposed on the material.
Therefore it is necessary to perform independent complementary experiments to increase
the reliability of the found parameters. In order to achieve this, measurements allowing a
straightforward interpretation are needed.
Therefore, monotonic and cyclic micropillar compression tests in a scanning electron mi-

croscope complemented by microindentation and macroscopic uniaxial compression tests
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were performed on dry ovine lamellar bone to identify elastic modulus, yield stress, plastic
deformation, damage accumulation and failure mechanisms. While the elastic properties
measured during micropillar compression, microindentation and macroscopic compression
tests were highly consistent, the postyield deformation and failure mechanisms differed be-
tween the two length scales. A majority of the micropillars showed a highly ductile postyield
behavior with continuous strain hardening until failure by localization in a slip plane, while
the macroscopic samples failed in a quasi-brittle fashion with microcracks forming and coa-
lescing into macroscopic failure surfaces. Consequently, compressive strength was 2.4 times
higher on the microscale than on the macroscale, maximum plastic strain even 6 times. Also,
the cyclic compression tests showed no modulus reduction in the micropillars up to 8% of
plastic strain as opposed to the macroscopic samples. This is in conflict with the current
literature on bone strength at the microscale, which reports uniaxial properties similar to
macroscopic values and the presence of damage [Carnelli et al., 2010, Lucchini et al., 2011].
In agreement with a proposed rheological model these experiments illustrate a transition
from a ductile mechanical behavior of bone at the microscale to a quasi-brittle response
driven by the increased heterogeneity due to growth of preexisting cracks at the macroscale.
The yield stress and ultimate plastic strain associated with the growth of pre-existing cracks
near interfaces [Carter and Hayes, 1977, Martin and Burr, 1989] or pores [Currey, 1962] on
the macroscale are substantially lower than the ones necessary to initiate and propagate a
new crack through a micropillar made of a single osteonal lamella. This scale-effect is well
known for brittle materials like ceramics [Michler et al., 2007, Östlund et al., 2009, 2011]
and in line with the theory of quasi-brittle failure [Bažant, 2004] as well as earlier reports of
size effects on yield and fatigue properties in equine bone on the macroscale [Bigley et al.,
2007, 2008]. The data supports the thesis that, under compressive loading, multiple slip
planes emerging at the weak interfaces or in the vicinity of pores in the interstitial bone
coalesce into microcracks, the statistical distribution and growth of which lead to a quasi-
brittle failure at the macroscopic level. These findings highlight the importance of studying
interface properties of cement lines and the stress concentration effect of pores in the inter-
stitial tissue more closely. They remain to be extended to human bone, physiological testing
conditions and further loading modes.
As the analysis of microindentation data is based on assumptions on the contact between

sample and surface, a study was then undertaken to quantify the topological variability of
indentations in bone and examine its relationship with mechanical properties. Microinden-
tations were performed in dry human and ovine bone in axial and transverse directions and
their topography was measured by atomic force microscopy. Statistical shape modeling of
the residual imprint allowed to define a mean shape and to describe the variability in terms
of 21 principal components related to imprint depth, surface curvature and roughness. The
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indentation profile of bone was found to be highly consistent and free of any pile up, which
is in line with the literature [Mullins et al., 2009] while differing mostly by depth between
species and direction. A few of the topological parameters, in particular depth, showed
significant correlations to variations in mechanical properties, but the correlations were not
very strong or consistent and the standard errors were low, as the mechanical response of
bone as well as the residual imprint shape were highly consistent within each category. It
could thus be verified that bone is rather homogeneous in its micromechanical properties
and that indentation results are not strongly influenced by small deviations from the ideal
case if the surface is prepared well. The mean residual imprint shapes obtained in this study
may be used as additional observables for comparison to Finite Element simulations in an
inverse approach to identify the nonlinear mechanical properties of bone on the microscale.
As the uniaxial properties reported in Chapter 5 are in conflict with the current literature

on bone indentation [Carnelli et al., 2010, Lucchini et al., 2011], it is likely that another dis-
sipative mechanism is present influencing the response of bone to microindentations. Bone
has been shown to feature a distinct time-dependent behavior in the elastic regime [Bargren
et al., 1974, Fondrk et al., 1988, Lakes et al., 1979, Lakes and Katz, 1979]. Therefore the
elastic-viscoplastic damage model proposed in Chapter 2 was extended to viscoelasticity.
The viscoelastic properties were identified from macroscopic experiments, while the qua-
sistatic postelastic properties were extracted from the data reported in Chapter 5. It was
found that viscoelasticity alone governed by properties measured on the macroscale has very
little influence on the indentation curve and results in a clear underestimation of the creep
deformation. Adding viscoplasticity to the model lead to realistic values of creep. At the
moment, the nature of the time-dependent deformation in bone is not well understood and
cannot be identified clearly using indentation experiments, as the indentation curves are a
result of a combination of global viscoelastic and local viscoplastic creep. Further indepen-
dent experiments are necessary to clearly identify the time-dependent properties of bone
on the microscale in both the elastic and postyield regime. It was found that maximum
force for a given deformation was largely overestimated for both indenters when using an
isotropy condition to determine the unknown shear strength. In order to fit the experimen-
tal data, the isotropy condition for the yield stress was abandoned. However, it was not
possible to fit both the Berkovich and the spherical data using the mean indenter radius of
48 µm measured using optical micrographs. The fact that the measured indentation moduli
using the spherical tip were consistently lower than the ones measured using a Berkovich
tip suggested that the local curvature for small indentation depths was underestimated by
the mean radius, which is a common problem for spherical indenters [Constantinides et al.,
2007]. Therefore, an effective radius of the indenter at small depths of R = 28 µm was
determined for which the measured elastic moduli in transverse and axial direction corre-
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spond well to the measurements using the Berkovich tip. Using the effective indenter radius
resulted in a reasonably good fit of the simulated and experimental indentation curves for
both the Berkovich and the spherical microindentations. It remains to be verified if the thus
determined effective radius is indeed representative of the real indenter geometry. This issue
could be clarified in the future by directly measuring the tip topography of the spherical
indenter with an AFM as proposed by Constantinides et al. [2007]. It is highly likely that a
high fraction of the variation in the experimental data is due to the presence of the lacuno-
canalicular porosity. Lacunae have a diameter of ∼ 10µm and may therefore influence the
stress state if they are in close proximity of the indenter. However, the lacunar density is
rather low and it is possible to avoid indenting near lacunae. Canaliculi on the other hand
have diameters of 100 − 300 nm and are therefore small compared to the homogeneously
tested volume of a micropillar or the elastically tested volume of a microindentation. How-
ever, their diameter is of a similar scale as the plastic zone directly under the indenter tip
for microindentations to depths of 500− 1000 nm and they form a relatively dense network
with a spacing of only a few microns. Therefore, they cause stress concentrations under the
tip and may be compressed locally, which would result in a lower apparent resistance of the
material to plastic flow. As these structures are not modeled explicitly in the FE model used
in this study, this missing effect has to be compensated by the material model. Therefore,
the yield and postyield properties of the material may be underestimated. It would there-
fore be preferable to model canaliculi explicitly in the future or use statistics based material
properties to compensate this effect when trying to identify postelastic properties of bone
using nanoindentations. Another limitation is that the friction coefficient between diamond
and bone that has a non-negligible influence on the indentation response was taken from a
nanoindentation study in the literature [Carnelli et al., 2010]. The reliability of the results
would be greatly enhanced if nanotribologic experiments were conducted to measure the
friction coefficient independently. In conclusion, it was possible to remedy the discrepancies
between indentation and micropillar data in this study by abandoning the assumption of
shear strength being governed by an isotropy condition. However, additional independent
measurements and a better understanding of the underlying dissipative processes and their
mathematical description as well as very well defined boundary conditions regarding inden-
ter and ultrastructure are necessary in order to verify this finding and to uniquely identify
the nonlinear behaviour of bone on the microscale in the future.
In conclusion, in this thesis several theoretical, numerical and experimental approaches

were developed that allow to describe the complex behavior of bone on the microscale. Ex-
perimental campaigns were launched to identify the nonlinear material properties governing
the developed models. However, the complex behavior of bone leads to a need for several
independent experiments allowing a straightforward interpretation in order to decouple the
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different effects. Micromechanical considerations about bone’s viscoelastic behavior have
been recently published [Eberhardsteiner et al., 2014], but additional tests are necessary
to identify the time-dependent response over a large range of loading speeds as well as the
postelastic properties in tension and shear. Especially experiments allowing to uniquely
identify the viscoelastic and viscoplastic properties on the microscale are needed, e.g. mi-
cropillar compression tests to both elastic and postelastic stress levels at different loading
rates or microscale creep/relaxation tests. Furthermore, independent tests are necessary to
identify the postelastic properties in tension and shear additional to the compressive prop-
erties reported in Chapter 5. Additionally, there is a need for tests in different directions
using non-proportional loading protocols in order to identify the postyield characteristics of
bone. The isotropic hardening that has been assumed in this work is most probably unre-
alistic and was chosen for a lack of reliable knowledge on the exact nature of the postyield
behavior of bone. Further work in this direction is necessary.
Knowledge of viscoelastic as well as postelastic properties would then allow to determine

the yield surface shape based on indentation data using realistic models of indentations
with different tip shapes. Using this strategy, it would be possible to uniquely identify
the three-dimensional constitutive behavior of a specific bone on the microscale. Such a
valid mechanical model for bone on the microscale could be used to obtain more reliable
macroscopic material properties for bone as a function of density and structural anisotropy
by means of numerical homogenization schemes using e.g. microstructural Finite Element
(µFE) models. Homogenized material descriptions of bone are already used today in longi-
tudinal clinical studies on patient data exploring e.g. influence of drug treatment or disease
with comparatively small computational effort and would benefit highly from a better un-
derstanding of the underlying processes and more reliable empirical constants. Another
interesting application of the model would be the development of a valid model of Reference
Point Indentation (RPI), which is a method used on patients today in which a sharp tip is
pressed into the outer surface of a patient’s bone to measure bone quality. While certain
measurements have been shown to correlate with fracture risk, a clear understanding of the
processes and thus a proper interpretation of the test results has not been presented up
to now. Before a translation into a clinical setting would be possible, the efficiency of the
method needs to be enhanced and it has to be assessed how the variability in the postyield
properties compares to the variability due to the different pores affecting the measurements
at this length scale. First steps in this direction have been taken in this work but several
additional experiments are yet to be performed before the final goal can be achieved. Fur-
thermore, the existing protocols have to be adapted to test bone in its natural hydrated
state in order to mimick physiological conditions more closely. This was not possible in the
frame of this dissertation and remains a clear limitation of this work. Also, the micropillar
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compression experiments highlighted a size effect in bone due to the presence of defects like
preexisting cracks and pores or interfaces such as cement lines. Identifying the exact nature
of the size effect and the mechanical role of interfaces in bone will be a crucial and inter-
esting task for future work, as this is an important point limiting the applicability of mean
field methods in predicting failure properties of heterogeneous and quasi-brittle materials
like bone. It seems that the statistical distribution of defects and interfaces plays a very im-
portant role in the macroscopic failure behavior of bone. Deciphering the micromechanical
behavior of lamellar bone and its evolution with age, disease and treatment as well as the
nature of failure on several length scales will help preventing fractures in the elderly in the
future.
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