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1 Introduction

Consider µ−µ+ or e−e+ pairs produced thermally from a quark-gluon plasma at a temper-

ature T >∼ 150MeV, with the pair having a non-zero total momentum k ≡ |k| ∼GeV with

respect to the plasma rest frame, and an invariant mass M ∼GeV. If no zero-temperature

resonance lies near the M considered, non-thermal backgrounds for the production of such

dileptons are expected to be smaller than for on-shell photons, and dileptons may there-

fore constitute a good probe of QCD interactions at finite temperature. As a particular

reflection of deconfinement and chiral symmetry restoration, a relatively smooth shape is

anticipated for the thermal dilepton production rate, with a characteristic overall magni-

tude (to be determined by theoretical computations) and an exponentially damped spectral

shape.

Many different approximation schemes and kinematic regimes have been considered for

thermal dilepton production in the past. First next-to-leading order (NLO) analyses were

carried out long ago for k = 0 [1–3], finding that for M ∼ πT radiative corrections are in

general small. However, moving to a “soft” invariant mass M ∼ gT with still k = 0 (here

g2 ≡ 4παs), a major enhancement of the rate was found after carrying out Hard Ther-

mal Loop (HTL) resummation [4]. Most of the past work has concentrated on M ∼ gT
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but large spatial momentum (k >∼πT ). In this regime the NLO rate has a logarithmic

singularity, which is regulated by Landau damping of the quarks mediating t-channel ex-

change [5, 6]. In addition, there are finite terms which all contribute at the same order

because of collinear enhancement, and need to be handled through Landau-Pomeranchuk-

Migdal (LPM) resummation [7] (LPM resummation incorporates HTL resummation in an

approximation valid for k ≫ gT ). In order to avoid double counting, LPM resummation

needs to be carefully combined with other processes [8]. A resummation beyond HTL

(based on effective kinetic theory) is also needed at k = 0 for M ≪ gT [9]. In contrast, for

M ≫ πT no resummation is needed at NLO, and the analysis can be greatly simplified by

making use of Operator Product Expansion (OPE) techniques, with the results available in

analytic form [10]. Unfortunately the OPE expansion shows convergence only quite deep

in the hard regime (M ≫ 8T ) [11]. Finally, lattice simulations are being carried out at

k = 0 [12–14] and at k 6= 0 [15], even though the usual issues with analytic continuation

imply that the results may suffer from uncontrolled systematic uncertainties [16].

As is clear from the previous paragraph, many computations have concentrated on

special regimes in which one or the other kinematic simplification can be made. The current

study is the continuation of a recent project [17, 18] which led to the determination of the

NLO dilepton rate for generic momenta and invariant masses k,M ∼ πT [11]. The goal of

the present study is to present a smooth interpolation between these hard NLO expressions,

and leading-order LPM resummation in the soft regimeM ∼ gT , k ≫M . The interpolated

results turn out to have a qualitatively correct behaviour even when extrapolated down to

M ∼ gT , k ∼ 0. Therefore, for practical purposes, we hope that they yield a fair estimate

of the thermal dilepton rate from a deconfined QCD plasma for the invariant masses and

spatial momenta of interest to the current heavy ion collision program.

The plan of this paper is the following. After defining the observables to be considered

in section 2, we briefly review the status of hard NLO computations in section 3 and of

soft LPM resummation in section 4 (we also introduce an efficient method for the numer-

ical solution of the LPM equations). A way to consistently combine these approaches is

explained in section 5. Numerical results, meant for phenomenological use, are displayed

in section 6, and we finish with a brief conclusion and outlook in section 7.

2 Basic definitions

To leading order in αe ≡ e2/(4π) [19–21] and omitting power-suppressed corrections from

Z-boson exchange, the production rate of µ−µ+ pairs from a hot QCD medium, with a

total four-momentum K ≡ Kµ− +Kµ+ ≡ (k0,k), can be expressed as

dNµ−µ+

d4Xd4K = − α2
e

3π3K2

(

1 +
2m2

µ

K2

)(

1−
4m2

µ

K2

) 1
2

θ(K2 − 4m2
µ)nB(k0)

×
[(

Nf∑

i=1

Q2
i

)

ρ
NS
(K) +

(
Nf∑

i=1

Qi

)2

ρ
SI
(K)

]

. (2.1)

Here nB is the Bose distribution, and ρ
NS

and ρ
SI

denote spectral functions in the “non-

singlet” and “singlet” channels, respectively, with the quark flavours assumed degenerate
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for simplicity. For Nf = 3 the singlet channel drops out, and in the following we concen-

trate on

ρNS(K) ≡
∫

X
eiK·X

〈
1

2

[
Ĵ µ(X ), Ĵµ(0)

]
〉

c

, Ĵ µ ≡ ˆ̄ψγµψ̂ , (2.2)

where c denotes a connected quark contraction; ηµν ≡ diag(+−−−); and
∫

X is an in-

tegral over the spacetime volume. According to eq. (2.1), ρ
NS

must be negative, so we

mostly discuss

− ρ
NS
(K) = − ImΠ

R
(K) > 0 (2.3)

in the following, where Π
R
refers to the retarded correlator.

Let us inspect separately the “transverse” and “longitudinal” parts of − ImΠ
R
. Choos-

ing for convenience the z-axis to point in the direction of k,

k ≡ (0, 0, k) , (2.4)

the transverse part is

− ImΠ
R,T

≡
2∑

i=1

∫

X
eiK·X

〈
1

2

[
Ĵi(X ), Ĵi(0)

]
〉

c

. (2.5)

The remaining longitudinal part can be expressed as

− ImΠ
R,L

≡ ImΠ
R,33

− ImΠ
R,00

=
K2

k2

∫

X
eiK·X

〈
1

2

[
Ĵ0(X ), Ĵ0(0)

]
〉

c

, (2.6)

where we made use of a Ward identity relating ImΠ
R,00

and ImΠ
R,33

. The physically

relevant combination is

− ImΠ
R
(K) = − ImΠ

R,T
(K)− ImΠ

R,L
(K) . (2.7)

3 NLO dilepton rate for general momenta

The observable of eq. (2.7) (although not separately its two parts ImΠ
R,T

, ImΠ
R,L

) is

currently known up to NLO in a strict loop expansion [11]. However only the leading-order

(LO) result can be given in analytic form:

− ImΠR(K)|(g0) = NcTM
2

2πk
ln

{

cosh
(k+
2T

)

cosh
(k−
2T

)

}

. (3.1)

Here light-cone momenta and a photon invariant mass were defined as

k± ≡ k0 ± k

2
> 0 , M ≡

√
K2 . (3.2)

For future reference, it is helpful to present eq. (3.1) also in a form before a final

integration. We do this separately for the parts in eqs. (2.5) and (2.6):

− ImΠ
R,L

(K)
∣
∣(g

0)
=

4NcM
2

k2

[
k2 − k20

2

〈
1
〉
+ 2
〈
ω(k0 − ω)

〉
]

, (3.3)

− ImΠ
R,T

(K)
∣
∣(g

0)
=

4NcM
2

k2

[
k2 + k20

2

〈
1
〉
− 2
〈
ω(k0 − ω)

〉
]

, (3.4)
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where

〈. . .〉 ≡ 1

16πk

∫ k+

k−

dω
[
1− nF(ω)− nF(k0 − ω)

]
(. . .) . (3.5)

It is seen that a substantial cancellation takes place when adding up eqs. (3.3), (3.4).

At NLO, it is more cumbersome to work out analytic expressions. However a conver-

gent 2-dimensional integral representation can be given [11]. An analytic result is obtained

on one hand for the dominant logarithmic divergence at M ≪ πT [22], and on the other

for M ≫ πT [10]. Let us define an “asymptotic” thermal quark mass by

m2
∞ ≡ 2g2CF

∫

p

nB(p) + nF(p)

p
=
g2CFT

2

4
, (3.6)

where nF is the Fermi distribution, p ≡ |p|, and
∫

p
≡
∫
d3p/(2π)3. Then the soft divergence

reads

− ImΠ
R
(K)|(g2) M ≪πT≈ Ncm

2
∞

4π
ln

(
T 2

M2

)[

1− 2nF(k0)
]

+O(αsT
2) , (3.7)

whereas the asymptotic expansion in the hard limit is given by

− ImΠ
R
(K)

M ≫πT≈ NcM
2

4π

(

1 +
3αsCF

4π

)

+
4αsNcCF

9

(

1 +
4k2

3M2

)
π2T 4

M2
+O

(
αsT

6

M4

)

.

(3.8)

4 LPM resummation near the light cone

4.1 Basic equations

Leading-order Landau-Pomeranchuk-Migdal (LPM) resummation for the dilepton produc-

tion rate was worked out in ref. [7]. The dilepton case is a generalization of the on-shell

photon production rate that had been considered previously [23, 24]. A field-theoretic

derivation of the basic equations can be found in ref. [25], and yet another approach yield-

ing the same dynamics, operating within the imaginary-time formalism, in ref. [26].

In its usual formulation LPM resummation assumes the kinematics k0 ≫ gT and

k0 − k ≪ k0. Then only the leading terms in a Taylor expansion around the light cone

k0 = k are relevant. Parametrizing the kinematics through k0 and M2, this means that

the spatial momentum k can be expressed as

k = k0 −
M2

2k0
, (4.1)

and the validity of this expansion is assumed in all formal manipulations of the present

section. (Numerically, however, we may at times exit the regime in which eq. (4.1) is

literally accurate; the procedure to be followed in these cases is discussed below.)

Because of the assumption k0, k ≫ gT , Hard Thermal Loop (HTL) self-energies and

vertices can be simplified through a “hard-particle” approximation (cf. e.g. ref. [27]), re-

sulting in an effective kinetic description [28] with particles carrying “asymptotic” thermal
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masses [29]. With a minor change of conventions with respect to ref. [7] (reshuffling of

imaginary units; inversion of the sign of one of the frequency variables appearing; rescal-

ing of wave functions; and use of nF(−ω) = 1 − nF(ω)), we are then led to define a

“2-particle Hamiltonian”,

Ĥ ≡ −M
2

2k0
+

(
1

2ω1
+

1

2ω2

)(

m2
∞ −∇2

⊥

)

+ iV + , (4.2)

where ∇⊥ operates in the two “transverse” directions.1 The light-cone potential is [10, 30]

V + =
g2
E
CF

2π

[

ln

(
mEy

2

)

+ γE +K0(mEy)

]

+O
(
g4
E

mE

)

, (4.3)

where y ≡ |y| denotes a 2-dimensional transverse separation; CF ≡ (N2
c − 1)/(2Nc); g

2
E
=

g2T is the gauge coupling of the EQCD effective theory; m2
E
= (Nc

3 + Nf

6 )g2T 2 is an electric

mass parameter in EQCD; and K0 is a modified Bessel function. The superscript in V + is

a reminder of the fact that the potential is positive for all y > 0 (it vanishes for y = 0).

We need to solve Schrödinger equations in the S and P -wave channels:

(
Ĥ + i0+

)
g(y) = δ(2)(y) , (4.4)

(
Ĥ + i0+

)
f(y) = −∇⊥δ

(2)(y) . (4.5)

Then the functions we are interested in are

ImΠ
R,L

= Nc

∫ ∞

−∞
dω1

∫ ∞

−∞
dω2 δ(k0 − ω1 − ω2)

[
1− nF(ω1)− nF(ω2)

]

×M2

k20
lim
y→0

Im[g(y)]

π
, (4.6)

ImΠ
R,T

= Nc

∫ ∞

−∞
dω1

∫ ∞

−∞
dω2 δ(k0 − ω1 − ω2)

[
1− nF(ω1)− nF(ω2)

]

×
(

1

2ω2
1

+
1

2ω2
2

)

lim
y→0

Im[∇⊥ · f(y)]
π

. (4.7)

The Dirac-δ constraints here correspond to energy conservation, whereas the Schrödinger

equations in eqs. (4.4), (4.5) can be viewed as reflecting momentum conservation.

Of the variables characterizing external kinematics (k0, k,M), only two are independent

(k20−k2 =M2). As mentioned above, the derivation of the LPM equations can be justified

as a leading term in a Taylor expansion in M2/k2 for k ≫ gT . This implies that k0, k,M

should be related through eq. (4.1). Sometimes, it may however be convenient to also

apply the LPM equations beyond their parametric validity range. There is no unique

way of doing this, however one possible criterion is that there be a specific cancellation

between the transverse and longitudinal contributions, namely that the terms 〈ω(k0−ω)〉 in
eqs. (3.3), (3.4) drop out. In order to maintain this cancellation within the LPM equations,

the coefficientM2/k20 in eq. (4.6) needs to be related to the variables appearing in eq. (4.2)

1The sign of the imaginary part is a convention; it could be reversed by a corresponding sign change on

the right-hand sides of eqs. (4.6) and (4.7).
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in a specific way. This means that we have to give up either the strict M2/k2 multiplying

ImΠ
R,00

in eq. (2.6) or the strict k− k0 that is represented by −M2/(2k0) in eq. (4.2). We

have adopted a procedure, corresponding to ref. [7], where a compromise has been made

at both points; however we have verified that the numerical effect of other choices, if made

consistently, is small.

Following ref. [7], it is helpful for the following to define a parameter M2
eff originating

from a combination identifiable in eq. (4.2):

(
1

2ω1
+

1

2ω2

)

M2
eff ≡

{

−M
2

2k0
+

(
1

2ω1
+

1

2ω2

)

m2
∞

}

ω1+ω2=k0

, (4.8)

M2
eff = m2

∞ − ω1ω2

k20
M2 . (4.9)

4.2 Method for numerical solution

In order to solve eqs. (4.4), (4.5) numerically, we adapt to two dimensions a method em-

ployed in appendix A of ref. [31] for solving vector and scalar channel quarkonium spectral

functions in three dimensions. The basic approach was introduced in ref. [32] for the vec-

tor channel (S-wave) case at zero temperature. Its idea is to reduce the solution of an

inhomogeneous equation to determining that solution of the homogeneous equation which

is regular at origin.

By rescaling the transverse variable as ρ ≡ ymE; introducing a coordinate ρ
′ as a

handle on the behaviour of the solution under rotations; rescaling the wave functions into

a dimensionless form; and making use of the parameter M2
eff introduced in eq. (4.9), the

inhomogeneous Schrödinger equations in eqs. (4.4), (4.5) can be re-expressed as specific

limits of {
M2

eff

m2
E

−∇2
ρ
+ i

[
2ω1ω2V

+(ρ)

k0m2
E

]}

φ(ρ,ρ′) = δ(2)(ρ− ρ
′) . (4.10)

In these variables the structures needed in eqs. (4.6), (4.7) read

lim
y→0

Im[g(y)]

π
= lim

ρ,ρ′→0

2ω1ω2

πk0
Im
[
φ(ρ,ρ′)

]
, (4.11)

lim
y→0

Im[∇⊥ · f(y)]
π

= lim
ρ,ρ′→0

2ω1ω2m
2
E

πk0
Im
[
∇ρ · ∇ρ′ φ(ρ,ρ′)

]
. (4.12)

In polar coordinates, ρ = (ρ, φ), the solution of the corresponding homogeneous equation,

{
M2

eff

m2
E

−∇2
ρ
+ i

[
2ω1ω2V

+(ρ)

k0m2
E

]}

ψ(ρ) = 0 , (4.13)

can be written as

ψ(ρ) =

∞∑

ℓ=−∞

uℓ(ρ)√
ρ
eiℓφ . (4.14)

Among the two solutions for each ℓ, the one regular at origin (denoted by urℓ ≡ u<ℓ ) is of

the form

urℓ(ρ) = ρ1/2+|ℓ|
[
1 +O(ρ2)

]
+ i ζ ρ9/2+|ℓ| ln

(
ρ/ρ0

)
+ . . . , (4.15)

– 6 –
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where ζ and ρ0 are constants. The coefficient of the small-ρ asymptotics of the real part has

been fixed in a particular way. With this normalization, and choosing the solution regular

at infinity as u>ℓ (ρ) ≡ urℓ(ρ)
∫∞
ρ dρ′/[urℓ(ρ

′)]2, the solution of eq. (4.10) can be written as

φ(ρ,ρ′) =
∞∑

ℓ=−∞

u<ℓ (ρ)u
>
ℓ (ρ

′)eiℓ(φ−φ′)

2π
√
ρ ρ′

, for ρ < ρ′ . (4.16)

Subsequently we obtain results analogous to eqs. (4.25) and (A.33) of ref. [31]:

lim
y→0

Im[g(y)]

π
=
ω1ω2

π2k0

∫ ∞

0
dρ Im

{
1

[ur0(ρ)]
2

}

, (4.17)

lim
y→0

Im[∇⊥ · f(y)]
π

=
4ω1ω2m

2
E

π2k0

∫ ∞

0
dρ Im

{
1

[ur1(ρ)]
2

}

. (4.18)

Making use of the symmetry ω1 ↔ ω2 and carrying out one of the integrations, the final

expression reads

− ImΠ
R
|full
LPM

≡ − 4Nc

π2k0

∫ ∞

k0/2
dω
[
1− nF(ω)− nF(k0 − ω)

]

×
∫ ∞

0
dρ

[
ω(k0 − ω)

2k20
Im

{
M2

[ur0(ρ)]
2

}

+

{
k20

ω(k0 − ω)
− 2

}

Im

{
m2

E

[ur1(ρ)]
2

}]

, (4.19)

where the radial wave functions are to be solved from

[

− d2

dρ2
+
ℓ2 − 1/4

ρ2
+
m2

∞

m2
E

− ω(k0 − ω)

k20

M2

m2
E

+ 2i
ω(k0 − ω)V +

k0m2
E

]

urℓ(ρ) = 0 , (4.20)

with the asymptotics at ρ≪ 1 chosen according to eq. (4.15).2 As a crosscheck we show in

appendix A that eqs. (4.19), (4.20) reduce to the correct free results in the appropriate limit.

5 Combination of the NLO and LPM results

5.1 Re-expansion of the LPM result and matching with NLO

In order to combine LPM resummation with the NLO result, we need to identify those

terms in the NLO result which are also part of the LPM resummation. Care must be

taken in order not to count such terms twice. The identification can best be carried out by

re-expanding the LPM result as a “naive” power series in g2, with the kinematic variables

k,M treated formally as of O(πT ), because this is also the structure inherent to the hard

NLO result.

The gauge coupling appears at two points in section 4.1: in the parameter m2
∞ of

eq. (4.2), as well as in the potential V + of eq. (4.3). If we expand to zeroth order in g2,

2The determination of ur
ℓ and the integration over ρ in eq. (4.19) can be implemented as a simultaneous

solution of nine real first-order differential equations: for Reur
ℓ , Imur

ℓ ,Re ∂ρu
r
ℓ , Im ∂ρu

r
ℓ , ℓ = 0, 1, and the

ρ-integral in eq. (4.19). A relative accuracy ∼ 10−6 can be reached with modest expense for all k,M

considered.

– 7 –
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eqs. (4.4), (4.5) can be solved in a Fourier representation. It is straightforward to check

that eqs. (4.6), (4.7) then yield

− ImΠ
R,L

∣
∣(g

0)

LPM
=

4NcM
2

k20

[

2
〈
ω(k0 − ω)

〉
]

, (5.1)

− ImΠ
R,T

∣
∣(g

0)

LPM
=

4NcM
2

k20

[
〈
k20
〉
− 2
〈
ω(k0 − ω)

〉
]

, (5.2)

respectively, where

〈. . .〉 ≡ 1

16πk0

∫ k0

0
dω
[
1− nF(ω)− nF(k0 − ω)

]
(. . .) . (5.3)

A cancellation of
〈
ω(k0 − ω)

〉
as discussed in the paragraph following eq. (4.7) is readily

verified. Summing together and carrying out the remaining integral, we get a limit of

eq. (3.1):

− ImΠR(K)|(g0)
LPM

=
NcTM

2

2πk0
ln

[

cosh

(
k0
2T

)]

. (5.4)

We also need the term of O(g2) from the re-expansion of the LPM result. Note first

that the contribution from the potential V + through eq. (4.2) is of O(g4) in this counting.

One way to see this is that before carrying out the final integral, the form of the potential is

V + = g2
E
CF

∫
d2q

(2π)2

(

1− eiq·y
)(

1

q2
− 1

q2 +m2
E

)

. (5.5)

We see that if the propagator is expanded to O(m2
E
), the term of O(g2) drops out.

In contrast, there are two contributions of O(g2) from the mass term m2
∞. Solving

eqs. (4.4) and (4.5) in a Fourier representation and taking the cut needed in eqs. (4.6)

and (4.7), m2
∞ changes the integration range for the Fourier momentum. In addition, it

appears explicitly in the integrand, if the Fourier momentum originating from −∇⊥ · f is

substituted by other variables as dictated by the Dirac-δ constraint from the cut. The

latter contribution leads to a logarithmic divergence. Determining the logarithmic term

explicitly, and making use of symmetries in order to simplify the finite terms, we get

− ImΠR(K)|(g2)
LPM

=
Ncm

2
∞

4π
ln

(
m2

∞

M2

)[

1− 2nF(k0)

]

(5.6)

+
Ncm

2
∞

2π

∫ k0

0
dω
[
nF(ω)− nF(0) + nF(k0 − ω)− nF(k0)

]
(
1

ω
− 1

k0

)

.

The logarithmic divergence on the first row of eq. (5.6) exactly matches that in eq. (3.7).

For future reference, summing together eqs. (5.4) and (5.6), we define

ImΠ
R
|expanded
LPM

≡ ImΠR(K)|(g0)
LPM

+ ImΠR(K)|(g2)
LPM

. (5.7)
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5.2 Numerical evaluation

The goal now is to combine the NLO result from section 3 with the LPM result from

section 4. We first need to subtract from the NLO result those terms that are resummed

into the LPM expression, cf. eq. (5.7). After the subtraction, the “full” LPM result of

eq. (4.19) can be added. Thereby the final result reads

ImΠ
R
|full ≡ ImΠ

R
|
NLO

− ImΠ
R
|expanded
LPM

+ ImΠ
R
|full
LPM

︸ ︷︷ ︸

≡∆ ImΠ
R|LPM

. (5.8)

In a regime where the resummation has no effect, i.e. ∆ ImΠ
R
|
LPM

= 0, we recover simply

the consistent NLO result. On the other hand, in the soft regime where LPM resumma-

tion is important, the difference ImΠ
R
|
NLO

− ImΠ
R
|expanded
LPM

represents a hard “matching”

contribution (involving 2 ↔ 2 scatterings and void of the logarithmic divergence visible in

eq. (3.7)) which needs to be added to the soft LPM result.

Numerical results for ∆ ImΠ
R
|
LPM

are shown in figure 1. It is seen that LPM resum-

mation has no effect in the hard regime M ≫ gT . It does have a substantial influence in

the regime M <∼ gT , M ≪ k. The behaviour changes qualitatively at small k when the

inequality M ≪ k is no longer satisfied.3 However, for any fixed k > 0, the curves do reach

a regime withM ≪ k if extrapolated far to the left. Therefore it is perhaps not completely

surprising that they turn out to be qualitatively correct even for k <∼M (cf. figure 2(right)).

The results obtained after adding ∆ ImΠ
R
|
LPM

to the NLO expression (figure 2(left))

are shown in figure 2(right). LPM resummation is seen to remove the logarithmic di-

vergence of the NLO result at small M ≪ πT and leave over a smooth behaviour. For

very small k the results show an increase which is in surprisingly good agreement with an

effective kinetic theory computation relevant for this regime [9].

6 Tabulated spectra

Given values for − ImΠ
R
, physical dilepton rates are given by eqs. (2.1), (2.3). In the

following we refer to spectra for the production of µ−µ+ pairs, but the corresponding

results for e−e+ can be obtained by a trivial change of the prefactor in eq. (2.1). Going

over to physical units, viz.

dNµ−µ+

d4Xd4K ×GeV4fm4 =
dNµ−µ+

d4Xd4K

(
1000

197.327

)4

, (6.1)

results are shown for Nf = 3, fixing ΛMS ≃ 360MeV [34], in figure 3. For comparison

we display both the strict NLO results from ref. [11] (left panel) as well as the complete

expressions after including LPM resummation in the soft regime (right panel).4 For a fixed

invariant mass, LPM resummation is seen to have a noticeable effect at the smallest values

of k0, corresponding to the smallest spatial momenta k. The origin of this enhancement

can be inferred from figure 2 (cf. the curves k = 0.01T , k = 0.3T ).

3In all regimes, for given k and M , k0 was determined from k0 =
√
k2 +M2. Then k0 and M were

inserted into the expressions of section 4.
4The data displayed in figure 3 and similar results for other temperatures can be downloaded from

www.laine.itp.unibe.ch/dilepton-lpm/.
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m
 Π

R
 / 

T
2

k = 0.01T
k = 0.3T
k = 1.5T
k = 3T
k = 6T

k = 9T

T = 0.5 GeV, Nf = 3

LPM
 full

- LPM
 expanded

Figure 1. The LPM-resummed result, after the subtraction of terms already appearing as part of

the NLO result. It is observed that: (i) In the “hard” regime, i.e. for M >∼πT , LPM-resummation

has no effect. This is because in this regime, the loop expansion, and specifically the re-expansion

of the LPM result, converges rapidly. (ii) For small k, the behaviour changes qualitatively. Even

though the formal applicability of the result requires k ≫ {gT,M}, which is not satisfied in this

corner, the behaviour nevertheless agrees qualitatively with a kinetic theory prediction for k = 0 [9],

cf. figure 2.
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 / 
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k = 0.3T
k = 1.5T
k = 3T
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k = 9T

T = 0.5 GeV, Nf = 3

NLO - LPMexpanded + LPMfull

Figure 2. Left: strict loop expansion up to NLO, from ref. [11]. Right: results obtained after

adding the contribution from LPM resummation from figure 1. The renormalization scale has been

fixed as specified in appendix B. LPM resummation removes the logarithmic increase from small

M/T and makes the results smoother. The correct behaviour for k = 0 and g4T/π3 ≪M ≪ gT is

− ImΠR ∼ α2
sT

3/M and has been indicated with a green band (from ref. [9], figure 5).
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Figure 3. Left: the NLO dilepton rate, for T = 0.5GeV, as a function of photon energy [11]. The

plots are for Nf = 3 and ΛMS = 360MeV [34]. Bands from scale variation are shown for the three

smallest photon masses (cf. appendix B). Right: the same results after adding the contribution from

LPM resummation. The right panel constitutes our final result at this temperature.

7 Conclusions and outlook

The purpose of this paper has been to collect together ingredients from two existing com-

putations, namely a consistent LPM-resummed computation of the thermal dilepton rate

in a regime of “soft” invariant masses M <∼ gT (ref. [7], with minor modifications [8]), as

well as a full NLO computation in a regime of “hard” invariant masses M ≫ gT [11].

We have shown that the two different regimes can be “interpolated” into a result which is

theoretically consistent in both regimes and should represent a fair approximation (with

uncertainties of less than ∼50%) for all spatial momenta and positive invariant masses.

The uncertainty estimate is based on a recent analysis [26] in which the equations of LPM

resummation, analytically continued to imaginary time, permitted for a determination of

vector channel screening masses and correlation functions which could be directly com-

pared with lattice Monte Carlo data at T ≈ 250MeV. Our results have been tabulated (cf.

footnote 4) in a form which hopefully allows for their easy insertion into hydrodynamical

codes such as ref. [35].

From the theoretical point of view, the results of the present paper are accurate up to

NLO (O(αs)) for invariant masses M ≫ gT . For M <∼ gT, k ≫M they should be accurate

up to LO, thanks to the inclusion of LPM resummation.5 For M <∼ gT , k <∼M , the results

5A disclaimer may be in order. In the NLO computation of section 3, divergences related to soft

momentum transfer cancel between real and virtual corrections. For k ≫ M , soft momenta are kinematically

cut off by a scale qmin ∼ k− ∼ M2/(4k). For qmin ≪ m∞, i.e. M ≪
√
4km∞, this scale is below that at

which HTL effects become important. Even though infrared contributions cancel even in the presence of

HTL effects, which in the NLO computation appear as “insertions”, it might be questioned whether a

supplementary finite term could be left over if the insertions were resummed into propagators. Excluding

explicitly this possibility would require a non-trivial separate computation, which we have not carried out.
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are not fully consistent even at LO, but they nevertheless display a qualitatively correct

behaviour, as a numerical comparison with an effective kinetic theory analysis [9] shows

(cf. figure 2(right)).

One way to improve upon our results would be to include NLO corrections of O(
√
αs)

in the soft regime M <∼ gT, k ≫ M , similarly to what has been done for the photon pro-

duction rate in ref. [36]. A systematic study of the very soft regime M <∼ gT , k <∼M could

also be envisaged, by making use of effective kinetic theory and incorporating full HTL

structures where necessary. Furthermore the results could in principle be extended into

the spacelike domain M2 < 0, which would allow for another direct comparison with lat-

tice measurements, as has been outlined in ref. [11]. Finally, it would be interesting to

consider non-equilibrium backgrounds, probably relevant for practical heavy ion collision

experiments. We hope to return to some of these challenges in the future.
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A Free limit of LPM resummation

As a crosscheck, we discuss here what happens if the potential iV + is replaced by i0+ in

eq. (4.20). The correctly normalized regular solutions become (for 0 < ω < k0)

ur0(ρ) =
√
ρ J0

(

ρ
√

−M2
eff/m

2
E
− i0+

)

, (A.1)

ur1(ρ) = 2
√
ρ J1

(

ρ
√

−M2
eff/m

2
E
− i0+

)

/
√

−M2
eff/m

2
E
− i0+ , (A.2)

and the functions appearing in eqs. (4.17), (4.18) read

lim
y→0

Im[g(y)]

π
=
ω1ω2

2πk0
Im







Y0
(
ρ
√

−M2
eff/m

2
E
− i0+

)

J0
(
ρ
√

−M2
eff/m

2
E
− i0+

)







∞

0+

= −ω1ω2

2πk0
θ(−M2

eff) , (A.3)

lim
y→0

Im[∇⊥ · f(y)]
π

=
4ω1ω2m

2
E

2πk0
Im







Y1
(
ρ
√

−M2
eff/m

2
E
− i0+

)

J1
(
ρ
√

−M2
eff/m

2
E
− i0+

)







∞

0+

(

−M
2
eff

4m2
E

)

= −ω1ω2

2πk0

(
−M2

eff

)
θ(−M2

eff) . (A.4)

In eqs. (A.1)–(A.4), J0, J1, Y0, Y1 are Bessel functions of the first and second kind, re-

spectively (Yν ≡ Nν). Inserting these into eqs. (4.6), (4.7) and setting m2
∞ → 0, the

leading-order expressions of eqs. (5.1)–(5.3) are reproduced.
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B Choice of parameters

The strong coupling constant runs as ∂tas = −(β0a
2
s + β1a

3
s + β2a

4
s + β3a

5
s + . . .), where

as ≡ αs(µ̄)/π, t ≡ ln
(
µ̄2/Λ2

MS

)
, and, for Nc = 3 [33],

β0 =
11

4
− Nf

6
, β1 =

51

8
− 19Nf

24
, β2 =

2857

128
− 5033Nf

1152
+

325N2
f

3456
, (B.1)

β3 =
149753 + 21384ζ(3)

1536

− [1078361 + 39048ζ(3)]Nf

41472
+

[50065 + 12944ζ(3)]N2
f

41472
+

1093N3
f

186624
. (B.2)

The scale parameter ΛMS represents an integration constant and is chosen so that the

ultraviolet asymptotics reads as = 1/(β0t)−β1 ln(t)/(β30t2)+O
(
1/t3

)
. For numerical results

we consider the case Nf = 3 and therefore set ΛMS ≃ 360MeV [34]. The renormalization

scale is varied within the range µ̄ ∈ (0.5 . . . 2.0) µ̄ref, µ̄
2
ref ≡ max{K2, (πT )2}. In general

we have employed 3-loop running (i.e. β0, β1, β2), however we have checked that results

obtained with 4-loop running are well within the error band.
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