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ABSTRACT

We present a comprehensive analytical study of radiataresfer using the method of moments and include
the effects of non-isotropic scattering in the coherenitliw/ithin this unified formalism, we derive the gov-
erning equations and solutions describing two-streamatizdi transfer (which approximates the passage of
radiation as a pair of outgoing and incoming fluxes), fluxiied diffusion (which describes radiative transfer
in the deep interior) and solutions for the temperaturesgree profiles. Generally, the problem is mathemati-
cally under-determined unless a set of closures (Eddingefficients) is specified. We demonstrate that the
hemispheric (or hemi-isotropic) closure naturally desifiiom the radiative transfer equation if energy con-
servation is obeyed, while the Eddington closure produpasaus enhancements of both reflected light and
thermal emission. We concoct recipes for implementing stveam radiative transfer in stand-alone numerical
calculations and general circulation models. We use oufdingam solutions to construct toy models of the
runaway greenhouse effect. We present a new solution fqueesture-pressure profiles with a hon-constant
optical opacity and elucidate the effects of non-isotrgiattering in the optical and infrared. We derive gen-
eralized expressions for the spherical and Bond albedogtenghoton deposition depth. We demonstrate
that the value of the optical depth corresponding to the gapitere is not always 2/3 (Milne’s solution) and
depends on a combination of stellar irradiation, interredtrand the properties of scattering both in optical
and infrared. Finally, we derive generalized expressionstfe total, net, outgoing and incoming fluxes in the
convective regime.

Subject headingsadiative transfer — planets and satellites: atmosphenestkods: analytical

1. INTRODUCTION stand-alone calculations of atmospheres in radiativelibgui

The ability of astronomers to measure the spectral en-"um. retrieval calculations or coupled to three-dimenaio
ergy distributions and transmission spectra of exoplapeta 9€neral circulation models. ~ Related to this technique
atmospheres has inspired theoretical efforts to modedy-int &€ analytical calculations of temperature-pressure |psofi

; ; Hubeny et al. 2003; Hansen 2008; Gulillot 2010; Heng et al.
pret and predict their spectral and thermal structuresh-Tec ( S T s : = <
niques range from studying atmospheres in radiative and/o2012:Robinson & Catling 2012, Parmentier & Guillot 2014),
chemical equilibrium (e.g.. Burrows et al. 2008: Fortneglet which allow one to develop intuition for the thermal struetu

2010) to the inference of chemical composition and thermal ©f @n aimosphere. While the two-stream treatment itself is
structure based solely on the data (€.g., Benneke & SeagePOt novel, it comes in several flavors (Pierrehumbert 2030),
20127 Lee etal. 2012; Line etial. 2013). Global climate mod- ©ftén tuned toward studying the Earth, Solar System, brown

els have been adapted to study the radiation hydrodynamdwarfs or stars and there is a need to elucidate the assump-
tions involved so that we can harness it to study exoplapetar

ics of exoplanetary atmospheres (e.d., Showman et al. 2009él h
Heng. Menou & Phillipgs 2011; Rauscher & Mehbu 2012). tr_lr_1r(1)sp eres. " . o

This surge of interest motivates a careful re-examination ! N€ over-arching goal of the present study Is to construct
of the assumptions and techniques used in radiative trans& unified formalism for calculating radiative transfer amd a

fer, since the exoplanetary atmospheres accessible to agdytical temperature-pressure profiles. \We examine the two
tronomical measurement reside in non-Solar-System-icentr Stéam radiative transfer method applied to atmosphees, fl
regimes] limited diffusion as a description of radiative transfertfe

Central to these theoretical efforts is a simple, generaldeeP”‘]terlor of exoplanets and temperature-pressurdqeofi

and fast technique to compute radiative transfer knOWnaII in the limit of non-isotropic, coherent scattering. Bauf
as the “two-stream approximation” (Chandrasekhar 1960: these techniques has previously been studied separatgly, b

Meador & Weaver _1980; Goody & Yuhg 1989; Toon et al. not.in a unif!ed manner using a self-consistent set of gov-
1989; Mihalas & Weibel-Mihala5 1999). It solves the mo- E/Ming equations. Since we are dealing with moments of the

ments of the radiative transfer equation and treats the pasé%?é?é'xg)tﬁznﬁézggglﬁt(':%n{hztstﬁtec’f rglt?lsel#rr]eiz g%?%%%r?;%gti-
sage of radiation through an atmosphere as a pair of outgo- P

: : ; : . Y~ cally under-determined. One of our goals is to derive a self-
ing and incoming rays. It is versatile enough to be used in . T
9 g ray 9 consistent set of closures. By distinguishing betweendta,t
L University of Berm. Center for S d Habitabily, Sidt net, outgoing and incoming fluxes, we resolve several incon-
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TABLE 1
COMMONLY USEDSYMBOLS

of the radiative transfer equation are only obtainable & th
limit of pure absorption. Table 1 lists the commonly used
symbols in this study, while Tables 2 and 3 summarize the

Name Units __Meaning closures used and a comparison of the different closures in
H - cosine of zenith angle the literature, respectively.
I _ trancshn?{:;fr:'?gﬁc‘t’ig:(e)frt‘r;’ﬁlsurﬁi‘s’; Jity The present paper is the second in a series of analytical
o _ single-scattering albedo studies that aim to re-examine and generalize the theoreti-
% _ scattering asymmetry factor cal formalism used in planetary atmospheres. The first paper
5 . _ \/ﬁ scattering parametér studied atmospheric dynamics via the shallow water approxi
0 “Vi-w mation (Heng & Workman 2014).
C+ — = (1 £ Bo) /2; coupling coefficients
BSO — shortwave/optical scattering parameter 2. TWO-STREAM RADIATIVE TRANSFER: ISOTROPIC, COHERENT
BLo — longwave/infrared scattering parameter SCATTERING
Ag — geometric albedo 2.1.Radiative Transfer Equation
As — spherical albedb o .
Ap _ Bond albedo The radiative transfer equation for a plane-parallel,
g cms2 surface gravity of exoplanet static atmosphere may be stated in a compact form
a cm spatial separation (exoplanet and star) (Chandrasekhar 1960; Mihalas 1970; Goody & Yung 1989;
70 — optical depth Mihalas & Weibel-Mihalas 1999),
T — slant optical depth
K cm? g ! totallextinction opacity 8] S S (1)
Ka cm? gt absorption opacity BTO ’
—2
v gem =, column mass where i = cosf is the cosine of the zenith angld, is
ergent ® st s intensityf - . )
J ergenr3 51 total intensity the wavelength-dependent intensity, is the wavelength-
F erg cn3 51 outgoing flux dependent optical depth arfflis the source function. The
F, erg cnr3 =1 incoming flux source function hlde§ the complexﬁy_assomajted with scatt
Fy ergcnr3 5! total fluxt ing and thermal emission. The zenith anglés the angle
F_ ergent 3 571 net fluxt between an incoming or outgoing ray and the normal to the
B ergent 3 s !srt Planck functioi plane. Note that we have definegl = 0 at the top of the
KR cm? gt Rosseland-mean opacity atmosphere.
Ks cm? gt shortwave/optical opacity Generally, it is challenging to obtain analytical solusarf
n S shortwave opacity index the radiative transfer by directly solving fdr This is pos-
mL cm g __ longwavefinfrared opacity sible only in the limit of pure absorption (see Appendix B).
“So - S'.”g'le'scatttte”.”g a'll;e‘éo (Thortwa"e) Instead, one solves moments of equatldn (1), which requires
“Lo - single-scattering albedo (longwave) us to define the moments df The two-stream equations
9so — asymmetry factor (shortwave) . .
oL, _ asymmetry factor (longwave) are essentially the first and second moments of equdflon (1)
J ergenT 2 s— total intensity (all wavelengths) (Meador & Weaver 1980).
F ergenm2s! outgoing flux (all wavelengths) .
]—'I ergcenT 2 s™ incoming flux (all wavelengths) 2.2.Moments of the Intensity
Fy ergenm2 st total flux (all wavelengths) The zeroth, first and second moments of the intensity are
F_ ergenm2s1 net flux (all wavelengths) P
Ei — i-th order exponential integral _
T K temperature Jr :/ / Idp do,
T K global-mean temperature o
Tirr K irradiation temperature _
Ty K effective stellar temperature = / / I dp dg,
Tint K internal temperature or  nl
t: quantity is wavelength-dependent. Y = / / ul dp do,
0 0
2 0 (2)
dington closure not be used. §8, we examine non-isotropic, 1= / / pl dp de,
coherent scattering and describe a transition to flux-&ichit 0 1
diffusion in the deep interior. 1§}, we use our findings if2 _ ! 9
and{§3 to derive analytical temperature-pressure profiles with = / /0 I dudg,

non-isotropic, coherent scattering and a non-constaitaipt
or shortwave opacity. 1§5, we apply our unified formalism
to studying other closures, concocting recipes for conmguti

two-stream radiative transfer, calculating albedo speatrd The outgoing flux and incoming flux are given By and F,

temperature-pressure profiles, generalizing Milne’s tsmiu ) . :
andpconstrucl?ing toy mpodels ofg[he runawgy greenhouse effespectively. Note that the total intensity)( total flux (£')

fect. Ingg, we compare the current study to previous ones and net flux {), as well as the second momenfs(), are
and discuss the implications of our findings. In Apperdix A, 9Vén by
we derive generalized analytical expressions for the,tot|

outgoing and incoming fluxes in the convective regime. In
Appendix(B, we demonstrate that direct analytical soligion

27
K¢_// w21 dudg.

J=Jp 4+ Jy,
Fe =1 £ F, ®3)
KiEKT:l:K\L,
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TABLE 2 that generally make choices for the valuejef-sometimes
CLOSURESADOPTED(EDDINGTON COEFFICIENTS without explicitly stating them—we will seek two-stream so
lutions with 7 as the independent variable and leave the value

Symbol Meaning of i1 unspecified.
e = Fy/J; first Eddington coefficient (outgoing) To transform equatiofi{4) into its two-stream form, we first
e~ =F /], first Eddington coefficient (incoming) rewrite it in terms of the slant optical depth,
e=Fy/J first Eddington coefficient
e2=K_/Fy second Eddington coefficient T = 70 (5)
es=K_/J third Eddington coefficient T ’
es = Ks/Js third Eddington coefficient (shortwave) i L
L = 1./ Jr first Eddington coefficient (longwave) whereji > 0isa cha_racterlstlc or mean value pfin the
eLs = KL/ Jo third Eddington coefficient (longwave) upper hemisphere (defined by< § < 90° or(0 < p < 1).
Closure Assumption or Consiraint By integrating equatiori.{4) overand using equations](2) and
€+ =€y =e_ symmetry between hemispheres @), we obtain
b=py =—f— symmetry between hemispheres OF 1 w
e=cy conservation of energy r =iy Py {_ _ _0}
e+ =1/2 correct blackbody emission for opaque atmosphere or €4 2¢ (6)
€2 =F/2F_ reproduces isotropic limit 4 Wo B
e3=1/3 deep atmosphere limit — F, —2mjig (1 — wp) B.
€g = p? reproduces Beer’s law 2¢
er, = 3/8 equal toe2 /2¢3 (consistency with other closures) In the lower hemisphere (defined B9° < 6 < 180° or
e, =1/3 correspondence i —-1<u< 0), we define

. . . | r=_, @)

while E = J/cis the energy density, whetds the speed of o

light. In a departure from the traditional approach, we have
defined total quantities (integrated over one or both hemi-
spheres) and not mean ones (which are further dividetpy

wherefi_ < 0 is a characteristic or mean valueigfand then
integrate equatiorm4) to obtain

.. BF\L _ 1 wo
2.3.Deriving the Two-Stream Form or =p-F, 9
The radiative transfer equation with isotropic, coherent fi—wo (8)
scattering is described by (Mihalas 1970) — 5 It —2mp- (1 —-wo) B.
or —I_ wo/ 1 B 4 In transforming the radiative transfer equation, which in-
"y (1-wo) B, (4) orming the rad quat
To 4 volves the intensity, into its moments, which involve the to

tal intensity, fluxes and other higher moments, one needs
a series of “closures”, which effectively reduce the num-

is the ratio of the scattering cross section to the totalqghs .
tion and scattering) cross section and is termed the “single 2€" Of unknown variables by one—the number of unknowns
now becomes equal to the number of equations. These

scattering albedo”. The thermal emission is assumed to be “ ; - ”
in local tgr]]ermodynamic equilibrium (LTE). By “coherent’, closures are generally termed the “Eddington coefficients

we mean that the incoming and outgoing photons have the(MihaIas & Weibel-Mihalas 1999), although there appears to
same frequency. Traditionally, such an approximation e&lus be no consensus on how to number them. In the present

to describe the continuum in stellar atmospheres. It is aStUdy’ we will number the Eddington coefficients in the or-

bad approximation for spectral lines, unless they have zeroder in which we will invoke them. In the case of isotropic,

width and the scattering atoms or molecules are compIeterCOh]?f-re-nt scf,attermg, we define the following "first Eddingto

at rest. Instead, spectral lines are better described bgphe coefficients”,

posite limit of “complete redistribution” (or “complete ne _F R A

coherence”), where the frequency of the outgoing photoas ar &+ = T €= 7 €= (©)

randomly redistributed over the line profile (Mihalas 1970) ) ) )

In highly-irradiated exoplanets, coherent scattering @dea ~ Where there is one each for the outgoing/upper hemisphere

cent approximation, because of the presence of densedorest(¢+), the incoming/lower hemisphere_() and the entire at-

of lines and collision-induced absorption, the latter oficth ~ mosphered). We will see later that the values of these first

functions like absorption by a continuum. Redistributimern ~ Eddington coefficients may be fixed via a series of physical

each individual line, in such a dense forest of lines, is then constraints. ) o ) _

a relatively minor effect. The problem is further alleviite ~ We assume that the Eddington coefficients in the outgoing

if synthetic spectra are computed over relatively broadevav and incoming hemispheres are equal, ice.,= ¢, = ¢_.

length bins. Furthermore, we assume that the characteristic valugs of
There are two ways to proceed. The first is to solve equationhave the same magnitude in each hemisphere,

(@) usingTy as the independent variable (e.g., see Appendix - (10)

[Bl for the case of pure absorption). The second is to relate b=t ="l

7o to a slant optical depthr§ via some characteristic value These assumptions are commonly made, but seldom explicitly

of u (). IPlerrehumbert (2010) has previously discussed theelucidated (e.gl, Pierrehumbert 2010). Any physical pgece

various choices ofi and adoptedi = 1/2. As an exam-  that leads to an asymmetry between the outgoing and incom-

ple, we note that Frierson, Held & Zurita-Gotor (2006) also ing values of the flux and mean intensity will render=£ e_

useiir = 1/2. In order to facilitate comparison with studies andji; # . Furthermore¢,, e_ ande are generally not

where B is the blackbody/Planck function. The quantity
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expected to be constant with pressure or height in an atmo-yg = 27jz and the solutions to the equations[inl(11) are

sphere.
With these assumptions, the pair of equationgln (6) ghd (8) B
may be rewritten in a more compact form, Fr = Fy, exp (7a7) + ~ [1 —exp (7a7)],
OF g (16)
a—: =%abt —%F, — 8B, Fy = Fy exp(—7a7) + 3 [1 —exp (—7a7)],
(11) :
OF),
25, = b+l + BB, where F;;, and F, are the values of?; and F|, respec-
- ) tively, whenT = 0. In an opaque atmosphere, we have
where the coefficients of the equations are Fy = 8B/y. ast — —oo, While F| — B/, as
1w T — oo. This implies that the total flux becomes
%EM<;_Z)’ 2y5B
Hwo 12) F, — = 4mey B. a7
Vs = s Ya
2e
B = 27/ (1 — wo) . By assuming the blackbody radiation to be isotropic oveheac

We note that the pair of equationsfn{11) have the same math_hem|sphere, one may show that

ematical form as equations (11) and (12) of Toon et al. (1989) or  nl 9r 0

Instead of using the generic labels of," and “v," for the / / _ / / _
coefficients, we have useg, and~, to refer to the effects o Jo nBdudo 0o J-1 uBdpdg ==B. (18)
of absorption (via the subscript “a”) and scattering (via th

subscript “s”). In a purely-absorbing atmosphere, we have Since the correct limit i§”, — 27B, this implies that, =
~s = 0, such that outgoing rays remain outgoing and incom- 1/2. It follows that

ing rays remain incoming, at least for the two-stream approx

imation. Scattering converts some of the outgoing rays into Ya =1 (2 —wp),
incoming ones (and vice versa), becayse 0. o (19)
Meador & Weaver (1980) and Toon ef al. (1989) have pre- Ts = Ho-

viously derived equivalent forms of equationi(11) from the r
diative transfer equation, while Pierrehumbert (2010)dras
viously stated equatiof (L1) in a heuristic way (see his €hap
ter 5.5).

The same line of reasoning was again previously employed
by[Toon et al.[(1989). Within our formalisri/e. is the dif-
fusivity factor (se€6.4).

2.4.Enforcing Energy Conservation in Purely Scattering 2.6.Equivalence of Solving First- and Second-Order
Limit Differential Equations

_Even without solving the pair of equations in[11), we may | equation[[IB), we previously stated the solution for an
simplify the expression fof;, and~; by demanding that en-  jsothermal slab bounded by 0 and There are two ap-

ergy is conserved in the purely scattering limip(= 1, proaches to solving the two-stream equations: either ag a pa
78 = 0), which yields of first-order differential equations or as a single secorakr
OF differential equation. Identical answers are obtainechd t
o = (Ya —s) Fr = 0. (13) correct boundary conditions are specified. The equivalence

) o of these approaches may be cleanly demonstrated using the
Since we generally expeét, # 0, this implies that we must  pair of two-stream equations in the purely absorbing limit,
havev, = s, which yields

F
€= €4. (14) % =20Fy — 2naB,
T
It follows that OF, B B (20)
i ( wo) o =—2uF, +27puB.
Ya = — 1—— )
€+ 2

(15) While the mathematical techniques presented in this subsec

Hwo . ; >
ST o0 tion are well-known and not novel, we review them within the
€+ context of our problem so that we may apply them later in
This line of reasoning was previously employed by Toon &t al. 2.1, §3.2.4 and AppendixA.
(1989). Solving the pair of equations ib(R0) involves realizingttha
2.5.Enforcing Correct Total Blackbody Flux in Isothermal, 0 _ _ OF; _ _
Opaque, Purely Absorbing Atmosphere 5, [Frexp (=247)] = exp (=247) —— — 2aF; exp (=247),
In the purely absorbing limit, we enforce the conditionthat 0 g _ (0F) _ _
the blackbody flux emitted by an opaque, isothefhaammo- o7 [, exp (247)] = exp (2/”)? +2AF, exp (247).
sphere is correct. When, = 0, we gety, = fi/ex+, s = 0, (21)

* Specifically, we assume thét is constant withr. Integrating between two layers, with optical depths-oéind



79 (Wherery > 71), we obtain 2.7.General Solution with Isotropic Scattering and
Non-Isothermal Layers

Fy, =Fy, exp 2i (11 — T
n 2 &P 20 (1 = 72)] We now return to solving equatidn (11) in the general sense.

+ 27 /T2 Bexp [2i (11 — 7)]dT, Adding and substracting the equations in turn yields,
o 22
Fy, =F), exp2i(m1 — 72)] (22) OF, =2uF_,
e i 657 (29)
+27T,u/T Bexp [2fi (T — 12)]dT. ;L —27i (1 — wp) (Fy — 27B),
' T

We have intentionally written the expression for the outgo- from which we obtain
ing flux in this way, because it is obtained by integrating up-

wards from the boundary condition at the bottom of the atmo- 92F,
sphere (BOA). In this mannef} is computed for the layer 72
immediately above the BOA. This procedure is repeated until
each of the model atmospheric layers has a computed valugvhere we have defined
of F. Similarly, the incoming flux is obtained by integrating

—o?F, = —270°B, (30)

downwards from the boundary condition at the top of the at- a=2a(1- w0)1/2 . (31)
mosphere (TOA) and populating each layer with a computed ) ] )

value of F|. In the isothermal limit, we obtain The homogeneous solution to equation (30) is as before,
Fy, =Fp,exp 20 (11 — 72)] + 7B {1l — exp 2 (11 — 72)]}, Fin = Ajexp (ar) + Az exp (—ar). (32)
F, =F,, exp [2fi(r1 — 72)] + 7B {1 — exp 271 (r1 — m2)]}

3 The particular solution depends on the functional form
(23) adopted forB. Generally, we expect each model layer to have
The approach of solving a pair of first-order differential aninternaltemperature gradient, implying th&tdepends on

equations becomes challenging when the equationgfand 7, SinceT depends orr. FollowingiToon et al.|(1989), we
F, are coupled in the presence of scattering. A more generafVrite B as a linear function of,
approach is to cast the problem in terms of a second-order

! — /
differential equation forZ’,, which is applicable even when B=Bo+Bu(r-1), (33)
~s # 0. By separately adding and subtracting the pair of equa- pore
tions in [20), we get
, 10B By — B
8— :2/LF_, 1% or 1% (T2 7—1)
-
oF_ _ B (24) is the gradient of the Planck function across a given laydr an
or =2ply —AmpB, is constant for that layer. The quantity is present in equa-
L tion (33) to translate the “zero” of the optical depth to tdge
from which it follows that of a layefi The quantities3; and B, are the Planck function
0%F, L S evaluated at; andrs, respectively. The values of the quan-
52 Ay =—8mp"B. (25)  tities By and 7’ depend on whether one is dealing with the
] ] ) ) . outgoing or incoming flux. For the outgoing fluB, = B>
This second-order differential equation has the solution, and7’ = 7. For the incoming fluxBy, = B; andr’ = 7.

_ _ o These choices ensure that wher- 71 5, equation[(3B) gives
By = Avexp (27) + A exp (=20im) + 208 (26) 577 By ». Mathematically, equatiof (83) qualifies as the

The coefficients4; and A, are determined by imposing a Taylor series expansion of the Planck function about thetpoi
pair of boundary conditions. To keep the algebra tractableT = 7/, truncated at the linear term.

for now and merely illustrate the method, we have assumed With this choice ofB, the particular solution takes the form,
isothermality 0B/0r = 0) for this subsection. It follows

that F., =2nB. (35)
F_ = 2ur) — —20uT). 27
Avexp (207) = Ag exp (=24i7) 27) The full solution (homogeneous plus particular) to equatio
By again imposing the boundary conditiofis, and F';, , we @0 is
obtain
Ay = (Fr, — 7B) exp (—2firs), 28 e =Avoxp(ar) + Ay oxp(—or) +27B,  (36)
Ay = (Fy, — 7B)exp (2iim1), (28) from which we obtain
from which we may derive the pair of equations[inl(23). F o= _ _ B 37
Thus, the two approaches of either solving a pair of first- 20 [Avexp (a7) = Az exp (—am)] + 7B (37)

order differential equations (fdr; andF'}) or a single second- _ ,
5 A potential source of confusion comes from the fact fhat Teoal.

order differential equation (fOF‘*) are equwalent, at least in (1989) use two contradicting definitions for their In the text below their

the purely absorbing, iSOtherm?—' limit. In more genera.bsas equation (1), it is described as the optical depth measuoed the top of the
we will use the method of solving the second-order differen- atmosphere. In their equation (25), it is the optical deptiasured from the
tial equation. edge of a model layer.
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The outgoing and incoming fluxes are

/

B
Fy =A1(y exp (ar) + Ay(_exp (—ar) + 7B + FT
B’
F| =A(- exp (o) + A2(4 exp (—aT) + 7B — R
(38)
where we have defined
1
Ce=5 1= —w)'?]. (39)

To derive expressions for the coefficiends and A, we
have to impose the boundary conditialis and £, , which
yields

Fp, =A1(4 exp (ama) + Ax(_ exp (—ars) + 8oy, (40)
FJJ =A;(_exp (OéTl) + A2C+ exp (—aTl) + 7B _,

where we have found it convenient to define the quantities,

B/

B =B +Bji(r—m)— B
/ (41)

Biw =By + B'ji(1; — 12) + 5

A more intuitive way of writing down the solutions for

the outgoing and incoming fluxes is to cast them in terms

of the transmission function (or simply the “transmissiVjit
(Pierrehumbert 2010),

(42)

noting thatr, > 71. This approach is also more ideal for com-
putation, since we have < 7 < 1 (instead of unwieldy ex-
ponentials with potentially large exponents). The task -
rive expressions faF, interms ofF}, and7T, and alsaF), in
terms ofF, and7 . More specifically, we have to find expres-
sions forA; (4 exp (ar1) and.Ax(_ exp (—ar1) when deriv-
ing F,. For F|,, we need expressions fot;(_ exp (ar2)
and.A2(; exp (—atz). Manipulating the pair of expressions
in (40) gives

T =exp|—a(r —1),

1
Az exp (—ar) = [C_Fy, — (T 'F,

=ar—ar
— (- Boy — (T 'B1)],
(43)

and

[C-TF, — L F,

Asexp (—am) = 1 (44)

T -GTH
= 7 (=T B2y — (+B1-)].

The expressions in[{(#0) permit two ways of deriving
A1 exp (ar1) or A1{_ exp (arz). One can choose to use
either the equation involving the boundary conditiby, or
F|,. In deriving F},, we use the first equation if_(40). In
deriving F|,, we use the second equation [in](40). It follows
that

AiCyexp (am) =TFy, — Ayl T?exp (—am)

- 7T82+T,

AiC_exp (ary) =T 'F), — Al T 2 exp (—am)

— 7T317T71.

(45)

Assembling all of the various pieces enables us to obtain

1
Fyy=————{(C-C)TF, - ¢ (1-T) Fy,
} - {(E-G) TP, —¢-¢4 ( ) Fy
+ 7 [Bis (CT? = (3) +Bot T (¢F —C2)
+ B¢ ¢ (1-T7)]},
1
Fl,=—————1{(C-C)TF, - (1-T?) F,
1 (<_7_)2_<J2r {(< <+) L =¢ C+( ) T

+ 7 (B (CT? =) +B.-T (2 -¢2)

+ Bay (-G (1-T7)]}-
(46)

In the limit of pure absorptiong, = 0), we have{_ = 0
and(, = 1 and the two-stream solutions reduce to

FTl :TFTz + (Bl-l- - 82+T) )
Fw Z'Tl*—l1 + 7 (Bg_ - Bl_T) .

In the isothermal limit, we recover equatign{23).

Unlike in the purely absorbing limit, verifying the two-
stream solutions in the limit of pure scattering is a subifier
sue. As already noted hy Toon et al. (1989), the two-stream
solutions derived fotug # 1 are not valid in the limiting case
of wy = 1. One needs to return to the governing equations in
(29) in the limit ofwy = 1 and solve them directly (Toon etlal.
1989). Specifically, the equations [n {46) need to be replace
by

(47)

(FTz _Fil)ﬂ(TQ_Tl)

Fy, =F, -

1 —_ _ b
+N(T2_ 71) (48)
F =F (FTz_Fil),u(TQ—Tl)
l2 — ~L1+ — _ )
1+/L(T2 7'1)

One may verify that when the model layer is opaque

71 > 1/[), one recovers the pure reflection of the boundary
conditions: Fy, = F|, andF|, = F;,. When the layer is
transparentf, — n < 1/f), we getfy, = Fy, andF|, =

.-
iWe note that whewy = 1, the equations if(46) reduce to
Fy, = F), +nB andF|, = F}, —7B’. Italmost reproduces
the pure scattering limit for an opaque atmosphere, but with
blackbody terms that produce unphysical contributions.

2.8.General Solution with Isotropic Scattering and
Isothermal Layers

We now study trends in the limit of each model atmospheric
layer being isothermal, where the two-stream solutions are

_ 1 2 _ A2 _ _ 2
FTl _(<_T)2 _ <J2r {(<7 <+) TFTz C—C-ﬁ- (1 T )Fh
+ 7B [ (1T = (CT+&)1-7)]},
1
Fl,=———{(® -C)TF, - ¢ (1-THE,
y (C,T)Q—Ci{(c CE) TFy, =G ( ) By

+ B[ (1-T*) = (CT+¢G)A-7)]}.
(49)

Written in this form, the purpose of the “coupling coeffi-
cients” becomes clear.. are order-of-unity, dimensionless

coefficients that assign relative weights to the bottom apd t
boundary conditions, depending on the strength of scageri
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FIG. 1.— Behavior of(_, {4+ and their ratio as a function of the single-  FIG. 2.— Outgoing and incoming fluxes as functions of the sirgglattering
scattering albeda.p) for different values of the scattering asymmetry factor albedo (o) and for various values of the transmission)(in the limit of
(go)- Note that{_ /¢4 is also the spherical albedo. isotropic, coherent scattering. All fluxes and their bougdzonditions are
In the limits of pure absorption{( = 0,{; = 1) or pure given in terms of the blackbody flux ().
scattering (+ = 1/2), this coupling is broken. In between,
it depends on the symmetry properties of scattering (FigureThe governing equation now reads (Chandrasékhar! 1960;
). The ratio(_/(; is also the spherical albedo, as we will [Mihalag 1970; Goody & Yurig 1989),
see in§4.2.1. Generalized expressions {ar, involving non-

. " L . . 4
isotropic scattering, will be derived K8 or . wo "1
When the layers are transparefit & 1), we haveF, = “37—0 =1 47 J, PLAY = (1 —wo) B, (51)
Fy, andF, = F|,, as expected. In opaque layefs & 0), : _ _ .
we have whereP is the scattering phase function. It is integrated over
all incident angles in spherical coordinai@s, ¢') such that
_Gh, - dQ) = du'd¢’, where we have defingd = cos¢’. Note that
IO +7B (1 s . -
! Ch Ct (50) if P = 1, then we recover equationl (4).
_F _ . . .
F, :C T 4 7B (1 — <—> . 3.1.General Properties of the Scattering Phase Function
Gt Gt : )
_ _ _ _ We can state a few general properties of the scattering phase
The factor(_ /(. is a steep function ofy (Figure[1), im-  function that will allow us to transform equatidn{51) ints i
plying that the fluxes rapidly converge towards the boundary two-stream form, even without explicitly specifying thenfus
conditions as scattering becomes more dominant. tional form of P. Our derivation fills in details previously left

It is apparent from equatiof (49) that if the boundary con- out by other works.
ditions F, and F;, assume equal values, then the outgoing
and incoming fluxes are identical. Thus, to illustrate the di 3.1.1.Sole Dependence on the Relative Scattering Angle

versity of solutions possible, we adopt, /7B = 0 and o _
F\, /7B = 1. Figure[2 illustrates several basic trends. As @Giner;}"% g 'S 'Ia'?\?grgigutrzﬁiog aﬁn(r?e) gﬁ(l))\;\,/swgﬁge to

expected, we gefr, — F, andFy, — I, 8Swo = 1, garive a symmetry property associated with and
independent of, i.e., pure reflection of the boundary condi- (Goody & ang 19g9;pPieprrer¥umbert 2010). I(l:ﬁonsideﬁrL two

tions. The incoming flux£},) increases with the transmis- 3o Iocations in the atmosphere represented by the ve
sion (7)) as one expects for an atmosphere that is irradiated —~

! o3 / / ! o3 /o3 / / / hond

from above. Curiously, the outgoing fluy,) decreasems  tOrS”’ = (r’siné’ cos¢’,r’sin¢’sin ¢', 7’ cos ) andi =
the transmission increases, but this is a consequence of th&/ sin 6 cos ¢, rsin sin ¢, r cos 0). Taking their dot product
fact that there is no internal heat specifigg(= 0); it tends ~ Yi€lds an expression for” = cos ©,
towards this vanishing boundary condition as the transoriss 1/2 1/2
increases. p'= At (1= ) / (1—n?) ? cos (@' —¢), (52)

We note that there is no contradiction between specifying previously stated in equation (8.2)of Goody & Yung (1989)
T andw, as independent parameters. A largely transpar-anq equation (5.8) df Pierrehumbert (2010). Equation (52)

ent atmospheric layef/( ~ 1) may still be purely absorbing  jnforms us that” is invariant to double sign flips i’ andy,
(wo = 0) or scattering o = 1)—it just does not absorb or

scatter enough to render itself opaque to radiation. Thestra p'—= i g — —p andp — —p. (53)
mission specifies the fraction of radiation passing throagh
layer, while the single-scattering albedo describes tlative
strength of scattering versus absorption.

Sincey” is single-valued fof < © < 180°, we may con-
clude that® and thusP are invariant under this transforma-
tion.

3. TWO-STREAM RADIATIVE TRANSFER: NON-ISOTROPIC, o
COHERENT SCATTERING 3.1.2.Normalization Symmetry

Naturally, the next generalization is to allow for coher- It is assumed that integratirf§ over all angles yields the
ent but non-isotropic scattering within the model atmosphe same normalization, regardless of the coordinate system th
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integration is performed in,
4w

PdQ’ = 4n
0
Where we have deflnedQ” = du'd¢"” and¢” = ¢ — ¢.
This property |mpI|es that we can always repl&e®dy some
function?’ = P’(©) and still perform the integration in any
of the coordinate systems.

4w 4w

PdQ = [ PdY = (54)

3.2.0btaining the Two-Stream Equations and Solutions

With the properties of? stated, we can evaluate the mo-
ments of equation[($1). Following5.2 of [Pierrehumbert
(2010), we multiply equatiori ($1) by a functidn = H(9)
and integrate over all anglésand,

1 a 1 0
o / (/ uwHIdp — / uHIdu) do
M 47 ’ - 4 (55)
= / HIQY—-T — (1 —wo)/ HBAS,
0 0
where we have defined
47
7 =wo GIdsY,
. 0 (56)
= HPAS.
4.7T 0

Note that the minus sign in the integral involvipgn equa-
tion (58) comes from the characteristic valuedbeing pos-

itive and negative in the outgoing and incoming hemispheres

respectively i = is = —fi— > 0).
To evaluate&j andZ, one has to specify the functional form

if we define the asymmetry factor as (Goody & Ylng 1989;
Pierrehumbert 2010)

1 471'
- /0 W'PASY, (60)
then we obtain the result,
G = got', (61)

which was previously stated, without proof, in equation
(8.142) of| Goody & Yung [(1989) and equation (5.18) of
Pierrehumbert (2010). It implies that

T = wogoly. (62)
It follows that equation(35) becomes
0K _
5. = A (1 — wogo) - (63)
-

Note that all of these steps used to detivendZ, for H = p,

are invalid if the integration is not carried out overt stera-
dians. Partial integration is akin to making specific assump
tions about the asymmetry propertiesfaf

3.2.2.Consistency with Isotropic Expressions

By adopting the appropriate closures, equati¢n$ (57) and
(®&3) may be transformed into a pair of equations for the out-
going and incoming fluxes. A basic consistency check is to
demand that they reduce to the pair of equationsih (29) when
go = 0 (isotropic scattering).

Invoking the first Eddington coefficient,= F; /J, we see
that equation[{37) reduces to the second equatioh_ih (29) if
e = 1/2. To recover the first equation ifi (29), we need to

of H. As already explained by Pierrehumbert (2010), differ- define a second Eddington coefficient,

ent choices of{ will lead to different forms of the two-stream
equations, i.e., with different expressions for the coffits
Ya @Nd7ys.

3.2.1.Evaluating the Integral§ andZ
WhenH = 1, we obtainG = 1,7 = woJ and
OF_

or
The next natural choice i = p, because it allows us to
introduce another Eddington coefficient into the formalism
Several steps are involved in evaluatiigandZ. First, we
write . = cos(#’—©), use the trigonometric angle subtraction

rule and obtain
_ 1 i o /2 1/2 12\ 1/2
Q_E/o [uu +(1=p?)" (1= ") }Pdﬂ.
(58)

Exploiting the property thaf? and i/ are invariant when
w — —p andpy — —p (see§3.1.3), we see that the first and

= 7i(1—wo)(J —4nB). (57)

(64)

which is assumed to be constant. In gae= 0 limit, equation
(63) reduces to the first equation in129) only if

(65)

The fact that the second Eddington coefficient may be stated
in terms of the computed quantitieB,(and F) implies that
one may use it to check if the vertical resolution of one’s
model atmosphere is sufficient. Analogous to the isothermal
assumption o3, we are asserting that is constant within
each atmospheric layer.

Note that our method of derivation differs from the text-
book treatments of Goody & Yung (1989) and Pierrehumbert
(2010). InGoody & Yung (1989), it is assumed that two char-
acteristic, constant values of the intensity may be defined:
Iy and . Itis then assumed tha&t_ = =(I[; — 1) and

second terms iy are even and odd integrals, respectively. J = 27 (I++1}); see their equations (2.142) and (2.143). The
The second term vanishes. Second, we use the normalizatiofwo-stream equations are then derived assunting= w1

symmetry described if3.1.2 to further writeg as
1 47
Gg=— / 'y PdY’.
47T 0
Note that this step is valid only because the integrand imequ

tion (89) does not depend qnand is being evaluated at a
fixedvalue of i/, as@ is part of the integrand of. Third,

(59)

andF|, = . In|Pierrehumberi (2010), the method of using
€2 IS mentioned, but never explicitly executed; the correspon
dence to the isotropic limit, in the manner we have presented
it, is not discussed. Furthermore, the expression for the se
ond Eddington coefficient, in equatidn {65), is not derived.

3.2.3.Governing Equations in Two-Stream Form
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With this pair of closures, the total and net fluxes are gov- which have a more general definition of the and(_ coeffi-

erned by the equations, cients,
OF 1 " — Vs 1/2
a_+:(7a+75)F_, §i55l1i<u)
N (66) Ya + % 2
= = (v, — . — 1/2
a7 (’7@ 75)F+ 2’71331 :% ll:l: (11—w0 ) ‘| .
where we have defined — Wogo

It is reassuring that+ does not diverge asg,go — 0 or

Ya = L_L[Q —wo (1+90)], wo, go — 1. The quadrature closure gives the same expres-
¥s = fiwo (1 — go) » (67) sion for ¢4 (see Table 3 for exact forms of and~,). The
vg = 2mji (1 — wo) . Eddington closure adds a factor of 2/3 within the square root

All of the closures do not display divergence.
The incoming and outgoing fluxes obey the same mathemat- By again imposing the boundary conditioRs, and F,,
ical form as given in equatiol (IL1), but with the coefficients we may derive the outgoing and incoming fluxes from a pair
given in equation(67). By ensuring correspondence with the of atmospheric layers in terms of the transmission fungtion

isotropic limit, these coefficients obey energy conseovait 1

the purely scattering limit and_ repyoduce the correct black F;, = 5 5 {((E — (?r) TFy, — (s (1 _ 72) F,

body flux in the purely absorbing limit for an opaque atmo- (C-T)" —¢x

sphere. It is worth noting that the constraint of energy eons VB 9 9 9 9

vation in the purely scattering limit is independenygf + Y — s [BH (C—T - C+) + B2y T (C+ - C—)
The set of coefficients in equatiof {67) is traditionally o

known as the “hemispheric” or “hemi-isotropic” closure + Bi-(-G+ (1 =T )]},

(Meador & Weaver_1980;_Toon etlal. 1989; Pierrehumbert 1

2 2 2
2010). While its statement is certainly not novel, our deriv P :W {(C— - <+) TFE, = Cr (1 =T ) Fr,
tion of the hemispheric closure is firmly grounded by a desire B +
to ensure energy conservation. We find that the hemispheric 4+ B [Boe (CT?=C)+B1-T (¢ - )
closure derives naturally from the radiative transfer ¢igua Ya — Vs
+ Boy( ¢y (1-T2)]}
3.2.4.General Solution with Non-Isotropic Scattering and (73)
Non-Isothermal Layers

where the expression fd;_ is now generalized to
Manipulating the pair of equations i {66) yields P * g

_ B’
aQF Bi,EBl—i—B//L(Ti—Tl)— y
5 L —a’F, = —298 (72 + %) B, (68) Ya Tt % (74)
T _ /- MB/
but with a more general definition fer, Biy = Ba+ Bji(ri —72) + Yo+ s
In the limit of isothermal layers&;. = B = Bjp), we
o= [ +%) (0 = W]2. (69 optain yersts K
The method for solving equation (68) has previously been . 1

2 2 2
described irf2.7. Here, we simply state our results for non- T ST {(E-C)Th, - (1-T") £,
isothermal layers with the Planck function as given by equa- +

tion (33). The total and net fluxes are 4 B G (1-T2) — (T +3)(1— T)]}
F.=A A 2'YBB '7a1_7s
y =Ajexp (ar) + Az exp (—aT) + Ya = Ys’ F, :ﬁ {(CZ _ C-Qr) TF, — ({4 (1 _ 7~2) P,
Ya — 1/2 (C-7T)" - <+
_ (s 3 B 20 5
- <% + vs> e lar) = Ao (Zar)] {70 GG (=T - (ET ) (- T)]}

2vpuB’ (75)

(% +5) (9 = %) In the limit of pure scattering.{y = 1), equations(43) and
from which the outgoing and incoming fluxes may be ob- (Z3) need to be replaced by

tained, Fo g )0t ()
Fy =A1(4 exp (at) + As(_ exp (—arT) ! 2 24 (Ya+7s) (2 — 1) ’ (76)
uB’ Fy, — F) Yo+ ) (T2 — T
LB (g P ’ F@:FMJF( T — £ ( )£2 1)
Ya — Vs '7a+'ys 2+ (7@""’7&) (7—2 Tl)

F, =A;{_exp(ar)+ Az exp (—arT) (1) Our statement of these solutions in terms of the coefficients
0B ~a, Ys @nd~g allows for other closures to be considered (see
L ( _ B ) | ow))
Ya — Vs

Ya + Vs
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3.3.Transitioning from Two-Stream Treatment to Mihalas & Weibel-Mihalas 1999),
Flux-Limited Diffusion 1 9K, 1 K=
If one specifies a sufficient number of model layers, the . R 0- A\ =Fy = P (81)

two-stream treatment is a good approximation at optical
depths of order unity or less. When the optical depth becomesvheredr, = prdz, & is the wavelength-dependent tdtal
large, a prohibitive number of layers may be needed. Deepopacity,p is the mass density andis the vertical spatial co-
within an exoplanet, the passage of radiation resemblés dif ordinate, from which the definition of the Rosseland mean

sion and the total and net fluxes depend on hawiBgor # 0 opacity follows,

(Mihalas 1970). One needs a way to transition from the two- 3 1

stream treatment to the diffusion approximation. Physical 0 /13_3 a\ (82)
the transition occurs where the photon mean free path be- R="7 Kk OT ’

comes much smaller than the vertical spatial resolution.
A fundamental problem with approximating radiative trans-
fer by diffusion is that the diffusion equation does not obey OB B2\ ( he )

with the gradient of the Planck function being

causality, i.e., it will formally allow superluminal motio 7 = 5072 &XP (83)
It has been remedied by the invention of “flux-limited dif- or - 2ckeT AkpT
fusion”, where transport is limited by the speed of light where)\ is the wavelengthkg is Boltzmann's constant]’
(Levermore & Pomranirig 1981; Naraylan 1992). Flux-limited is the temperature anfd is the Planck constant. Th#/0T
diffusion produces the correct behavior in the opticallinth — operation in equatior (82) cannot be taken out of the integra
and thick limits, but its accuracy wherny ~ 1 is suspect because: generally depends on temperature. Note that the
(Mihalas & Weibel-Mihalas 1999). Its use may be abandoned definition forxy does not depend on.
altogether by considering the fully time-dependent ragat The total heat contentA{;) and net heatingX_) of the
transfer equation_(Mihalas & Weibel-Mihalas 1999). Since deep interior is
we are employing diffusion only whery > 1, our approach 16€xaonT3 OT
is “flux-limited” by definition, while benefitting from the ac Fi= oesgossl 0L ossT,, (84)
curacy of the two-stream approximationgt< 1. KR orP

Our starting points are equations57) dnd (63). To close thi wherey is the surface gravity of the exoplanet and hydrostatic
pair of equations, we define the third Eddington coefficient, equilibrium has been assumed. Equat(or (84) takes the same

K mathematical form as Fick’s law of diffusion, where the flux
€3 = —. (77) is proportional to a diffusion coefficient and the gradiefram
J internal quantity. By integrating equatidn {84), one ofgai

In the deep interior, we assert that the intensity field be-
comes Planckian, scattering becomes isotropic and tothl an T = {
net quantities become eq(fl,

J=4nB, gy =0, F, = F_ = 7By, K, = K_, (78)

1 1/4
4—63 (TR + C)] Tint, (85)

where the Rosseland mean optical depth is

1
whereB;,, = B(Ti). The interior heat of the exoplanet is TR = — /fiRdP, (86)
represented by an internal temperatdfg;. It follows that _ ) g ) _ _
€3 =K, /4nB =1/3if I = B. and(C is a constant of integration. Equatidn185) is exactly
In this limit, we obtain Milne’s solution for self-luminous atmospheres (Mihalas
1970; Mihalas & Weibel-Mihalas 1999), where the internal
Fy = 0K — dore B temperature is boosted by a factor, involving the opticatde
079 2010 at large pressures. i, we will see that = 8/9, when we
OF. (79) ]?|><amine analytical solutions of the temperature-pregsiae
oy ile.

A few potential concerns are worth elucidating. When ap-
By definition, heating in the deep interior is in radiativaieq  Plied sharply to specific wavelengths, the validity of the di

librium (OF_ /9y = 0). It is apparent that if the isothermal fusion approximation is suspect, since we expect absarptio
approximation is made)B/dr, = 0), then interior heating and re-emission to be non-coherent. However, the diffusion

is missed altogethet®_ = 0). We define the wavelength- approximation is reasonable when it is applied to a cobbecti
integrated quantities, of wavelength bins, where the width of each bin is much larger

than the typical width of a spectral line. The transitiontte t

o = o diffusion approximation occurs in a wavelength-indeperde
== /0 Ky da, manner as determined by the onset of the deep temperature-
0o (80) pressure profile, as stated in equatibn] (85), but it is worth
Fy = / Fy d), noting that the Rosseland mean opacity is weighted towards
0 lower opacities [(Mihalas 1970). Physically, this means that

at wavelengths where the atmosphere is the most transparent
79 ~ 1 andrg ~ 1 occur essentially at the same depth or
pressure.

and assert that a wavelength-integrated, average opaeity e
ists such that the following expression is true (Mihalastt97

6 If we insist on the two-stream interpretation, then it metinestotal and 7 Includes both absorption and scattering, otherwise knathe“extinc-
outgoing fluxes are also equal. tion opacity”.
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4. TEMPERATURE-PRESSURE PROFILES WITH NON-ISOTROPIC, The first equation i (91) allows the conservation of energy
COHERENT SCATTERING to be expressed,
We generalize the work af Guillot (2010) (pure absorp- © gF OF
tion) and Heng et all_(2012) (isotropic scattering) by iilimg —d\=—— =Q = rgJs + rr (JL — 4ossT*) .
non-isotropic scattering and a non-constant shortwave-opa Jo om om
ity in our derivation of the analytical temperature-prassu (93)

profiles. Additionally, we distinguish between total and ne We Wwill properly define the shortwave and longwave opaci-
fluxes and resolve several lingering issue5 in Guillot (3010 Ues, denoted respectively by andxr, shortly. The heating
and Heng et al[ (2012). rate is given byQ. Radiative equilibrium is obtained when
We adopt the dual-band approximation, where incident stel-0F0/0m = Q = 0. Note that this interpretation differs
lar irradiation and thermal emission from the exoplanetary from that of Guillot (2010) and Heng etlal. (2012), who inter-
atmosphere reside in the “shortwave” (denoted by “S”) and preted quantities associated withintegrated over all angles,
“longwave” (denoted by “L"), respectively. We define sev- to vanish because of conservative heat transport.

eral quantities that are integrated over the shortwaveargt | By integrating equatiori (93) over column mass, we obtain
wave, © 9F._ .
JSE/Jd/\,FSE/F_d)\,KSE/K_d/\, m O
5 5 5 (87) where
~ m2
JL E/Jd/\, I, E/F_ d\, Ki, E/K_ dA. Q (my,m2) z/ Q dm, (95)
L L L miy
In this section, we require two additional Eddington coeffi- from which it follows that
cients, ~
Fy, Ky, FL, = Foo — Fs — Q(m,0),
€1, = J—L, €Ly = J_L (88) 1 _ (96)
5 _ Ty = = [Foo = Psy = Q(0,00)] .
By requiring that it corresponds tg, we seter,, = 1/3. Us- €L

ing our existing definitions and values fere; andes (see We have defined, = Fs(m = 0), Fi,, = Fi,(m = 0) and
Table 2), we have ) Ji, = Ju(m = 0). The quantityF., is the bolometric net
¢ § (89) flux from the deep interior (as — o),

EL = — =
263 8 4
./TOO = USBTint-

97
Note that Guillgtl(2010) and Heng et al. (2012) set=1/2. ®7)

4.2.Shortwave

4.1.General Equations and Energy Conservation .
L . . . The shortwave refers to the range of wavelengths where in-
We begin with equations (57) ant{63), the intermediate cjgen starlight is the dominant source of energy. It usuall
form of the governing equations with non-isotropic scat®@r  o.curs in the optical.

that leads to the two-stream and flux-limited-diffusioratre
ments. Instead of using the optical depth as the independent; 2.1.Shortwave Closure, the Collimated Beam Approximation and

variable, we write the Bond Albedo
dro = ks dm = —2 dm, (90) Before we derive the shortwave equations and their solu-
1—wo tions_, we nee_d to relatgs and K via a shortwave closure
with m being the column mass. In hydrostatic equilibrium, elation. Previously, Guillot (2010) assumed that
we haveP = mg. Formulating the equations in termsref a Ks )
wavelength-independent quantity, will later allow us tdinie €= —— =", (98)

separate shortwave and longwave opacities. Instead of usin
the total/extinction opacity«), we have used the absorption |Heng et al. [(2012) tried to justify this closure via the colli
opacity (z.) as this allows us to cleanly separate out the com- mated beam approximation,

ponent due to scattering in the form of the single-scatterin

I I
albedo (). Equations{57) and{63) become Is = Its6 (W' — p) + Lys6 (1" + p) - (99)
OF When one does not distinguish between total and net quan-
o e (J —4nB), tities, one can simultaneously satisfy equation (98) armd th
8[? (91) identity in (I10); we will derive the latter later. In our cent,
20 Fal™y improved formulation, this is no longer possible.
om B Such a finding has several implications. First, it means that

equation[(9B) will have to be justified after the fact, upon ob
taining the solution fo’s. We will see that this closure cor-
P ( 1—wo )1/2 rectly produces Beer’s law.

o= —— .

where we have defined

1—w (92) Second, it implies that the expression for the Bond albedo
090 previously derived by Heng etlal. (2012) using the collindate

Previously, Guillat[(2010) and Heng et al. (2012) wrote down beam approximatiop = (1 — v/T — wo)/(1 + v/T + wo),

less general forms of equatidn {91) with total, instead @f ne may no longer be self-consistent within our improved formal

quantities. ism. However, we may directly derive the spherical albedo
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(A;) from our two-stream solutions with non-isotropic scat-
tering, previously stated in equatidn{75). We may then-inte
grateA; over the shortwave to obtain the Bond albedo. If we
setFy, = 0 andB = 0 and integrate over the shortwave, we
obtain

FTl :C;: 1 - Bo
Fil C-ﬁ- 1+BO’

1-5s
AE/&M: 0
B 1+ Bs,

wheregs, is the value ofj, in the shortwave, which we will
describe more carefully in equatidn (105). Note that equati
(100) was derived for an opaque atmosphé&re< 0). Physi-
cally, one is asserting that when scattering is absentf &ileo
incident stellar irradiation is completely absorbed. @in
dentally, equatior (100) is identical to the expressioriveer
bylHeng et al.[(2012) in the limit of isotropic scattering.eTh
functional behaviors ofi; and Ag are shown in Figurg]1 via
the curves of _ /(.

We find it useful to express the quantity, in terms of the
Bond albedo,

A =
(100)

1 Ap
1+ A’

Degenerate combinations of the single-scattering albedo a
asymmetry factor may produce the same Bond albedo.

Bsa (101)

Heng & Demory|(20113) have previously derived an expres-

sion for Ag involving non-isotropic, coherent scattering, by
generalizing the approach lof Pierrehumbert (2010). Inghes

approaches, an additional “direct beam” term was addecbto th

source term .§) in the radiative transfer equation to account
for heating by incident starlight (Chandrasekhar 1960ye@i
that the two-stream approximation is a one-dimensionatire

as being constant with wavelength, such thgt andgs, are
constant, representative values of the single-scattetredo
and asymmetry factor, respectively, in the shortwave.

In order to combine the equations in (102), we assume that
ks = kg. We shall simply calkg the “shortwave opacity”. It
follows that

BQJS 1 (r“)lis BJS RS 2

Ol LOmsdls Js =0,

om?2 kg Om Om wis, (106)
PR 1 omsoR (s Vo

om?2 kg Om Om wis, ST

If we assume the shortwave opacity to take the form,

n
m

RS = KRS, <m_> )
0

wherexg, is its value at the bottom of the model domairis
a dimensionless indexypg = Py/g and P, is the pressure at
the bottom of the model domain, then we obtain

JS = Jso exp (&>,
w

(207)

(108)
FS = F‘S0 exp <&>,
I
with Jg, = Js(m = 0) and
rsmM
= 109
Bs 1) s (109)

The expressions il (1D8) generalize Beer's law. We have
picked the solution branch with the positive exponent, be-
cause we have1l < p < 0 and we require thafs, Fs — 0

ment, we feel that regarding the solutions in equation (75) asm — oc. It follows that

as being wavelength-dependent and using ke bound-
ary condition to account for stellar irradiation, across/esa
length, is sufficient and that a direct beam term is superfiuou
(Meador & Weaver 1980).

4.2.2.Shortwave Equations and Solutions

Integrating the equations i (91) over the shortwave, we ob-

tain
OFs

om
6KS - K/SFS
om ﬂgo ’
where the absorption mean opacity is
Jg Kad dX
Ky = 20—
Js J dX
In a departure from its traditional definition, the flux mean
opacity is

= KksJs,
(102)

(103)

Jis faF dX
JsFoax

Usually, the flux mean opacity is defined usingnstead of
ko (Mihalas & Weibel-Mihalas 1999). Our approach comes
about because we have approximated

<1_%0yﬂ
1 —ws,9s,

K

(104)

Bsq (105)

Fs = pBs,Js.

4.2.3.Photon Deposition Depth

The shortwave flux atn = 0 is interpreted as the incident
stellar flux,

(110)

Fs, = pF, (1112)
where the “stellar constarfitis
_ O'SB/Tii%p 0 < (b < T,
F, = {0’ T < <o (112)
and the irradiation temperature is
R 1/2
T‘irr - T* (_*) (1 - AB)1/4 5 (113)
a

with T, being the effective stellar temperature, the stellar
radius and: the distance between the star and the exoplanet.
It is important to note thaks, < 0 arises naturally from the
fact that it is anet flux with a vanishing outgoing component.
No arbitrary adjustments of signs are necessary, as was done
in|Guillot (2010) and Heng et al. (2012).

By using the expression fdts from equation[(108), we find

that
27 0 4
T:.E
/ Fs dudo = _ 8B i3 2‘“ 37
-1

- 1
FsE—

114
o7 /. (114)

8 Generalized from the “solar constant”.
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Integrating the equations i (91) over the longwave, we ob-

tain
0.7E
OFL,
0.6 X —am = kLJL — 4:‘$£USBT4,
$ Lt OK: K F (118)
~ 0.5 YL PLoL
N om B,
© 0.4
n E
= 0.3k where, analogous to the shortwave, we have
> ~E
c
E 0.2F 1—w, \Y?
®  E PL, = (1_70> : (119)
0.1¢ WL 9Lo
0.0t The absorption, flux and Planck mean opacities are, respec-
0.0 0.2 0.4 0.6 0.8 1.0 tively,
0030
FiG. 3.— Photon deposition depth as a function of the singlétestiag _ fL Kad dA
albedo, computed for different asymmetry factors ang: 0. We have cal- kL = f Jd\
culatedPp, in terms ofg/xs; for exampleg = 10% cm s~2 andks = 0.01 L
cm? g~ ! yieldsg/kg = 0.1 bar. ol = Ji, FaF- d)\7 (120)
JF_ax
where &3 = &3(Bs) and the exponential integral of 7 [ kBB dX
the i-th order is defined as (Abramowitz & Stegun 1970; K = Liaél.
Arfken & Webell 1995) osgT
Rl ’ "
» = = K. Huben :
& () E/ 2~ exp (—ay) da. (115) \2/\(/)e0<:;1§,sume that;, = x;, = 7. (See also_Hubeny etlal
1 3.

It follows that

Fs _ 28, (116) 4.4.Derivation of Temperature-Pressure Profile

Fg, Using the second equation [n(118), the first equationih (96)

The photon deposition depth is defined as the pressure Ievef‘nd thee,, closure, we obtain
where Fs/ Fg, suffers one e-folding, i.e., is equal to about m
0.368 (Heng et al. 2012). Physically, this is the presswrelle 7 — 7 | L/ . []:OO — Fs—Q(m, Oo)} dm.
0

at which most of the incident starlight is being absorhBgl)( 6@5%0
This occurs whers ~ 0.63. It follows that (121)
1 (nt1) 1/2(nt1) Eliminating the quantitiedr, and.J;, using equatior (33) and

Po, = [0-63 (n+1) gpﬂ ( 1 —ws, ) the second equation iR (96), respectively, yields

KSo 1- Wsp 9o F 1 1 m

0.63(n+ 1) gPp "™ /11— Ag\ Y ogpTd =2 <— + —2/ KL dm> +9Q
= |l . 4 €1, ELSBLO 0
o s 1/ R J 1
(117) + Z (_ So + fs s - T/ KLFS dm) .

It has the expected physical property that, as the scatterin L "L “Ls Lo J0 (122)

becomes more backward-peakeg, (< 0), the photon depo-
sition depth resides higher in the atmosphere.nAs» oo,
Pp — Py. Equation[(11]7) generalizes the expression derive
bylHeng et al.|(2012) in the limit of isotropic, coherent scat
tering andn = 0.

Whenn = 0, the expression foPp, is particularly useful
because it is independent £f. Figure[3 shows calculations
of Pp (with n = 0) as a function ofu, for different values of - -
go. For pure forward scatteringg, = 1), photon deposition  _ 11Q  Q(0,00) 1 / k1.0 (m, 50) dm
behaves as if one is in the purely absorbing limit. Backward =~ — 4 | kg, €L eLsBt, Jo L ’ ’
scattering ¢s, = —1) tends to raise the photon deposition (123)

depth to higher altitudes (lower pressures). The other terms describe the temperature-pressure praéle d
to stellar irradiation.
4.3.Longwave It is important to note that equation (122) does not make
The longwave refers to the range of wavelengths where theany assumptions about the functional forms/gfand Fs.
thermal emission of the exoplanet is the dominant source of The global-mean temperature-pressure profile i€ ob-
energy. It usually occurs in the infrared. tained by integratingovel < ¢ < 2rand—1 < p <0

g The first term in equatior[ (122), associated wih,, de-
scribes the temperature-pressure profile in the deep anteri
arising from internal heat and is known as “Milne’s solution
(Mihalas 1970; Mihalas & Weibel-Mihalas 1999). It was first
derived for stars. The second term is defined as
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and dividing by2,
T < 1
4 €1,
T, 1 Kkso
8 <£ KLBs,

1 271' O
+ L / Q dyu dé,
-1

2 0

1

T —
€L O,

/ KL dm)
0

1

_|_
€Ls 02,

/ KLE3 dm)
0

(124)

where&, = &:(Bs), €3 = &£3(Bs) andSs has previously been
defined in equatiori {Z09). The factor of 1/8 associated with
T}, comes about because starlight is incident only upon one
hemisphere.

Arguments were previously presented by Guillot (2010)
and Heng et al[ (2012) for why the last term in equation124)
vanishes, based on the reasoning that latitudinal andtlongi
dinal heat transport averages to zero in a global senseinlith
the context of our improved formalism, we find it more natu-
ral to simply assert tha@ = 0 when radiative equilibrium is
attained Q = 0).

4.5. Temperature-Pressure Profile for a Specific Form of the
Longwave Opacity and a Constant Shortwave Opacity

For equation[(124) to be useful, we need to explicitly spec-
ify the functional form of the longwave opacity,

m
KL =Ko+ Kcia | — | -
mo

The second term in equatidn (125) is used to mimic collision-
induced absorption; its associated normalizatiotdsg, .
In radiative equilibrium and for a constant shortwave opac-

ity (n = 0), combining equation§ (124) arid (125) yields

(125)

7t — Time [L _m_ (,w M)]
4 len  enfi, 2mo
4 1
LT {_ 52( Ks /’vCIAmﬂS; >
8 | 2¢r kLSS, ELglismOBLo
KOBSU 1 & HCIAB%U 1 E
eLrsBZ \3 A Yo ZmesE \2 )|
LsRSPL, €L3K/SmO/BLO

(126)

As previously mentioned, our formalism yields = 3/8 and
eL, = 1/3, but we have intentionally left the values of these
Eddington coefficients unspecified in equation (126) tovallo
for other choices to be made, if desired.

5. APPLICATION TO EXOPLANETS

5.1.0ther Closures for Two-Stream Radiative Transfer:
Comparison and Implications

There is a rich literature describing various forms of the
two-stream equations (Chandrasekhar 1960; Mihalas| 1970
Meador & Weaver _1980; _Goody & Yuhg 1989; Toon et al.
1989; Mihalas & Weibel-Mihalas 1999). Specifically, it kil
down to having different expressions for the coefficients
~s and~g in the two-stream equations for the outgoing and
incoming fluxes, which in turn depends on the choice of clo-
sures (the Eddington coefficients). In this subsection, ille w
explore these other choices published in the literaturesand
amine their implications.

spurious con
100

tributions to scottered flux (Eddington closure)
T T T T

go=—1 (backward scattering)
go=0 (isotropic scattering)
go=1 (forward scattering)

&
&
>
A
0 I 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0
Yo
spurious contributions to blackbody flux (Eddington closure)
100 T T T T
50
&
X
i~
N
A
I
<
50~ go=-1 (backward scattering) .
......................... 90=O (isotropic scottering) ;
--------- go=1 (forward scattering)
-100 i 1 I 1 1
0.0 0.2 0.4 0.6 0.8 1.0

@o

FIG. 4.— Errors incurred when using the Eddington closure fer tifio-
stream approximation in the limit of non-isotropic, colrecattering. Top
panel: error expressed as a percentage of the reflected flatkonB panel:
error expressed as a spurious percentage enhancemenbtddkieody flux.

Table 3 lists the choices of,, 7s and~g for different clo-
sures. We do not discuss closures that involve a series ex-
pansion of the scattering phase function in terms of Legeendr
polynomialsi(Chandrasekhar 1960; Meador & Welaver 1980).
Energy conservation in the purely scattering limit regsire
that we check théy, — ) expressions for each closure (see
§2.4). Since the hemispheric/hemi-isotropic, Eddingtod an
quadrature closures all haye, — vs) « (1 —wp), they all
ensure that radiative equilibrium is attain€tF{_/0r = 0)
whenwgy = 1.

Next, we need to check the total flux in the limit of a purely
absorbing, opaque atmosphere. For the hemispheric/hemi-
isotropic and quadrature closures, we haye= 0 when
wo = 0, which implies that, = 1 and{_ = 0. For these
closures, we may easily define the dimensionless factor,

fo = 773’
. T (Ya = 7s)
which is the limiting value ofF, as7 — 0, normalized

by 27 B. We verify thatf., = 1 for the hemispheric/hemi-
isotropic and quadrature closures.

For the Eddington closure, the issue is more subtle. At first
glance, one may already anticipate that the Eddington cdosu
is unphysical, ag; # 0 even in the absence of scattering—
somehow, some fraction of the outgoing rays still gets con-
verted into incoming ones (and vice versa). The total flux has

(127)
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TABLE 3
VARIOUS CHOICES FORCOEFFICIENTS OFTWO-STREAM EQUATIONS (CLOSURES
Name Ya/R s/ vB/B foo (Ya =) /B8 References
Hemispheric / hemi-isotropic 2 — wo (1 + go) wo (1 — go) 2m (1 — wo) 1 2(1—wo)  MWB80, T89, P10, HML
Eddington $[T—wo(4+3g0)] —3[l—-wo(d4—3g0)] 2r(1—wo) 218 1—wo MW80, GY89, T89, P10
Quadrature V312 — wo (14 go)] ) V3r(l—wo) 1 V3(1—uwo) MWS80, T89, P10

MW80: [Meador & Weaver (1980), GY89: Goody & Yurig (1989), TH@on et al.[(1989), P10: Pierrehumbert (2010), HML: thiglgtu

a limiting value asj” — 0, boundary conditions: F,,/nB=1, F,,/mB=0

F, — C; (Fy, + Fy,) + 2B (1 — <> . (128) i hemispheric / quadrature ®
Eddington

G+ Ya — Vs G+

Unlike for the other closures, we hage # 0 even when
wp = 0. Specifically, we have

¢ _1-2(—w0)/3(1 —wog)]”*
G+ 1+[2(1—wo) /3 (1 —wogo)]"?

It is also worth noting that the boundary conditidf), is
associated with¥;, while F, is associated with,, im-
plying that the limiting values of the incoming and outgoing
fluxes behave as if reflection is present (in the form-of0—
100% contributions from the boundary conditions), even in

o
o

(129)

o
IS
T

Fi2 (in units of 7B)

o
N
—

o
o O
o
O_
N
oL
>
O_
o
O_
o0}
o

the purely absorbing limit. Such contributions are unphysi @
cal. Thus, using the Eddington closure leads to two types of boundary conditions: F,,/nB=0, F,,/nB=1
error: a spurious contribution due to reflected flux and a spu- 1of ' ' ' '

rious enhancement of the blackbody flux. (See also the cap-
tion of Figure 3 ol Toon et al. 1989 and their summary sec-
tion.) Figure 4 shows the percentage errors, associatdd wit
both artifacts, incurred when using the Eddington closiitre.

is apparent that whegy # 1, the errors are non-uniform as
they depend both ogy andw,. Without knowing what these
boundary conditions generally are, we may set a lower limit
to fo by considering the term associated within equation

@zs), : i - ]
B _ 5= 021 ]
foo = ™ (Va - "Ys) (1 C+> . (130) I 1

Forwy = 0, we have(_/¢, = 5 —2v6 ~ 0.1. Since
78/(Ya — 7s) = 2m for the Eddington closure, we obtain
foo 2 1.8. Overall, we recommend that the Eddington clo- FiG. 5.— Incoming flux as a function of the single-scatteringeali (vo) for
sure not be used as it produces spurious reflected fluxes, arcoherent, non-isotropic scattering. We have adofited 0.5 for illustration.
tificially enhances the blackbody flux and the associated er-All fluxes and their boundary conditions are given in termshef blackbody
rors are non-uniform (and therefore challenging to qugntif flux (7B). . . . . .
between different model atmospheres). only be used with the hemispheric or hemi-isotropic closure
Figure[ shows examples of the incoming fluX () as a The Eddington closure should be avoided.
function ofw for different values ofyy. We show only the in-

[ hemispheric / quadrature ® ]
0.8 Eddington E

F, (in units of wB)

0.0l . \ \ \

0.0 0.2 0.4 0.6 0.8 1.0
@o

coming flux as its expression is identical to that for the outg 5'12-\',\,%6_};'&:;;0;?5 FIJZIIyuIQgLTPn?tsg bDr:SfuTseiggrlg%l:j?a(t)ifve

ing flux except for the boundary conditions. Since the hemi- Transfer Towards Computing Synthetic Spectra
spheric and quadrature closures yield identical exprassay i _ _ ]
C+ andyg /(7. — 7s), they produce identical fluxes. With our We concoct computational recipes for calculating syntheti
chosen boundary conditiong'(, /=B = 1, Fy,/nB = 0), spectra using the two-stream radiative transfer, augrdente

adopting the Eddington closure results in an over-estomati by flux-limited diffusion in the deep atmosphere. The first
of the incoming fluxes. If we reverse the boundary conditions recipe describes a stand-alone, one-dimensional (1Dy-<alc
(F,,/mB = 0, F;,/mB = 1), the Eddington closure now lation ignoring the effects of atmospheric dynamics. The
produces an under-estimation of the incoming fluxes. The er-second recipe describes how to couple the radiative transfe
rors are non-uniform (unlegg = 1) and typically~ 1-10%, scheme to a three-dimensional (3D) general circulationehod
depending on the boundary conditions adopted as well as thé&f the atmosphere.
values ofT, wp andgg. -

We conclude that, for the purpose of exploring parameter 52.1.1D Purely Radiative Atmosphere

space and studying trends associated with exoplanetary at- 1. Specify an initial guess for the temperature-pressure
mospheres, the two-stream radiative transfer treatmentigh profile. Specify the boundary conditions at the bottom
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(internal heat) and top (stellar irradiation) of the atmo-
sphere. For the former, it is important to note that the
net fluxis 7 B(Ti, ); the outgoing flux at the bottom of 1€ T T
the atmosphere is then an iterative boundary condition. :

[ ) .. A grophite ®

2. Use the equations i ([73) dr {75) to perform the two- B e VR T\ sice ]
stream calculation by populating each layer of the WU : E
model atmosphere with outgoing and incoming fluxes.

astro silicate @

3. Integrate the net flux over wavelength, compute its gra- < 07 :
dient and update the temperature-pressure profile using F
At OF-_

Tncw = Told + — )
pcp 0z

(131) 107

whereAt is the computational time step angd is the
specific heat capacity at constant pressure. Note that o o 100 100.0
the vertical coordinate:] is defined from the top of the ’ ’ A (um) ’ ’
atmosphere downwards.

FIG. 6.— Spherical albedo versus wavelength for dust grainsifferent
radii and compositions. No extra optical absorber (e.gdjisn atoms) is

4. Repeat steps 1 to 3 until radiative equilibrium is at- ;. ded.

tained P.F_/0z = 0). The synthetic spectrum is given
by F;, across wavelength, at the top of the computa- 2. The new temperature-pressure profile (iterated consis-

tional domain. tently with the velocity field) is fed back to the 1D
radiative transfer solver to obtain updated values of
For exoplanets with surfaces, the flux from the surface is F_. The entire process is repeated until the simulation
specified as the bottom boundary condition. For gaseous exo- reaches equilibrium.
planets withT},, > Ti,, the two-stream recipe is first imple-
mented withT},, = 0, after which the interior temperature-  In the absence of atmospheric dynamics, we may write

pressure profile is added using the flux-limited-diffusion s DT/Dt = 0T/0t+v.VT = 0T /9t and ignore PdV” work
lution in equation [BB]. Thus, heating in the deep inte- (i.€., setDP/Dt = 0). Under such restricted conditions, we
rior is performed semi-analytically; by definition, the so- oObtain equatior((131).
lution in equation [(85) is in radiative equilibrium. One _ Under terrestrial conditions, we may safely assume that
may need a convective adjustment scheme for treating cond7/9t > 0.VT. At the order-of-magnitude level, the terms
vectively unstable parts of the temperature-pressurelgrofi are 4
(Manabe, Smagorinsky & Strickler 1965). or L gossT (135)

ot trad cpP

5.2.2.3D Radiative Atmosphere with Dynamics

1. Instead of iterating for radiative equilibrium withingth
1D radiative transfer solver, compute the wavelength-
integrated net flux£_) and feed it to a more general
expression for the heat equation, which we will now
derive. The first law of thermodynamics states,

DT DV

and T
TNT ~ %, (136)

wherewv, is the zonal velocity and is the radius of the exo-
planet. For highly-irradiated atmospheres, the advetton
cannot be ignored when

=cy— + P— 132 3
@=cvpr *P o (132) P >0.06 bar g i T
o 10ms210%cm/ \ 103K
where( represents all forms of heating; is the spe- . (237)
cific heat at constant volume and = 1/p is the spe- y Vg cp
cific volume. Using the ideal gas law’( = pRT, 1kms '10%ergK ' g1
whereR is the specific gas constant) ane = cy + R,
we obtain 5.3.The Bond, Spherical and Geometric Albedos and Albedo
T DP Spectra
=pQ+ —- (133)

The spherical albeda4) is the ratio of scattered to inci-
dent flux (e.g.,. Seager 2010). The Bond albedg)(is the
spherical albedo integrated over all wavelengths. Withi t
context of the two-stream approximation, the expressions f

PEP D Dt

If we ignore conduction, then the energy per unit vol-
ume and time associated with heating is

S OF both quantities are presented in equation100).
pRQ=—-V.F_ = 9 (134) However, secondary eclipse measurements in the optical

) ) . ) measure the geometric albedd,), assuming that thermal
Equation [(I3B) is solved in tandem with the emission from the exoplanet does not contaminate the signal
Navier-Stokes and mass continuity equations to self- (Heng & Demor}f 2013; Angerhausen et’al. 2014). To convert
consistently obtaifl’, p andv' (the velocity field). betweenA, and A, requires knowledge of thecatteredflux
at all phase angles, which is beyond the scope of our cur-
¥ Note that one adds the fluxes and not the temperatures. rent two-stream treatment. Specifically, one needs to at@lu
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Tw=200 K, T,,=1200 K, ws=0.5 T:u=200 K, T,,=1200 K, & =0.5

1074 T T T T 1074 T T T T

L ' i

Vi gs=—1 (Ag=0.27) E
1073 1 95,=0 (Ag=0.17) o 3 107°F

L 1 T 1 A—D) cememeea B

: ( ]
1072F K 4 1072F

107"

P (bar)
P (bar)

10

1 ; 1 02 é 1
1400 800

102E 1
800

1000 1200

T (%) T (%)

FiG. 7.— Temperature-pressure profiles for different valueshefasym-
metry factor in the optical or shortwave and a constant slawe opacity
(n=0).

FiG. 8.— Temperature-pressure profiles for different valuethefasym-
metry factor in the infrared or longwave and a constant ket opacity
(n=0).

the phase integral (Russell 1916; Marley et al. 1999; Seager
2010; Madhusudhan & Burrows 2012),
scat

T F
=2
=2 %

scat,0

T.x=200 K, T,,=1200 K, Bs=F,=1

sin ) di, (138) 107

wherey is the phase anglé;...; (v) is the emergent scattered 107°F

flux andFycat,0 = Ficat (¥ = 0). The geometric albedo is de-

g ]

1072F

fined at zero phase angle. The spherical and geometric albe- C ]
dos are related byl; = ¢A,. For a Lambert sphere (isotropic =~ : 3
scattering), we havel, = 2A4,/3. For Rayleigh scattering, 8 10'F E
A, = 3A,/4. Generally, the conversion factor between the o

spherical and geometric albedos is an order-of-unity eomst 1E
for a specific scattering profile and at a given wavelength.
In Figurel®, we show examples df; for dust grains com-
posed of astronomical silicate, graphite and silicon ahbi
(SiC), where the tabulated data fog andgy have been taken
from the full Mie calculations of Draine & Lee (1984) and 1000 1500 2000
Laor & Draine (1993). We have not included extra sources of T (K)
absorption (e.g., sodium atoms), unlike in Heng & Demory rig. 9. Temperature-pressure profiles with constant=¢ 0) and non-
(2013). We include the measured values of the geomet-constant# # 0) optical or shortwave opacities.
ric albedo of HD 189733b, by Evans et al. (2013), and as-
sume A, = 3A4,/2 for these data points. As expected,
there is a strong dependenceAf on the dust grain radius
and somewhat less on the composition (Pierrehumbert 2010
Heng & Demory 2013). Curiously, the measured albedo spec-
trum of HD 189733b is consistent with an atmosphere popu-
lated by silicon carbide grains, with radii of 10 nm, with@ut
need for an extra optical absorber.

102 E 1 1 ”"—— 1

2500

and= 0 andPp = 36,46 and= 63 mbar. We sektgs = 0.01

cm? g1, ko = 0.02cm? g1, kera = 0, g = 103 cm 572,

Ty = 200 K and T}, = 1200 K. Although the temperature-
pressure profile with backward scatterings( = —1) is
mostly cooler than the profiles with isotropic and forward
scattering, it is warmer at low pressures due to the photon
deposition depth being located at a higher altitude. Non-
isotropic scattering introduces an anti-greenhouse tetiec
scattering becomes more backward-peaked.

. ] In Figure[8, we assumdg = 0 and examine the effects
~We now elucidate trends in the temperature-pressure proof varying the asymmetry factor in the infrared or longwave
files_with non-isotropic scattering, building on the work (4 ).” Any form of infrared scattering generally warms the
of IGuillot (2010) (pure absorption) and Heng et al. (2012) atmosphere, unless it takes the form of purely forward scat-
(isotropic scattering). In Figufé 7, we first examine theef§  tering, which behaves like pure absorption—the “scattgrin
of varying the asymmetry factor in the optical or shortwave greenhouse effect” (Pierrehumblert 2010).

(9s,)- Physically, this has a couple of effects: altering the = To investigate the effects of a non-constant opti-
Bond albedo and changing the location of the photon deposi-cal/shortwave opacity, we evaluate equatibn [124) numeri-
tion layer. As an illustration, we assume a constant shawa ¢4y and in radiative equilibrium. Figufé 9 shows examples
opacity @ = 0) and use equatiof (IP6). We fix;,, = 0.5,
which yieldsgs, = 1/+/3,1/v/2 and 1 forgs, = —1,0 and
1, respectively. Correspondingly, we haxe =~ 0.27,0.17

5.4.Analytical Temperature-Pressure Profiles with
Non-Isotropic Scattering

10 The need to compute some of these terms numerically is the foas
Heng et al.[(2012) describing these models as being “seaijtical”.
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of temperature-pressure profiles with= 0,0.5 and 1. The

photon deposition depth resides deeper axreases, leading T,,=200 K, T,,=1200 K, xg=0.01 cm? g~
to warmer profiles at higher pressures. The model atmosphere . SRS RS EECEEEE ]
generally becomes less isothermal, which is partially &in ar o4k L7 3
fact of assuming a constant optical opacity. F :
5.5.1s the Photosphere Always at an Optical Depth of 2/3? OBE s _
Radiation is typically absorbed, scattered or emitted at : E
optical depths~ 1. In self-luminous atmospheres (e.g., S
stars), the classical Milne’s solution is_(Mihalas 1970; 0.2k E
Mihalas & Weibel-Mihalas 1999) E ]
B 3 /92 1/4 0.1 pure absorption E
T=Tw|-|= 139 9,=0, w =0.5
int |:4 <3 + TL):| ) ( ) g gI4=L._1’ W::O,S
wherer, is the infrared or longwave optical depth. When oot » ” > v o
71, = 2/3, we havel' = Ti;. In stars, T, = T,. This is the ’ "o (cm? g7 ’ ’
basis for stating that the solar photosphere occurs at &abpt . . .
- " ] FiG. 10.— Infrared photosphere as a function of the infrareccitpaFor
depth of 2/3, where we samgle ~ 5800 K (instead of either  jyystration, we have assumed pure absorption in the dpticashortwave

the ~ 10* K chromosphere at;, < 1 or the~ 107 K deep (Bs, = 0) and a constant shortwave opacity £ 0).
interior of the Sun aty, > 1). _ o .
With our choice of closures (Table 2), Milne’s solution is increase, due to the transmissivity of the atmospherenéalli

generalized to to zero. | Pierrehumbert (2010) calls this the “Komabayashi-
1/a Ingersoll limit”.
_ 38 We use equatioi (T5) withorr = [} Fy,dX, [} Fy,d\ =
T'=Tine {Z {5 + (1= wiogro) TL} } ’ (140) (negligible starlight in the infrared) anfl F;,d\ = ospT*

) m with T} being the surface temperature. The transmission func-
where we have definetd, = fo krLdm/(1 — wr,). In the tion is

presence of scattering, the photosphere for self-lumiobus T = exp (—7%), (142)
jects resides at an optical depth of . . :
A with the total optical depth of the atmosphere being
= 141 ,
™ 9 (1 - wLogLo) ( ) Ts = rLly ) (143)
g (1 - WLO)

For atmospheres with both stellar irradiation and internal . .
heat, one has to obey energy conservation by seffihg= andP; being the surface pressure. We will assume that the at-

: : ; . here is saturated, such that the temperature and pressu
T2, +T2,/4in equation[(124) and solving for, [ For fixed ~ MOSP g .
values of the optical/shortwave and infrared/longwavecepa are related by the Clausius-Clapeyron equation,

ties, 7, is independent of the value @f,,. Tee
In Figure[10, we show calculations ef, as a function P = P..exp <—?), (144)
of ko for gr, = —1,0 and 1, using the values of the pa-

rameters stated if5.4. Consistent with the temperature- where P.. and T.. are normalizations for the pressure and
pressure profiles showed in Figlte 8, the infrared photasphe temperature, respectively. This approximate form of the
resides higher up in the atmosphere as longwave scatterin@Clausius-Clapeyron equation assumes a constant specific
becomes more backward-peaked. The dependence on the inatent heat of condensation or sublimation with tempera-
frared opacity is generally weak. ture; values ofP.. and T.. may be found in Table 1 of
Heng & Kopparlal(2012). Equatioh (144) may be used to re-
5.6.Toy Models of the Runaway Greenhouse Effect: the lateT; andP;. Itis also used to compute the temperature in
Komabayashi-Ingersoll Limit fL 7Bd)\ = oggT* with the pressure now being given by the

As an illustration of the versatility of our two-stream solu  photospheric pressur®, = 4¢37 /9x1, via use of equation
tions, we now use them to construct toy models of the run- (141).
away greenhouse effect (Komabayhshi 1967; Ingérsoll 1969) Figure[I1 shows calculations of the OLR flukdyr) for
Consider an atmosphere with a single condensible compo-atmospheres containing only water, ammonia, carbon diox-
nent, initially existing in liquid or solid form. As the sur- ide or methane. For illustration, we have choger 103
face temperature rises, it is transformed into its gasemms,f  ¢cm s 2 andrs;, = 1076 cm? g~!. At low surface temper-
which triggers a positive feedback reaction where warmer atures (andr), we haveForr ~ osgTs. As the surface
temperatures produce even more warming by releasing mordemperature rises to the point whéfe= 0, the OLR asymp-
greenhouse gas. The atmosphere attempts to cool itself byotes to [, 7Bd\. The non-monotonic behavior ofor,
increasing its “outgoing longwave radiation” (OLR), whish ~ as it transitions between the two regimes, is an artifact of
the emergentinfrared flux. The essence of the runaway greentising an isothermal solution to approximate non-isothérma
house effect is that there is a limit to which the OLR may behavior. As expected, the presence of infrared scattering

(91, < 1) results in warmer atmospheres and a lower value of

11 A factor of 1/2 comes from considering stellar irradiatiottaone hemi- the Komabayashi-Ingersoll limit, implying that the runawa

sphere only, while the other factor of 1/2 comes from avexgqgiver F . greenhouse is more easily triggered.
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The conservation of energy dictates that the OLR flux needs
to be equal to the incoming stellar fluorr = L, /47a?,
whereL, is the stellar luminosity. Denoting the stellar mass
by M,, one may obtain the inner boundary of the habitable
zone by using the appropriatg (M, relationship for stars.
Our value ofk;, was chosen such that, for a Sun-like star,
a ~ 0.7 AU for a purely absorbing atmosphere. Such a free-
dom to specifyxy, reflects the inability of our toy models
to make quantitative predictions for the runaway greenbous
effect, a property already noted by Pierrehumbert (2010),
although they provide useful tools for understanding basic
trends.

6. DISCUSSION
6.1.Summary

The salient points of our study may be summarized as fol-
lows.

e Unified, self-consistent framework: Starting from

the radiative transfer equation, we have derived a set
of governing equations and solutions that include the
two-stream treatment, a transition to the diffusion ap-

proximation in the deep interior of the exoplanet and

temperature-pressure profiles involving non-isotropic

scattering. Ultilizing these solutions requires a set of
closures (Eddington coefficients) to be specified, which

we derive self-consistently based on energy conserva-
tion.
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the temperature-pressure profiles in the limit of non-
isotropic, coherent scattering and a constant optical
opacity. For a non-constant (power-law) optical opac-
ity, one has to use equatidn (124). As scattering in the
optical becomes more backward-peaked, it introduces
an anti-greenhouse effect to the thermal structure. Scat-
tering in the infrared generally warms the atmosphere
(i.e., the scattering greenhouse effect), unless it isen th
form of purely forward scattering, in which case it be-
haves like a purely absorbing atmosphere.

e Spherical and Bond albedos and albedo spectra:
We have derived analytical formulae for the spherical
and Bond albedos, in the two-stream approximation, as
functions of the single-scattering albedg) and asym-
metry factor §), as stated in equatioh (1I00). The for-
mula for the spherical albedo may be used to compute
albedo spectra using tabulated values)@aindgy, ex-
amples of which are shown in Figurk 6.

e Photon deposition depth with non-isotropic scatter-
ing: The photon deposition depth is the pressure at
which most of the incident stellar irradiation is being
absorbed. In equatioh (1117), we derive an updated for-
mula that involves non-isotropic scattering and a non-
constant optical opacity.

e Runaway greenhouse: Our two-stream solution al-
lows us to construct toy models for the runaway green-
house effect and compute the Komabayashi-Ingersoll
limit for different gases.

e Use the hemispheric closure, avoid the Eddington
closure: The Eddington closure leads to two forms
of error. First, it introduces reflected flux in an unphys-
ical way. Second, it spuriously enhances the thermal
emission. We recommend that the hemispheric closure
be used instead when computing synthetic spectra.

e The photosphere does not always reside at an optical
depth of 2/3: The “2/3 rule” comes from Milne’s solu-
tion for self-luminous atmospheres (stars). We demon-
strate that in a highly irradiated atmosphere with inter-
nal heat, the location of the photosphere (as computed
from its corresponding value of the optical depth) de-
pends on the relative strength of shortwave versus long-
wave absorption and the properties of scattering.

To supplement our current study, we derive total, net, out-

going and incoming fluxes in the convective regime in Ap-
pendiXA, thus generalizing the work lof Robinson & Catling

(2012), who computed them in the purely absorbing limit.

e Framework for computing synthetic spectra: From
the two-stream equations, we derived the outgoing and
incoming fluxes as functions of wavelength, single-

6.2.Comparison to Previous Analytical Work
Overall, the novel aspect of our study is the construction of

scattering albedo, asymmetry factor and transmission@ unified, self-consistent framework for studying two-atre
function, as stated in equatioris(73) and (75) for non- radiative transfer, flux-limited diffusion and temperagur
isothermal and isothermal model layers, respectively. Pressure profiles using the same set of governing equations
The outgoing flux as a function of wavelength is the and closures and enforcing general energy conservation.

synthetic spectrum. 1§5.2, we have provided recipes
for using these solutions either in stand-alone calcula-
tions of synthetic spectra or general circulation models.

6.2.1.Two-Stream Radiative Transfer
Several differences from past studies are worth mention-

ing. [Meador & Weaver|(1980) and _Goody & Yung (1989)

e Temperature-pressure profiles with non-isotropic

do not include the Planck function term in their deriva-
scattering: Using the dual-band approximation, we tions, cf.

their equations (10)—(13) and (8.156), respec-

have derived analytical solutions, in equation {126), for tively. [Meador & Weaver [(1980) list other closures such
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as “modified Eddington”, “modified quadrature” and “Delta the temperature-pressure profile is known (e.g., via in-sit
function”, but these are based on expressing the scatteringneasurements), such an approach is reasonable and robust.
phase function as a series expansion in Legendre polynomiin exoplanetary atmospheres, where the temperaturetpeess
als (Chandrasekhar 1960); these closures make different asprofile is a priori unknown, attempting to model intra-layer
sumptions for the integrals associated withFor the quadra-  temperature variations is computationally akin to assgnain
ture closure, Toon et al. (1989) and Pierrehumbert (20M3) di  sub-grid model. In our models with non-isothermal layens, w
agree on their expressions fgs: the former states it ags = are assuming that intra-layer variations may be lineatigrin
omfi (1 — wo), while the latter writesyg = v/3m/i (1 — wp); polated.
we have chosen to list and implement the latter as it cogrectl ~ As an initial approach, we expect that the accuracy of the
producesf = 1. isothermal assumption should be the burden of the numerical
A major difference with our derivation is that we have omit- resolution of the calculation—if one desires a better amswe
ted the contribution from a “direct beam” (Chandrasekhar one simply needs to specify more layers within a model atmo-
1960), which is usually included as a term involving the in- Sphere. An infinitesimally thin atmospheric layer may ale/ay

cident stellar flux, diluted across height by essentialaag- ~ be described as being isothermal. In practice, the use of non
mission function involving its own directionality: a chara  isothermal layers is computationally efficient, leads tpida
teristic value ofu, which we may write agi, = cosf,; numerical convergence and may be more accurate than us-

the quantityd, is often called the “zenith angle”. As al- ingan equivalent number of isothermal layers (Lacis & Qinas
ready mentioned, given the fact that the two-stream treat-1991). In exoplanetary atmospheres, the advantages and dis
ment is one-dimensional and the incoming stellar flux may advantages of using isothermal versus non-isothermaidaye
be modeled using the boundary condition at the top of the remain to be fully elucidated in future numerical work.
atmosphere, we consider this additional term to be superflu- Deep in the interior, as the vertical resolution far exceeds
ous [Meador & Weav&r 1980). Given the other assumptionsthe photon mean free path, the heating is more conveniently
and simplifications associated with the two-stream approxi described by flux-limited diffusion, which is a demonstsabl
mation we find this approach to be reasonable. non-isothermal phenomenon (sg&3).

6.2.2.Analytical Temperature-Pressure Profiles 6.4. The Diffusivity Factor

Analytical temperature-pressure profiles for highly-  |n the two-stream approximation, one may generally write
irradiated atmospheres were first explored by Hubenyet al.the transmission function as
(2003) and Hansen (2008). Guillot (2010) generalized these
studies into a formalism describing both latitude-speifid T = exp (—DAT), (145)
globally-averaged temperature-pressure profiles, allveit
the limit of pure absorption._Heng etal. (2012) considered ooy of our formalism, the diffusivity factor is relatéal
isotropic, coherent scattering, used non-constant iefrar . 't ot Eqdin O

- : i gton coefficient,

opacities and included a toy model for a Gaussian cloud deck,
albeit with a constant optical opacity. Robinson & Catling
(2012) augmented temperature-pressure profiles in théypure D= P (146)
absorbing limit with convective adiabats and employed
the diffusivity factor (see§6.4). (See also Appendix]A.) In order to produce the correct blackbody flux for a purely
Parmentier & Guillot [(2014) generalized the “picket fence absorbing, isothermal, opaque atmosphere, we have set
model”, previously described [n_Mihalds (1970), to deserib 1/2 or D = 2. Making other choices for the value dfalters
highly-irradiated atmospheres, by including four opasitio  this asymptotic value of the blackbody flux«(B /D).
mimic the presence of spectral lines and continua, albeit in For a purely absorbing atmosphere, it is possible to solve
the purely absorbing limit. for D by solving the radiative transfer equation directly for

In the present study, we obtain solutions for a non-constantthe intensity (see Appendix| B), instead of using the method
(power-law) optical opacity and consider non-isotropig; ¢ of moments. The transmission function then takes on a gener-
herent scattering both in the optical and infrared. We aiso d  alized form, cf. equatiori (B5), which requires an integrati
tinguish between net and total fluxes, such that a heating ter overyu. The diffusivity factor is then obtained by solving the
previously derived by Guillbt (2010) and Heng et al. (2012) equation,
naturally vanishes when radiative equilibrium is attained

1
ATO
6.3.Relegating the Burden of Isothermality to Numerical exp (=DAT) = 2/ Hexp (—7) dp. (147)
Resolution? 0

A real atmosphere is described by a continuous
temperature-pressure profile, which our two-stream model
is trying to approximate as a collection of discrete layers.
Within each layer, the simplest approach is to assign to it
only a single temperature, i.e., isothermality.

More realistically, we expect each model layer to possess a
intra-layer temperature gradient, which means that thekbla
body flux should vary across the layer. In situations where

whereD is often termed a “diffusivity factor”. Within the

Itis apparent that the value &f depends o\ 1y, which is the
difference in the (non-slanted) optical depth between ttwo a
mospheric layers. Since the radiative transfer equationaa
be solved directly when scattering is present (see Appendix
[B), one cannot write down a generalized form of equation
n@) and solve fo whenw, # 0.

Numerically, an optimal value for the diffusivity factor jma
be inferred by performing a calculation based on the direct
solution of the radiative transfer equation and compatrtibg i

12 Pierrehumbert [(2010) describes the two-stream approiingtas a second calculation based on the two-stream solutions with
“what physicists euphemistically like to call ‘unconted approximations,’ a chosen value db. For example, Amundsen et al. (2014)
in that they are not actually exact in any useful limit.” report thatD = 1.66 accurately approximates the direct so-
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APPENDIX
TOTAL, NET, OUTGOING AND INCOMING FLUXES IN THE CONVECTIVE EEGIME

We generalize the work of Robinson & Catling (2012), who caoieg fluxes in the convective regime, by including non-
isotropic, coherent scattering. The mathematical machiioe deriving these fluxes has already been laid o§@inl, so we will
simply state our results. As reasoned by Robinson & Catl#@i ?), the convective part of an atmosphere has a temperatur
pressure profile given by o« P('~1/7, wherey is the adiabatic gas index. The index— 1)/ may be diluted by a factor
of order unity to mimic moist convection. Consider the opatd becx m™ ~ P", whereny is a dimensionless index, which
implies thatr < Pm°*!. Here, we are using to represent the slant optical depth integrated over aleleagths, although we
expect most of its contributions to come from the longwavé&llows that the temperature-pressure profile is given by

a : (A1)

(v=1)/v(no+1)
T =Tgoa ( )
TBOA
whereTgoa andrpoa are the temperature and slant optical depth, respectigely)e bottom of the atmosphere, along this
convective adiabat. Note thakoa # T3 in general (e.gl, Pierrehumbert 2010), since the surfaea ekoplanet may be hotter
than the atmosphere directly above it.

By setting
—_ 4
= 4 (7 1) y Qe = 2/}/}3 (%l X Zf) USBTBOA7 (AZ)
v(no+1) TTEOA
the governing equation for the total flux, integrated ovewalelength, becomes
0*F "
37; — ?Fyp 4 aert™ =0, (A3)

wherea has previously been defined in equation (69).
The total and net fluxes are

e t?

Fy =Arexp(ar) + Azexp (—aT) — et D) (ne+2)

_— (A4)

1/2
Ya — Vs QT
_=— Aj exp (a1) — Agexp (—aT)] — .
(%L"’"YS) | ( ( ] (ne +1) (Va + )
From these expressions, we may defiyeand.F |, albeit with the coefficientsl; and.As; still present. To eliminate them requires
enforcing the boundary conditiods;, and.F,,. For a pair of atmosphere layers (whete< 7), the outgoing and incoming
fluxes are

Fry —m {(C-G)TF, ¢ (1-T%) F,,

oo AT ERT ) =) T (G = ) (G4 6T

+ m [Troet2 (2 272 = 1] = ) + 2 (- + &) (& - (TQ)]} : -
Fls —m {(C-G)TF, - (1-T>) F,

T e+ 1)(1(;a T B ) (G T A T (G 27 1] = )]

+ m [ ¥ (o + ¢) (G = T + Tt (2 - 2 272 - 1])] } .

Consider an atmosphere where the convective region sitsvisme depth, at > 7., where the transition (slant) optical
depth ¢.) may be computed by equatifigin equation[(Al) tol in equation[(124). To use the equations[inj(A5) in the same
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way as in_Robinson & Catling (20112), one has to &g = aSBTéoA, 79 = TBoA @andr; = 7. The other boundary condition is
F,, = osgT?, whereT, = T(r.). Note that since we can never hale= 0 when the equations ifi (A5) are used in this way,
F,, will not diverge due to th§ —2 terms.

Unlike in the purely absorbing case, as found by Robinson &i@a(2012), the outgoing and incoming fluxes depend on
both boundary conditions in the presence of scatteringthEumore, we have circumvented the need to use incompletenga
functions, as was the approach in Robinson & Catling (2042 }olving a second-order differential equation for, instead of
a first-order one (sef2.6).

It is worth noting that the equations ih_(A5) lack the symmaeif those in [(7b) (betweer’;, and F|,), because we have
enforced a temperature-pressure profile that is asymnatricss pressure or height.

While we have discussed the use of the equatiorisih (A5) foctimvective part of the atmosphere just above the surfaae of
exoplanet, they may also be used to describe detached tivevegions.

DIRECT ANALYTICAL SOLUTION OF THE RADIATIVE TRANSFER EQUATION AND WHY IT ONLY WORKS FOR PURE
ABSORPTION

In the limit of pure absorption, the radiative transfer egpramay be solved directly for the intensity, circumvegtthe need
for the method of moments. However, such an approach breais @hen scattering is present. To demonstrate this, warassu
isotropic, coherent scattering, as described by equadlprand obtain

To
Isexp (—E) — I exp (—&) = —l/ ’ [&J +(1 —wo)B} exp (—E) dro, (B1)
1 1 BoSr, L AT 1

wherel, and [; are the intensities evaluated@at = 7o, andry, = 7o,, respectively. Whew, # 0, the integral cannot be
evaluated since the functional form &fs a priori unknown. It cannot be assumed thatbeys isothermality (i.e., is independent
of 1), because it is related to the outgoing and incoming fluxeswi Eddington coefficient and the fluxes generally depend on
T0-
However, whenu, = 0, we may evaluate equatidn (B1) for isothermal atmosphayiers,

L =L7+B(1-"T), (B2)

To = exp (—%) (B3)

andAry = 79, — 70, > 0. By assuming/; and /> to be constant with respect fpand ¢, one multiplies equatioi (B2) by,
integrates oved() = dud¢ in each hemisphere and obtains

By =F,T+7B(1-T),

where we have defined

B4
Fl=F,T+7B(1-T), &9
if we identify Fy, = nI; andF}|, = wl,. The transmission function now takes on a more general form,
1
A
T = 2/ 1L exp (—%) dp = (1— Arp)exp (—A7p) + (AT0)2 &1, (B5)
0

with & = &£, (A1) being the exponential integral of the first order. It is impat to note that this generalized formfis only
valid in the limit of pure absorption.
If we express the Planck function as given by equafioh (8@), the direct solutions become

Fy, = FoyT+ 7By (1-T) 4 7B {§ [1 - exp (—Am)] - A (1 - g) } |

2 T (B6)
F,=F,T+7Bi(1-T)+7B {_§ [1 —exp(—A7)] + A7 (1 - 3) } .
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