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ABSTRACT
We present a comprehensive analytical study of radiative transfer using the method of moments and include

the effects of non-isotropic scattering in the coherent limit. Within this unified formalism, we derive the gov-
erning equations and solutions describing two-stream radiative transfer (which approximates the passage of
radiation as a pair of outgoing and incoming fluxes), flux-limited diffusion (which describes radiative transfer
in the deep interior) and solutions for the temperature-pressure profiles. Generally, the problem is mathemati-
cally under-determined unless a set of closures (Eddingtoncoefficients) is specified. We demonstrate that the
hemispheric (or hemi-isotropic) closure naturally derives from the radiative transfer equation if energy con-
servation is obeyed, while the Eddington closure produces spurious enhancements of both reflected light and
thermal emission. We concoct recipes for implementing two-stream radiative transfer in stand-alone numerical
calculations and general circulation models. We use our two-stream solutions to construct toy models of the
runaway greenhouse effect. We present a new solution for temperature-pressure profiles with a non-constant
optical opacity and elucidate the effects of non-isotropicscattering in the optical and infrared. We derive gen-
eralized expressions for the spherical and Bond albedos andthe photon deposition depth. We demonstrate
that the value of the optical depth corresponding to the photosphere is not always 2/3 (Milne’s solution) and
depends on a combination of stellar irradiation, internal heat and the properties of scattering both in optical
and infrared. Finally, we derive generalized expressions for the total, net, outgoing and incoming fluxes in the
convective regime.
Subject headings:radiative transfer – planets and satellites: atmospheres –methods: analytical

1. INTRODUCTION

The ability of astronomers to measure the spectral en-
ergy distributions and transmission spectra of exoplanetary
atmospheres has inspired theoretical efforts to model, inter-
pret and predict their spectral and thermal structures. Tech-
niques range from studying atmospheres in radiative and/or
chemical equilibrium (e.g., Burrows et al. 2008; Fortney etal.
2010) to the inference of chemical composition and thermal
structure based solely on the data (e.g., Benneke & Seager
2012; Lee et al. 2012; Line et al. 2013). Global climate mod-
els have been adapted to study the radiation hydrodynam-
ics of exoplanetary atmospheres (e.g., Showman et al. 2009;
Heng, Menou & Phillipps 2011; Rauscher & Menou 2012).
This surge of interest motivates a careful re-examination
of the assumptions and techniques used in radiative trans-
fer, since the exoplanetary atmospheres accessible to as-
tronomical measurement reside in non-Solar-System-centric
regimes.3

Central to these theoretical efforts is a simple, general
and fast technique to compute radiative transfer known
as the “two-stream approximation” (Chandrasekhar 1960;
Meador & Weaver 1980; Goody & Yung 1989; Toon et al.
1989; Mihalas & Weibel-Mihalas 1999). It solves the mo-
ments of the radiative transfer equation and treats the pas-
sage of radiation through an atmosphere as a pair of outgo-
ing and incoming rays. It is versatile enough to be used in

1 University of Bern, Center for Space and Habitability, Sidlerstrasse
5, CH-3012, Bern, Switzerland. Email: kevin.heng@csh.unibe.ch,
joao.mendonca@csh.unibe.ch

2 University of Zürich, Institute for Computational Science, Winterthur-
erstrasse 190, CH-8057, Zürich, Switzerland. Email: lee@physik.uzh.ch
3 Presently, these are highly-irradiated exoplanets with temperatures∼

800–3000 K.

stand-alone calculations of atmospheres in radiative equilib-
rium, retrieval calculations or coupled to three-dimensional
general circulation models. Related to this technique
are analytical calculations of temperature-pressure profiles
(Hubeny et al. 2003; Hansen 2008; Guillot 2010; Heng et al.
2012; Robinson & Catling 2012; Parmentier & Guillot 2014),
which allow one to develop intuition for the thermal structure
of an atmosphere. While the two-stream treatment itself is
not novel, it comes in several flavors (Pierrehumbert 2010),is
often tuned toward studying the Earth, Solar System, brown
dwarfs or stars and there is a need to elucidate the assump-
tions involved so that we can harness it to study exoplanetary
atmospheres.

The over-arching goal of the present study is to construct
a unified formalism for calculating radiative transfer and an-
alytical temperature-pressure profiles. We examine the two-
stream radiative transfer method applied to atmospheres, flux-
limited diffusion as a description of radiative transfer inthe
deep interior of exoplanets and temperature-pressure profiles,
all in the limit of non-isotropic, coherent scattering. Each of
these techniques has previously been studied separately, but
not in a unified manner using a self-consistent set of gov-
erning equations. Since we are dealing with moments of the
radiative transfer equation, a set of closures (Eddington co-
efficients) is needed such that the problem is not mathemati-
cally under-determined. One of our goals is to derive a self-
consistent set of closures. By distinguishing between the total,
net, outgoing and incoming fluxes, we resolve several incon-
sistencies lingering in the literature.

In §2, we revisit two-stream radiative transfer in the limit
of isotropic, coherent scattering. In the process, we demon-
strate that the hemispheric closure naturally derives fromthe
radiative transfer equation, while recommending that the Ed-
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TABLE 1
COMMONLY USED SYMBOLS

Name Units Meaning
µ — cosine of zenith angle
µ̄ — characteristic or mean value ofµ
T — transmission function or transmissivity†

ω0 — single-scattering albedo†

g0 — scattering asymmetry factor†

β0 — ≡
√

1−ω0

1−ω0g0
; scattering parameter†

ζ± — ≡ (1± β0) /2; coupling coefficients†

βS0
— shortwave/optical scattering parameter

βL0
— longwave/infrared scattering parameter

Ag — geometric albedo†

As — spherical albedo†

AB — Bond albedo
g cm s−2 surface gravity of exoplanet
a cm spatial separation (exoplanet and star)
τ0 — optical depth†

τ — slant optical depth†

κ cm2 g−1 total/extinction opacity†

κa cm2 g−1 absorption opacity†

m g cm−2 column mass
I erg cm−3 s−1 sr−1 intensity†

J erg cm−3 s−1 total intensity†

F↑ erg cm−3 s−1 outgoing flux†

F↓ erg cm−3 s−1 incoming flux†

F+ erg cm−3 s−1 total flux†

F− erg cm−3 s−1 net flux†

B erg cm−3 s−1 sr−1 Planck function†

κR cm2 g−1 Rosseland-mean opacity
κS cm2 g−1 shortwave/optical opacity
n — shortwave opacity index
κL cm2 g−1 longwave/infrared opacity
ωS0

— single-scattering albedo (shortwave)
ωL0

— single-scattering albedo (longwave)
gS0

— asymmetry factor (shortwave)
gL0

— asymmetry factor (longwave)
J erg cm−2 s−1 total intensity (all wavelengths)
F↑ erg cm−2 s−1 outgoing flux (all wavelengths)
F↓ erg cm−2 s−1 incoming flux (all wavelengths)
F+ erg cm−2 s−1 total flux (all wavelengths)
F− erg cm−2 s−1 net flux (all wavelengths)
Ei — i-th order exponential integral
T K temperature
T̄ K global-mean temperature
Tirr K irradiation temperature
T⋆ K effective stellar temperature
Tint K internal temperature

†: quantity is wavelength-dependent.

dington closure not be used. In§3, we examine non-isotropic,
coherent scattering and describe a transition to flux-limited
diffusion in the deep interior. In§4, we use our findings in§2
and§3 to derive analytical temperature-pressure profiles with
non-isotropic, coherent scattering and a non-constant optical
or shortwave opacity. In§5, we apply our unified formalism
to studying other closures, concocting recipes for computing
two-stream radiative transfer, calculating albedo spectra and
temperature-pressure profiles, generalizing Milne’s solution
and constructing toy models of the runaway greenhouse ef-
fect. In §6, we compare the current study to previous ones
and discuss the implications of our findings. In Appendix A,
we derive generalized analytical expressions for the total, net,
outgoing and incoming fluxes in the convective regime. In
Appendix B, we demonstrate that direct analytical solutions

of the radiative transfer equation are only obtainable in the
limit of pure absorption. Table 1 lists the commonly used
symbols in this study, while Tables 2 and 3 summarize the
closures used and a comparison of the different closures in
the literature, respectively.

The present paper is the second in a series of analytical
studies that aim to re-examine and generalize the theoreti-
cal formalism used in planetary atmospheres. The first paper
studied atmospheric dynamics via the shallow water approxi-
mation (Heng & Workman 2014).

2. TWO-STREAM RADIATIVE TRANSFER: ISOTROPIC, COHERENT
SCATTERING

2.1.Radiative Transfer Equation

The radiative transfer equation for a plane-parallel,
static atmosphere may be stated in a compact form
(Chandrasekhar 1960; Mihalas 1970; Goody & Yung 1989;
Mihalas & Weibel-Mihalas 1999),

µ
∂I

∂τ0
= I − S, (1)

whereµ ≡ cos θ is the cosine of the zenith angle,I is
the wavelength-dependent intensity,τ0 is the wavelength-
dependent optical depth andS is the source function. The
source function hides the complexity associated with scatter-
ing and thermal emission. The zenith angleθ is the angle
between an incoming or outgoing ray and the normal to the
plane. Note that we have definedτ0 = 0 at the top of the
atmosphere.

Generally, it is challenging to obtain analytical solutions of
the radiative transfer by directly solving forI. This is pos-
sible only in the limit of pure absorption (see Appendix B).
Instead, one solves moments of equation (1), which requires
us to define the moments ofI. The two-stream equations
are essentially the first and second moments of equation (1)
(Meador & Weaver 1980).

2.2.Moments of the Intensity

The zeroth, first and second moments of the intensity are

J↑ ≡
∫ 2π

0

∫ 1

0

I dµ dφ,

J↓ ≡
∫ 2π

0

∫ 0

−1

I dµ dφ,

F↑ ≡
∫ 2π

0

∫ 1

0

µI dµ dφ,

F↓ ≡
∫ 2π

0

∫ 0

−1

µI dµ dφ,

K↑ ≡
∫ 2π

0

∫ 1

0

µ2I dµdφ,

K↓ ≡
∫ 2π

0

∫ 0

−1

µ2I dµdφ.

(2)

The outgoing flux and incoming flux are given byF↑ andF↓,
respectively. Note that the total intensity (J), total flux (F+)
and net flux (F−), as well as the second moments (K±), are
given by

J ≡ J↑ + J↓,

F± ≡ F↑ ± F↓,

K± ≡ K↑ ±K↓,

(3)
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TABLE 2
CLOSURESADOPTED(EDDINGTON COEFFICIENTS)

Symbol Meaning
ǫ+ ≡ F↑/J↑ first Eddington coefficient (outgoing)
ǫ− ≡ F↓/J↓ first Eddington coefficient (incoming)
ǫ ≡ F+/J first Eddington coefficient
ǫ2 ≡ K−/F+ second Eddington coefficient
ǫ3 ≡ K−/J third Eddington coefficient
ǫS ≡ KS/JS third Eddington coefficient (shortwave)
ǫL ≡ FL/JL first Eddington coefficient (longwave)
ǫL3

≡ KL/JL third Eddington coefficient (longwave)

Closure Assumption or Constraint
ǫ± = ǫ+ = ǫ− symmetry between hemispheres
µ̄ = µ̄+ = −µ̄− symmetry between hemispheres
ǫ = ǫ± conservation of energy
ǫ± = 1/2 correct blackbody emission for opaque atmosphere
ǫ2 = F+/2F− reproduces isotropic limit
ǫ3 = 1/3 deep atmosphere limit
ǫS = µ2 reproduces Beer’s law
ǫL = 3/8 equal toǫ2/2ǫ3 (consistency with other closures)
ǫL3

= 1/3 correspondence toǫ3

whileE = J/c is the energy density, wherec is the speed of
light. In a departure from the traditional approach, we have
defined total quantities (integrated over one or both hemi-
spheres) and not mean ones (which are further divided by4π).

2.3.Deriving the Two-Stream Form

The radiative transfer equation with isotropic, coherent
scattering is described by (Mihalas 1970)

µ
∂I

∂τ0
= I − ω0J

4π
− (1− ω0)B, (4)

whereB is the blackbody/Planck function. The quantityω0

is the ratio of the scattering cross section to the total (absorp-
tion and scattering) cross section and is termed the “single-
scattering albedo”. The thermal emission is assumed to be
in local thermodynamic equilibrium (LTE). By “coherent”,
we mean that the incoming and outgoing photons have the
same frequency. Traditionally, such an approximation is used
to describe the continuum in stellar atmospheres. It is a
bad approximation for spectral lines, unless they have zero
width and the scattering atoms or molecules are completely
at rest. Instead, spectral lines are better described by theop-
posite limit of “complete redistribution” (or “complete non-
coherence”), where the frequency of the outgoing photons are
randomly redistributed over the line profile (Mihalas 1970).
In highly-irradiated exoplanets, coherent scattering is ade-
cent approximation, because of the presence of dense forests
of lines and collision-induced absorption, the latter of which
functions like absorption by a continuum. Redistribution over
each individual line, in such a dense forest of lines, is then
a relatively minor effect. The problem is further alleviated
if synthetic spectra are computed over relatively broad wave-
length bins.

There are two ways to proceed. The first is to solve equation
(4) usingτ0 as the independent variable (e.g., see Appendix
B for the case of pure absorption). The second is to relate
τ0 to a slant optical depth (τ ) via some characteristic value
of µ (µ̄). Pierrehumbert (2010) has previously discussed the
various choices of̄µ and adopted̄µ = 1/2. As an exam-
ple, we note that Frierson, Held & Zurita-Gotor (2006) also
useµ̄ = 1/2. In order to facilitate comparison with studies

that generally make choices for the value ofµ̄—sometimes
without explicitly stating them—we will seek two-stream so-
lutions withτ as the independent variable and leave the value
of µ̄ unspecified.

To transform equation (4) into its two-stream form, we first
rewrite it in terms of the slant optical depth,

τ ≡ τ0
µ̄+

, (5)

whereµ̄+ ≥ 0 is a characteristic or mean value ofµ in the
upper hemisphere (defined by0 ≤ θ ≤ 90◦ or 0 ≤ µ ≤ 1).
By integrating equation (4) overµ and using equations (2) and
(3), we obtain

∂F↑

∂τ
=µ̄+F↑

[

1

ǫ+
− ω0

2ǫ

]

− µ̄+ω0

2ǫ
F↓ − 2πµ̄+ (1− ω0)B.

(6)

In the lower hemisphere (defined by90◦ ≤ θ ≤ 180◦ or
−1 ≤ µ ≤ 0), we define

τ ≡ τ0
µ̄−

, (7)

whereµ̄− ≤ 0 is a characteristic or mean value ofµ, and then
integrate equation (4) to obtain

∂F↓

∂τ
=µ̄−F↓

[

1

ǫ−
− ω0

2ǫ

]

− µ̄−ω0

2ǫ
F↑ − 2πµ̄− (1− ω0)B.

(8)

In transforming the radiative transfer equation, which in-
volves the intensity, into its moments, which involve the to-
tal intensity, fluxes and other higher moments, one needs
a series of “closures”, which effectively reduce the num-
ber of unknown variables by one—the number of unknowns
now becomes equal to the number of equations. These
closures are generally termed the “Eddington coefficients”
(Mihalas & Weibel-Mihalas 1999), although there appears to
be no consensus on how to number them. In the present
study, we will number the Eddington coefficients in the or-
der in which we will invoke them. In the case of isotropic,
coherent scattering, we define the following “first Eddington
coefficients”,

ǫ+ ≡ F↑

J↑
, ǫ− ≡ F↓

J↓
, ǫ ≡ F+

J
, (9)

where there is one each for the outgoing/upper hemisphere
(ǫ+), the incoming/lower hemisphere (ǫ−) and the entire at-
mosphere (ǫ). We will see later that the values of these first
Eddington coefficients may be fixed via a series of physical
constraints.

We assume that the Eddington coefficients in the outgoing
and incoming hemispheres are equal, i.e.,ǫ± = ǫ+ = ǫ−.
Furthermore, we assume that the characteristic values ofµ
have the same magnitude in each hemisphere,

µ̄ = µ̄+ = −µ̄−. (10)

These assumptions are commonly made, but seldom explicitly
elucidated (e.g., Pierrehumbert 2010). Any physical process
that leads to an asymmetry between the outgoing and incom-
ing values of the flux and mean intensity will renderǫ+ 6= ǫ−
andµ̄+ 6= µ̄−. Furthermore,ǫ+, ǫ− andǫ are generally not
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expected to be constant with pressure or height in an atmo-
sphere.

With these assumptions, the pair of equations in (6) and (8)
may be rewritten in a more compact form,

∂F↑

∂τ
=γaF↑ − γsF↓ − γBB,

∂F↓

∂τ
=− γaF↓ + γsF↑ + γBB,

(11)

where the coefficients of the equations are

γa ≡ µ̄

(

1

ǫ±
− ω0

2ǫ

)

,

γs ≡
µ̄ω0

2ǫ
,

γB ≡ 2πµ̄ (1− ω0) .

(12)

We note that the pair of equations in (11) have the same math-
ematical form as equations (11) and (12) of Toon et al. (1989).
Instead of using the generic labels of “γ1” and “γ2” for the
coefficients, we have usedγa andγs to refer to the effects
of absorption (via the subscript “a”) and scattering (via the
subscript “s”). In a purely-absorbing atmosphere, we have
γs = 0, such that outgoing rays remain outgoing and incom-
ing rays remain incoming, at least for the two-stream approx-
imation. Scattering converts some of the outgoing rays into
incoming ones (and vice versa), becauseγs 6= 0.

Meador & Weaver (1980) and Toon et al. (1989) have pre-
viously derived equivalent forms of equation (11) from the ra-
diative transfer equation, while Pierrehumbert (2010) haspre-
viously stated equation (11) in a heuristic way (see his Chap-
ter 5.5).

2.4.Enforcing Energy Conservation in Purely Scattering
Limit

Even without solving the pair of equations in (11), we may
simplify the expression forγa andγs by demanding that en-
ergy is conserved in the purely scattering limit (ω0 = 1,
γB = 0), which yields

∂F−

∂τ
= (γa − γs)F+ = 0. (13)

Since we generally expectF+ 6= 0, this implies that we must
haveγa = γs, which yields

ǫ = ǫ±. (14)

It follows that

γa =
µ̄

ǫ±

(

1− ω0

2

)

,

γs =
µ̄ω0

2ǫ±
.

(15)

This line of reasoning was previously employed by Toon et al.
(1989).

2.5.Enforcing Correct Total Blackbody Flux in Isothermal,
Opaque, Purely Absorbing Atmosphere

In the purely absorbing limit, we enforce the condition that
the blackbody flux emitted by an opaque, isothermal4 atmo-
sphere is correct. Whenω0 = 0, we getγa = µ̄/ǫ±, γs = 0,

4 Specifically, we assume thatB is constant withτ .

γB = 2πµ̄ and the solutions to the equations in (11) are

F↑ = F↑0
exp (γaτ) +

γBB

γa
[1− exp (γaτ)] ,

F↓ = F↓0
exp (−γaτ) +

γBB

γa
[1− exp (−γaτ)] ,

(16)

whereF↑0
and F↓0

are the values ofF↑ and F↓, respec-
tively, when τ = 0. In an opaque atmosphere, we have
F↑ → γBB/γa as τ → −∞, while F↓ → γBB/γa as
τ → ∞. This implies that the total flux becomes

F+ → 2γBB

γa
= 4πǫ±B. (17)

By assuming the blackbody radiation to be isotropic over each
hemisphere, one may show that

∫ 2π

0

∫ 1

0

µBdµdφ =

∫ 2π

0

∫ 0

−1

µBdµdφ = πB. (18)

Since the correct limit isF+ → 2πB, this implies thatǫ± =
1/2. It follows that

γa = µ̄ (2− ω0) ,

γs = µ̄ω0.
(19)

The same line of reasoning was again previously employed
by Toon et al. (1989). Within our formalism,1/ǫ± is the dif-
fusivity factor (see§6.4).

2.6.Equivalence of Solving First- and Second-Order
Differential Equations

In equation (16), we previously stated the solution for an
isothermal slab bounded by 0 andτ . There are two ap-
proaches to solving the two-stream equations: either as a pair
of first-order differential equations or as a single second-order
differential equation. Identical answers are obtained if the
correct boundary conditions are specified. The equivalence
of these approaches may be cleanly demonstrated using the
pair of two-stream equations in the purely absorbing limit,

∂F↑

∂τ
=2µ̄F↑ − 2πµ̄B,

∂F↓

∂τ
=− 2µ̄F↓ + 2πµ̄B.

(20)

While the mathematical techniques presented in this subsec-
tion are well-known and not novel, we review them within the
context of our problem so that we may apply them later in
§2.7,§3.2.4 and Appendix A.

Solving the pair of equations in (20) involves realizing that

∂

∂τ
[F↑ exp (−2µ̄τ)] = exp (−2µ̄τ)

∂F↑

∂τ
− 2µ̄F↑ exp (−2µ̄τ),

∂

∂τ
[F↓ exp (2µ̄τ)] = exp (2µ̄τ)

∂F↓

∂τ
+ 2µ̄F↓ exp (2µ̄τ).

(21)

Integrating between two layers, with optical depths ofτ1 and
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τ2 (whereτ2 > τ1), we obtain

F↑1
=F↑2

exp [2µ̄ (τ1 − τ2)]

+ 2πµ̄

∫ τ2

τ1

B exp [2µ̄ (τ1 − τ)]dτ,

F↓2
=F↓1

exp [2µ̄ (τ1 − τ2)]

+ 2πµ̄

∫ τ2

τ1

B exp [2µ̄ (τ − τ2)]dτ.

(22)

We have intentionally written the expression for the outgo-
ing flux in this way, because it is obtained by integrating up-
wards from the boundary condition at the bottom of the atmo-
sphere (BOA). In this manner,F↑ is computed for the layer
immediately above the BOA. This procedure is repeated until
each of the model atmospheric layers has a computed value
of F↑. Similarly, the incoming flux is obtained by integrating
downwards from the boundary condition at the top of the at-
mosphere (TOA) and populating each layer with a computed
value ofF↓. In the isothermal limit, we obtain

F↑1
=F↑2

exp [2µ̄ (τ1 − τ2)] + πB {1− exp [2µ̄ (τ1 − τ2)]} ,
F↓2

=F↓1
exp [2µ̄ (τ1 − τ2)] + πB {1− exp [2µ̄ (τ1 − τ2)]} .

(23)

The approach of solving a pair of first-order differential
equations becomes challenging when the equations forF↑ and
F↓ are coupled in the presence of scattering. A more general
approach is to cast the problem in terms of a second-order
differential equation forF+, which is applicable even when
γs 6= 0. By separately adding and subtracting the pair of equa-
tions in (20), we get

∂F+

∂τ
=2µ̄F−,

∂F−

∂τ
=2µ̄F+ − 4πµ̄B,

(24)

from which it follows that

∂2F+

∂τ2
− 4µ̄2F+ = −8πµ̄2B. (25)

This second-order differential equation has the solution,

F+ = A1 exp (2µ̄τ) +A2 exp (−2µ̄τ) + 2πB. (26)

The coefficientsA1 andA2 are determined by imposing a
pair of boundary conditions. To keep the algebra tractable
for now and merely illustrate the method, we have assumed
isothermality (∂B/∂τ = 0) for this subsection. It follows
that

F− = A1 exp (2µ̄τ) −A2 exp (−2µ̄τ). (27)

By again imposing the boundary conditionsF↑2
andF↓1

, we
obtain

A1 = (F↑2
− πB) exp (−2µ̄τ2),

A2 = (F↓1
− πB) exp (2µ̄τ1),

(28)

from which we may derive the pair of equations in (23).
Thus, the two approaches of either solving a pair of first-

order differential equations (forF↑ andF↓) or a single second-
order differential equation (forF+) are equivalent, at least in
the purely absorbing, isothermal limit. In more general cases,
we will use the method of solving the second-order differen-
tial equation.

2.7.General Solution with Isotropic Scattering and
Non-Isothermal Layers

We now return to solving equation (11) in the general sense.
Adding and substracting the equations in turn yields,

∂F+

∂τ
=2µ̄F−,

∂F−

∂τ
=2µ̄ (1− ω0) (F+ − 2πB) ,

(29)

from which we obtain

∂2F+

∂τ2
− α2F+ = −2πα2B, (30)

where we have defined

α ≡ 2µ̄ (1− ω0)
1/2

. (31)

The homogeneous solution to equation (30) is as before,

F+h = A1 exp (ατ) +A2 exp (−ατ). (32)

The particular solution depends on the functional form
adopted forB. Generally, we expect each model layer to have
aninternal temperature gradient, implying thatB depends on
τ , sinceT depends onτ . Following Toon et al. (1989), we
writeB as a linear function ofτ ,

B = B0 + B′µ̄ (τ − τ ′) , (33)

where

B′ ≡ 1

µ̄

∂B

∂τ
≈ B2 −B1

µ̄ (τ2 − τ1)
(34)

is the gradient of the Planck function across a given layer and
is constant for that layer. The quantityτ ′ is present in equa-
tion (33) to translate the “zero” of the optical depth to the edge
of a layer.5 The quantitiesB1 andB2 are the Planck function
evaluated atτ1 andτ2, respectively. The values of the quan-
tities B0 andτ ′ depend on whether one is dealing with the
outgoing or incoming flux. For the outgoing flux,B0 = B2

andτ ′ = τ2. For the incoming flux,B0 = B1 andτ ′ = τ1.
These choices ensure that whenτ = τ1,2, equation (33) gives
B = B1,2. Mathematically, equation (33) qualifies as the
Taylor series expansion of the Planck function about the point
τ = τ ′, truncated at the linear term.

With this choice ofB, the particular solution takes the form,

F+p = 2πB. (35)

The full solution (homogeneous plus particular) to equation
(30) is

F+ = A1 exp (ατ) +A2 exp (−ατ) + 2πB, (36)

from which we obtain

F− =
α

2µ̄
[A1 exp (ατ) −A2 exp (−ατ)] + πB′. (37)

5 A potential source of confusion comes from the fact that Toonet al.
(1989) use two contradicting definitions for theirτ . In the text below their
equation (1), it is described as the optical depth measured from the top of the
atmosphere. In their equation (25), it is the optical depth measured from the
edge of a model layer.
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The outgoing and incoming fluxes are

F↑ =A1ζ+ exp (ατ) +A2ζ− exp (−ατ) + πB +
πB′

2
,

F↓ =A1ζ− exp (ατ) +A2ζ+ exp (−ατ) + πB − πB′

2
,

(38)

where we have defined

ζ± ≡ 1

2

[

1± (1− ω0)
1/2

]

. (39)

To derive expressions for the coefficientsA1 andA2, we
have to impose the boundary conditionsF↑2

andF↓1
, which

yields

F↑2
=A1ζ+ exp (ατ2) +A2ζ− exp (−ατ2) + πB2+,

F↓1
=A1ζ− exp (ατ1) +A2ζ+ exp (−ατ1) + πB1−,

(40)

where we have found it convenient to define the quantities,

Bi− ≡ B1 +B′µ̄ (τi − τ1)−
B′

2
,

Bi+ ≡ B2 +B′µ̄ (τi − τ2) +
B′

2
.

(41)

A more intuitive way of writing down the solutions for
the outgoing and incoming fluxes is to cast them in terms
of the transmission function (or simply the “transmissivity”)
(Pierrehumbert 2010),

T ≡ exp [−α (τ2 − τ1)], (42)

noting thatτ2 > τ1. This approach is also more ideal for com-
putation, since we have0 ≤ T ≤ 1 (instead of unwieldy ex-
ponentials with potentially large exponents). The task is to de-
rive expressions forF↑1

in terms ofF↑2
andT , and alsoF↓2

in
terms ofF↓1

andT . More specifically, we have to find expres-
sions forA1ζ+ exp (ατ1) andA2ζ− exp (−ατ1) when deriv-
ing F↑1

. For F↓2
, we need expressions forA1ζ− exp (ατ2)

andA2ζ+ exp (−ατ2). Manipulating the pair of expressions
in (40) gives

A2 exp (−ατ1) =
1

ζ2−T − ζ2+T −1

[

ζ−F↑2
− ζ+T −1F↓1

− π
(

ζ−B2+ − ζ+T −1B1−

)]

,
(43)

and

A2 exp (−ατ2) =
1

ζ2−T − ζ2+T −1
[ζ−T F↑2

− ζ+F↓1

− π (ζ−T B2+ − ζ+B1−)] .

(44)

The expressions in (40) permit two ways of deriving
A1ζ+ exp (ατ1) or A1ζ− exp (ατ2). One can choose to use
either the equation involving the boundary conditionF↑2

or
F↓1

. In derivingF↑1
, we use the first equation in (40). In

derivingF↓2
, we use the second equation in (40). It follows

that

A1ζ+ exp (ατ1) =T F↑2
−A2ζ−T 2 exp (−ατ1)

− πB2+T ,
A1ζ− exp (ατ2) =T −1F↓1

−A2ζ+T −2 exp (−ατ2)
− πB1−T −1.

(45)

Assembling all of the various pieces enables us to obtain

F↑1
=

1

(ζ−T )
2 − ζ2+

{(

ζ2− − ζ2+
)

T F↑2
− ζ−ζ+

(

1− T 2
)

F↓1

+ π
[

B1+

(

ζ2−T 2 − ζ2+
)

+ B2+T
(

ζ2+ − ζ2−
)

+ B1−ζ−ζ+
(

1− T 2
)]}

,

F↓2
=

1

(ζ−T )
2 − ζ2+

{(

ζ2− − ζ2+
)

T F↓1
− ζ−ζ+

(

1− T 2
)

F↑2

+ π
[

B2−

(

ζ2−T 2 − ζ2+
)

+ B1−T
(

ζ2+ − ζ2−
)

+ B2+ζ−ζ+
(

1− T 2
)]}

.
(46)

In the limit of pure absorption (ω0 = 0), we haveζ− = 0
andζ+ = 1 and the two-stream solutions reduce to

F↑1
=T F↑2

+ π (B1+ − B2+T ) ,

F↓2
=T F↓1

+ π (B2− − B1−T ) .
(47)

In the isothermal limit, we recover equation (23).
Unlike in the purely absorbing limit, verifying the two-

stream solutions in the limit of pure scattering is a subtleris-
sue. As already noted by Toon et al. (1989), the two-stream
solutions derived forω0 6= 1 are not valid in the limiting case
of ω0 = 1. One needs to return to the governing equations in
(29) in the limit ofω0 = 1 and solve them directly (Toon et al.
1989). Specifically, the equations in (46) need to be replaced
by

F↑1
= F↑2

− (F↑2
− F↓1

) µ̄ (τ2 − τ1)

1 + µ̄ (τ2 − τ1)
,

F↓2
= F↓1

+
(F↑2

− F↓1
) µ̄ (τ2 − τ1)

1 + µ̄ (τ2 − τ1)
,

(48)

One may verify that when the model layer is opaque (τ2 −
τ1 ≫ 1/µ̄), one recovers the pure reflection of the boundary
conditions:F↑1

= F↓1
andF↓2

= F↑2
. When the layer is

transparent (τ2 − τ1 ≪ 1/µ̄), we getF↑1
= F↑2

andF↓2
=

F↓1
.

We note that whenω0 = 1, the equations in (46) reduce to
F↑1

= F↓1
+πB′ andF↓2

= F↑2
−πB′. It almost reproduces

the pure scattering limit for an opaque atmosphere, but with
blackbody terms that produce unphysical contributions.

2.8.General Solution with Isotropic Scattering and
Isothermal Layers

We now study trends in the limit of each model atmospheric
layer being isothermal, where the two-stream solutions are

F↑1
=

1

(ζ−T )
2 − ζ2+

{(

ζ2− − ζ2+
)

T F↑2
− ζ−ζ+

(

1− T 2
)

F↓1

+ πB
[

ζ−ζ+
(

1− T 2
)

−
(

ζ2−T + ζ2+
)

(1− T )
]}

,

F↓2
=

1

(ζ−T )
2 − ζ2+

{(

ζ2− − ζ2+
)

T F↓1
− ζ−ζ+

(

1− T 2
)

F↑2

+ πB
[

ζ−ζ+
(

1− T 2
)

−
(

ζ2−T + ζ2+
)

(1− T )
]}

.
(49)

Written in this form, the purpose of the “coupling coeffi-
cients” becomes clear:ζ± are order-of-unity, dimensionless
coefficients that assign relative weights to the bottom and top
boundary conditions, depending on the strength of scattering.
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FIG. 1.— Behavior ofζ−, ζ+ and their ratio as a function of the single-
scattering albedo (ω0) for different values of the scattering asymmetry factor
(g0). Note thatζ−/ζ+ is also the spherical albedo.

In the limits of pure absorption (ζ− = 0, ζ+ = 1) or pure
scattering (ζ± = 1/2), this coupling is broken. In between,
it depends on the symmetry properties of scattering (Figure
1). The ratioζ−/ζ+ is also the spherical albedo, as we will
see in§4.2.1. Generalized expressions forζ±, involving non-
isotropic scattering, will be derived in§3.

When the layers are transparent (T = 1), we haveF↑1
=

F↑2
andF↓2

= F↓1
, as expected. In opaque layers (T = 0),

we have

F↑1
=
ζ−F↓1

ζ+
+ πB

(

1− ζ−
ζ+

)

,

F↓2
=
ζ−F↑2

ζ+
+ πB

(

1− ζ−
ζ+

)

.

(50)

The factorζ−/ζ+ is a steep function ofω0 (Figure 1), im-
plying that the fluxes rapidly converge towards the boundary
conditions as scattering becomes more dominant.

It is apparent from equation (49) that if the boundary con-
ditionsF↑2

andF↓1
assume equal values, then the outgoing

and incoming fluxes are identical. Thus, to illustrate the di-
versity of solutions possible, we adoptF↑2

/πB = 0 and
F↓1

/πB = 1. Figure 2 illustrates several basic trends. As
expected, we getF↑1

→ F↓1
andF↓2

→ F↑2
asω0 → 1,

independent ofT , i.e., pure reflection of the boundary condi-
tions. The incoming flux (F↓2

) increases with the transmis-
sion (T ) as one expects for an atmosphere that is irradiated
from above. Curiously, the outgoing flux (F↑1

) decreasesas
the transmission increases, but this is a consequence of the
fact that there is no internal heat specified (F↑2

= 0); it tends
towards this vanishing boundary condition as the transmission
increases.

We note that there is no contradiction between specifying
T and ω0 as independent parameters. A largely transpar-
ent atmospheric layer (T ∼ 1) may still be purely absorbing
(ω0 = 0) or scattering (ω0 = 1)—it just does not absorb or
scatter enough to render itself opaque to radiation. The trans-
mission specifies the fraction of radiation passing througha
layer, while the single-scattering albedo describes the relative
strength of scattering versus absorption.

3. TWO-STREAM RADIATIVE TRANSFER: NON-ISOTROPIC,
COHERENT SCATTERING

Naturally, the next generalization is to allow for coher-
ent but non-isotropic scattering within the model atmosphere.

FIG. 2.— Outgoing and incoming fluxes as functions of the single-scattering
albedo (ω0) and for various values of the transmission (T ) in the limit of
isotropic, coherent scattering. All fluxes and their boundary conditions are
given in terms of the blackbody flux (πB).

The governing equation now reads (Chandrasekhar 1960;
Mihalas 1970; Goody & Yung 1989),

µ
∂I

∂τ0
= I − ω0

4π

∫ 4π

0

PIdΩ′ − (1− ω0)B, (51)

whereP is the scattering phase function. It is integrated over
all incident angles in spherical coordinates(θ′, φ′) such that
dΩ′ ≡ dµ′dφ′, where we have definedµ′ ≡ cos θ′. Note that
if P = 1, then we recover equation (4).

3.1.General Properties of the Scattering Phase Function

We can state a few general properties of the scattering phase
function that will allow us to transform equation (51) into its
two-stream form, even without explicitly specifying the func-
tional form ofP . Our derivation fills in details previously left
out by other works.

3.1.1.Sole Dependence on the Relative Scattering Angle

Generally, it is assumed thatP = P(Θ) only, where
Θ = θ′ − θ. This assumption alone allows one to
derive a symmetry property associated withµ′ and µ
(Goody & Yung 1989; Pierrehumbert 2010). Consider two
arbitrary locations in the atmosphere represented by the vec-
tors ~r′ = (r′ sin θ′ cosφ′, r′ sin θ′ sinφ′, r′ cos θ′) and~r =
(r sin θ cosφ, r sin θ sinφ, r cos θ). Taking their dot product
yields an expression forµ′′ ≡ cosΘ,

µ′′ = µ′µ+
(

1− µ′2
)1/2 (

1− µ2
)1/2

cos (φ′ − φ) , (52)

previously stated in equation (8.2) of Goody & Yung (1989)
and equation (5.8) of Pierrehumbert (2010). Equation (52)
informs us thatµ′′ is invariant to double sign flips inµ′ andµ,

µ′′ → µ′′ if µ′ → −µ′ andµ→ −µ. (53)

Sinceµ′′ is single-valued for0 ≤ Θ ≤ 180◦, we may con-
clude thatΘ and thusP are invariant under this transforma-
tion.

3.1.2.Normalization Symmetry

It is assumed that integratingP over all angles yields the
same normalization, regardless of the coordinate system the
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integration is performed in,
∫ 4π

0

PdΩ =

∫ 4π

0

PdΩ′ =

∫ 4π

0

PdΩ′′ = 4π, (54)

where we have defineddΩ′′ ≡ dµ′′dφ′′ andφ′′ ≡ φ′ − φ.
This property implies that we can always replaceP by some
functionP ′ = P ′(Θ) and still perform the integration in any
of the coordinate systems.

3.2.Obtaining the Two-Stream Equations and Solutions

With the properties ofP stated, we can evaluate the mo-
ments of equation (51). Following§5.2 of Pierrehumbert
(2010), we multiply equation (51) by a functionH = H(θ)
and integrate over all anglesθ andφ,

1

µ̄

∂

∂τ

∫ 2π

0

(
∫ 1

0

µHIdµ−
∫ 0

−1

µHIdµ
)

dφ

=

∫ 4π

0

HIdΩ− I − (1− ω0)

∫ 4π

0

HBdΩ,
(55)

where we have defined

I ≡ ω0

∫ 4π

0

GIdΩ′,

G ≡ 1

4π

∫ 4π

0

HPdΩ.
(56)

Note that the minus sign in the integral involvingµ̄ in equa-
tion (55) comes from the characteristic value ofµ being pos-
itive and negative in the outgoing and incoming hemispheres,
respectively (̄µ = µ̄+ = −µ̄− > 0).

To evaluateG andI, one has to specify the functional form
of H. As already explained by Pierrehumbert (2010), differ-
ent choices ofH will lead to different forms of the two-stream
equations, i.e., with different expressions for the coefficients
γa andγs.

3.2.1.Evaluating the IntegralsG andI

WhenH = 1, we obtainG = 1, I = ω0J and

∂F−

∂τ
= µ̄ (1− ω0) (J − 4πB) . (57)

The next natural choice isH = µ, because it allows us to
introduce another Eddington coefficient into the formalism.
Several steps are involved in evaluatingG andI. First, we
writeµ = cos(θ′−Θ), use the trigonometric angle subtraction
rule and obtain

G =
1

4π

∫ 4π

0

[

µ′µ′′ +
(

1− µ′2
)1/2 (

1− µ′′2
)1/2

]

P dΩ.

(58)
Exploiting the property thatP and µ′′ are invariant when
µ′ → −µ′ andµ → −µ (see§3.1.1), we see that the first and
second terms inG are even and odd integrals, respectively.
The second term vanishes. Second, we use the normalization
symmetry described in§3.1.2 to further writeG as

G =
1

4π

∫ 4π

0

µ′µ′′PdΩ′′. (59)

Note that this step is valid only because the integrand in equa-
tion (59) does not depend onµ and is being evaluated at a
fixed value ofµ′, asG is part of the integrand ofI. Third,

if we define the asymmetry factor as (Goody & Yung 1989;
Pierrehumbert 2010)

g0 ≡ 1

4π

∫ 4π

0

µ′′PdΩ′′, (60)

then we obtain the result,

G = g0µ
′, (61)

which was previously stated, without proof, in equation
(8.142) of Goody & Yung (1989) and equation (5.18) of
Pierrehumbert (2010). It implies that

I = ω0g0F+. (62)

It follows that equation (55) becomes

∂K−

∂τ
= µ̄F+ (1− ω0g0) . (63)

Note that all of these steps used to deriveG andI, forH = µ,
are invalid if the integration is not carried out over all4π stera-
dians. Partial integration is akin to making specific assump-
tions about the asymmetry properties ofP .

3.2.2.Consistency with Isotropic Expressions

By adopting the appropriate closures, equations (57) and
(63) may be transformed into a pair of equations for the out-
going and incoming fluxes. A basic consistency check is to
demand that they reduce to the pair of equations in (29) when
g0 = 0 (isotropic scattering).

Invoking the first Eddington coefficient,ǫ ≡ F+/J , we see
that equation (57) reduces to the second equation in (29) if
ǫ = 1/2. To recover the first equation in (29), we need to
define a second Eddington coefficient,

ǫ2 ≡ K−

F+
, (64)

which is assumed to be constant. In theg0 = 0 limit, equation
(63) reduces to the first equation in (29) only if

ǫ2 =
F+

2F−

. (65)

The fact that the second Eddington coefficient may be stated
in terms of the computed quantities (F↑ andF↓) implies that
one may use it to check if the vertical resolution of one’s
model atmosphere is sufficient. Analogous to the isothermal
assumption onB, we are asserting thatǫ2 is constant within
each atmospheric layer.

Note that our method of derivation differs from the text-
book treatments of Goody & Yung (1989) and Pierrehumbert
(2010). In Goody & Yung (1989), it is assumed that two char-
acteristic, constant values of the intensity may be defined:
I↑ and I↓. It is then assumed thatF− = π(I↑ − I↓) and
J = 2π(I↑+I↓); see their equations (2.142) and (2.143). The
two-stream equations are then derived assumingF↑ = πI↑
andF↓ = πI↓. In Pierrehumbert (2010), the method of using
ǫ2 is mentioned, but never explicitly executed; the correspon-
dence to the isotropic limit, in the manner we have presented
it, is not discussed. Furthermore, the expression for the sec-
ond Eddington coefficient, in equation (65), is not derived.

3.2.3.Governing Equations in Two-Stream Form
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With this pair of closures, the total and net fluxes are gov-
erned by the equations,

∂F+

∂τ
=(γa + γs)F−,

∂F−

∂τ
=(γa − γs)F+ − 2γBB,

(66)

where we have defined

γa = µ̄ [2− ω0 (1 + g0)] ,

γs = µ̄ω0 (1− g0) ,

γB = 2πµ̄ (1− ω0) .

(67)

The incoming and outgoing fluxes obey the same mathemat-
ical form as given in equation (11), but with the coefficients
given in equation (67). By ensuring correspondence with the
isotropic limit, these coefficients obey energy conservation in
the purely scattering limit and reproduce the correct black-
body flux in the purely absorbing limit for an opaque atmo-
sphere. It is worth noting that the constraint of energy conser-
vation in the purely scattering limit is independent ofg0.

The set of coefficients in equation (67) is traditionally
known as the “hemispheric” or “hemi-isotropic” closure
(Meador & Weaver 1980; Toon et al. 1989; Pierrehumbert
2010). While its statement is certainly not novel, our deriva-
tion of the hemispheric closure is firmly grounded by a desire
to ensure energy conservation. We find that the hemispheric
closure derives naturally from the radiative transfer equation.

3.2.4.General Solution with Non-Isotropic Scattering and
Non-Isothermal Layers

Manipulating the pair of equations in (66) yields

∂2F+

∂τ2
− α2F+ = −2γB (γa + γs)B, (68)

but with a more general definition forα,

α ≡ [(γa + γs) (γa − γs)]
1/2

. (69)

The method for solving equation (68) has previously been
described in§2.7. Here, we simply state our results for non-
isothermal layers with the Planck function as given by equa-
tion (33). The total and net fluxes are

F+ =A1 exp (ατ) +A2 exp (−ατ) +
2γBB

γa − γs
,

F− =

(

γa − γs
γa + γs

)1/2

[A1 exp (ατ)−A2 exp (−ατ)]

+
2γBµ̄B

′

(γa + γs) (γa − γs)
,

(70)

from which the outgoing and incoming fluxes may be ob-
tained,

F↑ =A1ζ+ exp (ατ) +A2ζ− exp (−ατ)

+
γB

γa − γs

(

B +
µ̄B′

γa + γs

)

,

F↓ =A1ζ− exp (ατ) +A2ζ+ exp (−ατ)

+
γB

γa − γs

(

B − µ̄B′

γa + γs

)

,

(71)

which have a more general definition of theζ+ andζ− coeffi-
cients,

ζ± ≡ 1

2

[

1±
(

γa − γs
γa + γs

)1/2
]

=
1

2

[

1±
(

1− ω0

1− ω0g0

)1/2
]

.

(72)

It is reassuring thatζ± does not diverge asω0, g0 → 0 or
ω0, g0 → 1. The quadrature closure gives the same expres-
sion for ζ± (see Table 3 for exact forms ofγa andγs). The
Eddington closure adds a factor of 2/3 within the square root.
All of the closures do not display divergence.

By again imposing the boundary conditionsF↑2
andF↓1

,
we may derive the outgoing and incoming fluxes from a pair
of atmospheric layers in terms of the transmission function,

F↑1
=

1

(ζ−T )
2 − ζ2+

{(

ζ2− − ζ2+
)

T F↑2
− ζ−ζ+

(

1− T 2
)

F↓1

+
γB

γa − γs

[

B1+

(

ζ2−T 2 − ζ2+
)

+ B2+T
(

ζ2+ − ζ2−
)

+ B1−ζ−ζ+
(

1− T 2
)]}

,

F↓2
=

1

(ζ−T )2 − ζ2+

{(

ζ2− − ζ2+
)

T F↓1
− ζ−ζ+

(

1− T 2
)

F↑2

+
γB

γa − γs

[

B2−

(

ζ2−T 2 − ζ2+
)

+ B1−T
(

ζ2+ − ζ2−
)

+ B2+ζ−ζ+
(

1− T 2
)]}

,
(73)

where the expression forBi± is now generalized to

Bi− ≡ B1 +B′µ̄ (τi − τ1)−
µ̄B′

γa + γs
,

Bi+ ≡ B2 +B′µ̄ (τi − τ2) +
µ̄B′

γa + γs
.

(74)

In the limit of isothermal layers (Bi± = B = B0), we
obtain

F↑1
=

1

(ζ−T )
2 − ζ2+

{(

ζ2− − ζ2+
)

T F↑2
− ζ−ζ+

(

1− T 2
)

F↓1

+
γBB

γa − γs

[

ζ−ζ+
(

1− T 2
)

−
(

ζ2−T + ζ2+
)

(1− T )
]

}

,

F↓2
=

1

(ζ−T )
2 − ζ2+

{(

ζ2− − ζ2+
)

T F↓1
− ζ−ζ+

(

1− T 2
)

F↑2

+
γBB

γa − γs

[

ζ−ζ+
(

1− T 2
)

−
(

ζ2−T + ζ2+
)

(1− T )
]

}

.

(75)

In the limit of pure scattering (ω0 = 1), equations (73) and
(75) need to be replaced by

F↑1
= F↑2

− (F↑2
− F↓1

) (γa + γs) (τ2 − τ1)

2 + (γa + γs) (τ2 − τ1)
,

F↓2
= F↓1

+
(F↑2

− F↓1
) (γa + γs) (τ2 − τ1)

2 + (γa + γs) (τ2 − τ1)
.

(76)

Our statement of these solutions in terms of the coefficients
γa, γs andγB allows for other closures to be considered (see
§5.1).
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3.3.Transitioning from Two-Stream Treatment to
Flux-Limited Diffusion

If one specifies a sufficient number of model layers, the
two-stream treatment is a good approximation at optical
depths of order unity or less. When the optical depth becomes
large, a prohibitive number of layers may be needed. Deep
within an exoplanet, the passage of radiation resembles diffu-
sion and the total and net fluxes depend on having∂B/∂τ 6= 0
(Mihalas 1970). One needs a way to transition from the two-
stream treatment to the diffusion approximation. Physically,
the transition occurs where the photon mean free path be-
comes much smaller than the vertical spatial resolution.

A fundamental problem with approximating radiative trans-
fer by diffusion is that the diffusion equation does not obey
causality, i.e., it will formally allow superluminal motion.
It has been remedied by the invention of “flux-limited dif-
fusion”, where transport is limited by the speed of light
(Levermore & Pomraning 1981; Narayan 1992). Flux-limited
diffusion produces the correct behavior in the optically thin
and thick limits, but its accuracy whenτ0 ∼ 1 is suspect
(Mihalas & Weibel-Mihalas 1999). Its use may be abandoned
altogether by considering the fully time-dependent radiative
transfer equation (Mihalas & Weibel-Mihalas 1999). Since
we are employing diffusion only whenτ0 ≫ 1, our approach
is “flux-limited” by definition, while benefitting from the ac-
curacy of the two-stream approximation atτ0 . 1.

Our starting points are equations (57) and (63). To close this
pair of equations, we define the third Eddington coefficient,

ǫ3 ≡ K−

J
. (77)

In the deep interior, we assert that the intensity field be-
comes Planckian, scattering becomes isotropic and total and
net quantities become equal,6

J = 4πB, g0 = 0, F+ = F− = πBint, K+ = K−, (78)

whereBint ≡ B(Tint). The interior heat of the exoplanet is
represented by an internal temperature,Tint. It follows that
ǫ3 = K+/4πB = 1/3 if I = B.

In this limit, we obtain

F± =
∂K±

∂τ0
= 4πǫ3

∂B

∂τ0
,

∂F±

∂τ0
= 0.

(79)

By definition, heating in the deep interior is in radiative equi-
librium (∂F−/∂τ0 = 0). It is apparent that if the isothermal
approximation is made (∂B/∂τ0 = 0), then interior heating
is missed altogether (F− = 0). We define the wavelength-
integrated quantities,

K± ≡
∫ ∞

0

K± dλ,

F± ≡
∫ ∞

0

F± dλ,

(80)

and assert that a wavelength-integrated, average opacity ex-
ists such that the following expression is true (Mihalas 1970;

6 If we insist on the two-stream interpretation, then it meansthe total and
outgoing fluxes are also equal.

Mihalas & Weibel-Mihalas 1999),
∫ ∞

0

1

κ

∂K±

∂z
dλ = F± =

1

κR

∂K±

∂z
, (81)

wheredτ0 ≡ ρκdz, κ is the wavelength-dependent total7

opacity,ρ is the mass density andz is the vertical spatial co-
ordinate, from which the definition of the Rosseland mean
opacity follows,

κR ≡ 4σSBT
3

π

(
∫

1

κ

∂B

∂T
dλ

)−1

, (82)

with the gradient of the Planck function being

∂B

∂T
=

B2λ4

2ckBT 2
exp

(

hc

λkBT

)

, (83)

whereλ is the wavelength,kB is Boltzmann’s constant,T
is the temperature andh is the Planck constant. The∂/∂T
operation in equation (82) cannot be taken out of the integral
becauseκ generally depends on temperature. Note that the
definition forκR does not depend onǫ3.

The total heat content (F+) and net heating (F−) of the
deep interior is

F± =
16ǫ3gσSBT

3

κR

∂T

∂P
= σSBT

4
int, (84)

whereg is the surface gravity of the exoplanet and hydrostatic
equilibrium has been assumed. Equation (84) takes the same
mathematical form as Fick’s law of diffusion, where the flux
is proportional to a diffusion coefficient and the gradient of an
internal quantity. By integrating equation (84), one obtains

T =

[

1

4ǫ3
(τR + C)

]1/4

Tint, (85)

where the Rosseland mean optical depth is

τR ≡ 1

g

∫

κRdP, (86)

andC is a constant of integration. Equation (85) is exactly
Milne’s solution for self-luminous atmospheres (Mihalas
1970; Mihalas & Weibel-Mihalas 1999), where the internal
temperature is boosted by a factor, involving the optical depth,
at large pressures. In§4, we will see thatC = 8/9, when we
examine analytical solutions of the temperature-pressurepro-
file.

A few potential concerns are worth elucidating. When ap-
plied sharply to specific wavelengths, the validity of the dif-
fusion approximation is suspect, since we expect absorption
and re-emission to be non-coherent. However, the diffusion
approximation is reasonable when it is applied to a collection
of wavelength bins, where the width of each bin is much larger
than the typical width of a spectral line. The transition to the
diffusion approximation occurs in a wavelength-independent
manner as determined by the onset of the deep temperature-
pressure profile, as stated in equation (85), but it is worth
noting that the Rosseland mean opacity is weighted towards
lower opacities (Mihalas 1970). Physically, this means that
at wavelengths where the atmosphere is the most transparent,
τ0 ∼ 1 andτR ∼ 1 occur essentially at the same depth or
pressure.

7 Includes both absorption and scattering, otherwise known as the “extinc-
tion opacity”.
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4. TEMPERATURE-PRESSURE PROFILES WITH NON-ISOTROPIC,
COHERENT SCATTERING

We generalize the work of Guillot (2010) (pure absorp-
tion) and Heng et al. (2012) (isotropic scattering) by including
non-isotropic scattering and a non-constant shortwave opac-
ity in our derivation of the analytical temperature-pressure
profiles. Additionally, we distinguish between total and net
fluxes and resolve several lingering issues in Guillot (2010)
and Heng et al. (2012).

We adopt the dual-band approximation, where incident stel-
lar irradiation and thermal emission from the exoplanetary
atmosphere reside in the “shortwave” (denoted by “S”) and
“longwave” (denoted by “L”), respectively. We define sev-
eral quantities that are integrated over the shortwave and long-
wave,

JS ≡
∫

S

J dλ, FS ≡
∫

S

F− dλ, KS ≡
∫

S

K− dλ,

JL ≡
∫

L

J dλ, FL ≡
∫

L

F− dλ, KL ≡
∫

L

K− dλ.

(87)

In this section, we require two additional Eddington coeffi-
cients,

ǫL ≡ FL

JL
, ǫL3

≡ KL

JL
. (88)

By requiring that it corresponds toǫ3, we setǫL3
= 1/3. Us-

ing our existing definitions and values forǫ, ǫ2 and ǫ3 (see
Table 2), we have

ǫL =
ǫ2

2ǫ3
=

3

8
. (89)

Note that Guillot (2010) and Heng et al. (2012) setǫL = 1/2.

4.1.General Equations and Energy Conservation

We begin with equations (57) and (63), the intermediate
form of the governing equations with non-isotropic scattering
that leads to the two-stream and flux-limited-diffusion treat-
ments. Instead of using the optical depth as the independent
variable, we write

dτ0 = κ dm =
κa

1− ω0
dm, (90)

with m being the column mass. In hydrostatic equilibrium,
we haveP = mg. Formulating the equations in terms ofm, a
wavelength-independent quantity, will later allow us to define
separate shortwave and longwave opacities. Instead of using
the total/extinction opacity (κ), we have used the absorption
opacity (κa) as this allows us to cleanly separate out the com-
ponent due to scattering in the form of the single-scattering
albedo (ω0). Equations (57) and (63) become

∂F−

∂m
= κa (J − 4πB) ,

∂K−

∂m
=
κaF+

β2
0

,
(91)

where we have defined

β0 ≡
(

1− ω0

1− ω0g0

)1/2

. (92)

Previously, Guillot (2010) and Heng et al. (2012) wrote down
less general forms of equation (91) with total, instead of net,
quantities.

The first equation in (91) allows the conservation of energy
to be expressed,
∫ ∞

0

∂F−

∂m
dλ =

∂F−

∂m
= Q = κSJS + κL

(

JL − 4σSBT
4
)

.

(93)
We will properly define the shortwave and longwave opaci-
ties, denoted respectively byκS andκL, shortly. The heating
rate is given byQ. Radiative equilibrium is obtained when
∂F0/∂m = Q = 0. Note that this interpretation differs
from that of Guillot (2010) and Heng et al. (2012), who inter-
preted quantities associated withQ, integrated over all angles,
to vanish because of conservative heat transport.

By integrating equation (93) over column mass, we obtain
∫ ∞

m

∂F−

∂m
dm = Q̃ (m,∞) , (94)

where

Q̃ (m1,m2) ≡
∫ m2

m1

Q dm, (95)

from which it follows that

FL = F∞ − FS − Q̃ (m,∞) ,

JL0
=

1

ǫL

[

F∞ − FS0
− Q̃ (0,∞)

]

.
(96)

We have definedFS0
≡ FS(m = 0), FL0

≡ FL(m = 0) and
JL0

≡ JL(m = 0). The quantityF∞ is the bolometric net
flux from the deep interior (asm→ ∞),

F∞ = σSBT
4
int. (97)

4.2.Shortwave

The shortwave refers to the range of wavelengths where in-
cident starlight is the dominant source of energy. It usually
occurs in the optical.

4.2.1.Shortwave Closure, the Collimated Beam Approximation and
the Bond Albedo

Before we derive the shortwave equations and their solu-
tions, we need to relateJS andKS via a shortwave closure
relation. Previously, Guillot (2010) assumed that

ǫS ≡ KS

JS
= µ2. (98)

Heng et al. (2012) tried to justify this closure via the colli-
mated beam approximation,

IS = I↑Sδ (µ
′ − µ) + I↓Sδ (µ

′ + µ) . (99)

When one does not distinguish between total and net quan-
tities, one can simultaneously satisfy equation (98) and the
identity in (110); we will derive the latter later. In our current,
improved formulation, this is no longer possible.

Such a finding has several implications. First, it means that
equation (98) will have to be justified after the fact, upon ob-
taining the solution forFS. We will see that this closure cor-
rectly produces Beer’s law.

Second, it implies that the expression for the Bond albedo
previously derived by Heng et al. (2012) using the collimated
beam approximation,AB = (1 −√

1− ω0)/(1 +
√
1 + ω0),

may no longer be self-consistent within our improved formal-
ism. However, we may directly derive the spherical albedo
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(As) from our two-stream solutions with non-isotropic scat-
tering, previously stated in equation (75). We may then inte-
grateAs over the shortwave to obtain the Bond albedo. If we
setF↑2

= 0 andB = 0 and integrate over the shortwave, we
obtain

As ≡
F↑1

F↓1

=
ζ−
ζ+

=
1− β0
1 + β0

,

AB ≡
∫

S

As dλ =
1− βS0

1 + βS0

,

(100)

whereβS0
is the value ofβ0 in the shortwave, which we will

describe more carefully in equation (105). Note that equation
(100) was derived for an opaque atmosphere (T = 0). Physi-
cally, one is asserting that when scattering is absent, all of the
incident stellar irradiation is completely absorbed. Coinci-
dentally, equation (100) is identical to the expression derived
by Heng et al. (2012) in the limit of isotropic scattering. The
functional behaviors ofAs andAB are shown in Figure 1 via
the curves ofζ−/ζ+.

We find it useful to express the quantityβS0
in terms of the

Bond albedo,

βS0
=

1−AB

1 +AB
. (101)

Degenerate combinations of the single-scattering albedo and
asymmetry factor may produce the same Bond albedo.

Heng & Demory (2013) have previously derived an expres-
sion forAB involving non-isotropic, coherent scattering, by
generalizing the approach of Pierrehumbert (2010). In these
approaches, an additional “direct beam” term was added to the
source term (S) in the radiative transfer equation to account
for heating by incident starlight (Chandrasekhar 1960). Given
that the two-stream approximation is a one-dimensional treat-
ment, we feel that regarding the solutions in equation (75)
as being wavelength-dependent and using theF↓1

bound-
ary condition to account for stellar irradiation, across wave-
length, is sufficient and that a direct beam term is superfluous
(Meador & Weaver 1980).

4.2.2.Shortwave Equations and Solutions

Integrating the equations in (91) over the shortwave, we ob-
tain

∂FS

∂m
= κSJS,

∂KS

∂m
=
κ′SFS

β2
S0

,
(102)

where the absorption mean opacity is

κS ≡
∫

S
κaJ dλ

∫

S J dλ
. (103)

In a departure from its traditional definition, the flux mean
opacity is

κ′S ≡
∫

S
κaF− dλ

∫

S F− dλ
. (104)

Usually, the flux mean opacity is defined usingκ instead of
κa (Mihalas & Weibel-Mihalas 1999). Our approach comes
about because we have approximated

βS0
=

(

1− ωS0

1− ωS0
gS0

)1/2

(105)

as being constant with wavelength, such thatωS0
andgS0

are
constant, representative values of the single-scatteringalbedo
and asymmetry factor, respectively, in the shortwave.

In order to combine the equations in (102), we assume that
κS = κ′S. We shall simply callκS the “shortwave opacity”. It
follows that

∂2JS
∂m2

− 1

κS

∂κS
∂m

∂JS
∂m

−
(

κS
µβS0

)2

JS = 0,

∂2FS

∂m2
− 1

κS

∂κS
∂m

∂FS

∂m
−
(

κS
µβS0

)2

FS = 0.

(106)

If we assume the shortwave opacity to take the form,

κS = κS0

(

m

m0

)n

, (107)

whereκS0
is its value at the bottom of the model domain,n is

a dimensionless index,m0 = P0/g andP0 is the pressure at
the bottom of the model domain, then we obtain

JS = JS0
exp

(

βS
µ

)

,

FS = FS0
exp

(

βS
µ

)

,

(108)

with JS0
≡ JS(m = 0) and

βS ≡ κSm

(n+ 1)βS0

. (109)

The expressions in (108) generalize Beer’s law. We have
picked the solution branch with the positive exponent, be-
cause we have−1 ≤ µ ≤ 0 and we require thatJS, FS → 0
asm→ ∞. It follows that

FS = µβS0
JS. (110)

4.2.3.Photon Deposition Depth

The shortwave flux atm = 0 is interpreted as the incident
stellar flux,

FS0
= µF⋆, (111)

where the “stellar constant”8 is

F⋆ ≡
{

σSBT
4
irr, 0 ≤ φ ≤ π,

0, π ≤ φ ≤ 2π,
(112)

and the irradiation temperature is

Tirr = T⋆

(

R⋆

a

)1/2

(1−AB)
1/4

, (113)

with T⋆ being the effective stellar temperature,R⋆ the stellar
radius anda the distance between the star and the exoplanet.
It is important to note thatFS0

< 0 arises naturally from the
fact that it is anet flux with a vanishing outgoing component.
No arbitrary adjustments of signs are necessary, as was done
in Guillot (2010) and Heng et al. (2012).

By using the expression forFS from equation (108), we find
that

F̄S ≡ 1

2π

∫ 2π

0

∫ 0

−1

FS dµ dφ = −σSBT
4
irrE3
2

, (114)

8 Generalized from the “solar constant”.
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FIG. 3.— Photon deposition depth as a function of the single-scattering
albedo, computed for different asymmetry factors andn = 0. We have cal-
culatedPD in terms ofg/κS; for example,g = 103 cm s−2 andκS = 0.01
cm2 g−1 yieldsg/κS = 0.1 bar.

where E3 = E3(βS) and the exponential integral of
the i-th order is defined as (Abramowitz & Stegun 1970;
Arfken & Weber 1995)

Ei (y) ≡
∫ ∞

1

x−i exp (−xy) dx. (115)

It follows that
F̄S

F̄S0

= 2E3. (116)

The photon deposition depth is defined as the pressure level
whereF̄S/F̄S0

suffers one e-folding, i.e., is equal to about
0.368 (Heng et al. 2012). Physically, this is the pressure level
at which most of the incident starlight is being absorbed (PD).
This occurs whenβS ≈ 0.63. It follows that

PD =

[

0.63 (n+ 1) gPn
0

κS0

]1/(n+1) (
1− ωS0

1− ωS0
gS0

)1/2(n+1)

=

[

0.63 (n+ 1) gPn
0

κS0

]1/(n+1) (
1−AB

1 +AB

)1/(n+1)

.

(117)

It has the expected physical property that, as the scattering
becomes more backward-peaked (gS0

< 0), the photon depo-
sition depth resides higher in the atmosphere. Asn → ∞,
PD → P0. Equation (117) generalizes the expression derived
by Heng et al. (2012) in the limit of isotropic, coherent scat-
tering andn = 0.

Whenn = 0, the expression forPD is particularly useful
because it is independent ofP0. Figure 3 shows calculations
of PD (with n = 0) as a function ofω0 for different values of
g0. For pure forward scattering (gS0

= 1), photon deposition
behaves as if one is in the purely absorbing limit. Backward
scattering (gS0

= −1) tends to raise the photon deposition
depth to higher altitudes (lower pressures).

4.3.Longwave

The longwave refers to the range of wavelengths where the
thermal emission of the exoplanet is the dominant source of
energy. It usually occurs in the infrared.

Integrating the equations in (91) over the longwave, we ob-
tain

∂FL

∂m
= κLJL − 4κ′′LσSBT

4,

∂KL

∂m
=
κ′LFL

β2
L0

,
(118)

where, analogous to the shortwave, we have

βL0
=

(

1− ωL0

1− ωL0
gL0

)1/2

. (119)

The absorption, flux and Planck mean opacities are, respec-
tively,

κL ≡
∫

L
κaJ dλ

∫

L
J dλ

,

κ′L ≡
∫

L κaF− dλ
∫

L
F− dλ

,

κ′′L ≡ π
∫

L κaB dλ

σSBT 4
.

(120)

We assume thatκL = κ′L = κ′′L. (See also Hubeny et al.
2003.)

4.4.Derivation of Temperature-Pressure Profile

Using the second equation in (118), the first equation in (96)
and theǫL3

closure, we obtain

JL = JL0
+

1

ǫL3
β2
L0

∫ m

0

κL

[

F∞ − FS − Q̃ (m,∞)
]

dm.

(121)
Eliminating the quantitiesJL andJL0

using equation (93) and
the second equation in (96), respectively, yields

σSBT
4 =

F∞

4

(

1

ǫL
+

1

ǫL3
β2
L0

∫ m

0

κL dm

)

+Q

+
1

4

(

−FS0

ǫL
+
κSJS
κL

− 1

ǫL3
β2
L0

∫ m

0

κLFS dm

)

.

(122)

The first term in equation (122), associated withF∞, de-
scribes the temperature-pressure profile in the deep interior
arising from internal heat and is known as “Milne’s solution”
(Mihalas 1970; Mihalas & Weibel-Mihalas 1999). It was first
derived for stars. The second term is defined as

Q ≡ −1

4

[

Q

κL
+
Q̃ (0,∞)

ǫL
+

1

ǫL3
β2
L0

∫ m

0

κLQ̃ (m,∞) dm

]

.

(123)
The other terms describe the temperature-pressure profile due
to stellar irradiation.

It is important to note that equation (122) does not make
any assumptions about the functional forms ofJS andFS.

The global-mean temperature-pressure profile (T̄ ) is ob-
tained by integrating over0 ≤ φ ≤ 2π and−1 ≤ µ ≤ 0
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and dividing by2π,

T̄ 4 =
T 4
int

4

(

1

ǫL
+

1

ǫL3
β2
L0

∫ m

0

κL dm

)

+
T 4
irr

8

(

1

2ǫL
+

κSE2
κLβS0

+
1

ǫL3
β2
L0

∫ m

0

κLE3 dm
)

+
1

2π

∫ 2π

0

∫ 0

−1

Q dµ dφ,

(124)

whereE2 = E2(βS), E3 = E3(βS) andβS has previously been
defined in equation (109). The factor of 1/8 associated with
T 4
irr comes about because starlight is incident only upon one

hemisphere.
Arguments were previously presented by Guillot (2010)

and Heng et al. (2012) for why the last term in equation (124)
vanishes, based on the reasoning that latitudinal and longitu-
dinal heat transport averages to zero in a global sense. Within
the context of our improved formalism, we find it more natu-
ral to simply assert thatQ = 0 when radiative equilibrium is
attained (Q = 0).

4.5.Temperature-Pressure Profile for a Specific Form of the
Longwave Opacity and a Constant Shortwave Opacity

For equation (124) to be useful, we need to explicitly spec-
ify the functional form of the longwave opacity,

κL = κ0 + κCIA

(

m

m0

)

. (125)

The second term in equation (125) is used to mimic collision-
induced absorption; its associated normalization isκCIA.

In radiative equilibrium and for a constant shortwave opac-
ity (n = 0), combining equations (124) and (125) yields

T̄ 4 =
T 4
int

4

[

1

ǫL
+

m

ǫL3
β2
L0

(

κ0 +
κCIAm

2m0

)]

+
T 4
irr

8

[

1

2ǫL
+ E2

(

κS
κLβS0

− κCIAmβS0

ǫL3
κSm0β2

L0

)

+
κ0βS0

ǫL3
κSβ2

L0

(

1

3
− E4

)

+
κCIAβ

2
S0

ǫL3
κ2Sm0β2

L0

(

1

2
− E3

)]

.

(126)

As previously mentioned, our formalism yieldsǫL = 3/8 and
ǫL3

= 1/3, but we have intentionally left the values of these
Eddington coefficients unspecified in equation (126) to allow
for other choices to be made, if desired.

5. APPLICATION TO EXOPLANETS

5.1.Other Closures for Two-Stream Radiative Transfer:
Comparison and Implications

There is a rich literature describing various forms of the
two-stream equations (Chandrasekhar 1960; Mihalas 1970;
Meador & Weaver 1980; Goody & Yung 1989; Toon et al.
1989; Mihalas & Weibel-Mihalas 1999). Specifically, it boils
down to having different expressions for the coefficientsγa,
γs andγB in the two-stream equations for the outgoing and
incoming fluxes, which in turn depends on the choice of clo-
sures (the Eddington coefficients). In this subsection, we will
explore these other choices published in the literature andex-
amine their implications.

FIG. 4.— Errors incurred when using the Eddington closure for the two-
stream approximation in the limit of non-isotropic, coherent scattering. Top
panel: error expressed as a percentage of the reflected flux. Bottom panel:
error expressed as a spurious percentage enhancement of theblackbody flux.

Table 3 lists the choices ofγa, γs andγB for different clo-
sures. We do not discuss closures that involve a series ex-
pansion of the scattering phase function in terms of Legendre
polynomials (Chandrasekhar 1960; Meador & Weaver 1980).
Energy conservation in the purely scattering limit requires
that we check the(γa − γs) expressions for each closure (see
§2.4). Since the hemispheric/hemi-isotropic, Eddington and
quadrature closures all have(γa − γs) ∝ (1− ω0), they all
ensure that radiative equilibrium is attained (∂F−/∂τ = 0)
whenω0 = 1.

Next, we need to check the total flux in the limit of a purely
absorbing, opaque atmosphere. For the hemispheric/hemi-
isotropic and quadrature closures, we haveγs = 0 when
ω0 = 0, which implies thatζ+ = 1 andζ− = 0. For these
closures, we may easily define the dimensionless factor,

f∞ ≡ γB
π (γa − γs)

, (127)

which is the limiting value ofF+ as T → 0, normalized
by 2πB. We verify thatf∞ = 1 for the hemispheric/hemi-
isotropic and quadrature closures.

For the Eddington closure, the issue is more subtle. At first
glance, one may already anticipate that the Eddington closure
is unphysical, asγs 6= 0 even in the absence of scattering—
somehow, some fraction of the outgoing rays still gets con-
verted into incoming ones (and vice versa). The total flux has
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TABLE 3
VARIOUS CHOICES FORCOEFFICIENTS OFTWO-STREAM EQUATIONS (CLOSURES)

Name γa/µ̄ γs/µ̄ γB/µ̄ f∞ (γa − γs) /µ̄ References
Hemispheric / hemi-isotropic 2− ω0 (1 + g0) ω0 (1− g0) 2π (1− ω0) 1 2 (1− ω0) MW80, T89, P10, HML
Eddington 1

4
[7− ω0 (4 + 3g0)] − 1

4
[1− ω0 (4− 3g0)] 2π (1− ω0) & 1.8 1− ω0 MW80, GY89, T89, P10

Quadrature
√

3

2
[2− ω0 (1 + g0)]

√
3ω0

2
(1− g0)

√
3π (1− ω0) 1

√
3 (1− ω0) MW80, T89, P10

MW80: Meador & Weaver (1980), GY89: Goody & Yung (1989), T89:Toon et al. (1989), P10: Pierrehumbert (2010), HML: this study.

a limiting value asT → 0,

F+ → ζ−
ζ+

(F↓1
+ F↑2

) +
2γBB

γa − γs

(

1− ζ−
ζ+

)

. (128)

Unlike for the other closures, we haveζ− 6= 0 even when
ω0 = 0. Specifically, we have

ζ−
ζ+

=
1− [2 (1− ω0) /3 (1− ω0g0)]

1/2

1 + [2 (1− ω0) /3 (1− ω0g0)]
1/2

. (129)

It is also worth noting that the boundary conditionF↓1
is

associated withF↑1
, while F↑2

is associated withF↓2
, im-

plying that the limiting values of the incoming and outgoing
fluxes behave as if reflection is present (in the form of∼ 10–
100% contributions from the boundary conditions), even in
the purely absorbing limit. Such contributions are unphysi-
cal. Thus, using the Eddington closure leads to two types of
error: a spurious contribution due to reflected flux and a spu-
rious enhancement of the blackbody flux. (See also the cap-
tion of Figure 3 of Toon et al. 1989 and their summary sec-
tion.) Figure 4 shows the percentage errors, associated with
both artifacts, incurred when using the Eddington closure.It
is apparent that wheng0 6= 1, the errors are non-uniform as
they depend both ong0 andω0. Without knowing what these
boundary conditions generally are, we may set a lower limit
to f∞ by considering the term associated withB in equation
(128),

f∞ ≥ γB
π (γa − γs)

(

1− ζ−
ζ+

)

. (130)

For ω0 = 0, we haveζ−/ζ+ = 5 − 2
√
6 ≈ 0.1. Since

γB/(γa − γs) = 2π for the Eddington closure, we obtain
f∞ & 1.8. Overall, we recommend that the Eddington clo-
sure not be used as it produces spurious reflected fluxes, ar-
tificially enhances the blackbody flux and the associated er-
rors are non-uniform (and therefore challenging to quantify
between different model atmospheres).

Figure 5 shows examples of the incoming flux (F↓2
) as a

function ofω0 for different values ofg0. We show only the in-
coming flux as its expression is identical to that for the outgo-
ing flux except for the boundary conditions. Since the hemi-
spheric and quadrature closures yield identical expressions for
ζ± andγB/(γa − γs), they produce identical fluxes. With our
chosen boundary conditions (F↓1

/πB = 1, F↑2
/πB = 0),

adopting the Eddington closure results in an over-estimation
of the incoming fluxes. If we reverse the boundary conditions
(F↓1

/πB = 0, F↑2
/πB = 1), the Eddington closure now

produces an under-estimation of the incoming fluxes. The er-
rors are non-uniform (unlessg0 = 1) and typically∼ 1–10%,
depending on the boundary conditions adopted as well as the
values ofT , ω0 andg0.

We conclude that, for the purpose of exploring parameter
space and studying trends associated with exoplanetary at-
mospheres, the two-stream radiative transfer treatment should

FIG. 5.— Incoming flux as a function of the single-scattering albedo (ω0) for
coherent, non-isotropic scattering. We have adoptedT = 0.5 for illustration.
All fluxes and their boundary conditions are given in terms ofthe blackbody
flux (πB).
only be used with the hemispheric or hemi-isotropic closure.
The Eddington closure should be avoided.

5.2.Recipes for Applying the Hybrid Technique of
Two-Stream and Flux-Limited-Diffusion Radiative

Transfer Towards Computing Synthetic Spectra

We concoct computational recipes for calculating synthetic
spectra using the two-stream radiative transfer, augmented
by flux-limited diffusion in the deep atmosphere. The first
recipe describes a stand-alone, one-dimensional (1D) calcu-
lation ignoring the effects of atmospheric dynamics. The
second recipe describes how to couple the radiative transfer
scheme to a three-dimensional (3D) general circulation model
of the atmosphere.

5.2.1.1D Purely Radiative Atmosphere

1. Specify an initial guess for the temperature-pressure
profile. Specify the boundary conditions at the bottom
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(internal heat) and top (stellar irradiation) of the atmo-
sphere. For the former, it is important to note that the
net fluxis πB(Tint); the outgoing flux at the bottom of
the atmosphere is then an iterative boundary condition.

2. Use the equations in (73) or (75) to perform the two-
stream calculation by populating each layer of the
model atmosphere with outgoing and incoming fluxes.

3. Integrate the net flux over wavelength, compute its gra-
dient and update the temperature-pressure profile using

Tnew = Told +
∆t

ρcP

∂F−

∂z
, (131)

where∆t is the computational time step andcP is the
specific heat capacity at constant pressure. Note that
the vertical coordinate (z) is defined from the top of the
atmosphere downwards.

4. Repeat steps 1 to 3 until radiative equilibrium is at-
tained (∂F−/∂z = 0). The synthetic spectrum is given
by F↑, across wavelength, at the top of the computa-
tional domain.

For exoplanets with surfaces, the flux from the surface is
specified as the bottom boundary condition. For gaseous exo-
planets withTirr ≫ Tint, the two-stream recipe is first imple-
mented withTint = 0, after which the interior temperature-
pressure profile is added using the flux-limited-diffusion so-
lution in equation (85).9 Thus, heating in the deep inte-
rior is performed semi-analytically; by definition, the so-
lution in equation (85) is in radiative equilibrium. One
may need a convective adjustment scheme for treating con-
vectively unstable parts of the temperature-pressure profile
(Manabe, Smagorinsky & Strickler 1965).

5.2.2.3D Radiative Atmosphere with Dynamics

1. Instead of iterating for radiative equilibrium within the
1D radiative transfer solver, compute the wavelength-
integrated net flux (F−) and feed it to a more general
expression for the heat equation, which we will now
derive. The first law of thermodynamics states,

Q = cV
DT

Dt
+ P

DV

Dt
, (132)

whereQ represents all forms of heating,cV is the spe-
cific heat at constant volume andV = 1/ρ is the spe-
cific volume. Using the ideal gas law (P = ρRT ,
whereR is the specific gas constant) andcP = cV +R,
we obtain

ρcP
DT

Dt
= ρQ+

DP

Dt
. (133)

If we ignore conduction, then the energy per unit vol-
ume and time associated with heating is

ρQ = −∇. ~F− =
∂F−

∂z
. (134)

Equation (133) is solved in tandem with the
Navier-Stokes and mass continuity equations to self-
consistently obtainT , ρ and~v (the velocity field).

9 Note that one adds the fluxes and not the temperatures.

FIG. 6.— Spherical albedo versus wavelength for dust grains of different
radii and compositions. No extra optical absorber (e.g., sodium atoms) is
included.

2. The new temperature-pressure profile (iterated consis-
tently with the velocity field) is fed back to the 1D
radiative transfer solver to obtain updated values of
F−. The entire process is repeated until the simulation
reaches equilibrium.

In the absence of atmospheric dynamics, we may write
DT/Dt ≡ ∂T/∂t+~v.∇T ≈ ∂T/∂t and ignore “PdV ” work
(i.e., setDP/Dt = 0). Under such restricted conditions, we
obtain equation (131).

Under terrestrial conditions, we may safely assume that
∂T/∂t ≫ ~v.∇T . At the order-of-magnitude level, the terms
are

∂T

∂t
∼ T

trad
=
gσSBT

4

cPP
(135)

and

~v.∇T ∼ vφT

R
, (136)

wherevφ is the zonal velocity andR is the radius of the exo-
planet. For highly-irradiated atmospheres, the advectionterm
cannot be ignored when

P >0.06 bar

(

g

10 m s−2

R

1010 cm

)(

T

103 K

)3

×
(

vφ

1 km s−1

cP

108 erg K−1 g−1

)−1

.

(137)

5.3.The Bond, Spherical and Geometric Albedos and Albedo
Spectra

The spherical albedo (As) is the ratio of scattered to inci-
dent flux (e.g., Seager 2010). The Bond albedo (AB) is the
spherical albedo integrated over all wavelengths. Within the
context of the two-stream approximation, the expressions for
both quantities are presented in equation (100).

However, secondary eclipse measurements in the optical
measure the geometric albedo (Ag), assuming that thermal
emission from the exoplanet does not contaminate the signal
(Heng & Demory 2013; Angerhausen et al. 2014). To convert
betweenAs andAg requires knowledge of thescatteredflux
at all phase angles, which is beyond the scope of our cur-
rent two-stream treatment. Specifically, one needs to evaluate
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FIG. 7.— Temperature-pressure profiles for different values ofthe asym-
metry factor in the optical or shortwave and a constant shortwave opacity
(n = 0).

the phase integral (Russell 1916; Marley et al. 1999; Seager
2010; Madhusudhan & Burrows 2012),

q = 2

∫ π

0

Fscat

Fscat,0
sinψ dψ, (138)

whereψ is the phase angle,Fscat(ψ) is the emergent scattered
flux andFscat,0 ≡ Fscat(ψ = 0). The geometric albedo is de-
fined at zero phase angle. The spherical and geometric albe-
dos are related byAs = qAg. For a Lambert sphere (isotropic
scattering), we haveAg = 2As/3. For Rayleigh scattering,
Ag = 3As/4. Generally, the conversion factor between the
spherical and geometric albedos is an order-of-unity constant
for a specific scattering profile and at a given wavelength.

In Figure 6, we show examples ofAs for dust grains com-
posed of astronomical silicate, graphite and silicon carbide
(SiC), where the tabulated data forω0 andg0 have been taken
from the full Mie calculations of Draine & Lee (1984) and
Laor & Draine (1993). We have not included extra sources of
absorption (e.g., sodium atoms), unlike in Heng & Demory
(2013). We include the measured values of the geomet-
ric albedo of HD 189733b, by Evans et al. (2013), and as-
sumeAs = 3Ag/2 for these data points. As expected,
there is a strong dependence ofAs on the dust grain radius
and somewhat less on the composition (Pierrehumbert 2010;
Heng & Demory 2013). Curiously, the measured albedo spec-
trum of HD 189733b is consistent with an atmosphere popu-
lated by silicon carbide grains, with radii of 10 nm, withouta
need for an extra optical absorber.

5.4.Analytical Temperature-Pressure Profiles with
Non-Isotropic Scattering

We now elucidate trends in the temperature-pressure pro-
files with non-isotropic scattering, building on the work
of Guillot (2010) (pure absorption) and Heng et al. (2012)
(isotropic scattering). In Figure 7, we first examine the effects
of varying the asymmetry factor in the optical or shortwave
(gS0

). Physically, this has a couple of effects: altering the
Bond albedo and changing the location of the photon deposi-
tion layer. As an illustration, we assume a constant shortwave
opacity (n = 0) and use equation (126). We fixωS0

= 0.5,
which yieldsβS0

= 1/
√
3, 1/

√
2 and 1 forgS0

= −1, 0 and
1, respectively. Correspondingly, we haveAB ≈ 0.27, 0.17

FIG. 8.— Temperature-pressure profiles for different values ofthe asym-
metry factor in the infrared or longwave and a constant shortwave opacity
(n = 0).

FIG. 9.— Temperature-pressure profiles with constant (n = 0) and non-
constant (n 6= 0) optical or shortwave opacities.

and= 0 andPD ≈ 36, 46 and= 63 mbar. We setκS = 0.01
cm2 g−1, κ0 = 0.02 cm2 g−1, κCIA = 0, g = 103 cm s−2,
Tint = 200 K andTirr = 1200 K. Although the temperature-
pressure profile with backward scattering (gS0

= −1) is
mostly cooler than the profiles with isotropic and forward
scattering, it is warmer at low pressures due to the photon
deposition depth being located at a higher altitude. Non-
isotropic scattering introduces an anti-greenhouse effect as
scattering becomes more backward-peaked.

In Figure 8, we assumeAB = 0 and examine the effects
of varying the asymmetry factor in the infrared or longwave
(gL0

). Any form of infrared scattering generally warms the
atmosphere, unless it takes the form of purely forward scat-
tering, which behaves like pure absorption—the “scattering
greenhouse effect” (Pierrehumbert 2010).

To investigate the effects of a non-constant opti-
cal/shortwave opacity, we evaluate equation (124) numeri-
cally10 and in radiative equilibrium. Figure 9 shows examples

10 The need to compute some of these terms numerically is the basis for
Heng et al. (2012) describing these models as being “semi-analytical”.
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of temperature-pressure profiles withn = 0, 0.5 and 1. The
photon deposition depth resides deeper asn increases, leading
to warmer profiles at higher pressures. The model atmosphere
generally becomes less isothermal, which is partially an arti-
fact of assuming a constant optical opacity.

5.5.Is the Photosphere Always at an Optical Depth of 2/3?

Radiation is typically absorbed, scattered or emitted at
optical depths∼ 1. In self-luminous atmospheres (e.g.,
stars), the classical Milne’s solution is (Mihalas 1970;
Mihalas & Weibel-Mihalas 1999)

T̄ = Tint

[

3

4

(

2

3
+ τL

)]1/4

, (139)

whereτL is the infrared or longwave optical depth. When
τL = 2/3, we haveT̄ = Tint. In stars,Tint = T⋆. This is the
basis for stating that the solar photosphere occurs at an optical
depth of 2/3, where we sampleT⋆ ≈ 5800K (instead of either
the∼ 104 K chromosphere atτL ≪ 1 or the∼ 107 K deep
interior of the Sun atτL ≫ 1).

With our choice of closures (Table 2), Milne’s solution is
generalized to

T̄ = Tint

{

3

4

[

8

9
+ (1− ωL0

gL0
) τL

]}1/4

, (140)

where we have definedτL ≡
∫m

0
κLdm/(1 − ωL0

). In the
presence of scattering, the photosphere for self-luminousob-
jects resides at an optical depth of

τL =
4

9 (1− ωL0
gL0

)
. (141)

For atmospheres with both stellar irradiation and internal
heat, one has to obey energy conservation by settingT̄ 4 =
T 4
int+T

4
irr/4 in equation (124) and solving forτL.11 For fixed

values of the optical/shortwave and infrared/longwave opaci-
ties,τL is independent of the value ofTirr.

In Figure 10, we show calculations ofτL as a function
of κ0 for gL0

= −1, 0 and 1, using the values of the pa-
rameters stated in§5.4. Consistent with the temperature-
pressure profiles showed in Figure 8, the infrared photosphere
resides higher up in the atmosphere as longwave scattering
becomes more backward-peaked. The dependence on the in-
frared opacity is generally weak.

5.6.Toy Models of the Runaway Greenhouse Effect: the
Komabayashi-Ingersoll Limit

As an illustration of the versatility of our two-stream solu-
tions, we now use them to construct toy models of the run-
away greenhouse effect (Komabayashi 1967; Ingersoll 1969).
Consider an atmosphere with a single condensible compo-
nent, initially existing in liquid or solid form. As the sur-
face temperature rises, it is transformed into its gaseous form,
which triggers a positive feedback reaction where warmer
temperatures produce even more warming by releasing more
greenhouse gas. The atmosphere attempts to cool itself by
increasing its “outgoing longwave radiation” (OLR), whichis
the emergent infrared flux. The essence of the runaway green-
house effect is that there is a limit to which the OLR may

11 A factor of 1/2 comes from considering stellar irradiation onto one hemi-
sphere only, while the other factor of 1/2 comes from averaging overµF⋆.

FIG. 10.— Infrared photosphere as a function of the infrared opacity. For
illustration, we have assumed pure absorption in the optical or shortwave
(βS0

= 0) and a constant shortwave opacity (n = 0).

increase, due to the transmissivity of the atmosphere falling
to zero. Pierrehumbert (2010) calls this the “Komabayashi-
Ingersoll limit”.

We use equation (75) withFOLR =
∫

L
F↑1

dλ,
∫

L
F↓1

dλ =

0 (negligible starlight in the infrared) and
∫

L
F↑2

dλ = σSBT
4
s

with Ts being the surface temperature. The transmission func-
tion is

T = exp (−τs), (142)

with the total optical depth of the atmosphere being

τs =
κLPs

g (1− ωL0
)
, (143)

andPs being the surface pressure. We will assume that the at-
mosphere is saturated, such that the temperature and pressure
are related by the Clausius-Clapeyron equation,

P = Pcc exp

(

−Tcc
T

)

, (144)

wherePcc andTcc are normalizations for the pressure and
temperature, respectively. This approximate form of the
Clausius-Clapeyron equation assumes a constant specific
latent heat of condensation or sublimation with tempera-
ture; values ofPcc and Tcc may be found in Table 1 of
Heng & Kopparla (2012). Equation (144) may be used to re-
lateTs andPs. It is also used to compute the temperature in
∫

L
πBdλ = σSBT

4 with the pressure now being given by the
photospheric pressure,P = 4gβ2

L0
/9κL, via use of equation

(141).
Figure 11 shows calculations of the OLR flux (FOLR) for

atmospheres containing only water, ammonia, carbon diox-
ide or methane. For illustration, we have choseng = 103

cm s−2 andκL = 10−6 cm2 g−1. At low surface temper-
atures (andτs), we haveFOLR ≈ σSBT

4
s . As the surface

temperature rises to the point whereT = 0, the OLR asymp-
totes to

∫

L
πBdλ. The non-monotonic behavior ofFOLR,

as it transitions between the two regimes, is an artifact of
using an isothermal solution to approximate non-isothermal
behavior. As expected, the presence of infrared scattering
(gL0

< 1) results in warmer atmospheres and a lower value of
the Komabayashi-Ingersoll limit, implying that the runaway
greenhouse is more easily triggered.
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FIG. 11.— Outgoing longwave radiation as a function of the surface tem-
perature of the exoplanet for different greenhouse gases.

The conservation of energy dictates that the OLR flux needs
to be equal to the incoming stellar flux:FOLR = L⋆/4πa

2,
whereL⋆ is the stellar luminosity. Denoting the stellar mass
by M⋆, one may obtain the inner boundary of the habitable
zone by using the appropriateL⋆(M⋆) relationship for stars.
Our value ofκL was chosen such that, for a Sun-like star,
a ≈ 0.7 AU for a purely absorbing atmosphere. Such a free-
dom to specifyκL reflects the inability of our toy models
to make quantitative predictions for the runaway greenhouse
effect, a property already noted by Pierrehumbert (2010),
although they provide useful tools for understanding basic
trends.

6. DISCUSSION

6.1.Summary

The salient points of our study may be summarized as fol-
lows.

• Unified, self-consistent framework: Starting from
the radiative transfer equation, we have derived a set
of governing equations and solutions that include the
two-stream treatment, a transition to the diffusion ap-
proximation in the deep interior of the exoplanet and
temperature-pressure profiles involving non-isotropic
scattering. Utilizing these solutions requires a set of
closures (Eddington coefficients) to be specified, which
we derive self-consistently based on energy conserva-
tion.

• Framework for computing synthetic spectra: From
the two-stream equations, we derived the outgoing and
incoming fluxes as functions of wavelength, single-
scattering albedo, asymmetry factor and transmission
function, as stated in equations (73) and (75) for non-
isothermal and isothermal model layers, respectively.
The outgoing flux as a function of wavelength is the
synthetic spectrum. In§5.2, we have provided recipes
for using these solutions either in stand-alone calcula-
tions of synthetic spectra or general circulation models.

• Temperature-pressure profiles with non-isotropic
scattering: Using the dual-band approximation, we
have derived analytical solutions, in equation (126), for

the temperature-pressure profiles in the limit of non-
isotropic, coherent scattering and a constant optical
opacity. For a non-constant (power-law) optical opac-
ity, one has to use equation (124). As scattering in the
optical becomes more backward-peaked, it introduces
an anti-greenhouse effect to the thermal structure. Scat-
tering in the infrared generally warms the atmosphere
(i.e., the scattering greenhouse effect), unless it is in the
form of purely forward scattering, in which case it be-
haves like a purely absorbing atmosphere.

• Spherical and Bond albedos and albedo spectra:
We have derived analytical formulae for the spherical
and Bond albedos, in the two-stream approximation, as
functions of the single-scattering albedo (ω0) and asym-
metry factor (g0), as stated in equation (100). The for-
mula for the spherical albedo may be used to compute
albedo spectra using tabulated values ofω0 andg0, ex-
amples of which are shown in Figure 6.

• Photon deposition depth with non-isotropic scatter-
ing: The photon deposition depth is the pressure at
which most of the incident stellar irradiation is being
absorbed. In equation (117), we derive an updated for-
mula that involves non-isotropic scattering and a non-
constant optical opacity.

• Runaway greenhouse: Our two-stream solution al-
lows us to construct toy models for the runaway green-
house effect and compute the Komabayashi-Ingersoll
limit for different gases.

• Use the hemispheric closure, avoid the Eddington
closure: The Eddington closure leads to two forms
of error. First, it introduces reflected flux in an unphys-
ical way. Second, it spuriously enhances the thermal
emission. We recommend that the hemispheric closure
be used instead when computing synthetic spectra.

• The photosphere does not always reside at an optical
depth of 2/3: The “2/3 rule” comes from Milne’s solu-
tion for self-luminous atmospheres (stars). We demon-
strate that in a highly irradiated atmosphere with inter-
nal heat, the location of the photosphere (as computed
from its corresponding value of the optical depth) de-
pends on the relative strength of shortwave versus long-
wave absorption and the properties of scattering.

To supplement our current study, we derive total, net, out-
going and incoming fluxes in the convective regime in Ap-
pendix A, thus generalizing the work of Robinson & Catling
(2012), who computed them in the purely absorbing limit.

6.2.Comparison to Previous Analytical Work

Overall, the novel aspect of our study is the construction of
a unified, self-consistent framework for studying two-stream
radiative transfer, flux-limited diffusion and temperature-
pressure profiles using the same set of governing equations
and closures and enforcing general energy conservation.

6.2.1.Two-Stream Radiative Transfer

Several differences from past studies are worth mention-
ing. Meador & Weaver (1980) and Goody & Yung (1989)
do not include the Planck function term in their deriva-
tions, cf. their equations (10)–(13) and (8.156), respec-
tively. Meador & Weaver (1980) list other closures such
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as “modified Eddington”, “modified quadrature” and “Delta
function”, but these are based on expressing the scattering
phase function as a series expansion in Legendre polynomi-
als (Chandrasekhar 1960); these closures make different as-
sumptions for the integrals associated withP . For the quadra-
ture closure, Toon et al. (1989) and Pierrehumbert (2010) dis-
agree on their expressions forγB: the former states it asγB =
2πµ̄ (1− ω0), while the latter writesγB =

√
3πµ̄ (1− ω0);

we have chosen to list and implement the latter as it correctly
producesf∞ = 1.

A major difference with our derivation is that we have omit-
ted the contribution from a “direct beam” (Chandrasekhar
1960), which is usually included as a term involving the in-
cident stellar flux, diluted across height by essentially a trans-
mission function involving its own directionality: a charac-
teristic value ofµ, which we may write as̄µ⋆ ≡ cos θ⋆;
the quantityθ⋆ is often called the “zenith angle”. As al-
ready mentioned, given the fact that the two-stream treat-
ment is one-dimensional and the incoming stellar flux may
be modeled using the boundary condition at the top of the
atmosphere, we consider this additional term to be superflu-
ous (Meador & Weaver 1980). Given the other assumptions
and simplifications associated with the two-stream approxi-
mation,12 we find this approach to be reasonable.

6.2.2.Analytical Temperature-Pressure Profiles

Analytical temperature-pressure profiles for highly-
irradiated atmospheres were first explored by Hubeny et al.
(2003) and Hansen (2008). Guillot (2010) generalized these
studies into a formalism describing both latitude-specificand
globally-averaged temperature-pressure profiles, albeitin
the limit of pure absorption. Heng et al. (2012) considered
isotropic, coherent scattering, used non-constant infrared
opacities and included a toy model for a Gaussian cloud deck,
albeit with a constant optical opacity. Robinson & Catling
(2012) augmented temperature-pressure profiles in the purely
absorbing limit with convective adiabats and employed
the diffusivity factor (see§6.4). (See also Appendix A.)
Parmentier & Guillot (2014) generalized the “picket fence
model”, previously described in Mihalas (1970), to describe
highly-irradiated atmospheres, by including four opacities to
mimic the presence of spectral lines and continua, albeit in
the purely absorbing limit.

In the present study, we obtain solutions for a non-constant
(power-law) optical opacity and consider non-isotropic, co-
herent scattering both in the optical and infrared. We also dis-
tinguish between net and total fluxes, such that a heating term
previously derived by Guillot (2010) and Heng et al. (2012)
naturally vanishes when radiative equilibrium is attained.

6.3.Relegating the Burden of Isothermality to Numerical
Resolution?

A real atmosphere is described by a continuous
temperature-pressure profile, which our two-stream model
is trying to approximate as a collection of discrete layers.
Within each layer, the simplest approach is to assign to it
only a single temperature, i.e., isothermality.

More realistically, we expect each model layer to possess an
intra-layer temperature gradient, which means that the black-
body flux should vary across the layer. In situations where

12 Pierrehumbert (2010) describes the two-stream approximations as
“what physicists euphemistically like to call ‘uncontrolled approximations,’
in that they are not actually exact in any useful limit.”

the temperature-pressure profile is known (e.g., via in-situ
measurements), such an approach is reasonable and robust.
In exoplanetary atmospheres, where the temperature-pressure
profile is a priori unknown, attempting to model intra-layer
temperature variations is computationally akin to assuming a
sub-grid model. In our models with non-isothermal layers, we
are assuming that intra-layer variations may be linearly inter-
polated.

As an initial approach, we expect that the accuracy of the
isothermal assumption should be the burden of the numerical
resolution of the calculation—if one desires a better answer,
one simply needs to specify more layers within a model atmo-
sphere. An infinitesimally thin atmospheric layer may always
be described as being isothermal. In practice, the use of non-
isothermal layers is computationally efficient, leads to rapid
numerical convergence and may be more accurate than us-
ing an equivalent number of isothermal layers (Lacis & Oinas
1991). In exoplanetary atmospheres, the advantages and dis-
advantages of using isothermal versus non-isothermal layers
remain to be fully elucidated in future numerical work.

Deep in the interior, as the vertical resolution far exceeds
the photon mean free path, the heating is more conveniently
described by flux-limited diffusion, which is a demonstrably
non-isothermal phenomenon (see§3.3).

6.4.The Diffusivity Factor

In the two-stream approximation, one may generally write
the transmission function as

T = exp (−D∆τ0), (145)

whereD is often termed a “diffusivity factor”. Within the
context of our formalism, the diffusivity factor is relatedto
the first Eddington coefficient,

D =
1

ǫ±
. (146)

In order to produce the correct blackbody flux for a purely
absorbing, isothermal, opaque atmosphere, we have setǫ± =
1/2 orD = 2. Making other choices for the value ofD alters
this asymptotic value of the blackbody flux (4πB/D).

For a purely absorbing atmosphere, it is possible to solve
for D by solving the radiative transfer equation directly for
the intensity (see Appendix B), instead of using the method
of moments. The transmission function then takes on a gener-
alized form, cf. equation (B5), which requires an integration
overµ. The diffusivity factor is then obtained by solving the
equation,

exp (−D∆τ0) = 2

∫ 1

0

µ exp

(

−∆τ0
µ

)

dµ. (147)

It is apparent that the value ofD depends on∆τ0, which is the
difference in the (non-slanted) optical depth between two at-
mospheric layers. Since the radiative transfer equation cannot
be solved directly when scattering is present (see Appendix
B), one cannot write down a generalized form of equation
(147) and solve forD whenω0 6= 0.

Numerically, an optimal value for the diffusivity factor may
be inferred by performing a calculation based on the direct
solution of the radiative transfer equation and comparing it to
a second calculation based on the two-stream solutions with
a chosen value ofD. For example, Amundsen et al. (2014)
report thatD = 1.66 accurately approximates the direct so-
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lution, based on comparing several calculations of hot exo-
planetary atmospheres in the purely absorbing limit. Coinci-
dentally,D = 1.649–1.66 is motivated by an Earth-centric
calculation (mostly of water under Earth-like conditions)of
the terrestrial atmosphere (Armstrong 1968, 1969).
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APPENDIX

TOTAL, NET, OUTGOING AND INCOMING FLUXES IN THE CONVECTIVE REGIME

We generalize the work of Robinson & Catling (2012), who computed fluxes in the convective regime, by including non-
isotropic, coherent scattering. The mathematical machinery for deriving these fluxes has already been laid out in§2.7, so we will
simply state our results. As reasoned by Robinson & Catling (2012), the convective part of an atmosphere has a temperature-
pressure profile given byT ∝ P (γ−1)/γ , whereγ is the adiabatic gas index. The index(γ − 1)/γ may be diluted by a factor
of order unity to mimic moist convection. Consider the opacity to be∝ mn0 ∝ Pn0 , wheren0 is a dimensionless index, which
implies thatτ ∝ Pn0+1. Here, we are usingτ to represent the slant optical depth integrated over all wavelengths, although we
expect most of its contributions to come from the longwave. It follows that the temperature-pressure profile is given by

T = TBOA

(

τ

τBOA

)(γ−1)/γ(n0+1)

, (A1)

whereTBOA andτBOA are the temperature and slant optical depth, respectively,at the bottom of the atmosphere, along this
convective adiabat. Note thatTBOA 6= Ts in general (e.g., Pierrehumbert 2010), since the surface ofan exoplanet may be hotter
than the atmosphere directly above it.

By setting

nc ≡
4 (γ − 1)

γ (n0 + 1)
, αc ≡

2γB (γa + γs)σSBT
4
BOA

πτnc

BOA

, (A2)

the governing equation for the total flux, integrated over all wavelength, becomes

∂2F+

∂τ2
− α2F+ + αcτ

nc = 0, (A3)

whereα has previously been defined in equation (69).
The total and net fluxes are

F+ =A1 exp (ατ) +A2 exp (−ατ)−
αcτ

nc+2

(nc + 1) (nc + 2)
,

F− =

(

γa − γs
γa + γs

)1/2

[A1 exp (ατ) −A2 exp (−ατ)]−
αcτ

nc+1

(nc + 1) (γa + γs)
.

(A4)

From these expressions, we may deriveF↑ andF↓, albeit with the coefficientsA1 andA2 still present. To eliminate them requires
enforcing the boundary conditionsF↑2

andF↓1
. For a pair of atmosphere layers (whereτ1 < τ2), the outgoing and incoming

fluxes are

F↑1
=

1

(ζ−T )
2 − ζ2+

{(

ζ2− − ζ2+
)

T F↑2
− ζ−ζ+

(

1− T 2
)

F↓1

+
αc

(nc + 1) (γa + γs)

[

T τnc+1
2

(

ζ2−
[

2T 2 − 1
]

− ζ2+
)

+ τnc+1
1 (ζ+ − ζ−)

(

ζ+ + ζ−T 2
)]

+
αc

(nc + 1) (nc + 2)

[

T τnc+2
2

(

ζ2−
[

2T 2 − 1
]

− ζ2+
)

+ τnc+2
1 (ζ− + ζ+)

(

ζ+ − ζ−T 2
)]

}

,

F↓2
=

1

(ζ−T )
2 − ζ2+

{(

ζ2− − ζ2+
)

T F↓1
− ζ−ζ+

(

1− T 2
)

F↑2

+
αc

(nc + 1) (γa + γs)

[

τnc+1
2 (ζ− − ζ+)

(

ζ+ + ζ−T 2
)

+ T τnc+1
1

(

ζ2+
[

2T −2 − 1
]

− ζ2−
)]

+
αc

(nc + 1) (nc + 2)

[

τnc+2
2 (ζ− + ζ+)

(

ζ+ − ζ−T 2
)

+ T τnc+2
1

(

ζ2− − ζ2+
[

2T −2 − 1
])]

}

.

(A5)

Consider an atmosphere where the convective region sits below some depth, atτ ≥ τc, where the transition (slant) optical
depth (τc) may be computed by equatingT in equation (A1) toT̄ in equation (124). To use the equations in (A5) in the same
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way as in Robinson & Catling (2012), one has to setF↑2
= σSBT

4
BOA, τ2 = τBOA andτ1 = τ . The other boundary condition is

F↓1
= σSBT

4
c , whereTc ≡ T (τc). Note that since we can never haveT = 0 when the equations in (A5) are used in this way,

F↓2
will not diverge due to theT −2 terms.

Unlike in the purely absorbing case, as found by Robinson & Catling (2012), the outgoing and incoming fluxes depend on
both boundary conditions in the presence of scattering. Furthermore, we have circumvented the need to use incomplete gamma
functions, as was the approach in Robinson & Catling (2012),by solving a second-order differential equation forF+, instead of
a first-order one (see§2.6).

It is worth noting that the equations in (A5) lack the symmetry of those in (75) (betweenF↑1
andF↓2

), because we have
enforced a temperature-pressure profile that is asymmetricacross pressure or height.

While we have discussed the use of the equations in (A5) for the convective part of the atmosphere just above the surface ofan
exoplanet, they may also be used to describe detached convective regions.

DIRECT ANALYTICAL SOLUTION OF THE RADIATIVE TRANSFER EQUATION AND WHY IT ONLY WORKS FOR PURE
ABSORPTION

In the limit of pure absorption, the radiative transfer equation may be solved directly for the intensity, circumventing the need
for the method of moments. However, such an approach breaks down when scattering is present. To demonstrate this, we assume
isotropic, coherent scattering, as described by equation (4), and obtain

I2 exp

(

−τ02
µ

)

− I1 exp

(

−τ01
µ

)

= − 1

µ

∫ τ02

τ01

[

ω0J

4π
+ (1− ω0)B

]

exp

(

−τ0
µ

)

dτ0, (B1)

whereI2 andI1 are the intensities evaluated atτ0 = τ02 andτ0 = τ01 , respectively. Whenω0 6= 0, the integral cannot be
evaluated since the functional form ofJ is a priori unknown. It cannot be assumed thatJ obeys isothermality (i.e., is independent
of τ0), because it is related to the outgoing and incoming fluxes via an Eddington coefficient and the fluxes generally depend on
τ0.

However, whenω0 = 0, we may evaluate equation (B1) for isothermal atmospheric layers,

I1 = I2T0 +B (1− T0) , (B2)

where we have defined

T0 ≡ exp

(

−∆τ0
µ

)

(B3)

and∆τ0 ≡ τ02 − τ01 > 0. By assumingI1 andI2 to be constant with respect toµ andφ, one multiplies equation (B2) byµ,
integrates overdΩ = dµdφ in each hemisphere and obtains

F↑1
= F↑2

T + πB (1− T ) ,

F↓2
= F↓1

T + πB (1− T ) ,
(B4)

if we identifyF↑↓1
= πI1 andF↑↓2

= πI2. The transmission function now takes on a more general form,

T ≡ 2

∫ 1

0

µ exp

(

−∆τ0
µ

)

dµ = (1−∆τ0) exp (−∆τ0) + (∆τ0)
2 E1, (B5)

with E1 = E1(∆τ0) being the exponential integral of the first order. It is important to note that this generalized form ofT is only
valid in the limit of pure absorption.

If we express the Planck function as given by equation (33), then the direct solutions become

F↑1
= F↑2

T + πB2 (1− T ) + πB′

{

2

3
[1− exp (−∆τ0)]−∆τ0

(

1− T
3

)}

,

F↓2
= F↓1

T + πB1 (1− T ) + πB′

{

−2

3
[1− exp (−∆τ0)] + ∆τ0

(

1− T
3

)}

.

(B6)
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